
Sequential and Parallel Algorithms for Mixed Packing and Covering

Neal E. Young
Akamai Technologies

Cambridge, Massachusetts, USA.
neal@acm.org

Abstract

We describe sequential and parallel algorithms that ap-
proximately solve linear programs with no negative coeffi-
cients (a.k.a. mixed packing and covering problems).

For explicitly given problems, our fastest sequential al-
gorithm returns a solution satisfying all constraints within
a 1 � � factor in O(md log(m)=�2) time, where m is the
number of constraints and d is the maximum number of con-
straints any variable appears in.

Our parallel algorithm runs in time polylogarithmic in
the input size times ��4 and uses a total number of opera-
tions comparable to the sequential algorithm.

The main contribution is that the algorithms solve mixed
packing and covering problems (in contrast to pure packing
or pure covering problems, which have only “�” or only
“�” inequalities, but not both) and run in time independent
of the so-called width of the problem.

1. Background

Packing and covering problems are problems that can be
formulated as linear programs using only non-negative co-
efficients and non-negative variables. Special cases include
pure packing problems, which are of the form maxfc � x :
Ax � bg and pure covering problems, which are of the form
minfc � x : Ax � bg.

Lagrangian-relaxation algorithms are based on the fol-
lowing basic idea. Given an optimization problem speci-
fied as a collection of constraints, modify the problem by
selecting some of the constraints and replacing them by a
continuous “penalty” function that, given a partial solution
x, measures how close x is to violating the removed con-
straints. Construct a solution iteratively in small steps, mak-
ing each choice to maintain the remaining constraints while
minimizing the increase in the penalty function.

While Lagrangian-relaxation algorithms have the disad-
vantage of producing only approximately optimal (or ap-
proximately feasible) solutions, the algorithms have the fol-

lowing potential advantages in comparison to the simplex,
interior point, and ellipsoid methods. They can be faster,
easier to implement, and easier to parallelize. They can be
particularly useful for problems that are sparse, or that have
exponentially many variables or constraints (but still have
some polynomial-size representation).

Lagrangian relaxation was one of the first methods
proposed for solving linear programs — as early as the
1950’s, John von Neumann apparently proposed and ana-
lyzed an O(m2n log(mn)=�2)-time Lagrangian-relaxation
algorithm for solving two-person zero-sum matrix games
(equivalent to pure packing or covering) [18]. The algo-
rithm returned a solution with additive error � assuming the
matrix was scaled to lie between 0 and 1. In 1950, Brown
and von Neumann also proposed a system of differential
equations that converged to an optimal solution, with the
suggestion that the equations could form the basis of an al-
gorithm [3].

Subsequent examples include a multicommodity flow al-
gorithm by Ford and Fulkerson (1958), Dantzig-Wolfe de-
composition (1960), Benders’ decomposition (1962), and
Held and Karp’s lower bound for the traveling salesman
problem (1971). In 1990, Shahrokhi and Matula proved
polynomial-time convergence rates for a Lagrangian-
relaxation algorithm for multicommodity flow. This caught
the attention of the theoretical computer science research
community, which has since produced a large body of re-
search on the subject. Klein et al. [15] and Leighton et
al. [19] (and many others) gave additional multicommodity
flow results. Plotkin, Shmoys, and Tardos [21] and Grigori-
adis and Khachiyan [10, 11, 8, 9] adapted the techniques to
the general class of packing/covering problems, including
mixed packing and covering problems. These algorithms’
running times depended linearly on the width — an un-
bounded function of the input instance. Relatively compli-
cated techniques were developed to transform problems so
as to reduce their width.

From this body of work we adapt and use the follow-
ing specific techniques: the technique of variable-size in-
crements (Garg and Konemann [7, 17]); a way of partition-

Proceedings of the 42nd IEEE Symposium on Foundations of Computer Science (FOCS�01)
0-7695-1390-5/02 $17.00 © 2002 � IEEE

ing the steps of the Garg/Konemann algorithm into phases
(Fleischer [5]); and the idea of incrementing multiple vari-
ables simultaneously (Luby and Nisan [20]).

Variable-sized increments yield algorithms whose run-
ning times are independent of the width of the problem
instance, effectively replacing the width by the number of
constraints. Partitioning into phases reduces the time to im-
plement each step. Finally, incrementing multiple variables
simultaneously allows fast parallel algorithms.

Previously, as far as we know, these techniques have only
been applied to pure packing or covering problems, not to
mixed packing and covering problems. We know of no
other width-independent or parallel algorithms for mixed
packing and covering. Our contribution here is to present
such algorithms.

Although Luby and Nisan characterize their algorithm as
solving “linear programs with non-negative coefficients”, in
fact it applies only to pure packing or pure covering prob-
lems [20].

After presenting and analyzing the algorithms, we con-
clude with two illustrative examples.

2. Mixed Packing and Covering

We consider problems in the following form:
APPROXIMATE MIXED PACKING AND COVERING: Given
non-negative matrices P;C, vectors p; c and � 2 (0; 1),
find an approximately feasible vector x � 0 (s.t. Px �
(1+ �)p andCx � c) or a proof that no vector x is feasible
(i.e., satisfies x � 0, Px � p and Cx � c).

