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Abstract

The maximum subarray problem (MSP) involves selection of a segment of
consecutive array elements that has the largest possible sum over all other
segments in a given array. The efficient algorithms for the MSP and re-
lated problems are expected to contribute to various applications in genomic
sequence analysis, data mining or in computer vision etc.

The MSP is a conceptually simple problem, and several linear time op-
timal algorithms for 1D version of the problem are already known. For 2D
version, the currently known upper bounds are cubic or near-cubic time.

For the wider applications, it would be interesting if multiple maximum
subarrays are computed instead of just one, which motivates the work in the
first half of the thesis. The generalized problem of K-maximum subarray
involves finding K segments of the largest sum in sorted order. Two sub-
categories of the problem can be defined, which are K-overlapping maximum
subarray problem (K-OMSP), and K-disjoint maximum subarray problem
(K-DMSP). Studies on the K-OMSP have not been undertaken previously,
hence the thesis explores various techniques to speed up the computation,
and several new algorithms. The first algorithm for the 1D problem is of
O(Kn) time, and increasingly efficient algorithms of O(K2 + n log K) time,
O((n+K) log K) time and O(n+K log min(K,n)) time are presented. Con-
siderations on extending these results to higher dimensions are made, which
contributes to establishing O(n3) time for 2D version of the problem where
K is bounded by a certain range.

Ruzzo and Tompa studied the problem of all maximal scoring subse-
quences, whose definition is almost identical to that of the K-DMSP with
a few subtle differences. Despite slight differences, their linear time algo-
rithm is readily capable of computing the 1D K-DMSP, but it is not easily
extended to higher dimensions. This observation motivates a new algorithm
based on the tournament data structure, which is of O(n + K log min(K,n))
worst-case time. The extended version of the new algorithm is capable of
processing a 2D problem in O(n3 + min(K,n) · n2 log min(K,n)) time, that
is O(n3) for K ≤ n

log n
.

For the 2D MSP, the cubic time sequential computation is still expensive
for practical purposes considering potential applications in computer vision
and data mining. The second half of the thesis investigates a speed-up option
through parallel computation. Previous parallel algorithms for the 2D MSP
have huge demand for hardware resources, or their target parallel computa-
tion models are in the realm of pure theoretics. A nice compromise between
speed and cost can be realized through utilizing a mesh topology. Two mesh
algorithms for the 2D MSP with O(n) running time that require a network of
size O(n2) are designed and analyzed, and various techniques are considered



to maximize the practicality to their full potential.



Table of Contents

Chapter 1: Introduction 1
1.1 History of Maximum Subarray Problem . . . . . . . . . . . . . 1
1.2 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2.1 Genomic Sequence Analysis . . . . . . . . . . . . . . . 3
1.2.2 Computer Vision . . . . . . . . . . . . . . . . . . . . . 6
1.2.3 Data mining . . . . . . . . . . . . . . . . . . . . . . . . 9

1.3 Scope of this thesis . . . . . . . . . . . . . . . . . . . . . . . . 10

Chapter 2: Background Information 12
2.1 Maximum Subarray in 1D Array . . . . . . . . . . . . . . . . . 12

2.1.1 Problem Definition . . . . . . . . . . . . . . . . . . . . 12
2.1.2 Iterative Algorithms . . . . . . . . . . . . . . . . . . . 12
2.1.3 Recursive Algorithms . . . . . . . . . . . . . . . . . . . 15

2.2 Maximum Subarray in 2D Array . . . . . . . . . . . . . . . . . 18
2.2.1 Strip separation . . . . . . . . . . . . . . . . . . . . . . 19
2.2.2 Distance Matrix Multiplication . . . . . . . . . . . . . 24
2.2.3 Lower Bound for the 2D MSP . . . . . . . . . . . . . . 27

2.3 Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
2.3.1 Tournament . . . . . . . . . . . . . . . . . . . . . . . . 28
2.3.2 Linear time selection . . . . . . . . . . . . . . . . . . . 30

I K-Maximum Subarray Problem 35

Chapter 3: K-Overlapping Maximum Subarray Problem 38
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
3.2 Problem Definition . . . . . . . . . . . . . . . . . . . . . . . . 38

3.2.1 Problem Definition . . . . . . . . . . . . . . . . . . . . 38
3.3 O(Kn) Time Algorithm . . . . . . . . . . . . . . . . . . . . . 39
3.4 O(n log K + K2) time Algorithm . . . . . . . . . . . . . . . . 42

3.4.1 Pre-process: Sampling . . . . . . . . . . . . . . . . . . 44
3.4.2 Candidate Generation and Selection . . . . . . . . . . . 45
3.4.3 Total Time . . . . . . . . . . . . . . . . . . . . . . . . 46

3.5 O(n log K) Time Algorithm . . . . . . . . . . . . . . . . . . . 47
3.5.1 Algorithm Description . . . . . . . . . . . . . . . . . . 50
3.5.2 Persistent 2-3 Tree . . . . . . . . . . . . . . . . . . . . 55



3.5.3 Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . 59

3.5.4 When n < K ≤ n(n + 1)/2 . . . . . . . . . . . . . . . 62

3.6 O(n + K log min(K,n)) Time Algorithm . . . . . . . . . . . . 64

3.6.1 X + Y Problem . . . . . . . . . . . . . . . . . . . . . . 64

3.6.2 1D K-OMSP . . . . . . . . . . . . . . . . . . . . . . . 66

3.6.3 Analysis of Algorithm 20 . . . . . . . . . . . . . . . . . 70

3.7 Algorithms for Two Dimensions . . . . . . . . . . . . . . . . . 73

3.7.1 Sampling in Two Dimensions . . . . . . . . . . . . . . 74

3.7.2 Selection in a Two-level Heap . . . . . . . . . . . . . . 75

3.8 Extending to Higher Dimensions . . . . . . . . . . . . . . . . . 76

3.9 K-OMSP with the Length Constraints . . . . . . . . . . . . . 77

3.9.1 Finding the Length-constraints satisfying Minimum pre-
fix sum . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

3.10 Summary of Results . . . . . . . . . . . . . . . . . . . . . . . 83

Chapter 4: K-Disjoint Maximum Subarray Problem 85

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

4.2 Problem Definition . . . . . . . . . . . . . . . . . . . . . . . . 85

4.3 Ruzzo and Tompa’s Algorithm . . . . . . . . . . . . . . . . . . 86

4.4 A Challenge: K-DMSP in Two-Dimensions . . . . . . . . . . . 93

4.5 New Algorithm for 1D . . . . . . . . . . . . . . . . . . . . . . 97

4.5.1 Tournament . . . . . . . . . . . . . . . . . . . . . . . . 98

4.5.2 Finding the next maximum sum . . . . . . . . . . . . . 101

4.5.3 Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . 107

4.6 New Algorithm for 2D . . . . . . . . . . . . . . . . . . . . . . 108

4.6.1 Strip Separation . . . . . . . . . . . . . . . . . . . . . . 108

4.6.2 Finding the first maximum subarray . . . . . . . . . . 108

4.6.3 Next maximum . . . . . . . . . . . . . . . . . . . . . . 108

4.6.4 Improvement for K > n . . . . . . . . . . . . . . . . . 109

4.7 Run-time Performance Consideration . . . . . . . . . . . . . . 115

4.8 Extending to Higher Dimensions . . . . . . . . . . . . . . . . . 116

4.9 Alternative Algorithm for 1D . . . . . . . . . . . . . . . . . . 117

4.10 Summary of Results . . . . . . . . . . . . . . . . . . . . . . . 119

Chapter 5: Experimental Results 121

5.1 1D K-OMSP . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

5.2 2D K-OMSP . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

5.3 1D K-DMSP . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

5.4 2D K-DMSP . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

5.4.1 Experiment with Image Data . . . . . . . . . . . . . . 134

5.4.2 Implementation-level Optimization . . . . . . . . . . . 137

ii



Chapter 6: Concluding Remarks and Future Work 141
6.1 Concluding Remarks . . . . . . . . . . . . . . . . . . . . . . . 141
6.2 Future Works . . . . . . . . . . . . . . . . . . . . . . . . . . . 144
6.3 Latest Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 146

II Parallel Algorithms 147

Chapter 7: Parallel Algorithm 148
7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148
7.2 Models of Parallel Computation . . . . . . . . . . . . . . . . . 150

7.2.1 Parallel Random Access Machine(PRAM) . . . . . . . 150
7.2.2 Interconnection Networks . . . . . . . . . . . . . . . . 152

7.3 Example: Prefix sum . . . . . . . . . . . . . . . . . . . . . . . 154
7.3.1 PRAM . . . . . . . . . . . . . . . . . . . . . . . . . . . 155
7.3.2 Mesh . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157
7.3.3 Hypercube . . . . . . . . . . . . . . . . . . . . . . . . . 160

Chapter 8: Parallel Algorithm for Maximum Subarray Prob-
lem 163

8.1 Parallel Maximum Subarray Algorithm . . . . . . . . . . . . . 163
8.2 Introduction: Mesh Algorithms for the 2D MSP . . . . . . . . 165
8.3 Mesh Implementation of Algorithm 8 . . . . . . . . . . . . . . 166

8.3.1 Initialization . . . . . . . . . . . . . . . . . . . . . . . . 168
8.3.2 Update . . . . . . . . . . . . . . . . . . . . . . . . . . . 168
8.3.3 Boundary . . . . . . . . . . . . . . . . . . . . . . . . . 169
8.3.4 Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . 169

8.4 Mesh Implementation of Algorithm 9: Mesh-Kadane . . . . . 172
8.4.1 Cell and its registers . . . . . . . . . . . . . . . . . . . 172
8.4.2 Initialization . . . . . . . . . . . . . . . . . . . . . . . . 173
8.4.3 Update . . . . . . . . . . . . . . . . . . . . . . . . . . . 174
8.4.4 Correctness of Algorithm 39 . . . . . . . . . . . . . . . 177
8.4.5 Analysis: Total Communication Cost . . . . . . . . . . 181

8.5 Summary of Results . . . . . . . . . . . . . . . . . . . . . . . 181
8.6 Example: Trace of Algorithm 39 . . . . . . . . . . . . . . . . . 182

Chapter 9: Enhancements to the Mesh MSP Algorithms 187
9.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187
9.2 Data Loading . . . . . . . . . . . . . . . . . . . . . . . . . . . 187
9.3 Coarse-grained Mesh: Handling Large Array . . . . . . . . . . 198
9.4 Improvement to Algorithm 38 . . . . . . . . . . . . . . . . . . 200
9.5 K maximum subarrays . . . . . . . . . . . . . . . . . . . . . . 204

iii



9.5.1 2D K-OMSP . . . . . . . . . . . . . . . . . . . . . . . 204
9.5.2 2D K-DMSP . . . . . . . . . . . . . . . . . . . . . . . 205

9.6 Summary of Results . . . . . . . . . . . . . . . . . . . . . . . 208

Chapter 10: Concluding Remarks and Future Work 209
10.1 Concluding Remarks . . . . . . . . . . . . . . . . . . . . . . . 209
10.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211

References 212

Appendix A: Proteins and Amino acids 224
A.1 Protein Sequences . . . . . . . . . . . . . . . . . . . . . . . . . 224

Appendix B: Data Mining and Numerical Attributes 226
B.1 Example: Supermarket Database . . . . . . . . . . . . . . . . 226

Appendix C: Publications 227

iv



List of Algorithms

1 Kadane’s algorithm . . . . . . . . . . . . . . . . . . . . . . . . 13
2 Prefix sum computation . . . . . . . . . . . . . . . . . . . . . 14
3 Maximum Sum in a one-dimensional array . . . . . . . . . . . 14
4 O(n log n) time algorithm for 1D . . . . . . . . . . . . . . . . 15
5 Smith’s O(n) time algorithm for 1D . . . . . . . . . . . . . . . 16
6 Alternative O(n) time divide-and-conquer algorithm for 1D . . 18
7 2D version of Algorithm 3 . . . . . . . . . . . . . . . . . . . . 21
8 Alternative 2D version of Algorithm 3 . . . . . . . . . . . . . 22
9 2D version of Algorithm 1 (Kadane’s Algorithm) . . . . . . . . 24
10 Maximum subarray for two-dimensional array . . . . . . . . . 25
11 Select maximum of a[f ]...a[t] by tournament . . . . . . . . . . 29
12 Quicksort . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
13 Select the k-th largest element in a . . . . . . . . . . . . . . . 31
14 Select k largest elements in array a . . . . . . . . . . . . . . . 34
15 K maximum sums in a one-dimensional array for 1 ≤ K ≤ n . 40
16 K maximum sums in a one-dimensional array for 1 ≤ K ≤

n(n + 1)/2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
17 Faster algorithm for K maximum sums in a one-dimensional

array . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
18 Algorithm for K maximum sums in a one-dimensional array

with generalized sampling technique . . . . . . . . . . . . . . . 50
19 Computing K largest elements in X + Y . . . . . . . . . . . . . 66
20 Computing K maximum subarrays. . . . . . . . . . . . . . . . 67
21 Build a tournament Tn to find MIN {sum[f -1], .., sum[t-1]} . . 69
22 Retrieve a tournament Ti from T0 . . . . . . . . . . . . . . . . 71
23 Delete sum[i] from a tournament . . . . . . . . . . . . . . . . 72
24 Computing all min′

i[1]’s (L ≤ i ≤ n) in O(n− L) time . . . . . 82
25 Ruzzo, Tompa’s algorithm for K̄-unsorted disjoint maximum

subarrays . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
26 Maximum subarray for one-dimension . . . . . . . . . . . . . . 97
27 Build tournament for a[f..t] . . . . . . . . . . . . . . . . . . . 99
28 Update tournament T . . . . . . . . . . . . . . . . . . . . . . 107
29 Find the maximum subarray of a 2D array . . . . . . . . . . . 109
30 Find K-disjoint maximum subarrays in 2D . . . . . . . . . . . 110
31 Check if (h∗, j∗) can skip hole creation . . . . . . . . . . . . . 112
32 Find K-disjoint maximum subarrays in 2D (heap version) . . . 117

v



33 CREW PRAM algorithm to find prefix sums of an n element
list using n processors. . . . . . . . . . . . . . . . . . . . . . . 155

34 Optimal O(log n) time prefix computation using n
log n

CREW
PRAM processors . . . . . . . . . . . . . . . . . . . . . . . . . 157

35 Mesh prefix sum algorithm using m× n processors . . . . . . 158
36 Hypercube prefix sum algorithm using n processors . . . . . . 161
37 EREW PRAM Algorithm for 1D MSP . . . . . . . . . . . . . 164
38 Mesh version of Algorithm 8: Initialize and update registers

of cell(i, j) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168
39 Initialize and update registers of cell(i, j) . . . . . . . . . . . . 174
40 Loading input array into the mesh . . . . . . . . . . . . . . . . 191
41 Revised routine for cell(i, j) for run-time data loading . . . . . 192
42 Update center(i) to compute Mcenter . . . . . . . . . . . . . . 204
43 Update and load input array . . . . . . . . . . . . . . . . . . . 207

vi



Acknowledgments

When I came to New Zealand after spending a year at Yonsei university,
Korea, I was just a lazy engineering student who almost failed the first year
programming course.

Initially I planned to get some English training for a year and go back to
Korea to finish my degree there. Many things happened since then. Years
later, I found myself writing a Ph.D thesis at Canterbury, ironically, in com-
puter science.

I believe it was the “inspiration” that made me stay at Canterbury until
now. In a COSC329 lecture, Prof. Tadao Takaoka once said, half-jokingly,
“If you make Mesh-Floyd (all pairs shortest paths algorithm) run in 3n steps,
I’ll give you a master degree”. With little background knowledge, I boldly
tried numerous attempts to achieve this goal. Certainly, it was not as easy
as it looked and I had to give up in the end. However, when I started
postgraduate studies with Prof. Takaoka, I realized the technique I learned
from that experience could be applied to another problem, the maximum
subarray problem, which eventually has become my research topic.

My English is simply not good enough to find a right word to express
my deepest gratitude to Prof. Takaoka for guiding me to the enjoyment
of computer science. In the months of research, programming, and writing
that went into this thesis, his encouragement and guidance have been more
important than he is likely to realize. My co-supervisor, R. Mukundan, also
deserves special thanks. His expertise in graphics always motivated me to
consider visually appealing presentations of “dry” theories. I also thank Prof.
Krzysztof Pawlikowski for his occasional encouragements.

I can not neglect to mention all the staffs at Canterprise for helping
patenting some of research outcomes and Mr. Steve Weddell for his expertise
and support to develop a hardware prototype. Mr. Phil Holland, has been a
good friend as well as an excellent technician who took care of many incidents.
I will miss a cup of green tea and cigarette with him, which always saved me
from frustration.

My wife, Eun Jin, has always been virtually involved in this project.
Without her support in all aspects of life, this project could have never been
completed.

While I was studying full-time, my mother-in-law has always shown her
strong belief in me. I thank her for taking me as her beloved daughter’s
husband. I also hope my departed father-in-law is pleased to see my attempt

vii



to emulate him.
I acknowledge my brother and parents. Sung-ha has always been my best

friend. My parents brought me up and instilled in me the inquisitive nature
and sound appetite for learning something new. I cannot imagine how many
things they had to sacrifice to immigrate to a new country. In the end, it was
their big, agonizing decision that enabled me to come this far. Without what
they had given to their son, this thesis could have not come to existence.

Finally, I would like to express thanks to Prof. Peter Eades and Prof.
Kun-Mao Chao for their constructive comments. Prof. Jingsen Chen and
Fredrik Bengtsson also deserve special thanks for their on-going contribution
to this line of research.

viii



Chapter 1

Introduction

1.1 History of Maximum Subarray Problem

In 1977, Ulf Grenander at Brown University encountered a problem in pattern

recognition where he needed to find the maximum sum over all rectangular

regions of a given m×n array of real numbers [45] ∗. This rectangular region

of the maximum sum, or maximum subarray, was to be used as the maximum

likelihood estimator of a certain kind of pattern in a digitized picture.