In Section 5 we describe how to reduce the optimization
version minf� : Px � �p;Cx � cg to the above form.

For notational simplicity, we assume throughout that
each coordinate of p and c is some constant N . This is
without loss of generality by the reductionP 0

ij = PijN=pi
and C0

ij = CijN=ci (after removing any constraints of
the form (Px)i � 0 — which only force to zero each
xj such that Pij > 0 — or the form (Cx)i � 0 —
which do not constrain x at all). A vector x is feasible if
maxPx � N � minCx.

All of the algorithms in this paper are specializations of
the generic algorithm in Fig. 1. The algorithm starts with an
infeasible vector x and adds to x in small increments until x
becomes approximately feasible, that is, until minCx � N
and maxPx � (1 + O(�))N . Instead of working with
the max and min functions, the algorithm works to achieve
a stronger condition: lminCx�N and lmaxPx � (1 +
O(�))N , where lmax and lmin are “smooth” functions that
approximate max and min:

Definition 1 For real values y = (y1;y2; : : : ;ym), define

lmax y = ln
P

i e
yi and lmin y = � ln

P
i e

�yi :

Note maxy � lmaxy and miny � lminy:

Recall that, for any continuous function f(x), increas-
ing xj by Æ increases f by approximately Æ times the partial
derivative of f with respect to xj . In lines 2 and 3 of the
algorithm, partialj(P;x) and pa rtialj(C;�x) are, respec-
tively, the partial derivatives of lmax(Px) and lmin(Cx)
with respect to xj . Thus, the condition in line 7b says that
a variable xj may be increased only if doing so increases
lmax(Px) by at most 1 + O(�) times as much as it in-
creases lmin(Cx). We say “1 + O(�)” instead of 1 + �
because the partial derivatives only approximate the actual
increases, and in fact the condition on line 7c is necessary
to ensure that the change in x is small enough so that the
partial derivatives do give good approximations.

Because each step increases lmax(Px) by at most 1 +
O(�) times as much as it increases lmin(Cx), the ratio of
the two quantities tends to 1 + O(�) (or less). Thus, the
algorithm drives x to approximate feasibility.

Line 5 ensures that there is a j meeting the condition of
line 7b. Why is line 5 okay? Briefly, because the gradients
of lmax and lmin have 1-norm equal to 1 (that is, the sum
of their partial derivatives equals 1), one can show that, for
any x and any feasible x�, the dot product of x� with the
gradient of lmax(Px) is at most N , while the dot product of
x� with the gradient of lmin(Cx) is at least N . Since x� �
0, this means at least one partial derivative of lmin(Cx) is as
large as the corresponding partial derivative of lmax(Px).

In the remainder of this section we give the complete
analysis of the performance guarantee.

Let pa rtial0i(y) = eyi=
P

i e
yi , so that partial0i(y) is

the partial derivative of lmax(y) with respect to yi and
pa rtial0i(�y) is the partial derivative of lmin(y) with re-
spect to yi. We will use the following “chain rule”: for
anyM;x;�,
P

i(M�)i partial
0

i(Mx) =
P

j �j pa rtialj(M;x) (1)

We start with a utility lemma.

Lemma 1 (smoothness of lmin and lmax) For all y;� �
0, if 0 � �i � � � 1 then

lmax(y + �) � lmax(y) + (1 + �)
P

i �i partial
0

i(y)

and

lmin(y + �) � lmin(y) + (1� �=2)
P

i �i pa rtial
0

i(�y):

Proof: Using the standard sorts of inequalities that underlie
Chernoff bounds, namely ln(1 + z) � z (for all z) and
e� � 1 � (1 + �)� (for 0 � � � � � 1):

lmax(y + �)� lmax(y)

= ln[
P

i e
yi+�i=

P
i e
yi]

= ln[1 +
P

i(e
�
i � 1)eyi=

P
i e
yi]

�
P

i(e
�
i � 1)eyi=

P
i e
yi

� (1 + �)
P

i �i partial
0

i(y):

2

Proceedings of the 42nd IEEE Symposium on Foundations of Computer Science (FOCS�01)
0-7695-1390-5/02 $17.00 © 2002 � IEEE

in: P;C; �, arbitrary x
out: ’infeasible’ or x s.t. Px � (1 +O(�))N;Cx � N .
1. Let N (maxPx+ 2 lnm)=�, where m is the number of constraints.
2. Define pa rtialj(M;x) =

P
iMije

(Mx)i=
P

i e
(Mx)i . —partial derivative of lmax and lmin

3. Define ratioj(x) = pa rtialj(P;x)= partialj(C;�x).
4. While minCx < N do:
5. If minj ratioj(x) > 1 then return ’infeasible’. —see Lemma 3
6. Delete the ith row of C for each i s.t. (Cx)i � N . —constraint deletion for efficiency
7a. Choose “increment” vector � � 0 such that
7b. (8j) �j > 0 only if ratioj(x) � 1 + � — @ lmax =@xj � (1 + �)@ lmin =@xj
7c. and maxfmaxC�;maxP�g = �. —step size
8. Let x x +�. —do the increment
9. Return x.

Figure 1. Generic algorithm. Implementable in O(m log(m)=�2) linear-time iterations.

This proves the first inequality in the statement of the
lemma. The second inequality follows by an analogous
chain of inequalities, using 1 � e�� � (1 � �=2)� (for
0 � � � � � 1).

Because of this smoothness, if the increment is small
enough (i.e. the“step-size” condition on line 7c of the algo-
rithm is met) the partial derivatives approximate the changes
in lmin and lmax well — within a 1� � factor:

Lemma 2 In each increment, the increase of lmaxPx is at

most (1+�)2

1��=2 times that of lminCx.

Proof: When the generic algorithm increments x by�, the
vector � meets the following conditions:

1. (8j) �j > 0! ratioj(x) � 1 + �;

2. maxfmaxC�;maxP�g � �.

Adding � to x adds P� to Px. From Condition 2 above
and Lemma 1, it follows that lmaxPx increases by at most
(1 + �)

P
i(P�)i partial

0

i(Px). By the chain rule (1), this
equals (1 + �)

P
j �j partialj(P;x):

Similarly, lminCx increases by at least
(1 � �=2)

P
j �j pa rtialj(C;�x): Since �j > 0 only if

pa rtialj(P;x) � (1 + �) pa rtialj(C;�x) (Condition 1
above), Lemma 2 follows.

Next we show that if the problem instance is feasible
there always exists a choice of � meeting the conditions
on lines 7b and 7c of the algorithm. This is necessary for
the algorithm to be well-defined.

Lemma 3 If the problem instance is feasible, then 8x 9j :
ratioj(x) � 1.

Proof: Let x be arbitrary and let x� be a feasible solution.
By the chain rule (1),
P

j x
�

j pa rtialj(P;x) =
P

i(Px
�)i partial

0

i(Px):

Since (Px�)i � N , and
P

i pa rtial
0

i(Px) = 1, the quantity
above is at most N .

Likewise,
P

j x
�

j pa rtialj(C;�x) � N .
Since x� � 0, there must be some j such that

pa rtialj(C;�x) � pa rtialj(P;x).

Lemma 2 means that the condition on line 7b can be met,
and clearly by scaling the condition on line 7c can also be
met.

From Lemma 2, the basic performance guarantee follows
easily.

Lemma 4 If the problem instance is feasible, the generic
algorithm returns an approximately feasible solution.
Given an initial x, the algorithm makes O(m(maxPx +
logm)=�2) increments.

Proof: First we prove the performance guarantee. Define

� = lmaxPx� (1+�)2

1��=2 lminCx:

Before the first increment � � ln(memaxPx) + (1 +
O(�)) lnm < O(N�). By Lemma 2, no increment oper-
ation increases �. Deleting a covering constraint increases
lminCx and therefore only decreases �. Thus,� � O(�N)
throughout the course of the algorithm and, just before the
last increment (when lminCx � minCx < N),

lmaxPx � O(�N) + (1 +O(�)) lminCx

� (1 +O(�))N:

With the last increment, maxPx increases by at most �, so
at termination, maxPx � (1 + O(�))N while minCx �
N .

3

Proceedings of the 42nd IEEE Symposium on Foundations of Computer Science (FOCS�01)
0-7695-1390-5/02 $17.00 © 2002 � IEEE

in: P;C; �, arbitrary x
out: ’infeasible’ or x s.t. Px � (1 +O(�))N;Cx � N .
1. Let N (maxPx+ 2 lnm)=�, where m is the number of constraints.
2. Define localj(x) =

P
iPije

(Px)i=
P

iCije
�(Cx)i . —terms of ratioj(x) that depend on j

3. Define global(x) =
P

i e
(Px)i=

P
i e

�(Cx)i . —so ratioj(x) = localj(x)= global(x)
4. While minCx < N do:
5a. If g is not yet set or minj localj(x)=g > 1 + � then
5b. let g global(x), and —start new phase
5c. if minj localj(x)=g > 1 then return ’infeasible’.
6. Delete the ith row of C for each i s.t. (Cx)i � N .
7a. Choose “increment” vector � � 0 such that
7b. (8j) �j > 0 only if localj(x)=g � 1 + � —stronger cond’n than in generic alg.
7c. and maxfmaxC�;maxP�g = �.
8. Let x x +�.
9. Return x.

Figure 2. Algorithm with phases. Implementable in O(md log(m)=�2) operations, where d is the maxi-
mum number of constraints any variable appears in.

Next we bound the number of increments. Let m c and
mp be the number of rows ofC andP, respectively, so that
mc+mp = m. Define	 =

P
i(Px)i+

P
i((Cx)i�N��).

It is initially at least �mc(N + �), and finally at most
mp(N+�). By the “step-size” condition in line 7c, each in-
crement increases 	 by at least �. Because of the constraint-
deletion operations in line 6, (Cx)i < N before each in-
crement and so (Cx)i < N + � after each increment (for
each row i remaining in C). Thus, each constraint dele-
tion increases 	. Thus, the number of increments is at most
m(N+�)=�, which gives the desired bound by the definition
of N .