Example 1.1.1. When we are given a two-dimensional array a[1..m][1..n],

suppose the upper-left corner has coordinates (1,1). The maximum subarray

in the following example is the array portion a[3..4][5..6] surrounded by inner

brackets, whose sum is 15.

a =













−1 2 −3 5

2 −4 −6 −8

3 −2 9 −9

1 −3 5 −7

−4 −8

2 −5
[

−1 10

8 −2

]

3 −3

4 1

−5 2

2 −6













To solve this maximum subarray problem (MSP), Grenander devised an

O(n6) time algorithm for an array of size n×n, and found his algorithm was

prohibitively slow. He simplified this problem to one-dimension (1D) to gain

insight into the structure.

∗ This is sometimes asked in a job interview at Google. Retrieved 19 December, 2006
from http://alien.dowling.edu/∼rohit/wiki/index.php/Google Interview Quest

ions

1
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The input is an array of n real numbers; the output is the maximum sum

found in any contiguous subarray of the input. For instance, if the input

array a is {31,−41, 59, 26,−53, 58, 97,−93,−23, 84}, where the first element

has index 1, the program returns the sum of a[3..7],187.

He obtained O(n3) time for the one-dimensional version and consulted

with Michael Shamos. Shamos and Jon Bentley improved the complexity to

O(n2) and a week later, devised an O(n log n) time algorithm. Two weeks

after this result, Shamos described the problem and its history at a seminar

attended by Jay Kadane, who immediately gave a linear time algorithm [18].

Bentley also challenged audience with the problem at another seminar, and

Gries responded with a similar linear time algorithm [46].

While Grenander eventually abandoned the approach to the pattern match-

ing problem based on the maximum subarray, due to the computational

expense of all known algorithms, the two-dimensional (2D) version of this

problem was found to be solved in O(n3) time by extending Kadane’s algo-

rithm [19]. Smith also presented O(n) time for the one-dimension and O(n3)

time for the two-dimension based on divide-and-conquer [84].

Many attempts have been made to speed up thereafter. Most earlier

efforts have been laid upon development of parallel algorithms. Wen [103]

presented a parallel algorithm for the one-dimensional version running in

O(log n) time using O(n/ log n) processors on the EREW PRAM (Exclu-

sive Read, Exclusive Write Parallel Random Access Machine) and a similar

result is given by Perumalla and Deo [77]. Qiu and Akl used interconnec-

tion networks of size p, and achieved achieved O(n/p + log p) time for the

one-dimension and O(log n) time with O(n3/ log n) processors for the two-

dimension [79].

In the realm of sequential algorithms, O(n) time for the 1D version is

proved to be optimal. O(n3) time for the 2D MSP has remained to be the

best-known upper bound until Tamaki and Tokuyama devised an algorithm

achieving sub-cubic time of O
(

n3 (log log n/ log n)1/2
)

[94]. They adopted

divide-and-conquer technique, and applied the fastest known distance matrix

multiplication (DMM) algorithm by Takaoka [87]. Takaoka later simplified

the algorithm [89] and recently presented even faster DMM algorithms that

are readily applicable to the MSP [90].
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1.2 Applications

1.2.1 Genomic Sequence Analysis

With the rapid expansion of genomic data, sequence analysis has been an

important part of bio-informatics research. An important line of research in

sequence analysis is to locate biologically meaningful segments.

One example is a prediction of the membrane topology of a protein. Pro-

teins are huge molecules made up of large numbers of amino acids, picked out

from a selection of 20 different kinds. In Appendix A, the list of 20 amino

acids and an example of a protein sequence is given.

Virtually all proteins of all species on earth can be viewed as a long chain

of amino acid residues, or a sequence over a 20-letter alphabet. In most cases,

the actual three-dimensional location of every atom of a protein molecule can

be accurately determined by this linear sequence, which in turn, determines

the protein’s biological function within a living organism. In broad terms, it

is safe to state that all the information about the protein’s biological function

is contained in the linear sequence [64].

Given that, a computer-based sequence analysis is becoming increasingly

popular. Especially, computerized algorithms designed for structure predic-

tion of a protein sequence can be an invaluable tool for biologists to quickly

understand the protein’s function, which is the first step towards the devel-

opment of antibodies, drugs.

Identification of transmembrane domains in the protein sequence is one of

the important tasks to understand the structure of a protein or the membrane

topology. Each amino acid residue has different degree of water fearing, or hy-

drophobicity. Kyte and Doolittle [70] experimentally determined hydropho-

bicity index of the 20 amino acids ranging from -4.5(least hydrophobic) to

+4.5(most hydrophobic), which is also given in Appendix A. A hydrophobic

domain of the protein resides in the oily core of the membrane, which is the

plane of the surrounding lipid bi-layer. On the other hand, hydrophilic (least

hydrophobic, or water-loving) domains protrude into the watery environment

inside and outside the cell. This is known as hydrophobic effect, one of the

bonding forces inside the molecule.

Transmembrane domains typically contain hydrophobic residues. When
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the hydropathy index by Kyte and Doolittle is assigned to each residue in

the protein sequence, the transmembrane domains would appear as segments

with high total scores.

Karlin and Brendel [61] used Kyte-Doolittle hydropathy index to pre-

dict the transmembrane domains in human β2-adrenergic receptor and ob-

served that high-scoring segments correspond to the known transmembrane

domains.

If we are interested in the segment with the highest total score, the prob-

lem is equivalent to the MSP. Particularly, the approach based on the MSP

is ideal in a sense that it does not assume a predefined size of the solution.

A conventional algorithm suggested by [70], on the contrary, involved a pre-

defined segment size and often required manual adjustment to the window

size until a satisfactory result would be obtained.

This score-based technique has been applied to other similar problems in

genomic sequence analysis, which include identification of

(A). conserved segments [21, 86, 48],

(B). GC-rich regions [29, 47]

(C). tandem repeats [100]

(D). low complexity filter [2]

(E). DNA binding domains [61]

(F). regions of high charge [62, 61, 22]

While the basic concept of finding a highest scoring subsequence is still

effective, slightly modified versions of the MSP are better suited to some

applications above.

For example, a single protein sequence usually contains multiple trans-

membrane domains, thus the MSP that finds the single highest scoring subse-

quence may not be very useful. As each transmembrane domain corresponds

to one of high scoring segments that are disjoint from one another, an ex-

tended version of the MSP that finds multiple-disjoint maximum subarrays
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is more suited to this application. The statistical significance of multiple

disjoint high scoring segments was highlighted in [3] and Ruzzo and Tompa

[82] developed a linear time algorithm that finds all high scoring segments.

A statistical analysis showed that the minimal and maximal length for

all-α and all-β membrane proteins lies in the interval 15-36 and 6-23 residues

[58]. Thus, depending on a specific task, better prediction can be obtained

when the length constraints are imposed on the MSP, such that the highest

scoring subsequence should be of length at least L and at most U . For the

problem of maximum subarray with the length constraints, efficient algo-

rithms with O(n) time were developed by Lin et al.[74], Fan et al. [32] and

Chen and Chao [66]. Fan et al. applied their algorithm to rice chromosome

1 and identified a previously unknown very long repeat structure. Fariselli

et al. [33] also studied the same problem to locate transmembrane subse-

quences. Their algorithm is combined with conventional methods, such as

HMM (Hidden Markov Model) [65], neural network and TMHMM (Trans-

membrane HMM) method, and obtained the accuracy of 73%, which is almost

twice more accurate than conventional methods alone.

In the process of conserved segment detection, the assigned scores may be

all positive. If the maximum subarray, the subsequence of highest total score,

is computed, the entire array will be reported erroneously as the solution, a

conserved region. One way to resolve this issue is to adjust the score of each

residue by subtracting a positive anchor value. If an appropriate anchor value

is not easy to determine, a slightly different problem may be considered, such

that the maximum average subarray will be computed instead. It should be

noted that, the maximum average subarray needs to have a length constraint.

When there is no constraint, often a single element, the maximum element,

will be reported as the maximum average, which is of little interest. Huang

gave the first non-trivial O(nL) time algorithm for this maximum average (or

density) problem, where L is the minimum length constraint [53]. Improved

algorithms with O(n log L) time and O(n) time were reported thereafter by

Lin et al. [74] and Goldwasser et al. [43]. The latter result, in particular, is

optimal and considers both the minimum length L and the maximum length

U constraints.
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1.2.2 Computer Vision

Ulf Grenander’s idea in late 70’s, even if it was not quite materialized, pro-

poses some interesting applications in computer vision.

A bitmap image is basically a two-dimensional array where each cell, or

pixel, represents the color value based on RGB standard. If the brightest

portion inside the image is to be found, for example, we first build a two-

dimensional array where each cell of this array represents the brightness score

of each pixel in the corresponding location of the bitmap image.

Brightness is formally defined to be (R+G+B)/3; however this does not

correspond well to human color perception. For the brightness that corre-

sponds best to human perception, luminance is used for most graphical ap-

plications. Popular method for obtaining the luminance (Y ) adopted by all

three television standards (NTSC, PAL, SECAM) is based on the weighted

sum of R,G,B values, such as,

Y = 0.30R + 0.59G + 0.11B.

Here, weightings 0.30, 0.59, and 0.11 are chosen to most closely match the

sensitivity of the eye to red, green, and blue [55].

Certainly, all the values assigned to each cell are non-negative and the

maximum subarray is then the whole array, which is of no interest. Before

computing the maximum subarray, it is therefore essential to normalize each

cell by subtracting a positive anchor value, Usually, the overall mean or

median pixel value may be a good anchor value. We may then compute the

maximum subarray, which corresponds to the brightest area in the image.

This approach may be applicable to other various tasks with a differ-

ent scoring scheme. One example may be locating the warmest part in the

thermo-graphic image. In the thermo-graphic image, the brightest (warmest)

parts of the image are usually colored white, intermediate temperatures reds

and yellows, and the dimmest (coolest) parts blue. We can assign a score to

each pixel following this color scale.

Two examples shown in Figure 1.1 were obtained by running an algorithm

for the 2D MSP on the bitmap images.

Even if the upper bound for the 2D MSP has been reduced to sub-cubic
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(a) Brightest region in an astronomy image

(b) Warmest region in an infrared image

Figure 1.1: Contents retrieval from graphics

[94, 89], it is still close to cubic time, and the computational efficiency still

remains to be the major challenge for the MSP-based graphical applications.

Indeed, performing pixel-wise operation by a near-cubic time algorithm can

be time consuming. It suggests, however, that the framework based on the

MSP will be still useful in conjunction with recent developments in the com-

puter vision or at least, will provide the area of computer vision with some

general insights. For example, a recent technique for real-time object detec-

tion by Viola and Jones [99] adopted a new image representation called an

integral image and incorporated machine learning techniques to speed up the
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Undivided intersection

with a vertical line

Figure 1.2: A connected x-monotone region

computation. Here, the integral image is basically a prefix sum, the central

algorithmic concept extensively used in computing the MSP. The definition

of the prefix sum and its application to the MSP will be fully addressed in

Chapter 2.

Recently, Weddell and Langford [101] proposed an efficient centroid es-

timation technique suitable for Shack-Hartmann wavefront sensors based on

the FPGA implementation of the mesh algorithm for the 2D MSP. The de-

sign of the mesh algorithm they used is a part of the research for this thesis

that will be presented in Chapters 8 and 9.

In some occasions, detection of a non-rectangular region may be more de-

sirable than a rectangular one. Fukuda et al.[41] generalized an algorithm for

the segmentation problem by Asano et al.[5] and showed that the maximum

sum contained in a connected x-monotone region can be computed in O(n2)

time. A region is called x-monotone if its intersection with any vertical line

is undivided, as shown in Figure 1.2. Yoda et al.[104] showed that the maxi-

mum sum contained in a rectilinear convex region can be computed in O(n3)

time, where a rectilinear convex region is both x-monotone and y-monotone.

However, if we want the maximum sum in a random-shaped connected re-

gion, the problem is NP-complete [41]. Both [41] and [104] concern the data

mining applications, but their results are readily applicable to the computer

vision.
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1.2.3 Data mining

The MSP has an instant application in data mining when numerical at-

tributes are involved. General description on the MSP in the context of data

mining techniques is given by Takaoka [93], which we summarize below.

Suppose we wish to identify some rule that can say if a customer buys

item X, he/she is likely to buy item Y . The likelihood, denoted by X → Y

and called an association rule, is measured by the formula of confidence, such

that,

conf(X → Y ) =
support(X,Y )

support(X)

X is called the antecedent and Y , the consequence. Here, support(X,Y )

is the number of transactions that include both X and Y , and support(X)

is that for X alone.

Let us consider a supermarket example shown in Appendix B. We have

two tables, where the first shows each customer’s purchase transactions and

the second maintains customers’ personal data. In the example, all of the

three customers who bought “cheese” also bought “ham” and thus conf(ham→
cheese) = 3/3 = 1.

The same principle can be applied if we wish to discover rules with nu-

merical attributes, such as age or income etc. This problem was originated

by Srikant and Agrawal [85].

Suppose we wish to see if a particular age group tends to buy a cer-

tain product, for example, “ham”. We have two numerical attributes of

customers, their age and their purchase amount for “ham”.

In the example, let us use the condition age < 40 for the antecedent.

Then conf(age < 40→ ham) = 1. If we set the range to age ≤ 50 however,

the confidence becomes 3/5. Thus the most cost-efficient advertising outcome

would be obtained if the advertisement for “ham” is targeted at customers

younger than 40.

This problem can be formalized by the MSP. Suppose we have a 1D array

a of size 6, such that a[i] is the number of customers whose age is 10i ≤ age <

10(i + 1), and bought “ham”. Then we have a = {0, 1, 2, 0, 0, 0}, which is

normalized by subtracting the mean 1
2
, such that a = {−1

2
, 1

2
, 3

2
,−1

2
,−1

2
,−1

2
}.

The array portion a[2..3] is the maximum subarray, which suggests that cus-
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tomers in their twenties and thirties are promising groups for purchasing

“ham”.

If we use two numerical attributes for the antecedent, the problem is

then equivalent to the 2D MSP. Aforementioned work by Fukuda et al. [41]

described the 2D MSP in the context of two-dimensional association rules†.

Fukuda and Takaoka [40] recently studied the association between air pol-

lution level measured by particulate matter (PM) and various demographic

attributes based on this technique. They successfully identified the associa-

tion between age groups and specific range of [PM10] levels‡, and variations

of such an association depending on season and gender group.

1.3 Scope of this thesis

In this thesis, we review the MSP and various techniques previously designed

to compute the problem. Further background information relating to this

research area is given in Chapter 2.

In Part I, we study a generalized problem of K maximum subarrays.

We aim to develop efficient algorithms for both 1D and 2D versions of K-

maximum subarray problem (K-MSP). The K-MSP has two sub-categories,

where each solution is strictly disjoint from others or overlapping is allowed.

We define both problems and design efficient solutions for them.

In Part II, we focus on developing efficient, yet practical, parallel algo-

rithms for the 2D MSP. Various enhancements to the new mesh algorithms

will be discussed, and extended mesh algorithms for the two K-MSPs will

be also described.

While the research on the MSP is partly motivated by potential applica-

tion areas, genomic sequence analysis, computer vision and data mining, it is

not application-oriented. The main objective of the thesis is mostly confined

to the development of efficient algorithms for the MSP and the K-MSPs, and

the considerations for potential application are kept minimal. This decision

is deliberate.

† This paper also applies [5] and [104] to find two-dimensional association rules contained
in a connected x-monotone and in a rectilinear convex region.

‡ Particulate matter with diameter less than 10µm
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The MSP, indeed, is a conceptually simple problem. In most advanced

applications, it would run in conjunction with other techniques, or slight

change to the problem definition will be necessary. Recent examples include

the MSP with length constraints and the maximum average subarray prob-

lem.

The range of techniques presented in this thesis and efficient algorithms

for the original MSP and the generalized K-MSP are generic, and it is ex-

pected that they can give some insight into other similar problems, or vari-

ations of the MSP that have not yet emerged.

Early versions of this research were published. These publication are

listed as References [6, 7, 8, 9, 10, 12, 11].
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Background Information

2.1 Maximum Subarray in 1D Array

2.1.1 Problem Definition

We give a formal definition of the maximum subarray problem (MSP) for

1D. Let MAX(L) be the operation that selects the maximum element in a

list L.

Definition 2.1.1. For a given array a[1..n] containing positive and negative

real numbers and 0, the maximum subarray is the consecutive array elements

of the greatest sum, such that,

M = MAX(L), where L =

{

j
∑

x=i

a[x] | 1 ≤ i ≤ j ≤ n

}

This problem can be computed in a number of ways. Among them, we

present some earlier results to solve this problem in linear time.

In this thesis, to avoid confusion, the notations min and max in italic font

are used for variable, list or array names, and MIN and MAX are used for

minimum and maximum operations. We will use, however, the lowercase min

for minimum operation inside O-notation following the convention. When

we present an algorithm, we follow the C99 comment style, given by // or

/*..*/.

2.1.2 Iterative Algorithms

The first linear time algorithm for 1D is referred to as Kadane’s algorithm

after the inventor [18], which we describe in Algorithm 1.

12
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Algorithm 1 Kadane’s algorithm
1: M ← 0, t← 0
2: i← 1
3: for j ← 1 to n do
4: t← t + a[j]
5: if t > M then M ← t, (x1, x2)← (i, j)
6: if t ≤ 0 then t← 0, i← j + 1// reset the accumulation
7: end for
8: output M , (x1, x2)

Algorithm 1 finds the maximum subarray a[x1..x2] and its sum, M . In the

following, we represent a subarray a[i..j] by (i, j). The algorithm accumulates

a partial sum in t and updates the current solution M and the position

(x1, x2) when t becomes greater than M . If the location is not needed, we may

omit the update of (x1, x2) for simplicity. If t becomes non-positive, we reset

the accumulation discarding tentative accumulation in t. This is because the

maximum subarray M will not start with a portion of non-positive sum∗.