To specify a particular implementation of the algorithm,
we need to specify how the initial x is chosen and how
the increment � is chosen in each iteration. Here is one
straightforward implementation: initialize x to 0, and with
each increment choose � to be a vector where � j = 0
for all j except for a single j such that pa rtialj(P;x) �
(1+ �) pa rtialj(C;�x). The value of that�j is determined
by the step-size condition. This still leaves some flexi-
bility. For example, one can choose j so as to minimize
pa rtialj(P;x) � partialj(C;�x) or to minimize (within
1+ �) pa rtialj(P;x)= pa rtialj(C;�x). Clearly, if the prob-
lem instance is given explicitly, then either of these choices
can be implemented in time linear in the number of non-
zero entries in the matrices. This gives the following corol-
lary:

Corollary 1 The generic algorithm can implemented to ap-
proximately solve any explicitly given problem instance
in O(m log(m)=�2) linear-time iterations, where m is the

number of constraints.

3. Algorithm with Phases

This algorithm specializes the generic algorithm. In
order to speed the computation of the key function
ratioj(x), we break it into two components as ratioj(x) =
localj(x)= global(x), where localj captures the terms that
depend on j. As x changes, we recompute global(x) only
occasionally — at the start of each phase (i.e., iteration of
the outer loop). The algorithm is shown in Fig. 2. First
we discuss how this is a particular implementation of the
generic algorithm, and then we prove a stronger time bound.

Lemma 5 The algorithm with phases is a specialization of
the generic algorithm.

Proof: We argue that any increment the algorithm does
is also an allowable increment for the generic algorithm.
Since localj(x)= global(x) = ratioj(x) and localj(x) and
global(x) only increase as the algorithm proceeds, at all
times localj(x)=g � ratioj(x) . Thus, any � meeting the
conditions of the algorithm with phases also meets the con-
ditions of the generic algorithm.

This and Lemma 4 imply the performance guarantee:

Corollary 2 The algorithm with phases returns an approx-
imately feasible solution. Given an initial x, the algorithm
makes at most O(m(maxPx+ logm)=�2) increments.

Now here is the stronger time bound:

4

Proceedings of the 42nd IEEE Symposium on Foundations of Computer Science (FOCS�01)
0-7695-1390-5/02 $17.00 © 2002 � IEEE

in: P;C; �
out: ’infeasible’ or x s.t. Px � (1 +O(�))N;Cx � N .
0. Let xj = mini 1=(nPij) for each j, where n is the # of var’s. —x initialized, not given
1. Let N (maxPx+ 2 lnm)=�, where m is the # of constraints.
2. Define localj(x) =

P
iPije

(Px)i=
P

iCije
�(Cx)i .

3. Define global(x) =
P

i e
(Px)i=

P
i e

�(Cx)i .
4. While minCx < N do:
5a. If g is not yet set or minj localj(x)=g > 1 + � then
5b. let g global(x), and
5c. if minj localj(x)=g > 1 then return ’infeasible’.
6. Delete the ith row of C for each i s.t. (Cx)i � N .
7a. Choose “increment” vector � � 0 such that for some Æ > 0 — incr. all allowed xj’s,
7b. (8j) �j = xj=Æ if localj(x)=g � 1 + �, else �j = 0, — prop. to current value
7c. and maxfmaxC�;maxP�g = �.
8. Let x x +�.
9. Return x.

Figure 3. Parallel algorithm. Implementable in parallel time polylogarithmic in input size times ��4.

Lemma 6 Given an initial x, the algorithm with phases
uses O((maxPx+ logm)=�2) phases.

Proof: We claim that global(x) increases by at least a 1+�
factor each phase. By inspection, global(x) is initially at
least 1=m and finally at mostmeO(N)=e�O(N), so the result
will follow.

To see the claim, note that at the end of a phase,
localj(x)=g > 1+ � for all j, i.e. g < minj localj(x)=(1 +
�). But, by Lemma 3, at the start of the next phase, the same
x and the next g satisfy localj(x)=g = ratioj(x) � 1 for
some j, i.e. g � minj localj(x).

Consider the following “round-robin” implementation of
the algorithm. Start with x = 0. Implement each phase by
cycling through the indices j once. For each j, as long as
localj(x)=g � 1 + �, repeatedly increment x by the vec-
tor � that has all coordinates 0 except �j , whose value is
determined by the step size.

Maintain the values (Px)i and (Cx)i for every i. After
a variable xj is incremented, the only values that change are
those where Pij or Cij are non-zero. So maintaining these
values requires O(d) time, where d � m is the maximum
number constraints any variable appears in.

With these values in hand, the condition localj(x)=g �
1 + � can be checked in O(d) time. Since the number of
increments is O(m log(m)=�2), the total time to do incre-
ments is O(md log(m)=�2). Other than increments, each of
the O(log(m)=�2) phases requires O(md) time, so we have
the following corollary:

Corollary 3 The algorithm with phases can be imple-
mented to approximately solve any explicitly given problem

instance usingO(md log(m)=�2) operations, where d is the
maximum number of constraints any variable appears in.

Note that this is an improvement on Corollary 1 by a fac-
tor equal to the number of non-zero entries in the matrix,
divided by d (this factor can be as large as the number of
variables).

4. Parallel Algorithm

Next we further specialize the algorithm to achieve an
efficient parallel implementation. The algorithm is shown
in Fig. 3. The idea is that we start with each variable having
a small but positive value. Then, in each increment step, we
increase all allowed variables (line 7b), each proportionally
to its current value. This method allows us to give a poly-
logarithmic bound on the number of iterations per phase.