Note that M and (x1, x2) are initialized to 0 and (0, 0) respectively to allow

an empty set to be the solution, if the input array is all negative. This may

be optionally set to −∞ to force the algorithm to obtain a non-empty set.

Here, we observe the following property.

Lemma 2.1.2. At the j-th iteration, t = a[i] + a[i + 1] + .. + a[j], that is the

maximum sum ending at a[j],

meaning that no subarray (x, j) for x < i or x > i can be greater than (i, j),

whose sum is currently held at t. A simple proof by contradiction can be

made, which we omit.

Another linear time iterative algorithm, which we shall describe below, is

probably easier to understand.

We first describe the concept of prefix sum. The prefix sum sum[i] is the

sum of preceding array elements, such that sum[i] = a[1]+..+a[i]. Algorithm

2 computes the prefix sums sum[1..n] of a 1D array a[1..n] in O(n) time.

∗ Alternatively one may reset t when t becomes “negative” allowing a sequence may begin
with a portion of zero sum. However, we may have smaller and more focused area of
the same sum by excluding such a portion.
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Algorithm 2 Prefix sum computation

sum[0]← 0
for i← 1 to n do sum[i]← sum[i− 1] + a[i]

As sum[x] =
∑x

i=1 a[i], the sum of a[x..y] is computed by the subtraction

of these prefix sums such as:

y
∑

i=x

a[i] = sum[y]− sum[x− 1]

To yield the maximum sum from a 1D array, we have to find indices x, y

that maximize
∑y

i=x a[i]. Let mini be the minimum prefix sum for an array

portion a[1..i− 1]. Then the following is obvious.

Lemma 2.1.3. For all x, y ∈ [1..n] and x ≤ y,

MAX
1≤x≤y≤n

{

y
∑

i=x

a[i]

}

= MAX
1≤x≤y≤n

{sum[y]− sum[x− 1]}

= MAX
1≤y≤n

{

sum[y]− MIN
1≤x≤y

{sum[x− 1]}
}

= MAX
1≤y≤n

{sum[y]−miny}

Based on Lemma 2.1.3, we can devise a linear time algorithm (Algorithm

3) that finds the maximum sum in a 1D array.

Algorithm 3 Maximum Sum in a one-dimensional array

1: min← 0 //minimum prefix sum
2: M ← 0 //current solution. 0 for empty subarray
3: sum[0]← 0
4: for i← 1 to n do
5: sum[i]← sum[i− 1] + a[i]
6: cand← sum[i]−min //min=mini

7: M ← MAX{M, cand}
8: min← MIN{min, sum[i]} //min=mini+1

9: end for
10: output M
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Algorithm 4 O(n log n) time algorithm for 1D

procedure MaxSum(f ,t) begin
//Finds maximum sum in a[f..t]

1: if f = t then return a[f ] //One-element array
2: c← (f + t− 1)/2 //Halves array. left is a[f..c], right is a[c+1..t]
3: ssum← 0, M left

center ← 0
4: for i← c down to f do
5: ssum← ssum + a[i]
6: M left

center ← MAX {M left
center, ssum}

7: end for
8: psum← 0, M right

center ← 0
9: for i← c + 1 to t do
10: psum← psum + a[i]
11: M right

center ← MAX {M right
center, psum}

12: end for
13: Mcenter ←M left

center + M right
center //Solution for the center problem

14: Mleft ← MaxSum(f ,c) //Solution for left half
15: Mright ← MaxSum(c + 1,t) //Solution for right half
16: return MAX {Mleft,Mright,Mcenter} //Selects the maximum of three

end

While we accumulate sum[i], the prefix sum, we also maintain min, the

minimum of the preceding prefix sums. By subtracting min from sum[i], we

produce a candidate for the maximum sum, which is stored in cand. At the

end, M is the maximum sum. For simplicity, we omitted details for locating

the subarray corresponding to M .

To the author’s knowledge, the first literature that presented this algo-

rithm is attributed to Qiu and Akl [79].

2.1.3 Recursive Algorithms

Another linear time algorithm based on the divide-and-conquer technique

can be made. We first review Algorithm 4 by Bentley [18], which provides a

starting point for the linear time optimization. Algorithm 4 and its enhanced

version, Algorithm 5, are given for historical reasons. Readers may skip these

and start from Algorithm 6.

Algorithm 4 is based on the following principle.
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Algorithm 5 Smith’s O(n) time algorithm for 1D

procedure MaxSum2(f ,t) begin
//Finds maximum sum in a[f..t]

1: if f = t then return (a[f ], a[f ], a[f ], a[f ]) //One-element array
2: c← (f + t− 1)/2 //Halves array. left is a[f..c], right is a[c+1..t]
3: (Mleft,maxSleft,maxPleft, totalleft)←MaxSum2(f ,c)
4: (Mright,maxSright,maxPright, totalright)←MaxSum2(c + 1,t)
5: maxS ← MAX {maxSright, totalright + maxSleft} //Max suffix
6: maxP ← MAX {maxPleft, totalleft + maxPright} //Max prefix
7: total← totalleft + totalright //Total sum of elements
8: Mcenter ← maxSleft + maxPright //Solution for the center problem
9: M ← MAX {Mleft,Mright,Mcenter}
10: return (M,maxS,maxP, total)

end

Lemma 2.1.4. The maximum sum M is,

M = {Mleft,Mright,Mcenter}

We recursively decompose the array into two halves until there remains

only one element. We find the maximum sum in the left half, Mleft, and the

maximum sum in the right half, Mright. While Mleft and Mright are entirely

in the left half or in the right half, we also consider a maximum sum that

crosses the central border, which we call Mcenter.

To obtain Mcenter, lines 3-7 find a portion of it located in the left half,

M left
center. Similarly, lines 8-12 computes M right

center. The sum of M left
center and

M right
center then makes Mcenter.

As the array size is halved each recursion, the depth of recursion is

O(log n). At each level of recursion, O(n) time is required for computing

Mcenter. Thus this algorithm is O(n log n) time. Smith [84] pointed out that

the O(n) time process for computing Mcenter at each level of recursion can be

reduced to O(1) by retrieving more information from the returned outputs

of recursive calls. His O(n) total time algorithm is given in Algorithm 5.

Consider a revised version MaxSum2(f, t) that returns a 4-tuple (M ,

maxS, maxP ,total) as the output, whose attributes respectively represent

the maximum sum (M), the maximum suffix sum (maxS), the maximum
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prefix sum (maxP ) and the total sum of array elements in a[f..t] (total).

Assuming that maxSleft and maxPright are returned by the recursive

calls in line 3 and 4, we show that lines 5 and 6 correctly compute maxS and

maxP .

Lemma 2.1.5. The maximum prefix sum for a[f..t], maxP , is obtained by

MAX {maxPleft, totalleft + maxPright}

Proof. Let c = (f + t− 1)/2,

maxP = MAX {maxPleft, totalleft + maxPright}

= MAX

{

MAX
f≤x≤c

{

x
∑

i=f

a[i]

}

,
c

∑

p=f

a[p] + MAX
c+1≤x≤t

{

x
∑

i=c+1

a[i]

}}

= MAX
f≤x≤t

{

x
∑

i=f

a[i]

}

The maximum suffix sum can be recursively computed in a similar man-

ner.

To compute the maximum sum in a[1..n], we call MaxSum2(1, n), and

obtain M from the returned 4-tuple.

The time complexity T (n) can be obtained from the recurrence relation,

T (n) = 2T (n/2) + O(1), T (1) = O(1),

hence T (n) = O(n).

We can simplify the algorithm such that it would not need to compute

the suffix sums. Suppose we have the prefix sums sum[1..n] pre-computed by

Algorithm 2. Then the following Lemma provides an alternative to compute

Mcenter that can be used in lieu of line 8 of Algorithm 5.

Lemma 2.1.6.

Mcenter = MAX
c+1≤x≤t

{sum[x]} − MIN
f−1≤x≤c

{sum[x]}
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Algorithm 6 Alternative O(n) time divide-and-conquer algorithm for 1D

procedure MaxSum3(f ,t) begin
//Finds maximum sum in a[f..t]

1: if f = t then return (a[f ], sum[f − 1], sum[f ]) //One-element array
2: c← (f + t− 1)/2 //Halves array. left is a[f..c], right is a[c+1..t]
3: (Mleft,minPleft,maxPleft)← MaxSum3(f ,c)
4: (Mright,minPleft,maxPright)← MaxSum3(c + 1,t)
5: minP ← MIN {minPleft,minPright} //Min prefix sum in sum[f−1..t−1]
6: maxP ← MAX {maxPleft,maxPright} //Max prefix sum in sum[f..t]
7: Mcenter ← maxPright −minPleft //Solution for the center problem
8: M ← MAX {Mleft,Mright,Mcenter}
9: return (M,minP,maxP )

end

Including the pre-process for the prefix sum computation, Algorithm 6

takes O(n) time in total. We will be using this algorithm as a framework

in Chapter 4. This algorithm was introduced in the mid-year examination

of COSC229, a second year algorithm course offered at the University of

Canterbury in 2001 [88].

2.2 Maximum Subarray in 2D Array

We consider the two-dimensional (2D) version of this problem, where we are

given an input array of size m × n. We assume that m ≤ n without loss of

generality.

In 1D, we have optimal linear time solutions, Algorithm 1, Algorithm

3 and Algorithm 5. These algorithms can be extended to 2D through a

simple technique, which we shall refer to as strip separation. Alternatively, a

framework specific to 2D based on distance matrix multiplication (DMM) is

known. While we will be mostly using strip separation technique throughout

this thesis, we describe both techniques.

Throughout this thesis, we denote a maximum subarray with a sum M

located at a[g..i][h..j] by M(g, h)|(i, j).
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Figure 2.1: Separating a strip sumg,i from the 2D input array

2.2.1 Strip separation

A strip is a subarray of a with horizontally full length, i.e. n, which covers

multiple consecutive rows. For example, a subarray a[g..i][1..n] is a strip

covering row g..i. Let this strip be denoted by ag,i. Likewise, in the follow-

ing description, a variable associated with a strip ag,i is expressed with the

subscript, such as sumg,i, whose meaning will be described later. In an array

a[1..m][1..n], there are m(m+1)/2 possible combinations of g and i, thus the

same number of strips.

The essence of the strip separation technique relies on the transformation

of a strip into a 1D prefix sum array. As a result, we fix g and i, and the

problem is now simply to find h and j such that the sum of (g, h)|(i, j) could

be maximized. This can be solved by any of the aforementioned algorithm

for 1D. Upon completion of running an algorithm for 1D, we obtain h and j,

and M , which correspond to the rectangular subarray that starts at the g-th

row, ends at the i-th row, i.e. M(g, h)|(i, j).
We describe how to transform a strip into a 1D problem.

We first compute the prefix sums sum[1..m][1..n], where sum[i][j] is de-

fined as,

sum[i][j] =
∑

1≤p≤i,1≤q≤j

a[p][q]

Actual computation of sum[i][j] can be done iteratively such as,

sum[i][j] = sum[i− 1][j] + sum[i][j − 1]− sum[i− 1][j − 1] + a[i][j]
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,where sum[0][1..n] = 0 and sum[1..m][0] = 0.

Now, we compute the prefix sum of a strip ag,i, which is denoted by

sumg,i. We wish sumg,i[j] to be the prefix sum starting from a[g][1], such

that,

sumg,i[j] =
∑

g≤p≤i,1≤q≤j

a[p][q]

If we have pre-computed sum[1..m][1..n], the prefix sum of the entire

array, the computation of sumg,i[1..n] can be easily done by,

sumg,i[j] = sum[i][j]− sum[g − 1][j]

For each combination of g, i, we obtain sumg,i through this computation.

We call sumg,i, a strip prefix sum of ag,i in this thesis. Computing a strip

prefix sumg,i from the input array is illustrated in Figure 2.1.

The pre-process of computing the prefix sum sum[1..m][1..n] is done in

O(mn) time. A strip prefix sumg,i[1..n] needs O(n) time to retrieve from

sum. As there are m(m + 1)/2 possible combinations of g and i, computing

all strip prefixes from the input array takes O(m2n) time.

Since each strip prefix sum is a 1D array, we can apply the algorithms de-

vised for 1D problem, such as Algorithm 3, 5 or 6, to compute the maximum

sum in each strip. As each maximum sum in a strip is computed in O(n)

time, we spend O(m2n) time to process all strips, and to select the largest

one among O(m2) solutions.

Including the pre-process time, the total time for 2D version of the MSP

is O(m2n).

In [19], Bentley informally described this technique to present O(m2n)

time solution for the 2D MSP. In the following, we describe how the main

principle of the strip separation is applied to some of algorithms for 1D.

Extending Algorithm 3

We devise an algorithm for the 2D MSP based on Algorithm 3 to process 2D

MSP.

The correctness of the presented Algorithm 7 is obvious. We separate a

strip ag,i (for all g and i in 1 ≤ g ≤ i ≤ m) from the input array, and let
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Algorithm 7 2D version of Algorithm 3

1: /∗ Pre-process: Compute prefix sums ∗/
2: Set sum[0][1..n]← 0, sum[1..m][0]← 0
3: for i← 1 to m do
4: for j ← 1 to n do
5: sum[i][j]← sum[i− 1][j] + sum[i][j − 1]− sum[i− 1][j − 1] + a[i][j]
6: end for
7: end for
8: M ← 0, s[0]← 0
9: for g ← 1 to m do
10: for i← g to m do
11: /∗ Computes 1D problem ∗/
12: min← 0
13: for j ← 1 to n do
14: s[j]← sum[i][j]− sum[g − 1][j] //s[j] = sumg,i[j]
15: cand← s[j]−min
16: M ← MAX {M, cand}
17: min← MIN {min, s[j]}
18: end for
19: end for
20: end for
21: output M

the routine derived from Algorithm 3 process each strip. The prefix sums

sum[1..m][1..n] are computed during the pre-process routine.

Note that the initialization of M is made by line 8 before the nested for-

loop begins, and min is reset by line 12 before we start to process the strip

ag,i through the inner-most loop (lines 13–18).

We use s as a container for sumg,i. As given in Lemma 2.1.3, we subtract

the minimum prefix sum from the current prefix sum to obtain a candi-

date, cand. This candidate is compared with current maximum sum and the

greater is taken.

For simplicity, operations for computing the location of the maximum

subarray are not shown. When the location is needed, it can be easily com-

puted in the following way. Suppose the current minimum prefix sum, min,

is sumg,i[j0]. When line 15 is executed, we know that cand corresponds to

the sum of subarray (g, j0 + 1)|(i, j). If this cand is selected as M , we copy
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Algorithm 8 Alternative 2D version of Algorithm 3
1: M ← 0, min← 0
2: for g ← 1 to m do
3: Set s[1..n]← 0
4: for i← g to m do
5: min← 0
6: for j ← 1 to n do
7: r[i][j]← r[i][j − 1] + a[i][j] //Assume r[i][0] = 0
8: s[j]← s[j] + r[i][j] //s[j] = sumg,i[j]
9: cand← s[j]−min
10: M ← MAX {M, cand}
11: min← MIN {min, s[j]}
12: end for
13: end for
14: end for
15: output M

this location to (r1, c1)|(r2, c2).

Alternatively, we can dispose of the pre-process of prefix sums, sum[1..m][1..n]

given in lines 1–7. Notice that sumg,i[j] can be instead obtained by

sumg,i[j] = sumg,i−1[j] + r[i][j], where r[i][j] =

j
∑

q=1

a[i][q]

This observation leads us to a simpler algorithm, Algorithm 8.

Notice that this algorithm does not need prefix sums sum[1..m][1..n].

Instead, we compute r[i][j] (line 7) and add it to s[j] that currently contains

sumg,i−1[j] to get sumg,i[j]. To ensure the correct computation of sumg,i[j]

through this scheme, line 3 resets s[1..n] to 0, when the top boundary of the

strip, g changes.

One may notice that placing the operation that computes r[i][j] at line 7

is not very efficient. Due to the outer-most loop (lines 2–14), for i possible

values of g, we unnecessarily compute the same value of r[i][j] many times.

Certainly, this line can be moved out of the loop, and placed at the top of

the algorithm before line 1, surrounded by another double-nested loop by i

and i. Either way, there is no change in the overall time complexity. The
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reason for placing line 7 at its present position is to make the algorithm more

transparent for converting into a mesh parallel MSP algorithm, which we will

describe later in Chapter 8.

It is easy to see that the presented two versions of 2D MSP algorithms

have O(m2n) time complexity.

Extending Algorithm 1 (Kadane’s Algorithm)

Algorithm 1 is not based on the prefix sums, and the concept of strip prefix

sum is not directly applicable. Still, the basic idea remains intact.

i
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Figure 2.2: Snapshot of Algorithm 9

Consider Figure 2.2. The figure illustrates some arbitrary point of time

where the current maximum subarray M(r1, c1)|(r2, c2) is near top-left corner,

and we are processing strip ag,i. Here, we have a column-wise (vertical)

partial sum of elements in p[j], which corresponds to
∑

a[g..i][j]. We perform

Algorithm 1 on each strip ag,i for all pair of g and i, and maintain t to

accumulate p[h..j]. In the figure, t is the sum of the area surrounded by thick

line, which is the accumulation p[h]+ ...+p[j]. If t is greater than the current

maximum M , we replace M with t and update its location (r1, c1)|(r2, c2).

Again, if t becomes non-positive, t is reset and we update h to j +1, to start

a fresh accumulation.

Similar to Lemma 2.1.2, we can derive the following.

Corollary 2.2.1. For fixed i,j and g, the value of t is the maximum sum

ending at a[i][j] with the top boundary g.
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Algorithm 9 2D version of Algorithm 1 (Kadane’s Algorithm)

1: M ← 0, (r1, c1)←(0,0), (r2, c2)←(0,0)
2: for g ← 1 to m do
3: for j ← 1 to n do p[j]← 0
4: for i← g to m do
5: t← 0, h← 1
6: for j ← 1 to n do
7: p[j]← p[j] + a[i][j]
8: t← t + p[j]
9: if t > M then M ← t, (r1, c1)← (g, h), (r2, c2)← (i, j)
10: if t ≤ 0 then t← 0, h← j + 1// reset the accumulation
11: end for
12: end for
13: end for
14: output M(r1, c1)|(r2, c2)

There are total of O(m2) such horizontal strips. This algorithm also

computes the maximum subarray in O(m2n) time, which is cubic when m =

n.

2.2.2 Distance Matrix Multiplication

Using the divide-and-conquer framework, Smith also derived a 2D algorithm

from Algorithm 5, which achieves O(m2n) time. Tamaki and Tokuyama

found that a divide-and-conquer framework similar to Smith’s can be related

to Takaoka’s distance matrix multiplication(DMM) [87], and reduced the

upper bound to sub-cubic time. Takaoka later gave a simplified algorithm

with the same complexity [89].

Let us briefly review DMM. For two n×n matrices A and B, the product

C = A ·B is defined by

cij = MIN
1≤k≤n

{aik + bkj} (i, j = 1, ..., n) (2.1)

The operation in the right-hand-side of (2.1) is called distance matrix

multiplication(DMM) and A and B are called distance matrices in this con-

text. The best known DMM algorithm runs in O(n3
√

log log n/ log n) time,

which is sub-cubic, due to Takaoka [87].
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Algorithm 10 Maximum subarray for two-dimensional array

1: If the array becomes one element, return its value.
2: Otherwise, if m > n, rotate the array 90 degrees.
3: /∗ Now we assume m ≤ n ∗/
4: Let Mleft be the solution for the left half.
5: Let Mright be the solution for the right half.
6: Let Mcenter be the solution for the center problem.
7: Let the solution be the maximum of those three.

Let us review the 2D MSP in this context. Consider we have the prefix

sums, sum[1..m][1..n] ready. The prefix sum array takes O(mn) time to

compute and is used throughout the whole process.

The outer framework of Takaoka’s algorithm [89] is given in Algorithm

10.

In this algorithm, the center problem is to obtain an array portion that

crosses over the central vertical line with maximum sum, and can be solved

in the following way.

Mcenter = MAX
0≤g≤i−1
0≤h≤n/2−1
1≤i≤m
n/2+1≤j≤n

{sum[i][j]− sum[i][l]− sum[g][j] + sum[g][h]} (2.2)

In the above equation, we first fix g and i, and maximize the above by

changing h and j. Then the above problem is equivalent to maximizing the

following. For i = 1..m and g = 0..i− 1,

Mcenter[i, g] = MAX
0≤h≤n/2−1
n/2+1≤j≤n

{−sum[i][h]+ sum[g][h]+sum[i][j]−sum[g][j]}

Let sum∗[i][j] = −sum[j][i]. Then the above problem can further be

converted into

Mcenter[i, g]=− MIN
0≤h≤n/2−1

{sum[i][h] + sum∗[h][g]}

+ MAX
n/2+1≤j≤n

{sum[i][j] + sum∗[j][g]}
(2.3)
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Here, Tamaki and Tokuyama [94] discovered that the computation above

is similar to DMM† . In (2.3), the first part can be computed by DMM as

stated in (2.1) and the second part is done by a modified DMM with MAX-

operator.

Let S1 and S2 be matrices whose elements at position (i, j) are sum[i, j−1]

and sum[i, j + n/2] for i = 1..m; j = 1..n/2. For an arbitrary matrix T , let

T ∗ be obtained by negating and transposing T . As the range of g is [0 ..

m− 1] in S∗
1 and S∗

2 , we shift it to [1..m]. Then the above can be computed

by

S2S
∗
2 − S1S

∗
1 (2.4)

,where multiplication of S1 and S∗
1 is computed by the MIN-version, and that

of S2 and S∗
2 is done by the MAX-version. Then subtraction of the distance

products is done component-wise. Finally Mcenter is computed by taking the

maximum from the lower triangle of the resulting matrix.

For simplicity, we apply the algorithm on a square array of size n × n,

where n is a power of 2. Then all parameters m and n appearing through

recursion in Algorithm 10 are power of 2, where m = n or m = n/2. We

observe the algorithm splits the array vertically and then horizontally.

We define the work of computing the three Mcenter’s through this recursion

of depth 2 to be the work at level 0. The algorithm will split the array

horizontally and then vertically through the next recursion of depth 2. We

call this level 1, etc.

Now let us analyze the time for the work at level 0. We measure the

time by the number of comparisons for simplicity. Let Tm(n) be the time

for multiplying two (n/2, n/2) matrices. The multiplication of n × n/2 and

n/2× n matrices is done by 4 multiplications of size n/2× n/2, which takes

4Tm(n) time. Due to (2.3), Mcenter takes each of MIN- and MAX-version

of multiplications. Thus Mcenter involving n × n/2 and n/2 × n matrices

requires 8Tm(n) time, and computing two smaller Mcenter’s involving n/2×
n/2 matrices takes 4Tm(n) time.

Then each level, computing an Mcenter and two smaller Mcenter’s accounts

† Their version does not use prefix sum, and is similar to Algorithm 4. Only a MAX
version of DMM is used.
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for 12Tm(n) time. We have the following recurrence for the total time T (n).

T (1) = 0

T (n) = 4T (n/2) + 12Tm(n)

Takaoka showed that the following Lemma holds.

Lemma 2.2.2. Let c be an arbitrary constant such that c > 0. Suppose

Tm(n) satisfies the condition Tm(n) ≥ (4 + c)Tm(n/2). Then the above

T (n) satisfies T (n) ≤ 12(1 + 4/c)Tm(n).

Clearly the complexity of O(n3
√

log log n/ log n) for Tm(n) satisfies the

condition of the lemma with some constant c > 0. Thus the maximum

subarray problem can be solved in O(n3
√

log log n/ log n) time. Since we take

the maximum of several matrices component-wise in our algorithm, we need

an extra term of O(n2) in the recurrence to count the number of operations.

This term can be absorbed by slightly increasing 12, the coefficient of Tm(n).

Suppose n is not given by a power of 2. By embedding the array a in

an array of size n′ × n′ such that n′ is the next power of 2 and the gap is

filled with 0, we can solve the original problem in the complexity of the same

order.

2.2.3 Lower Bound for the 2D MSP

A trivial lower bound for the 2D MSP is Ω(mn) or Ω(n2) if m = n. Whereas

the upper bound has been improved from O(n3) to sub-cubic by Tamaki and

Tokuyama [94] and Takaoka [89], a non-trivial lower bound remains open

and there is a wide gap between the lower bound and the upper bound.

Remarkably, a non-trivial lower bound for the all-pairs shortest paths

(APSP) is still not known [44]. Considering that the 2D MSP is closely

related to the APSP, a non-trivial lower bound for the 2D MSP is expected

difficult to obtain.
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2.3 Selection

A selection problem arises when we find the k-th largest (or k-th smallest)

of n elements in a list. Subsets of this problem include finding the minimum,

maximum, and median elements. These are also called order statistics. Per-

haps finding the minimum or maximum in a list is one of the most frequent

problems in programming. A simple iteration through all elements in the

list gives the solution, meaning that it is a linear time operation in the worst

case.

Finding the k-th largest is more difficult. Certainly, if all n elements are

sorted, selecting the k-th is trivial. Then sorting is the dominant process,

which is O(n log n) time if a fast sorting algorithm such as merge sort, heap

sort etc., is applied. Performing sorting is, however, wasteful when the order

of all elements are not required.

Knuth [63] finds the origin of this problem goes back to Lewis Carroll’s

essay on tennis tournaments that was concerned about the unjust manner in

which prizes were awarded in the competition. Many efforts have been made

in the quest for the faster algorithms. The linear average-time algorithm was

presented by Hoare [49] and Floyd and Rivest [35] developed an improved

average-time algorithm that partitions around an element recursively selected

from a small sample of the elements. The worst-case linear time algorithm

was finally presented by Blum, Floyd, Pratt, Rivest and Tarjan [20].

The MSP is essentially a branch of the selection problem. We review two

notable techniques for selecting the k-th largest item.

2.3.1 Tournament

Knuth [63] gave a survey on the history of the selection problem, the problem

of finding the k-th largest of n elements, which goes back to the essay on

tennis tournaments by Rev. C. L. Dodgson (also known as Lewis Carroll).

Dodgson set out to design a tournament that determines the true second-

and third-best players, assuming a transitive ranking, such that if player A

beats player B, and B beats C, A would beat C.

A tournament is a complete binary tree that is a conceptual represen-

tation of the recursive computation of MAX (or MIN ) operation over n
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Algorithm 11 Select maximum of a[f ]...a[t] by tournament

procedure tournament(node,f ,t) begin

1: node.from← f , node.to← t
2: if from = to then
3: node.val← a[f ]
4: else
5: create left child node, tournament(left,f ,f+t−1

2
)

6: create right child node, tournament(right,f+t+1
2

,t)
7: node.val← MAX (left.val, right.val) //MAX {a[f ], ..a[t]}
8: end if

end

elements. To build a tournament, we prepare root node and run Algorithm

11 by executing tournament(root,1,n). When the computation completes,

root.val is MAX {a[1], ..a[n]}.
Counting from the leaf level, the number of nodes are halved each level

such that n+n/2+ ...+1, the total number of nodes are O(n), meaning that

it takes O(n) to find the maximum.

It may be argued that building a tree is not essential if we are only

interested in the first maximum. However, having the tree makes it very

convenient to find the next maximum. To do this, we first locate the leaf

whose value advanced all the way to the root. We replace the value of this

leaf with −∞ and update each node along the path towards root. The next

maximum is now located at root. This takes O(log n) time as the tree is a

complete binary tree with the height O(log n). The k-th maximum can be

found by repeating this process.

Including the time for building the tree, we spend total of O(n + k log n)

time to find k maximum values. Furthermore, Bengtsson and Chen found

that [16],

Lemma 2.3.1. For any integer k ≤ n, O(n + k log n) = O(n + k log k)

Proof. We consider the following two cases,

(1) If n
log n

< k ≤ n, O(n + k log k)=O(n + k log n).

(2) If k ≤ n
log n

, O(n + k log n) = O(n) and O(n + k log k)=O(n).
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Algorithm 12 Quicksort

procedure quicksort(a,begin,end) begin

1: if length of a > 1 then
2: locate a pivot a[i]
3: p← partition(a, begin, end, i)
4: quicksort(a, begin, p− 1)
5: quicksort(a, p, end)
6: end if

end

Note that this tournament-based selection not only selects the k-th max-

imum element, but also finds all k largest elements in sorted order.

A basically same complexity can be obtained with a similar data struc-

ture, heap. Heap (more formally, binary heap) is a complete binary tree

where a node contains a value that is greater than (or smaller than) that of

its children. Building a heap is also O(n) time and we repeatedly delete the

root k times until we obtain the k-th largest element. A special case, deleting

the root n times, results in all n elements in non-increasingly sorted order,

which is of course, known as heapsort.

2.3.2 Linear time selection

The need for an efficient selection algorithm can be attributed to the famous

quicksort by Hoare [50]. We describe how the selection algorithm affects the

performance of the quicksort.

The key of linear selection algorithm relies on a good partition techniques.

We define a process partition(a, begin, end, i) as a function that puts all

elements less than a[i] on the left, and others greater than or equal to a[i] on

the right to the pivot a[i]. After this rearrangement, the new location of a[i]

will be returned as p.

For the maximum efficiency, we wish the problem size of two recur-

sive calls to be the same. To achieve this, we need to take the median

of a[begin]..a[end] as the pivot a[i], such that p will be always the mid-point

between begin and end. If the median is selected in O(n) time in the worst-

case, the total time for quicksort is O(n log n) time due to the following
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Algorithm 13 Select the k-th largest element in a

procedure select(k,a) begin

1: if |a| ≤ 5 then
2: sort a and return the k-th largest
3: else
4: divide a into ⌊|a|/5⌋ subarrays of 5 elements each
5: sort each 5-element subarray and find the median of each subarray
6: let M be the container of all medians of the 5-element subarrays
7: m←select(⌈|M |/2⌉,M)
8: Partition a into (a1, a2, a3), where

a1 = {x|x ∈ a, x > m},
a2 = {x|x ∈ a, x = m},
a3 = {x|x ∈ a, x < m}

9: if |a1| ≥ k then return select(k,a1)
10: else if |a1|+ |a2| ≥ k then return m
11: else return select(k − |a1| − |a2|, a3)
12: end if

end

recurrence relation.

T (1) = O(1)

T (n) = 2T (n/2) + O(n)

Still, in 1962, when Hoare’s original paper on quicksort [50] was published,

the worst-case linear time solution was not known. Hoare used his own

FIND algorithm [49] which selects the median in O(n) average time. After

11 years, Blum, Floyd, Pratt, Rivest and Tarjan finally established O(n)

worst-case time solution [20]. This algorithm has been reproduced in virtually

every algorithm textbook, and we follow the description given in [1].

To select the k-th largest element, we first partition the array a into

subarrays of five elements each (line 4). Each subarray is sorted and the

median is selected from each subarray (line 5) to form an auxiliary array M

(line 6). Sorting 5 elements requires no more than 8 comparisons, thus is a

constant time.

The container of medians, M , has only ⌊n/5⌋ elements, and finding its
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median is therefore five times faster than doing that on an array of n elements.

Let the median in M be m (line 7). As m is the median of medians of 5

elements, at least one-fourth of the elements of a are less than or equal to m,

and at least one-fourth of the elements are greater than or equal to m. This

observation is used to determine the overall complexity shortly.

We rearrange and partition the array a into a1, a2 and a3 such that each

contains elements of a greater than, equal to, and less than m respectively

(line 8).

Now we examine the size of each partition. If |a1|, the size of a1, is greater

than or equal to k, we know that the k-th largest element is in a1. So we run

the selection on a1 searching for the k-th largest element (line 9). Otherwise,

if |a1| + |a2| ≥ k, one of the element in a2 is the k-th largest. Since all

elements in a2 are equal to m, we return m (line 7). The last case is where

the k-th largest is in a3. We now recursively search for the (k−|a1|− |a2|)-th
largest in a3 (line 11). When all levels of the recursive calls terminate, the

k-th largest in a is eventually returned.

Now we analyze this algorithm. Let T (n) be the total time required to

select the k-th largest from an array of size n. The size of M is at most n/5,

thus the recursive call by line 4 requires at most T (n/5) time.

Above, we observed that at least 1/4 elements are less than or equal to m.

Meaning that the size of a1 will be at most 3n/4. Similarly, the maximum

size of a3 will be 3n/4. Then the recursive call at line 9 or line 11 requires at

most T (3n/4) time. All other operations are bounded by O(n). Therefore,

the following recursive relation is established.

T (n) = O(1) , n ≤ 5

T (n) ≤ T (n/5) + T (3n/4) + O(n) , n > 5

Lemma 2.3.2. T (n) = O(n), therefore selecting the k-th largest from a set

of n elements takes O(n) time in the worst-case.

Proof. We show that T (n) ≤ cn for some sufficiently large constant c. We
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also pick a constant d to describe the term of O(n) above is bounded by dn.

T (n) ≤ c(n/5) + c(3n/4) + dn

= cn + (−cn/20 + dn),

which is at most cn if

−cn/20 + dn ≤ 0

Choosing any integer c and d satisfying c ≤ 20d suffices to show T (n) ≤ cn.

Therefore T (n) = O(n).

Selecting k largest elements

When the k-th largest element is selected, it is easy to collect all k largest

elements. Suppose the array a contains n elements and kthMax is the k-

th maximum. If k > n, there is no point processing all elements. Such a

selection is regarded invalid. We return the whole array a as the solution

and exit. Otherwise, the selection is valid. We proceed to select kthMax by

the linear selection algorithm [20]. We rearrange and partition the array a

into a1, a2 and a3 such that each contains elements of a greater than, equal

to, and less than kthMax respectively (line 5).

We compare each element of a against kthMax and partition them into

a1, a2 and a3, such that each contains elements greater, equal to kthMax and

less than kthMax respectively. If |a1| = k, we take a1 as the solution. If there

are multiple elements of the same value as the k-th maximum, |a1| < k. We

take first k− |a1| elements from a2 and append them to a1. a1 now contains

k largest values as required. The total time is bounded by O(n).

Lemma 2.3.3. Selection of k largest values from a set of n elements takes

O(n) time

The selected k values are, however, in random order. If we require sorted

order, extra time for sorting, O(k log k), is introduced to the total time com-

plexity. This is then asymptotically equivalent to the tournament-based se-

lection given in Section 2.3.1. Indeed, Algorithm 13, while it is regarded
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Algorithm 14 Select k largest elements in array a

procedure extract(k, a) begin

1: a1, a2, a3 ← ∅
2: if k > n then return a and exit
3: kthMax← select(k,a) //run Algorithm 13
4: Partition a into (a1, a2, a3), where

a1 = {x|x ∈ a, x > kthMax},
a2 = {x|x ∈ a, x = kthMax},
a3 = {x|x ∈ a, x < kthMax}

5: if |a1| < k then append first k − |a1| elements of a2 to a1

6: return a1

end

as theoretical breakthrough, may involve much overhead in the implementa-

tion level and is arguably not practical at all. Hoare’s O(n) expected time

solution, FIND algorithm [49] is reputedly faster in practice.
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Foreword

When one knows an algorithm that finds an extreme value, such as a max-

imum or a minimum, it often opens a new challenge to generalize the al-

gorithm such that it can compute the K-th best solution. The selection

problem given in Section 2.3, addresses this issue.