Lemma 7 The parallel algorithm is a specialization of the
algorithm with phases, starting with maxPx � 1. The par-
allel algorithm makes O(log(m) log(n log(m)=�)=�2) in-
crements per phase.

Proof: The first claim is true by inspection and the initial
choice of x.

It remains to bound the number of increments per phase.
First, we claim that in each increment Æ =
(N=�). This
is simply because by the choice of �, for some i, (Cx) i=Æ
or (Px)i=Æ is at least �, but (Cx)i and (Px)i are O(N)
throughout the algorithm. Thus, for each j, each increment
that increases xj increases it by at least a 1 +
(�=N) fac-
tor. Since xj is initially mini 1=nPij and finally at most

5

Proceedings of the 42nd IEEE Symposium on Foundations of Computer Science (FOCS�01)
0-7695-1390-5/02 $17.00 © 2002 � IEEE

miniN=Pij , it follows that at most O(N log(Nn)=�) in-
crements increase xj .

Finally, in each phase, the last increment of the phase in-
creases some xj . In fact each increment in the phase must
have increased that xj , since localj(x) only increased dur-
ing the phase. Thus, the number of increments in the phase
is O(N log(Nn)=�).

Since each increment can be implemented in parallel
in polylogarithmic time, and the number of increments is
bounded by the number of phases times the number of in-
crements per phase. We have the following corollary.

Corollary 4 The parallel algorithm can be implemented to
approximately solve any explicitly given problem instance
in parallel time polylogarithmic in the input size times 1=�4.

5. Reducing Optimization to Feasibility

Given a problem instanceP;p;C; c and � > 0, let �� =
minf� : (9x) Px � �p;Cx � cg. In this section we
describe how to use the algorithms in this paper to approx-
imately solve this optimization problem — that is, to com-
pute a feasible solution (�;x) such that �� � � � (1+�)��.

We reduce the optimization problem to a sequence of
approximate feasibility subproblems. Each subproblem re-
quires �0-approximately solving 9?x : Px � �0 p;Cx � c

for a particular �0 and �0. We can solve such a subproblem
using any of the algorithms in this paper.

Lemma 8 The approximate optimization problem reduces
to a sequence of approximate feasibility subproblems:
O(log logm) subproblems with �0 = 1=2 and O(log 1=�)
subproblems where the ith-to-last subproblem has � 0 =

(�(43)

i).

Note that if we solve the subproblems using any algo-
rithm whose time depends at least linearly on 1=� (such as
the ones in this paper), then the total time to solve the sec-
ond set of subproblems (those with � 0 < 1=2) dominated by
the time used to solve the last such subproblem.

The remainder of this section contains the proof. The
basic idea is to use binary search for ��, solving a feasibility
problem at each step to bound ��. This lemma gives starting
upper and lower bounds:

Lemma 9 Let � =
P

iminj
P

i0(Pi0j=pi0)=(Cij=ci).
Then �� � � � m2��.

Proof: Recall �� = minf� : (9x) Px � �p;Cx � cg.
For each i = 1; : : : ;mc, consider the following relaxation:

��i = minf� : (9x)
P

i0(Px)i0=pi0 � mp�; (Cx)i � cig:

That is, only one specified covering constraint, and the
sum of the packing constraints, need to hold. Clearly

��i � ��. Furthermore the optimal solution z(i) to the
ith relaxed problem is given by finding j that minimizesP

i0 (Pij0=pi0)=(Cij=ci) and setting all coordinates of z(i)
to zero except zj(i) = 1=(Cij=ci). Correspondingly ��i =
minj

P
i0(Pij0=pi0)=(Cij=ci).

To get an m2-approximate solution to the original prob-
lem, take x =

P
i z(i) and � =

P
imp�

�

i . The pair
(x; �) is a feasible solution to the original problem (each
covering constraint is met the contribution of the corre-
sponding z(i), while each packing constraint is met becauseP

i0 (Px)i0=pi0 � �). Finally, � � m2�� because each
��i � ��.

Take �0 = �=m2 (for � as in the lemma) so 1 �
��=�0 � m2. Next use binary search to find an integer
j such that 2j � ��=�0 < 2j+1. Given an arbitrary i, to
decide whether i � j, solve the feasibility subproblem tak-
ing �0 = �02

i and �0 = 1=2. If there is an approximate
solution then �� � (1 + �0)�0 < �02

i+1 and hence i � j.
Otherwise the problem is infeasible so �� > �0 = �02

i and
hence i > j. Since there are O(logm) possible values of
i, the binary search takes O(log logm) subproblems each
with �0 = 1=2.

We have now computed �1 = �02
j such that 1 �

��=�1 < 2. Next we increase the precision. We start the ith
step with �i such that ��=�i 2 [1; 1 + Æi] for some Æi > 0,
solve the feasibility problem taking � 0 = �i(1 + Æi=4)
and �0 = Æi=4. If there is an approximate solution then
��=�i 2 [1; (1 + Æi=4)

2], so take �i+1 = �i. Otherwise the
problem is infeasible, implying ��=�i 2 [1 + Æi=4; 1 + Æi],
so take �i+1 = �i(1 + Æi=4). In either case a calculation
shows that ��=�i+1 2 [1; 1 + Æi+1] for Æi+1 = (3=4)Æi.
Before O(log 1=�) steps, Æi � �, at which point the most
recent solution produced will be �-optimal.