Naturally, one may be tempted to find the K-maximum subarrays, where

we find not only the first, but also the second, third,.., K-th. However, when

we have computed the first maximum subarray, what defines the second

maximum involves a little delicacy. To elaborate this issue, let us separate

two properties, sum and location, of each subarray.

Let us consider the problem in 1D and let M1 and M2 be the first and

second maximum sum respectively. Certainly, it should be ensured that

M1 ≥M2.

The delicacy arises when we define the location of the second maximum

subarray (p2, q2). Should it be totally exclusive of the first subarray (p1, q1),

or is it allowed for the second to overlap the first?

The former option is more intuitive. We can exclude elements in the first

maximum subarray and compute the second one from the remaining array.

It follows that the second maximum subarray is totally disjoint from the

first maximum. For general K, we wish to compute K maximum subarrays

that are disjoint from one another, hence we call this version of problem, the

K-disjoint maximum subarray problem(K-DMSP).

The latter option imposes less restriction on the location of the second

maximum subarray. While the former requires (p1, q1) and (p2, q2) to be mu-

tually exclusive, such that q1 < p2 or q2 < p1, the latter option only requires

these subarray to be non-identical. This loose requirement potentially results

in the new maximum subarray overlapping the previous ones. As overlap-

ping solutions are acceptable, we shall refer to this version of problem, the

K-overlapping maximum subarray problem(K-OMSP).

The K-OMSP has never been discussed in the literature prior to the com-

mencement of this research, while Ruzzo and Tompa [82] studied a problem

similar to the K-DMSP.

Studies on these two problems and development of algorithms constitute
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major part of this research, which we will describe in Chapters 3 and 4.



Chapter 3

K-Overlapping Maximum Subarray Problem

3.1 Introduction

The new problem of K-overlapping maximum subarrays, or the K-OMSP

was first presented in our preliminary paper in 2004 [7]. Bengtsson and Chen

also studied the problem independently around the same time [15]. There

was a slight difference in the problem definition, such that [7] produces a

list of K maximum subarrays in sorted order, while no particular order is

assumed in [15].

Since then, a rich collection of publications addressing the problem has

been accumulated [7, 15, 8, 10, 16, 26, 11]∗, and the time complexity of the

problem has been increasingly improved.

In this chapter, we formalize the problem definition and present the al-

gorithms for the problem.

3.2 Problem Definition

3.2.1 Problem Definition

For a given array a[1..n] containing positive and negative real numbers and

0, the maximum subarray is the consecutive array elements of the greatest

sum. Let MAX(K,L) be the operation that selects the K largest elements

in a list L in non-increasing order. The definition of K overlapping maximum

subarrays is given as follows.

∗ References are listed chronologically based on the publication date

38
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Definition 3.2.1.

M = MAX(K,L), where L =

{

j
∑

x=i

a[x] | 1 ≤ i ≤ j ≤ n

}

Here, the k-th maximum subarray is stored in M [k]. Note that the solu-

tion set M is in sorted order. In [15], the sortedness was not required, but

all other literatures on this problem unanimously assumed the order.

Example 3.2.2. a ={3, 51, -41, -57, 52, 59, -11, 93, -55, -71, 21, 21 }. For

this array of size 12, total of 78(= 12(12+1)/2) subarrays exist. Among them,

the first maximum subarray is 193, a[5]+a[6]+a[7]+a[8] if the first element

is indexed 1. We denote this by 193(5, 8). When overlapping is allowed, the

second and third maximum subarrays are 149(1, 8) and 146(2, 8). The 78-th

maximum subarray, (or the minimum subarray) is −126(9, 10).

3.3 O(Kn) Time Algorithm

Based on Algorithm 3, let us proceed to discuss the K-maximum subarray

problem, again for the one-dimensional case. We make it mandatory to have

the solution in sorted order.

The simplest method may be producing all n(n + 1)/2 subarrays and

performing Algorithm 14 to find all K maxima of them. As the result needs

to be sorted, we perform a sorting on the final K maxima. The total time

for this method is O(n2 + K log K). Theoretically K may be as large as

n(n+1)/2, but it is unlikely that any size greater than n is needed in practice.

We first introduce an algorithm for K ≤ n and modify it for the general case.

While we had a single variable that book-keeps the minimum prefix sum

in Algorithm 3, we maintain a list of K minimum prefix sums, sorted in

non-decreasing order. Let mini be the list of K minimum prefix sums for

a[1..i − 1] given by {mini[1]. . . , mini[K]}, sorted in non-decreasing order.

The initial value for mini, that is min1, is given by min = {0,∞ . . . ,∞}.
We also maintain the list of candidates produced from sum[i] by subtract-

ing each element of mini. The resulting list candi = {sum[i]−mini[1], sum[i]−
mini[2] . . . , sum[i]−mini[K]} is sorted in non-increasing order.
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Algorithm 15 K maximum sums in a one-dimensional array for 1 ≤ K ≤ n

1: for k ← 1 to K do min[k]←∞, M [k]← −∞
2: sum[0]← 0, min[1]← 0, M [1]← 0
3: for i← 1 to n do
4: sum[i]← sum[i− 1] + a[i]
5: for k ← 1 to K do cand[k]← sum[i]−min[k]
6: //extract(K,L) by Algorithm 14
7: M ← extract(K,merge(M, cand))
8: insert sum[i] into min
9: end for

Let Mi be the list of K maximum sums for a[1..i]. This list is maintained

in M at the end of the i-th iteration in Algorithm 15 sorted in non-increasing

order. When the algorithm ends, M contains the final solution Mn. The

merged list of two sorted sequences L1 and L2 are denoted by merge(L1, L2).

Note that result of merge is a sorted list. We have the following lemma.

Lemma 3.3.1.

Mi+1 = extract(K,merge(Mi, candi+1))

In Algorithm 15, the list min at the beginning of the i-th iteration rep-

resents mini.

Each time a prefix sum is computed, we subtract these K minima from

this prefix sum, and prepare a list cand of candidate K maximum values.

These K values are merged with the current maximum sums stored in M ,

from which we choose the K largest values.

After this, we insert the prefix sum to the list of K minimum prefix sums

for the next iteration. When a new entry is inserted, the list of K minimum

prefix sums has K + 1 items. By discarding the largest one, we keep the size

of this list to be fixed at K. Of course, if this sum is found to be greater

than all current K minima, no insertion is made.

We initialize the list of tentative solutions by M = {0,−∞ . . . ,−∞}.
The line 8 in the algorithm preserves the loop-invariant from step i to

step i + 1 as stated in Lemma 3.3.1. At the end, M is the solution, given in

the sorted order.
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At each iteration, it takes O(K) time for generating the candidate list,

and O(K) time for merging this list and the list of current maximum sums.

The time for inserting a prefix sum into the list of minimum prefix sums (line

8) depends on what data structure is used.

If it is a simple array or list, the insertion takes O(K) time, which estab-

lishes O(K) overall time for each iteration. Using an advanced data structure

makes little significance at this point due to lines 5-7 where we anyway need

to spend O(K) time generating the candidate list and updating the solution

at each iteration.

As we need to perform n iterations, the total time complexity is O(Kn).

When K = 1, this result is comparable to O(n) time of Kadane’s algorithm

and Algorithm 3.

Note that Algorithm 15 is specifically designed for K ≤ n. When K > n,

this algorithm still works, but not efficiently. Considering that there are only

i prefix sums preceding to sum[i] (if sum[0] = 0 is counted), maintaining

min of size K > n is meaningless and introduces inefficiency. Note that

when K = n(n + 1)/2, Algorithm 15 runs in O(n3) time. Even the simplest

method described in the beginning of this section, does not exceed O(n2 log n)

time.

We can slightly modify Algorithm 15 to handle the general case better.

Specifically, the following modification no more relies on Lemma 3.3.1. In

Algorithm 16, we declare an empty set C, and append each candidate to

C. Finally, we select K largest candidates from C by Algorithm 14 and sort

them.

The total time is O (n ∗min (K,n) + K log K), where the second term is

due to sorting. For K ≤ n, this time is O(Kn) as O(K log K) < O(Kn)

and is absorbed. The complexity is comparable to Algorithm 15. In the

extreme, where K = n(n + 1)/2, the total time becomes O(n2 log n) due to

the dominance of the second term. The space complexity of this algorithm

is O (n ∗min (K,n)) due to the size of C. In terms of space, this algorithm

is not as efficient as the previous one when K ≤ n, since Algorithm 15 only

needs O(n) space due to a[1..n] and sum[0..n]. The space consumed by cand,

min and M are all bounded by O(K).

While further refinement to this algorithm is possible, we focus on im-
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Algorithm 16 K maximum sums in a one-dimensional array for 1 ≤ K ≤
n(n + 1)/2

1: C ← ∅
2: for k ← 1 to MIN {K,n} do
3: min[k]←∞
4: end for
5: sum[0]← 0, min[1]← 0, M [1]← 0
6: for i← 1 to n do
7: sum[i]← sum[i− 1] + a[i]
8: for k ← 1 to MIN {K, i} do append sum[i]−min[k] to C
9: insert sum[i] into min
10: end for
11: M ← extract(K,C)
12: sort M

proving Algorithm 15 in this chapter. When K ≤ n, we can apply a simple

sampling technique to reduce the number of candidates. In Section 3.4 and

Section 3.5, we assume K ≤ n and give improved algorithms based on the

sampling technique. In Section 3.5.4, we show how such a technique can be

used for n < K ≤ n(n + 1)/2.

While these new algorithms made milestones in the history of the 1D

K-OMSP, readers may skip to Section 3.6 for a simple, yet theoretically

optimal algorithm, which is based on a newly developed algorithm for the

X + Y problem.

3.4 O(n log K + K2) time Algorithm

Previously, we generated the list of candidates by subtracting the K mini-

mum prefix sums from each prefix sum, which results in production of Kn

candidates in total. K maximum sums are basically selected from this pool

of Kn candidates. Let A be the name of the array keeping such Kn can-

didates. In this section, we discuss possible improvements to Algorithm 15.

We show how to reduce the number of candidates before selecting K final

elements. This is achieved by avoiding the actual computation of the entire

array A. Thus A is an imaginary array.

We describe a simple solution that decreases the number of candidates
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from Kn to K2. Note that K2 is considered to be smaller than Kn due to the

assumption K ≤ n. This solution is introduced in the preliminary paper [8]

and provides a starting point for the further improved algorithm in Section

3.5.

Intuitively we may consider the total of Kn candidates, candi[1..K], (i =

1 . . . , n) as elements of an imaginary two-dimensional array A, such that the

first column of A is given as cand1[1..K], and the second column is given as

cand2[1..K] etc.

Since each array element is obtained by computation candi[k] = sum[i]−
mini[k] for k = 1..K and i = 1..n, we can formulate the following.

A[k][i] = candi[k] = sum[i]−mini[k]

As mini is sorted in non-decreasing order, the produced list of candidates

candi, the i-th column of array A, is sorted in non-increasing order. The first

item candi[1](=A[1][i]) is the largest candidate produced from sum[i].

We first produce n samples of cand1[1]...candn[1] and let them be elements

of a list sample.

sample = {A[1][1], A[1][2] . . . , A[1][n]}

We then select the K-th largest value KthSample by a linear time selec-

tion algorithm [20]. It is easily observed that if sample[i], the largest element

in the i-th column, is smaller than KthSample, no elements in the same col-

umn can become one of the final K maximum sums as we already know there

are at least K elements not smaller than them. This is illustrated in Figure

3.1 which shows a case for K = 8. Elements with (O) label are greater than

or equal to KthSample while light shaded elements in the first row are those

not included in the K largest samples.

At each iteration, we check if sample[i], the first element in the i-th col-

umn, is not smaller than KthSample. If so, we generate all elements in

the i-th column. Otherwise, this column needs not produce any element.

We save O(K) time by skipping candidate generation in such columns. Ele-

ments under KthSample are also discarded as they all are not greater than

KthSample.
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Figure 3.1: Selection of K samples

Such an idea is implemented as Algorithm 17. We describe the details of

this algorithm. At the end of the i-th iteration, M and min represent Mi

and mini. min is described as an array for description purposes, but actually

organized as a tree as shown later.

3.4.1 Pre-process: Sampling

During the pre-process, we sequentially visit the input array a[1..n] and com-

pute the prefix sum sum[1..n] in O(n) time. Within this time frame, we find

the minimum prefix sum (mini[1] only) for each sum[i], as mini[1] is the min-

imum of sum[j] for 1 ≤ j ≤ i− 1. We note that we do not need mini[1..K]

for all i ∈ [1..n] before the sampling and selection process. We only need

mini[1] for i = 1 . . . n. Full lists of K minimum prefix sums for each sum[i]

are not produced during this pre-process.

The K-th maximum of this sample, KthSample, is selected by a linear

time selection algorithm. Then we filter out values smaller than KthSample,

being left with the K largest samples shown as elements with (O) label in

Figure 3.1. If there are multiple samples of the same value as KthSample,

we may have more than K remaining samples after filtering. As no more
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Algorithm 17 Faster algorithm for K maximum sums in a one-dimensional
array

1: //Initialization
2: for k ← 1 to K do min[k]←∞, M [k]← −∞
3: sum[0]← 0, min[1]← 0, M [1]← 0
4: //Pre-process: Sampling
5: for i← 1 to n do
6: sum[i]← sum[i− 1] + a[i]
7: //sample for initial K large values
8: sample[i]← sum[i]−min[1]
9: if sum[i] < min[1] then min[1]← sum[i]
10: end for
11: KthSample← K-th max of sample[1..n]
12: //Candidate Generation
13: min[1]← 0
14: for i← 1 to n do
15: if sum[i]−min[1] ≥ KthSample then
16: //Part I
17: for k ← 1 to K do cand[k]← sum[i]−min[k]
18: M ← extract(K,merge(M, cand))
19: end if
20: //Part II
21: insert sum[i] into min
22: end for

than K samples are necessary, we regard these extra samples to be smaller

than KthSample, and discard them. This is not explicitly given in the code.

3.4.2 Candidate Generation and Selection

Inside the outer ‘for’ loop, there are two parts, Part I and Part II. We consider

time for each part separately.

Part I is for the generation of candi and maintaining the tentative solution

set M . The generation of candi, the elements in the i-th column of array A,

is performed when the first element in the i-th column, sample[i], is greater

than KthSample. Thus Part I is performed K − 1 times. To be precise,

we can skip the generation of the elements in the column of KthSample

as shown in Figure 3.1, but this does not improve the overall asymptotic
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complexity.

Now we analyze each part.

Part I

For Part I, generating a candidate list(=a column of A), involves access to

min, the list of minimum prefix sums. If a 2-3 tree is used, accessing each of

min[1]..min[K] costs O(logK) time. We need to access all min[1]..min[K]

sequentially to generate all elements in one column. The sequential reading

of all leaf nodes is done in O(K) time by depth-first search. The later part

of this chapter, Section 3.5.2, also discusses this complexity.

The initial O(logK) search time is absorbed into O(K), the time for

actual generation of the K candidates. The total time for Part I over K

iterations is therefore O(K2).

Part II

For Part II, finding position for a new entry and actual insertion is done in

O(log K) time. When there are more than K items, deletion of the largest

item and update of the tree costs another O(log K) time. For n iterations,

the total time for Part II is O(n log K).

3.4.3 Total Time

Using the data structure for min described above, the overall time including

Part I and Part II is thus O(n log K + K2).

Let us consider the time for the initialization and the pre-process.

During the initialization, the ‘for’ loop sequentially sets min[1..K] and

M [1..K] to ∞ and −∞ respectively.

Sequential access to the leaf nodes of a 2-3 tree is done in linear worst case

time as discussed in later part of this chapter, Section 3.5.2. Both min[1..K]

and M [1..K] are set in O(K) time.

The pre-process (sampling, selection and screening) is O(n) time, when

KthSample is selected by a linear time selection algorithm [20].

Times for the initialization and pre-process are absorbed into the time for

Part I and Part II, making the total time O(n log K + K2). Compared with
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O(min{K +n log2 n, n
√

K}) time by [15], this algorithm is faster when K ≤
√

n log n and the complexity O(n log K + K2) is even reduced to O(n log K)

for smaller K (K ≤ √n log n).

3.5 O(n log K) Time Algorithm

The algorithm in Section 3.4 regards a list of candidates as a column of an

imaginary array A of size (K,n). This array has columns sorted in non-

increasing order, having the first element in each column the largest.

This sortedness enabled the algorithm in Section 3.4 to discard unneces-

sary elements after obtaining KthSample. In this section, we try to extend

the same idea for further improvement. In the following, the process of sam-

pling followed by selection is simply referred to as sampling technique.

Frederickson and Johnson [38] present an efficient selection algorithm to

find the k-th smallest element in an n × m array with sorted columns in

O(m + p log(k/p)) time for p = min{k,m}. This algorithm rapidly discards

unnecessary items that are doomed to be larger than the final k-th small-

est. Certainly, the same idea may be configured to find the k-th largest

element. This algorithm is composed of two routines, where the first routine

eliminates unnecessary items until O(k log k) items left, the second routine

further reduces this to O(k) remaining items. Then the k-th smallest can

be selected directly by a linear time selection algorithm. The first routine

of this solution is basically a generalized notion of the sampling technique.

While the previous algorithm performs the sampling technique in the first

row only, we can extend the same idea to multiple rows.

Namely, when the K-th largest element in the first row is selected, we

rearrange the columns such that those having the first element greater than

the selected value are located on the left of the selected value. Since all

columns that appear on the right of the selected value have elements smaller

than this K-th largest value, we may safely discard these columns. The area

containing discarded elements is shown shaded in Figure 3.2 with ‘p=0’ label,

meaning that this area is removed during the first iteration.

We further this idea and select the K/2-th largest element in the second

row and rearrange the remaining K columns such that columns whose second
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Figure 3.2: Sampling in row 1,2,4,8...

element is greater than the selected value are located on the left of the selected

one. Then we discard half of the remaining K columns that contain smaller

elements. In Figure 3.2, all elements denoted by (O) are greater than or equal

to the element denoted by (*). The number of these elements including (*)

is K. No element in the shaded area with ‘p=1’ label can be greater than

these K elements. Then none can be included in the final set of K maximum

sums. So this shaded area is safely discarded. We continue this sampling

process by doubling the row number at each iteration. On termination of

this process, the number of remaining elements is significantly smaller than

in the previous solution shown in Figure 3.1.

Before applying Frederickson and Johnson’s solution to our problem, let

us identify some difficulties.

First, their solution is applicable when such an array is already available

before selection. If we have to build the array beforehand, the array con-

struction alone already takes O(Kn) time. Even a fast selection algorithm
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can not help. Alternatively, we may simultaneously construct the necessary

portion of the array and perform the selection algorithm.

When we wish to construct the array and process the selection algorithm

at the same time, we encounter another problem, which is caused by the fact

that min is ephemeral, in the sense that making a change to it destroys the

old version. To clarify this situation, let us review the selection process of

the K/2-th largest element in the second row. In the first iteration, we have

sampled n elements and selected K largest elements in the first row. Let

the selected ones be A[1][x1]...A[1][xK ] where A[1][xK ] is the K-th largest

element. We come to the second row for the second iteration. As the array is

not built, there are no elements available in the second row. Before selecting

the K/2-th largest element, we need to sample K elements in this row. Each

sample of A[2][x1]...A[2][xK ] is computed by coupling sum[xk] and minxk
[2].

For k = 1..K,

A[2][xk] = candxk
[2] = sum[xk]−minxk

[2]

In Algorithm 15(line 5) and Algorithm 17(line 17), candi is produced

from mini that is maintained in a single data structure min. At the i-th

iteration of both algorithms, after a new prefix sum sum[i] is inserted to

the current mini, the next version mini+1 is created. We lose access to all

previous versions min1..mini.

When the previous versions of min are lost, it is impossible to produce

elements in the second row by computing sum[xk] − minxk
[2] (k = 1..K).

We therefore need a persistent data structure [30] to overcome this problem.

In the following, we describe Algorithm 18 that applies Frederickson and

Johnson’s selection algorithm to the K-maximum subarray problem. Specif-

ically, we show that the array construction routine can be combined with the

selection algorithm. To overcome the deficiency caused by ephemeral data

structure for min, we use a partially persistent 2-3 tree for maintenance of the

n-versions of sorted set mini[1..K], (i = 1..n) without spending O(Kn) time

and space. The detail of this data structure is discussed in the Section 3.5.2.

Note that we use control variables i and k for row-wise and column-wise

operations respectively in the following algorithm and its description.
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Algorithm 18 Algorithm for K maximum sums in a one-dimensional array
with generalized sampling technique

1: //Initialization
2: for k ← 1 to K do min0[k]←∞
3: for i← 1 to n do u[i]← K
4: sum[0]← 0
5: //Pre-process
6: for i← 1 to n do
7: insert sum[i− 1] into mini−1, which creates mini

8: delete mini[K + 1] //deletes from mini to keep size K
9: sum[i]← sum[i− 1] + a[i]
10: end for
11: //Sampling/re-indexing
12: q ← n, q′ ← K, p← 0, idx← [1, 2, ...n]
13: while 2p ≤ K do
14: //Compute A[2p][1..q], contained in A
15: for i← 1 to q do A[i]← sum[idx[i]]−minidx[i][2

p]
16: l← q′-th max of A[2p][1..q]
17: Partition A into (A1, A2, A3), where

A1 = {x|x ∈ A, x > l}, A2 = {x|x ∈ A, x = l}, A3 = {x|x ∈ A, x < l}
18: Copy prefix sum indices of elements in (A1, A2, A3) to idx[1..q]
19: for i← 1 to q do u[i]← 2p − 1
20: q ← q′, p← p + 1, q′ ← ⌈K/2p⌉
21: end while
22: //Candidate Generation
23: C ← ∅
24: for i← 1 to K do
25: //u[i]: number of candidates to generate in col. i of A
26: for k ← 1 to u[i] do append sum[idx[i]]−minidx[i][k] to C
27: end for
28: //Final Selection of K maxima
29: M ← extract(K,C)
30: sort M

3.5.1 Algorithm Description

Algorithm 18 is composed of five major routines, namely, initialization, pre-

process, sampling/re-indexing, candidate generation and final selection of K

maximum sums. We describe details of each routine.
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Initialization

We create the initial version of the minimum prefix sum, min0, maintained

in a partially persistent 2-3 tree. The array u is prepared to indicate the

number of candidates to be produced in each column, which will be used

in the ‘candidate generation’ routine. Initially, each column is entitled to

produce K candidates.

Pre-process

Over n iterations, we compute the prefix sum and insert this prefix sum into

min. We have n-versions of sorted sets min0[1..K] . . . ,minn[1..K] main-

tained in a partially persistent 2-3 tree. We need to fix the number of leaf

node to be K. Line 7 inserts a prefix sum sum[i−1] to the (i−1)-th version

of min kept in persistent 2-3 tree, which creates mini, the i-th version of

min. We have K + 1 leaf nodes in mini. A deletion of the last leaf node

from mini is thus needed as shown by line 8. Details of update operations

to the persistent 2-3 tree is discussed in Section 3.5.2.

Sampling/re-indexing

In our problem setting, we start with an empty array A whose dimension is

K × n. During the routine shown by lines 12-21, we examine rows 1,2,4,8...

only and generate a limited number of array elements in each row for sam-

pling. Otherwise it may cost O(Kn) time to generate all array elements. We

use an auxiliary array idx[1..n] to ease the column re-indexing. The initial

setting to idx is {1,2,...n}. Let us call the index i of sum[i] a prefix sum

index. The value of idx[i] indicates which prefix sum sum[idx[i]] we use to

produce the array elements in column i.

With p being incremented by 1 at each iteration, we visit row 1,2,4,8..(=2p)

sequentially where we generate only q=n,K,K/2, K/4.. samples respectively.

Such samples are shown by thick dotted lines in Figure 3.2. Line 15 shows

that q samples, A[2p][1..q], are computed by sum[idx[i]] − minidx[i][1] for

i = 1..q. This involves the access to different versions of min. The persistent

data structure for min enables this.
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Due to the initial setting to idx[1..n], all sum[i] − mini[1] for i = 1..n

are computed in row 1. The following line 16 performs a linear selection

algorithm to find the q′(= ⌈K/2p⌉)-th largest one. For example, in row

1,2,4.., it is the K, ⌈K/2⌉ , ⌈K/4⌉-th largest respectively. This item is marked

l. We rearrange the elements in this row and partition into (A1, A2, A3)

in a similar way to Algorithm 14 such that all items greater than l are

moved to the left partition A1, equal to l to A2 and smaller to A3. Let

(A1, A2, A3)={sum[x1]−minx1
[1], sum[x2]−minx2

[1]...sum[xq]−minxq
[1]}.

We copy the prefix sum indices {x1, x2..xq} to idx[1..q].

This rearrangement of idx[1..q] achieves the effect of column re-indexing

such that the prefix sum indices that produce array elements non-smaller

than l are stored in idx[1..q′] and rest indices are in idx[q′ +1..q]. During the

‘candidate generation’ routine, we use the prefix sum indices maintained in

idx. The virtual array A may be illustrated as Figure 3.2 having elements of

large value concentrated around the top-left corner.

A snapshot of the update to idx at each iteration is given in Figure 3.3.

Note that idx[1..K] at p = 1 correspond to the column indices marked (O)

and (X) in Figure 3.1.

The value l is the q′(= ⌈K/2p⌉)-th largest in this row. At the same time, it

is the 2p-th largest in its column since the column is sorted in non-increasing

order. Then we are assured that there are at least K elements non-smaller

than l. Apart from the first q′ samples in A1 and A2, rest samples are now

disqualified. When they do not qualify the K largest at this stage, they

are never included in the final set of K maxima. The prefix sum indices of

such disqualified samples are kept in idx[q′+1..q] after rearrangement of idx.

In the ‘candidate generation’ routine, we will not generate candidates with

the prefix sum of such an index in the 2p-th row and below. This virtually

discards unnecessary elements from the array, or, to be precise, aborts them

from being produced.

The shaded areas labeled ‘p=0,1,2,3’ in Figure 3.2 represent such aborted

portions. Note that the first iteration of the ‘while’ loop at lines 13-21 is

essentially equivalent to the sampling process used in Algorithm 17.

Even if the array A is not pre-built, this ‘abortion’ technique effectively

simulates elimination from the pre-built array, the basic idea of the selection
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idx

sum

i             1        2        3        4        5        6        7        8        9       10      11      12       n

K

(a) Initialization
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sum

i             1        2        3        4        5        6        7        8        9       10      11      12       n

q’(=K) q(=n)

(b) p=0.

idx

sum

i             1        2        3        4        5        6        7        8        9       10      11      12       n

 6        1        4        7        9       12

(=K/2) (=K)

q’ q

(c) p=1.

idx

K

sum

i             1        2        3        4        5        6        7        8        9       10      11      12       n

 3        5       11      13       6        1        4        7        9       12

q’

(=K/2)(=K/4)

q

(d) p=2.

i             1        2        3        4        5        6        7        8        9       10      11      12       n

 idx          10       2        8        3        5       11      13       6        1        4        7        9       12

(e) Final values when p=3.

Figure 3.3: Rearrangement of index array idx when n = 13, K = 8
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algorithm by Frederickson and Johnson.

Actual generation of non-aborted candidates is done in the next subrou-

tine starting at line 23. We update the array u at line 19 to indicate how

many candidates can be produced in each column of A. Due to the initializa-

tion at line 3, each column is entitled to produce K candidates. At the 2p-th

row, once the q′-th largest element l is found and the column re-indexing is

done, the columns of disqualified samples are not allowed to produce more

than (2p − 1) candidates. When the ‘while’ loop at lines 13-21 terminates,

we have u[1..K] = {8, 7, 3, 3, 1, 1, 1, 1} for the example given in Figure 3.2.

Further discussion is given in the next section.

Note that the update to q at line 20 may be replaced with q ← ⌈K/2p⌉−1

for further reducing the size of sample generation, which however makes no

asymptotic improvement.

Candidate generation

We now produce all the elements that survived the sampling process. The

final version of idx as shown in Figure 3.3 indicates the prefix sum index to

be used for generation of elements. Specifically, the first column of A is built

with the prefix sum index idx[1].

While the sampling process in Section 3.5.1 was performed in a row-

wise manner, we choose to generate candidates column-wise. By column-

wise computation, we visit one version of 2-3 tree and access each leaf node

sequentially. Later in Section 3.5.2, it will be shown that each candidate

computed in such a manner costs O(1) amortized time. We can not afford

the complexity incurred by row-wise computation here, since it involves an

element retrieval with index from each version of 2-3 tree. Section 3.5.2 will

show that each candidate computed this way needs O(log K) time.

With the array u that indicates the number of candidates to produce

in each column, column-wise computation is easily done by sum[idx[i]] −
minidx[i][1..u[i]] in column i. Those generated are shown in white in Figure

3.2.

We start with an empty set C, and append each generated element to a

set C at lines 23-27. There is no specific order in C at the stage.
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Let us determine the total number of generated elements, |C|. Counting

them in row-wise manner is easier. We have K elements in the first row, and

⌈K/2⌉ elements each in the second and the third row. In general, there are

q′(= ⌈K/2p⌉) candidates each in rows 2p..(2p+1−1). Note that (2p+1−2p)·q′ =

O(K). We can obtain |C| by K + 2(K/2) + 4(K/4) + ...=O(K log K).

While [38] introduces further reduction techniques to reduce this num-

ber to O(K), having O(K log K) remaining elements still suffices our needs.

Further discussion is given in Section 3.5.3.

Final selection of the K maximum sums

Finally, lines 29-30 describe the selection of K maximum elements in C.

We sort such final K elements and obtain the sorted list of K maximum

subarrays.

3.5.2 Persistent 2-3 Tree

The choice of an appropriate data structure for the collection of the minimum

prefix sums mini is essential to the algorithm.

To maintain sorted set with efficient support for insert and delete oper-

ations, a 2-3 tree provides optimal performance. The 2-3 tree is a class of

search trees invented by Hopcroft [1], where every internal node has either

two or three children and all leaf nodes appear on the same level. This per-

fectly balanced property means O(log n) time for search, insert and delete

operations, where n is the number of elements in the tree. An internal node

having two children is called a 2-node, and one with three children is called

a 3-node. Each 2-node contains two keys and a 3-node has three keys, where

each key has the same value of the first key of a child node. Some authors

including [1, 63] prefer to have one key in a 2-node and two keys in a 3-node,

and such implementation can be used instead with no significant difference†.

The data structure that loses its old version is called ephemeral. If the

data structure allows access to the old versions after subsequent update op-

erations, it is called persistent. Since the seminal paper of Driscoll et al.

[30], there has been considerable development of persistent data structures

† Having x keys in a x-node is intuitively more transparent.
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Figure 3.4: The i-th version of 2-3 tree. Leaf nodes represent sorted set in
non-decreasing order. The number inside () shows the number of leaf nodes
under this node. K = 9

[23, 14, 83, 60]. The partially persistent data structure allows all versions to

be accessed, but only the newest version can be modified. The structure is

fully persistent if every version can be both accessed and modified [30]. As

we only modify the newest version, a partially persistent structure will be

sufficient.

Combining two requirements, a partially persistent 2-3 tree is the struc-

ture of choice.

We adopt node copying method for making a 2-3 tree persistent. Figure

3.4 shows the i-th version of the 2-3 tree storing K = 9 elements 1,3,...17,

in non-decreasing order We have an array of size n, version, whose i-th item

points to the root of the i-th version. Each internal node of the tree has an

extra field storing the number of leaf nodes under the node for efficient access

with an index. The details are given in Section 3.5.2.

Update operation

When a new element 6 is inserted, we first perform a search on the i-th

version for an appropriate position. We find that node [7,9(2)] will be the

parent of this new entry, but this node will need to change its shape. We

thus copy this node and add 6 to it, and change the cardinality of the copied

node to 3. When this node is copied, the pointers to node [7] and [9] are

also copied. Then a new copy has three children, [6], [7] and [9]. We must
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Figure 3.5: The (i+1)-th version is created when 6 is inserted.

copy and update all the nodes in the path to the root in the same manner.

Newly created nodes are shaded in Gray in Figure 3.5. Finally the (i+1)-th

item of version is arranged to point to the new copy of root node, the root

of the (i+1)-th version.

After the insertion of 6, there are 10(=K + 1) leaf nodes. Since this

structure is to be used for min which has fixed size K, we have to delete

the leaf node with the largest value, 17. We intend to delete the node [17],

but only from the (i+1)-th version. Previous versions should still have an

access to the node [17]. Thus we only remove the pointer link to the node

[17] from the (i+1)-th version of the tree. We first traverse from the root

of the (i+1)-th version to the rightmost leaf node [17]. Since its parent

[15,17(2)] will have only one child after losing 17, we will delete this node

from the (i+1)-th version too. Then the sibling node [11,13(2)] should adopt

the orphan leaf node [15] as its rightmost child, which updates [11,13(2)] to

[11,13,15(3)]. A similar operation is carried out for [11,15(4)]. As node

[1,6(6)] has two children and is the only child of the root [1,11(10)], we

choose [1,6(5)] to become the new root of the (i+1)-th version of the tree.

The node [11,13,15(3)] is taken as the rightmost child of [1,6(5)] and the

root is updated to [1,6,11(9)]. The final shape of mini+1 should look like

Figure 3.6.

Once one version mini has K elements, each insertion to mini means

the next version mini+1 has (K + 1) elements. Thus each insertion should
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Figure 3.6: The largest item 17 is deleted from the (i+1)-th version to keep
the size K.

be followed by a deletion of the largest element to keep the size of the next

version mini+1. As we described, each operation recursively copies nodes in

the path to the root and updates them. As the height of the tree is bounded

by O(log K) when we have the fixed number of leaf nodes K, we spend

O(log K) time and O(log K) space for each insertion and deletion.

In the following, we examine the time complexity for two types of leaf

node access, sequential reading of leaf nodes and random access to the k-th

element.

Sequential access to leaf nodes

We first examine the time for the following routine.

for k ← 1 to K do print mini[k]

If mini is contained in an array, the time is O(K). Such time for mini

maintained in a 2-3 tree deserves discussion.

First of all, we access the array version to find the root of the i-th version

of the 2-3 tree that keeps mini. Sequential access to all leaf node values can

be done by simple depth-first search traversal. If N is the number of internal

nodes of a 2-3 tree that has K leaf nodes, (K − 1)/2 ≤ N ≤ K − 1. The
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number of internal nodes is thus bounded by O(K). Then sequential access

to all K leaf nodes is done in O(K) time.

If a level-linked 2-3 tree [25] is used, it guarantees O(1) worst case time

for accessing the next item as well as O(K) time for sequential reading of all

items. The ordinary 2-3 tree that we described here only provides O(1) amor-

tized time for the next item access while O(K) time for sequential reading is

still supported.

Element retrieval with index from a 2-3 tree

Each internal node in a 2-3 tree maintains an attribute of the number of leaf

nodes below this node. In the above, it was shown that all nodes in the path

to the root update their cardinality on each insertion or deletion.

In the 2-3 tree described above, we assume the leftmost leaf has an index

1, and the rightmost leaf has an index K accordingly.

When the k-th item needs to be retrieved, the cardinality can be utilized

to find the location of this item. Suppose the root node has cardinality cP

and the left, center and right child have cL, cC and cR respectively such that

cP = cL+cC +cR. To search for the k-th item, we first look at cP to make sure

if k ≤ cP . If so, we try series of comparisons to find which subtree this item

belongs to. If cL ≥ k, the k-th element is in the left subtree. Otherwise, we

examine cC to see if cC ≥ k− cL. If so, the k-th item is in the center subtree.