The second phase (increasing the precision) requires
solving O(log 1=�) subproblems, but, because � 0 decreases
geometrically in each step, the time to solve the subprob-
lems is dominated by the time to solve the final subprob-
lem (with Æ =
(�)). Thus, the entire computation time
is O(log logm) times the time to solve a feasibility prob-
lem with �0 = 1=2 plus the time to solve a single feasibility
problem with �0 = �.

6. Examples

6.1. Min-Cost Concurrent Multicommodity Flow

This section illustrates how to handle problems with ex-
ponentially many variables.

An instance of the min-cost concurrent multicommodity
flow problem is defined by a weighted, capacitated, directed
graph G, a collection of commodities C1; C2; :::; Ck, and a
demand di � 0 for each commodity. Each commodity C i is

6

Proceedings of the 42nd IEEE Symposium on Foundations of Computer Science (FOCS�01)
0-7695-1390-5/02 $17.00 © 2002 � IEEE

in: weighted, capacitated digraph G, commodities, f(si; ti; di)g, budget W .
out: ’infeasible’ or f s.t. f(e) � �e(1 +O(�)); f(si; ti) � di; w � f � (1 +O(�))W
0. Initialize f(p) 0 for all p.
1. Let N 2 ln(m)=�, where m = 1 +#edges +#commodities.
2. Define localp(f) = [w(p)ew�f=W=W +

P
e2p e

f(e)=�e=�e]=[e
�f(si;ti)=di=di].

3. Define global(f) = [ew�f=W +
P

e e
f(e)=�e]=[

P
i e

�f(si;ti)=di].
4. Until each commodity’s demand is exceeded by a factor of N do:
5a. If g is not yet set or minp localp(f)=g > 1 + �, then
5b. let g global(f), and
5c. if minp localp(f)=g > 1 then return ’infeasible’.
6. Delete any commodity whose demand is exceeded by a factor of N .
7. Choose any commodity i and path p for it s.t. localp(f)=g � 1 + �.
8. Set f(p) f(p) + Æ, where Æ = �minfdi;W=w(p);mine2p �eg.
9. Return f=N .

Figure 4. Algorithm with phases, applied to min-cost concurrent multicommodity flow. Implementable
in time bounded by time to solve O(m log(m)=�2) shortest-path subproblems, where m is the number
of edges plus the number of commodities. Note: f(si; ti) denotes the flow shipped for commodity i.

the set of paths from some source vertex s i to a sink vertex
ti. We also assume we are given a budget W � 0.

A solution is a multicommodity flow f , consisting of a
network flow fi for each commodity Ci. We think of fi as
specifying a flow fi(p) � 0 for each path p 2 Ci, but it
also induces a flow fi(e) =

P
p3e fi(p) on each edge e.

Without loss of generality, no path is in two commodities,
so we drop the subscript i from fi(p).

Let we and �e denote the weight and capacity of edge
e, respectively. Define the weight of path p to be wp =P

e2p we, and the weight of flow f to be w � f =P
p wpf(p). For the total flow on an edge e or path p,

we use f(e) =
P

p3e f(p). The amount of commodity i
shipped is

P
p2Ci

f(p).
A solution f is feasible if: the amount of commodity i

shipped is at least di, the flow on each edge is within the
capacity (f(e) � �e), and the weight of the flow is within
the budget (w � f � W). An approximate solution, given
� > 0, is one where jfij � (1� �)di, f(e) � (1+ �)�e, and
w � f � (1 + �)W .

As described, the problem is naturally a mixed pack-
ing/covering problem with a variable f(p) for each path p
and with the following constraints: (8i)

P
p2Ci

f(p) � di,
(8e)
P

p3e f(p) � �e,
P

p f(p)wp �W .
The simple implementation of the algorithm with phases

reduces in this case to the algorithm in Fig. 4. As presented
in the figure, the algorithm uses exponentially many vari-
ables (one for each path). However, to implement the al-
gorithm it suffices to maintain only the flow for each edge
and commodity and the total cost. To implement the in-
ner loop, do the following for each commodity i: repeat-

edly find the shortest path p from si to ti in the graph with
edge weights given by `(e) = wee

w�f=W + ef(e)=�e=�e.
If the length of p is at most (1 + �)g e�f(si;ti)=di=di, then
localp(f)=g � (1 + �), so augment flow on p as described
in the figure, otherwise, move on to the next commodity.

The time the algorithm takes is bounded by the short-
est path computations. The number of these is equal to
the number of increments plus at most one per commodity
per phase. The number of increments is O(m log(m)=�2),
while there are O(log(m)=�2) phases and O(m) commodi-
ties. Thus there are O(m log(m)=�2) shortest path compu-
tations.

6.2. X-Ray Tomography / Linear Equations

Computer tomography (a.k.a. x-ray tomography or
Radon transform) is a special case of mixed packing and
covering. Briefly, x-rays are taken of an object from many
directions, and the internal structure (density at each point)
of the object is reconstructed from the results.