Otherwise, it is in the right subtree. We perform at most 3 comparisons at

each node recursively until we arrive at a leaf node following a path from the

root. When there are K leaf nodes in the tree, we spend O(log K) time to

retrieve the k-th element.

3.5.3 Analysis

First we analyze the time for the initialization. Inside the loop, K elements

of min1 are set sequentially. Due to Section 3.5.2, the time for initialization

of min1[1..K] is O(K).

The pre-process includes preparations of the prefix sums and the partially

persistent 2-3 tree storing the minimum prefix sums. Each update to mini

is done in O(log K) time as discussed in Section 3.5.2. The time for the
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pre-processing is thus O(n log K).

Let us examine the time complexity within the ‘while’ loop at lines 13-21.

We separate the analysis when p = 0 and p ≥ 1. In the latter case, we always

halve the size of sample, for example, we eliminate K/2 samples from K at

p = 1. This is not the case when p = 0.

At the first iteration (p = 0), we sample n elements A[1][1]..A[1][n] at

line 15. The first element of each n versions of min is retrieved spending

O(log K) time each due to Section 3.5.2. The time spent by this line is thus

O(n log K). Following routines (lines 16-18) are linear time operations on

n samples. These O(n) times are absorbed. The time spent by line 19 is

O(n−K), which is absorbed too.

When p ≥ 1, at the p-th iteration, line 15 generate A[2p][i] by sum[idx[i]]−
minidx[i][2

p] for i = 1...q, which are q = ⌈K/2p−1⌉ elements. When the loop is

exited, the total number of samples generated is K + K/2 + K/4... = O(K).

The generation of each sample involves access to a corresponding version

of minidx[1]..minidx[q], the persistent 2-3 tree. We first refer to the idx[i]-th

version of min and need to track down from the root to locate minidx[i][2
p]

taking O(log K) time each. Each iteration of ‘while’ loop at lines 13-21, q is

K, ⌈K/2⌉ ...etc. The time spent by line 15 throughout ‘while’ loop (p ≥ 1) is

then O ((K + K/2 + K/4...) log K)=O (K log K)).

Lines 16-18 perform linear operations on K,⌈K/2⌉,⌈K/4⌉... elements at

each iteration. The total time is then O(K + K/2 + K/4 + ...) = O(K).

Similarly, the time by line 19 is O(K).

The combined time of two cases, p = 0 and p ≥ 1 inside the ‘while’ loop

gives the total time spent by the loop. It is O(n log K)+O(n)+O(K log K)+

O(K), which is summarized to O(n log K) for K ≤ n. The operation by lines

15 is the dominant one inside the ‘while’ loop.

The ‘for’ loop starting at line 24 involves the generation of non-discarded

elements in the array A. There are O(K log K) elements remaining as dis-

cussed in Section 3.5.1. Note that lines 24-27 involve sequential reading from

the sorted set maintained by 2-3 tree. It is done in linear time as discussed

in Section 3.5.2. Then total time for generating O(K log K) elements is

bounded by O(K log K).

All the generated items are collected in C with no specific order. We
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proceed to the line 29 where the K largest items are selected. As there are

O(K log K) elements in C, linear time selection algorithm spends O(K log K)

time for this. The final K maximum values are sorted in another O(K log K)

time by line 30.

As it is assumed that K ≤ n, the total time of this algorithm is therefore

bounded by O(n log K).

Theorem 3.5.1. ∀K ∈ [1..n], the sorted list of K maximum subarrays is

computed in O (n log K) time

We discuss the complexity for large K in the next section, Section 3.5.4.

Note that Frederickson and Johnson’s algorithm [38] offers a subsequent

reduction technique that further discards elements leaving only O(K) el-

ements. We only applied their first technique which leaves O(K log K)

elements. Even if their subsequent technique is applied, we will still hit

O(n log K) time complexity.

As we copy paths of O(log K) length to create each version of 2-3 tree,

the extra space occupied by n versions of min is O(n log K). It may also be

noted that the 2-3 tree we described is not strictly partially persistent, as any

version can be accessed for update. Since the partial persistence is adequate

for the requirement, it remains to be seen if a strictly partially persistent 2-3

tree can provide better efficiency in terms of time and space.

During the pre-process at lines 6-10, the prefix sum sum[i] is inserted to

mini regardless of its value. If it becomes the largest after insertion, this

new entry is immediately deleted by the next line. By doing so, we waste

O(log K) time to get the identical tree. To avoid this, we can prepare a last

attribute at each version of the 2-3 tree to keep the value of the rightmost leaf,

the maximum item, in the tree. Before each insertion, we examine whether

the value of new entry is greater than last. If so, we simply set a pointer to

the root of the current version of 2-3 tree instead of performing insertion and

deletion of the same item. Otherwise, this entry is successfully inserted and

the rightmost leaf which is different from the inserted item will be deleted.

Meanwhile, last is also updated. This gives average time improvement, but

the worst-case behavior is not clear at present.

Likewise, we can prepare a first attribute at each version of the 2-3 tree
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to maintain the value of the leftmost leaf, the minimum item. This may

reduce the O(n log K) time for sampling to O(n+K log K). While this does

not improve the total complexity, it leaves the pre-process being the only

O(n log K) time operation. Any future improvement to the pre-process will

therefore reduce the total complexity.

3.5.4 When n < K ≤ n(n + 1)/2

So far the description and analysis of algorithms were given with an assump-

tion that K ≤ n. In fact, neither Algorithm 17 nor Algorithm 18 will work

for K > n if no modification is made. We discuss how we can handle large

K in this section.

In the following, we mean n < K ≤ n(n+1)/2 by large K and K ≤ n by

small K. All K is then 1 ≤ K ≤ n(n + 1)/2.

For large K, we encounter a case where the sampling technique no more

improves the complexity. For example, selection of the K-th largest among

n samples in Algorithm 17 is invalid as there are only n (n < K) elements.

As previously defined in Section 2.3.2, we use a term ‘valid’ to describe the

opposite case, a meaningful application of the sampling technique.

For Algorithm 17 to support large K, we make a simple modification by

combining it with Algorithm 16.

Since the sampling technique in Algorithm 17 is invalid for K > n,

we skip the pre-process and perform lines 6-12 of Algorithm 16. Such a

change gives O ((K + n) log min(K,n) + min(K,n)2) time for all K. Note

that O(log min(K,n)) = O(log K) and the complexity may be simplified ac-

cordingly. Naturally, this modified version of Algorithm 17 does not improve

Algorithm 16 for large K.

Now we consider Algorithm 18. It is obvious that the sampling in the

first row is invalid as it was in Algorithm 17. The sampling in the second row

may, however, be valid depending on the value of K. Considering that we

attempt to find the ⌈K/2⌉ largest samples in the second row, the sampling

becomes valid if K < 2n. When a valid sampling is done in the second row,

it is also valid in the 4-th and 8-th rows etc. With a small modification to

the original framework, the algorithm can support large K with asymptotic
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improvement to Algorithm 16.

For large K, notice that the size of each version of min will be at most

n, for the same reason explained in Section 3.3. The size of the imaginary

array A in Figure 3.2 is then (n, n). So we first let K ′ = MIN{K,n} in the

beginning of Algorithm 18 and replace each appearance of K at line 2,3,8,13

and 24 with K ′.

As briefly mentioned, the sampling may be invalid for some rows near

the top. We first determine 2p0 , the first row where a valid sampling can be

performed. Intuitively, 2p0 is the smallest power of 2 such that K/2p0 ≤ n.

Certainly, we have p0 = 0 for small K, which justifies the first valid sampling

performed in the first row(=20). In general, we can determine the value of

p0 for both small and large K by p0 =
⌈

log K
K′

⌉

. We modify the algorithm

such that the initialization of p and q′ at line 12 is done by p ← p0 and

q′ ← ⌈K/2p0⌉. In the rows above the 2p0-th one, we skip sampling. The

‘while’ loop starting at line 13 runs at most O(log K ′) iterations. The time

for sampling /re-indexing after modification is still O(n log K ′). The analysis

can be done in a similar way described in Section 3.5.3.

We now discuss the subroutine for candidate generation. As is in the

original algorithm, we produce u[i] candidates in column i. Initially, u[i] = K ′

due to the modification to line 3. Let us determine the total number of

candidates, |C|. While candidates are produced column-wise, it is easier to

count |C| row-wise. It is the row 2p0 where we start to have less than n

candidates. In the row 1..(2p0 − 1), we have n candidates each, which are

(2p0 − 1) · n = O(K) in total. In the row 2p0 and below, |C| is counted

in a similar way described in Section 3.5.1. As the logarithmic distance

between row 2p0 and K ′ is O(log K ′ − p0) = O(log K ′2/K), we have |C| =
O(K log K ′2/K) where the O(K) candidates above 2p0-th row are absorbed.

It is O(K log n2/K) for large K and O(K log K) for small K. Note that |C|
for small K is consistent with the earlier analysis. This also implies that if

K = O(n2), |C| = O(K).

Each candidate needs O(1) time for generation, making this subroutine

O(K log n2

K
) time for large K. Including final selection and sorting, the total

time we spend for large K is then summarized to O(K log K).

While we analyzed the modified algorithm mostly for large K, this version
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also supports small K without affecting the complexity given in Theorem

3.5.1. We end this section with the following conclusion.

Theorem 3.5.2. ∀K ∈ [1..n(n + 1)/2], the sorted list of K maximum sub-

arrays is computed in O ((n + K) log K) time

3.6 O(n + K log min(K, n)) Time Algorithm

As discussed in Section 3.5.3, the time complexity of Algorithm 18 is deter-

mined by the pre-process, which is O(n log K) time. The rest part of the

algorithm is bounded by O(K log K), and it has been suggested that the im-

provement to the pre-process can speed up the overall complexity for small

K. In this algorithm, we prepared n versions of 2-3 tree maintaining mini

for each prefix sum sum[i]. Among these n versions, it is easily observed that

at most K versions are actually used to generate candidates. For small K,

preparing n versions of 2-3 tree is wasteful, as each unnecessary version still

requires O(log K) time to prepare. However, even if we identify necessary

K versions in advance, it is not easy to make these K versions be prepared

within O(K log K) time.

In this section, we discuss an alternative data structure for maintaining

each version of min.

3.6.1 X + Y Problem

We consider the selection of the K-th largest elements in a set of Cartesian

sums X + Y = {xi + yj | xi ∈ X, yj ∈ Y }, where X = {x1, x2, .., xn} and

Y = {y1, y2, .., ym}. This problem was originated by Johnson and Mizoguchi

[59], and Frederickson and Johnson [38] gave an optimal solution with O(m+

p log(K/p)) time, where n ≤ m and p = min{K,n}.
If we need all K largest elements in sorted order, we can devise a simple

alternative algorithm.

Let maxX[w] be the w-th maximum in X. Let X ⊕ Y be a list of size

m such that, X ⊕ Y = {y1 + maxX[1], y2 + maxX[1], .., ym + maxX[1]}.
The first largest in X + Y is then of course, M [1] = MAX {X ⊕ Y }. Note

that we use MAX , MIN for operator to avoid confusion with list names
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Figure 3.7: Build max-heaps HX and HX⊕Y to solve X + Y problem
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Figure 3.8: Get the next maximum in X + Y

containing lowercase max or min. We build a max-heap HX with X and

obtain MAX {X} at the root, which we store in maxX[1]. The rest in maxX

are yet unknown. Then we build another max-heap HX⊕Y , where each node

contains yj + maxX[1] (j = 1..n). Here, the root of HX⊕Y is M [1] (Figure

3.7). Let M [1] be yj+maxX[1] for some j. We update the root of HX⊕Y with

the next maximum obtainable with yj, which is yj + maxX[2]. In general,

when the root containing yj +maxX[w] is updated, we check if maxX[w+1]

is readily available in maxX. Otherwise, the current root of HX is maxX[w],

thus we delete the root of HX and take the new root as maxX[w + 1]. Now

we update HX⊕Y and obtain M [2] from the root (Figure 3.8). We repeat

this process K times and output K largest sums in X + Y in sorted order.

The correctness of the algorithm is easily observed.

Building two heaps take linear time, and each subsequent maximum is

found in logarithmic time. Hence, the total time is O(m+K log m). Note that

the maximum value for K is mn in the extreme, but if K ≤ n ≤ m, we can

reduce the size of X and Y to K by leaving only the K largest elements in X
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Algorithm 19 Computing K largest elements in X + Y .

// Results are maintained in M [1..K] in sorted order

1: Build max-heap HX with x1, x2, .., xn.
2: Let maxX[1] be root(HX), the root of HX .
3: Build max-heap HX⊕Y with y1+maxX[1], y2+maxX[1], .., ym+maxX[1].
4: for k ← 1 to K do
5: M [k]← root(HX⊕Y ). Output M [k]. Suppose M [k] is yj + maxX[w].
6: Obtain maxX[w + 1], the next maximum in X
7: Replace root(HX⊕Y ) with yj + maxX[w + 1] and update HX⊕Y

8: end for

and Y . This can be done by the linear time selection algorithm [20] without

increasing the complexity. The total time then becomes O(m + K log K),

which is asymptotically equivalent to [38] plus sorting. We conclude the

total time is O(n + K log min(K,m)).

This algorithm can be easily generalized to the selection in X1 +X2 + ..+

Xd. We can prepare d heaps in a similar manner. If K is not greater than

the size of any Xi (1 ≤ i ≤ d), we achieve O(n + Kd log K) time, where n is

|X1|+ |X2|+ .. + |Xd|.

3.6.2 1D K-OMSP

We start with the prefix sum sum’s of a given input a[1..n], such that

sum[0] = 0 and sum[i] = a[1]+a[2]+ ..+a[i]. The sum of arbitrary consecu-

tive elements, a[i]+a[i+1]+..+a[j] is easily computed by sum[j]−sum[i−1].

We define mini[w] as the w-th minimum of {sum[0], .., sum[i − 1]}. Let a

list Cand be {sum[1]−min1[1], sum[2]−min2[1], .., sum[n]−minn[1]}.
The first maximum sum M [1] is then MAX {Cand}. Suppose M [1] is

sum[i]−mini[1] for some i. We update this i-th entry in Cand by replacing

mini[1] with mini[2]. M [2] is then the new maximum of Cand. Similar to

the X +Y problem, we can build HCand, a max-heap with elements in Cand

to facilitate the maximum selection.

However, the maintenance of min1,..,minn is not trivial. In yj+maxX[w],

assuming that maxX[w] = xi for some i, we are not concerned of the position

of xi in X. However, in sum[i] − mini[w], assuming mini[w] = sum[v] for
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Algorithm 20 Computing K maximum subarrays.

//Results are in M [1..K] in sorted order

1: for i← 1 to n do Compute mini[1], the minimum of sum[0], .., sum[i−1]
2: Build min-tournament Tn with sum[0], sum[1],..,sum[n− 1].
3: Build max-heap HCand with sum[i]−mini[1] for all i = 1..n.
4: for k ← 1 to K do
5: M [k]← root(HCand). Output M [k]. Suppose M [k] is sum[i]−mini[w].
6: mini[w + 1]← the next unconsumed minimum in {sum[0], .., sum[i−

1]}
7: Replace root(HCand) with sum[i]−mini[w + 1] and update HCand

8: end for

some v, the position of v must be in the range of 0 ≤ v ≤ i − 1. Also,

maxX[w] is the list-wide w-th largest element in X. But mini[w] is the w-th

minimum in the sub-list specific to sum[i], i.e. {sum[0], .., sum[i−1]}. In the

example above, one can easily observe that min4[1](= 0) 6= min5[1](= −44).

To overcome the difficulty, the easiest option is to create an individual

min-heap for each mini (i = 1..n). This is, however, too costly. Still, if we

use a persistent tournament to maintain multiple versions of mini, we can

show that the followings facts hold.

Lemma 3.6.1. All mini[1]’s (i = 1..n) can be computed in O(n) time.

Lemma 3.6.2. A tournament for mini can be prepared in O(log n) time.

Lemma 3.6.3. The next element in mini can be obtained in O(log n) time.

We first present Algorithm 20 assuming that all the lemmas hold.

Lemma 3.6.1 is trivial. Line 1 runs a sequential scan on sum[0], .., sum[i−
1] and computes “prefix minimum” for each position i. Initially, we only know

mini[1]’s for all i = 1..n, but mini[w] (w > 1) will be found when it is needed.

Now we describe the techniques to support Lemma 3.6.2 and 3.6.3.

Creating a persistent tournament

A tournament is a binary tree that we described in Section 2.3. It is sim-

ilar to a heap in terms of its feature and computational complexity. When
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n items are present, there are O(n) nodes in the structure, as it is a com-

plete binary tree with an exception in the leaf level, and the maximum (or

minimum) can be found at the root in O(1) time. The second maximum

element can be retrieved by tracing the path from the root to the leaf node

containing the first maximum and deleting (or replacing it with -∞) the leaf

node, and updating the nodes above it on the path to the root. The height

of the tree is O(log n), and thus it takes O(log n) time to delete the maxi-

mum. As discussed in Section 2.3.1, retrieval of the K-th largest item using

a tournament takes O(n + K log n) time. Indeed, a linear time selection [20]

is possible. However, the tournament provides a list of K largest items in

order by default, while the linear time selection needs extra processing for

this thereafter.

We can perform the same operation with a heap at the same cost. An

advantage of a tournament over a heap is the preservation of the comparison

history and the locational information relative to other participants. We can

examine the tree to learn who beats who, and the original position of the

final winner. Keeping such information in a heap may be difficult, if not

impossible.

We build a min-tournament with sum[0], .., sum[n − 1]. Each node con-

tains the smaller value of two children. The overall minimum is placed at the

root. Let us refer to this tournament as T0. Each node also maintains the

coverage, derived from the range of indices of prefix sums under its control.