For illustration, consider the following simple case. As-
sume an object resides within an n�n�n cube. Discretize
the cube by partitioning it into n3 1� 1� 1 subcubes in the
obvious way. Enumerate the subcubes in some order and
introduce a variable xj representing the density of the jth
subcube.

Take d x-ray snapshots of the object from different direc-
tions. With current techniques, n is typically a few hundred
and d = �(n2) so that enough information is gathered to
reconstruct a single solution. Even two-dimensional recon-
struction problems are useful, as a volume can be recon-

7

Proceedings of the 42nd IEEE Symposium on Foundations of Computer Science (FOCS�01)
0-7695-1390-5/02 $17.00 © 2002 � IEEE

in: A; �
out: ’infeasible’ or x s.t. 1 � Ax � 1 +O(�).
0. Let xj = mini 1=(nAij), where n is the number of variables.
1. Let N (1 + 2 lnm)=�, where m is the number of constraints.
2. Define localj(x) =

P
iAije

(Ax)i=
P

iAije
�(Ax)i .

3. Define global(x) =
P

i e
(Ax)i=

P
i e

�(Ax)i .
4. While minAx < N do:
5a. If g is not yet set or minj localj(x)=g > 1 + �, then
5b. let g global(x), and
5c. if minj localj(x)=g > 1 then return ’infeasible’.
6. Delete the ith row ofA for each i s.t. (Ax)i � N . —unnecessary, asAx � O(N)
7a. Compute � and then Æ such that
7b. �j = xj if localj(x)=g � 1 + � and �j = 0 otherwise,
7b. and Æ = maxi(A�)i.
8. Set x x+ ��=Æ.
9. Return x=N.

Figure 5. Parallel algorithm as it specializes to approximately solve Ax = b (in normalized form
Ax = 1). Used in the x-ray tomography example. Runs in O(log(m)=�2) phases, makes O(m log(m)=�2)
increments, and runs in time 1=�4 times polylogarithmic in n and m.

structed in slices.
Assume each x-ray produces an n�n image. Discretize

the image into its n2 squares in the obvious way. Enumerate
all dn2 squares of all snapshots in some order. For the ith
square, compute from the darkness of the square the total
mass �i of the matter that the x-rays aimed at that square
passed through. Add a constraint of the form

P
j xjAij =

1 whereAij is the volume of the intersection of cube j and
the cylinder of x-rays aimed at square i, divided by � i. (If
�i = 0, delete all variables xj such that the Aij > 0.)

The reconstruction problem is to find x � 0 such that
Ax = 1. The approximate version is to find x such that
Ax � 1 and Ax � 1 + O(�). The problem has O(dn2)
constraints, and each variable occurs in d constraints.

Variables for cubes known to be outside the object can
be deleted. If appropriate, additional constraints such as
xj � 1 (to constrain the maximum density) can be added.

Without these additional constraints, the problem is a
special case of approximately solving a system of equations
with non-negative coefficients: givenA, finding x � 0 such
that Ax = 1. The parallel algorithm, as it specializes for
this problem, is shown in Fig. 5. Note that deletion of satis-
fied covering constraints can be omitted and the analysis of
the algorithm will still hold, because the packing constraints
ensure that no covering constraint exceeds its upper bound
by more than an O(1) factor.

The total work done by this algorithm is more than
with traditional methods for x-ray tomography (filtered
back-projection and Fourier reconstruction). However, this

method may be easier to parallelize. It is more flexible, in
that additional constraints can be added. In some cases, for
example when directions from which the snapshots can be
taken are constrained, traditional methods suffer from ill-
conditioning, whereas this approach may not.

7. Final Remarks

Open problem: find an efficient width-independent
Lagrangian-relaxation algorithm for the abstract mixed-
packing covering problem:

Find x : Px � (1 + �)p;Cx � (1� �)c;x 2 P

where P is a polytope that can be queried by an optimiza-
tion oracle (given c, return x 2 P minimizing c � x) or
some other suitable oracle. The min-cost multicommod-
ity flow example earlier in the paper is a special case. Al-
though that example illustrates how to deal with exponen-
tially many variables, the polytope in that example is the
degenerate one fx : x � 0g. A polytope that illustrates the
difficulty of the general case is P = fx :

P
j xj = 1g. The

difficulty seems to be using variable-size increments with
three constraints: the packing constraints, the covering con-
straints, and the constraint of staying in the polytope.

Find a parallel algorithm whose number of iterations is
polylogarithmic in the number of constraints, even if the
number of variables is exponential. Find a parallel algo-
rithm whose running time has an ��2 or ��3 term instead of
the ��4 term.

8

Proceedings of the 42nd IEEE Symposium on Foundations of Computer Science (FOCS�01)
0-7695-1390-5/02 $17.00 © 2002 � IEEE

The algorithms in this paper handle any pure packing or
covering problem as a special case. In this case the algo-
rithms simplify somewhat, so that they can handle the opti-
mization versions of the problems directly.

The algorithms can be viewed as derandomizations (us-
ing the method of conditional probabilities) of natural ran-
domized rounding schemes (see [23, 24] for this approach).
Lower bounds on the number of iterations required by
Lagrangian-relaxation algorithms are presented in [16].

Thanks to Lisa Fleischer for useful discussions.

References

[1] J. F. Benders. Partitioning procedures for solving mixed-
variables programming problems. Numerische Mathematik,
4:238–252, 1962.

[2] D. Bienstock. Approximately solving large-scale linear pro-
grams. i. Strengthening lower bounds and accelerating con-
vergence. Technical Report 1999-1, CORC, Columbia Uni-
veristy, June 1999.

[3] G. W. Brown and J. von Neumann. Solutions of games by
differential equations. In John von Neumann: Collected
Works, volume VI, pages 38–43. Pergamon Press, 1963.
Reprinted from Ann. Math Studies No. 24 pp. 73-79 (1950).

[4] G. B. Dantzig and P. Wolfe. Decomposition principle for
linear programs. Operations Res., 8:101–111, 1960.

[5] L. K. Fleischer. Approximating fractional multicommod-
ity flow independent of the number of commodities. SIAM
Journal on Discrete Mathematics, 13(4):505–520, Nov.
2000.

[6] L. R. Ford Jr. and D. R. Fulkerson. A suggested computation
for maximal multicommodity network flow. Management
Sci., 5:97–101, 1958.

[7] N. Garg and J. Könemann. Faster and simpler algorithms
for multicommodity flow and other fractional packing prob-
lems. In 39th Annual Symposium on Foundations of Com-
puter Science. IEEE, 1998.

[8] M. Grigoriadis and L. Khachiyan. Approximate minimum-
cost multicommodity flows in o(��2knm) time. Math.
Programming, 75:477–482, 1996.

[9] M. Grigoriadis and L. G. Khachiyan. A sublinear-time ran-
domized approximation algorithm for matrix games. Oper-
ations Research Letters, 18(2):53–58, Sep. 1995.

[10] M. Grigoriadis and L. G. Khachiyan. An exponential-
function reduction method for block-angular convex pro-
grams, 1995. Networks 26(1.2), p. 59-68.

[11] M. D. Grigoriadis and L. G. Khachiyan. Coordination com-
plexity of parallel price-directive decomposition. Mathemat-
ics of Operations Research, 21:321–340, 1996.

[12] M. Held and R. M. Karp. The traveling salesman prob-
lem and minimum spanning trees. Operations Research,
18:1138–1162, 1971.

[13] M. Held and R. M. Karp. The traveling salesman problem
and minimum spanning trees: Part ii. Mathematical Pro-
gramming, 1:6–25, 1971.

[14] D. Karger and S. A. Plotkin. Adding multiple cost con-
straints to combinatorial optimization problems, with appli-
cations to multicommodity flows. In ACM Symposium on
Theory of Computing, pages 18–25, 1995.

[15] P. Klein, S. Plotkin, C. Stein, and E. Tardos. Faster ap-
proximation algorithms for the unit capacity concurrent flow
problem with applications to routing and finding sparse cuts.
SIAM J. Comput., 23(3):466–487, June 1994.

[16] P. Klein and N. E. Young. On the number of iterations for
Dantzig-Wolfe optimization and packing-covering approxi-
mation algorithms. In Lecture Notes in Computer Science,
number 1610, pages 320–327, 1999. IPCO ’99.

[17] J. Könemann. Fast Combinatorial Algorithms for Packing
and COvering Problems. PhD thesis, Max-Planck-Institute
for Informatik, 2000.

[18] H. W. Kuhn and A. W. Tucker. Review of ‘A numerical
method for determination of the value and the best strate-
gies of a zero-sum two-person game with large numbers of
strategies’, by John von Neumann. In John von Neumann:
Collected Works, volume VI, pages 96–97. Pergamon Press,
1963.

[19] T. Leighton, F. Makedon, S. Plotkin, C. Stein, É. Tardos, and
S. Tragoudas. Fast approximation algorithms for multicom-
modity flow problems. J. Comput. Syst. Sci., 50(2):228–243,
Apr. 1995.

[20] M. Luby and N. Nisan. A parallel approximation algo-
rithm for positive linear programming. In Proceedings of the
Twenty-Fifth Annual ACM Symposium on Theory of Com-
puting, pages 448–457, San Diego, California, 16–18 May
1993.

[21] S. A. Plotkin, D. B. Shmoys, and É. Tardos. Fast approxi-
mation algorithms for fractional packing and covering prob-
lems. Math. Oper. Res., 20(2):257–301, 1995.

[22] F. Shahrokhi and D. W. Matula. The maximum concurrent
flow problem. JACM, 37:318–334, 1990.

[23] N. E. Young. Randomized rounding without solving the
linear program. In Proceedings of the Sixth Annual ACM-
SIAM Symposium on Discrete Algorithms, pages 170–178,
San Francisco, California, 22–24 Jan. 1995.

[24] N. E. Young. K-medians, facility location, and the Chernoff-
Wald bound. In Proceedings of the Eleventh Annual ACM-
SIAM Symposium on Discrete Algorithms, pages 86–95, Jan-
uary 2000.

9

Proceedings of the 42nd IEEE Symposium on Foundations of Computer Science (FOCS�01)
0-7695-1390-5/02 $17.00 © 2002 � IEEE