A node covering sum[i],..,sum[j] has a coverage (i + 1, j + 1). Maintaining

the coverage is essential to locate the i-th leaf in the tournament, whose de-

tail will be given shortly. To build T0, we create a root node and execute

min prefix tournament(root, 1,n) presented in Algorithm 21.

To maintain mini (i = 1..n), we need the i-th version Ti that covers

sum[0], .., sum[i − 1]. However, we wish to avoid building each version of

tournament from scratch. We apply the node copying technique used in a

persistent data structure, which allows access to the old versions after sub-

sequent update operations [30]. The same technique was already discussed

in Section 3.5.2.

We show how to retrieve Ti from T0, and update Ti while keeping T0 and

other versions intact.
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Algorithm 21 Build a tournament Tn to find MIN {sum[f -1], .., sum[t-1]}
procedure min prefix tournament(node,f ,t) begin

1: node.from← f , node.to← t
2: if f = t then
3: node.val← sum[f − 1]
4: else
5: create left child node, min prefix tournament(left,f ,f+t−1

2
)

6: create right child node, min prefix tournament(right,f+t+1
2

,t)
7: node.val← MIN (left.val, right.val)//MIN {sum[f -1], .., sum[t-1]}
8: end if

end

Preparing the i-th version To maintain mini, we prepare Ti, the i-th

version of the tournament. We want the root of Ti to have a coverage (1, i).

We visit the i-th leaf (containing sum[i−1]) in T0 and traverse back towards

the root. The coverage kept in each node is looked up for locating the i-th

leaf. We make a copy of each node on the path. If the currently visiting

node has a right sibling, when we copy the parent, the copied parent loses

link to the right child, keeping the coverage not going above i. When we

arrive at the root, the copied root has the coverage (1, i) with the value

MIN {sum[0], .., sum[i− 1]}, i.e. mini[1] . Now Ti is ready for use. During

the process, as we only updated the copied nodes, T0 is kept intact. Note

that most nodes in Ti are recycled from T0, and belong to Ti as well as T0.

Only those copied nodes are version specific to Ti. The retrieval of Ti from

T0 takes O(log n) time, proving Lemma 3.6.2. Detailed routine is given in

Algorithm 22. To retrieve T8 from T0 as shown in Figure 3.9, we first copy

the root of T0 and call make Ti(8,root), where root is the copied root.

Updating the i-th version Suppose we have discovered mini[1..w], and

now wish to find mini[w + 1]. If w = 1, Ti is not available yet, so we

retrieve it from T0 as described above. Otherwise, the current root of Ti is

mini[w]. Let mini[w] = sum[x] for x < i. We traverse from the root of Ti

to the (x + 1)-th leaf that contains sum[x]. The coverage kept in each node

determines where the (x + 1)-th leaf is located. We replace this leaf with∞,

and update the rest nodes on the path to the root. We are allowed to update
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Figure 3.9: Retrieving Ti with T0 kept intact. T0 is built with the input in
Example 3.2.2. Ti is the tournament that maintains mini. Here, the root of
T8 is min8[1] = −44, that is sum[4]

a node version specific to Ti. Otherwise, we make a copy and update it. This

routine again is O(log n) time, proving Lemma 3.6.3. Figure 3.10 shows the

result of updating T8, where we delete min8[1], that is sum[4]. This is done

by executing update Ti(root,4) in Algorithm 23, where root is a copy of the

root of T8. Notice that the update only affects T8.

3.6.3 Analysis of Algorithm 20

Lines 1,2 and 3 are linear time. Building a tournament is recursively done.

Line 5 is O(1) time. Line 6 involves at most two O(log n) time operations.

If Ti is already available, we simply access this. Otherwise, we retrieve it

from T0 spending O(log n) time. Line 7 involves the max-heap maintaining

Cand, and takes O(log n) time to return each of M [k] and update the heap.

Altogether, the total time is O(n + K log n). Note that K can be n(n+1)
2

in

the extreme, and this algorithm can work with any K. Bengtsson and Chen

[16] observed that O(n + K log n) = O(n + K log K), hence the total time is

O(n + K log min(K,n)), which matches the recent results by Bengtsson and

Chen [16] and Cheng et. al [26].

A trivial lower bound for computing K maximum sums in an array of
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Algorithm 22 Retrieve a tournament Ti from T0

/*node is a copied node. left and right are children of node*/
procedure make Ti(i, node) begin

1: if node.from = node.to then
2: return //this node is the i-th leaf. no need to copy
3: else
4: /∗ this node is an internal node ∗/
5: if left.to ≥ i then
6: //i-th leaf is in the left subtree.
7: left← copy of left
8: make Ti(i,left)
9: node.to← left.to //this node doesn’t need right subtree anymore
10: delete the link to right
11: else
12: //i-th leaf is in the right subtree.
13: right← copy of right
14: make Ti(i,right)
15: node.to← right.to
16: end if
17: //update node.val
18: node.val← MIN {left.val, right.val} //right.val is ∞ if right is null
19: end if

end

size n without requiring sorted order is Ω(n + K), if K ≤ n. However, as we

want to output K maximum sums in non-decreasing order, we have a better

lower bound.

Lemma 3.6.4. The lower bound for the 1D K-OMSP is Ω(n+K log K) for

K ≤ n.

Proof. We prepare an adversary sequence of randomly ordered K distinct

values a1,a2,..aK in the array a[1..n] and assume that there are at least one

−∞ between each two values. The rest elements are all −∞, such that a[1..n]

looks like,

−∞, ..,−∞, a1, ..,−∞, .., a2, ....,−∞, .., aK ,−∞, ..,−∞

This way, the K maximum subarrays are {a1},{a2},..{aK}, all made of
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Figure 3.10: Updating Ti. Here, we update T8 by replacing sum[4] = −44
with ∞. The new root of T8 is min8[2] = 0

Algorithm 23 Delete sum[i] from a tournament

/* i is the index of the prefix sum to be deleted */
procedure update Ti(node, i) begin

1: if node.from = node.to then
2: //this is the leaf node maintaining sum[i]
3: node.val←∞
4: else
5: if left.from ≤ i + 1 ≤ left.to then
6: //(i + 1)-th leaf is in the left subtree
7: left← copy of left //skip if left is already a copy
8: update Ti(left,i)
9: else if right is not null then
10: //(i + 1)-th leaf is in the right subtree
11: right← copy of right //skip if right is already a copy
12: update Ti(right,i)
13: end if
14: //update node.val
15: node.val← MIN {left.val, right.val} //right.val is ∞ if right is null
16: end if

end

a single element. Now, computing the K maximum sums in non-increasing

order becomes equivalent to selecting K largest elements in sorted order,
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meaning that the problem reduces to two known problems, selection of the

K largest elements, and sorting them. The lower bound of selecting the

K largest element is Ω(n + K), and that of sorting K random numbers

is Ω(K log K) [63]‡. Let T be the total time. Then, T ≥ Ω(n + K) +

Ω(K log K) ≥ Ω(n + K log K).

This lower bound was shown by Bengtsson and Chen [16] and Cheng

et. al [26]. Note that this lower bound matches the upper bound O(n +

K log min(K,n)) for K ≤ n. Therefore,

Theorem 3.6.5. Algorithm 20 is optimal for K ≤ n.

While independently devised, Algorithm 19 for X + Y problem is almost

identical to the technique presented in the recent result by Bengtsson and

Chen [16], except Algorithm 19 uses a simple heap. They derived an algo-

rithm for the 1D K-OMSP from their version of Algorithm 19. Consequently,

their algorithm and Algorithm 20 are very similar in terms of the structure

and the complexity.

Still, the use of a persistent data structure is unique in Algorithm 20 and

it only requires to maintain prefix sums, whereas [16] requires to maintain

both prefix and suffix sums. As [16] appeared earlier, the contribution of

Algorithm 20 is however little. Nevertheless, Algorithm 20 is included in

this thesis for the completeness as well as the following reasons. Firstly, its

framework using a combination of a heap and a tournament can be general-

ized to devise an efficient algorithm for higher dimensions, which Bengtsson

and Chen overlooked in [16]. Secondly, it demonstrates the effectiveness of

the tournament for maintaining order as well as the locational information,

which will serve as a vital tool for computing the K-disjoint maximum sub-

array problem covered in the next chapter.

3.7 Algorithms for Two Dimensions

The simplest algorithm for 2D may be based on strip-wise computation as

described in Section 2.2.1. We showed that each strip is regarded as a 1D

‡ Section 5.3 in Volume 3 in particular
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problem, which can be computed by an algorithm for 1D. For an input array

of size n × n, there are O(n2) strips, and it is easy to see that we need

O(n2T1D(n)) time to compute K maximum sums in a 2D array, where T1D(n)

is the time complexity of an algorithm for 1D. For example, in our preliminary

work [7], we extended O(Kn) time algorithm for 1D (Algorithm 15) to get

O(Kn3) time algorithm for 2D.

In this section, we present more efficient algorithms for 2D, achieving

O(n3) time for certain range of K. Certainly, we can readily derive O(n3)

time algorithm by performing strip-wise computation with Algorithm 20. It

is O(n3 + Kn2 log min(K,n)) time, that is O(n3) for K ≤ n
log n

.

Our objective is to make an algorithm more tolerant of the value of K,

such that we get O(n3) time for wider value of K. We introduce two ap-

proaches based on the sampling technique and two-level heap. The former

is applied to Algorithm 18 or Algorithm 20 and achieves O(n3) time for

K ≤
√

n3

log n
, while the latter specifically applies Algorithm 20 to get O(n3)

time for K ≤ n3

log n
.

3.7.1 Sampling in Two Dimensions

If we perform the O((n + K) log K) solution (Algorithm 18), we get K max-

imum sums from each strip and regard them as candidates. We have total of

O(Kn2) candidates. From this set of candidates, we can select the final K

maximum subarrays using Algorithm 14. The total time for the 2D K-OMSP

is then O(n2(n + K) log K).

Using the sampling technique described in Section 3.4, we can reduce this

complexity.

If K ≤ n(n+1)/2, among n(n+1)/2 such portions, there are at least n(n+

1)/2 − K portions whose own K maximum subarrays are totally excluded

from the final solution set. We identify such portions and prevent them from

producing useless candidates.

With each strip prefix sg,i[1..n], we compute the maximum sum by Algo-

rithm 3 in the strip. We get O(n2) ‘samples’, where each sample is computed

in O(n) time. We spend O(n3) time for this.

Among these O(n2) samples, we choose the K-th maximum by the linear
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time selection algorithm. By doing so, we filter out ‘unnecessary’ portions

and leave only K portions that may produce meaningful candidates for the

final solution.

We apply the algorithm for 1D on these selected strips. Performing O((n+

K) log K) time solution (Algorithm 18) K times, O(K(n+K) log K) time is

spent.

As each portion produces K candidates, there are total of K2 candidates

produced by K portions. Again, by applying Algorithm 14, we select the K

largest values. The time for this is O(K2). Finally sorting on the K final

values takes O(K log K) time. The total time for two dimensions is therefore

O(n3 + K(n + K) log K + K2 + K log K). For 1 ≤ K ≤ n(n + 1)/2, it is

O(n3 + K2 log K) time. This is cubic time if K ≤ n1.5/
√

log n.

We may use Algorithm 20 in lieu of Algorithm 18, which results in O(n3+

K(n + K log n) + K2 + K log K) = O(n3 + K2 log n) time. This also runs in

cubic time for K ≤ n1.5/
√

log n.

In the following, we present another technique for more efficient algorithm

for 2D. The sampling technique is, however, still useful in practice when it is

combined with the new technique that will be described in the next section.

More details on the performance benchmarks will be given in Chapter 5.

3.7.2 Selection in a Two-level Heap

Based on the sampling technique, we reduce the number of candidates pro-

duced from Kn(n + 1)/2 to K2. While this is a sharp reduction, it is still

a large number when we are, of course, only interested in the K largest

candidates.

The sampling-based technique is simple, but the strip-wise computation

based on this approach has little global control, meaning that we “blindly”

produce K candidates in each strip, which results in generation of K2 candi-

dates in total. The situation is similar to Algorithm 17, depicted by Figure

3.1, where we still need to generate K candidates in each column.

Certainly, the ideal situation is where we know how many candidates

to produce in each strip. While such information may not be available in

advance, if we extend the framework used in Algorithm 20, we can introduce
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some degree of global control, which results in further reduction in total

number of candidates.

First, we spend O(m2n) time to obtain sumg,i[1..n]’s for all pairs of g, i

(g ≤ i). Each sumg,i is processed by lines 1-3 of Algorithm 20. As a result,

there are O(m2) max-heaps, HCandg,i
. We collect all Mg,i[1]’s, the root of each

HCandg,i
into a list 2Cand and build another max-heap H2Cand. This heap

contains O(m2) nodes. The first maximum sum in 2D, M [1], is located at

the root of H2Cand. Suppose M [1] is Mg,i[1]. To get M [2], we obtain Mg,i[2]

after updating HCandg,i
. Then we replace the root of H2Cand with Mg,i[2] and

update this heap, whose new root returns M [2]. This is repeated K times.

Each update operation to H2Cand is O(log m) time. Finding the next

maximum sum involves an update to one HCandg,i
followed by an update to

H2Cand. As m ≤ n is assumed, each subsequent maximum sum is found in

O(log min(K,n)) time. The total time is O(m2n + K log min(K,n)), which

is cubic time if m = n and K ≤ n3/ log n, matching the previous result [26].

3.8 Extending to Higher Dimensions

In general, in a d-dimensional array of size n × · · · × n, there are O(n2d−2)

1D problems. The same idea used to compute the 2D problem is readily

applicable to d-dimensions. We build O(n2d−2) max-heaps for 1D problems,

spending O(n2d−1) time, and prepare an extra max-heap HdCand that main-

tains the maximum sum of each 1D problem.

Here, HdCand has O(n2d−2) nodes, but the sampling technique in Section

3.7.1 . We can opt to maintain the K largest values only in HdCand. The

height of HdCand is then bounded by O(log min)K,nd)). Each subsequent

maximum sum of the d-D problem is found by O(log n) time update to the

1D-level max-heap and O(log min(K,nd)) time update to HdCand, that is, in

short, O(log min(K,nd)) time.

The total time for K maximum sums is then O(n2d−1+K log min(K,nd)).

While K = O(n2d) in extreme, it is simply O(n2d−1) time for K ≤ n2d−1

log min(K,nd)
.
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3.9 K-OMSP with the Length Constraints

Through a simple modification to Algorithm 18, we can compute K maxi-

mum subarrays with the length constraints L and U (1 ≤ L ≤ U ≤ n), such

that the length of K maximum subarrays would be between L and U .

Let MIN(K, l) be the operation that selects K minimum elements in a

set l in non-decreasing sorted order. In the original form, each prefix sum

sum[i] is associated with a minimum prefix sums mini, that is,

mini = MIN(K, {sum[j] | 0 ≤ j ≤ i− 1})

If we devise a way to maintain min′
i, such that,

min′
i = MIN(K, {sum[j] | i− U ≤ j ≤ i− L}), §

every candidate candi[k] (for 1 ≤ k ≤ K), computed by sum[i] − min′
i[k]

would be of length between L and U .

Let us now describe how min′
i can be obtained.

In the original algorithm,

mini−L+1 = MIN(K, {sum[j] | 0 ≤ j ≤ i− L}).

Hence, if the (i−L+1)-th version of the persistent 2-3 tree, mini−L+1, is used

as min′
i, each candidate candi[k] would satisfy the lower length constraint L.

In the following, we will assume that i ≥ L. Otherwise, sum[i] will only

produce a candidate shorter than L.

To satisfy the upper length constraint U as well, we need to do more than

just taking mini−L+1 as min′
i. We should make sure that “earlier” prefix

sums, including sum[0],..,sum[i−U − 1] would not be existent in min′
i, such

that min′
i would not have more than U −L + 1 entries. So if we wish to use

mini−L+1 of the original algorithm to express min′
i, these earlier prefix sums

should be removed from mini−L+1. If i ≤ U , however, such a care is not

necessary since the number of elements kept in min′
i = mini−L+1 can never

§ To be precise, both i − U and i − L should not be negative. We regard them as 0 if
i− U < 0 or i− L < 0.
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exceed U − L + 1.

Notice that min′
U includes all sum[0],..sum[U − L]. The next version

is obtained by updating the current one, so when min′
U+1 is derived from

min′
U by inserting sum[U − L + 1], we drop the earliest prefix sum sum[0].

Basically, for i > U , when min′
i is prepared, we drop sum[i − U − 1], the

earliest prefix sum.

Locating the earliest prefix sum can be done in O(1) time if we maintain

a pointer from each prefix sum sum[i] to its representative node in the 2-3

tree when we insert sum[i] into the 2-3 tree.

In the following analysis, let D = U − L. We only consider L ≤ i ≤ n,

since we do not need to maintain 2-3 tree for i < L.

Let us count the number of elements in min′
i. If K ≤ D, min′

i will have

K elements, and D elements otherwise.

If K ≤ D, the pre-processing time is O(n + (n − L) log K) as earlier

versions of the 2-3 tree, min′
1,..,minL−1’, do not need to be built. This

contributes to O(n + (n− L) log K + K log K) total time, as the rest of the

algorithm is still bounded by O(K log K) time.

Similarly, if K > D, the pre-processing part of Algorithm 18 is O(n +

(n − L) log D) time, and the rest is O(K log K) time. Total time is then

O(n + (n− L) log D + K log K).

Combining two cases, we have total of O(n + (n − L) log min(K,D) +

K log K) time.

Algorithm 20 can be similarly modified to consider the length constraints.

For each prefix sum, sum[i] for L ≤ i ≤ n, we need to find a matching

first minimum prefix sum min′
i[1]. Fan et al. [32] showed that all minimum

prefix sums satisfying the length constraints, min′
i[1] in this context, can be

obtained in O(n) time. One may also consider using Range Maximum-Sum

Segment Query (RMSQ) technique by Chen and Chao [66], but it may be

more than necessary.

The summary of the technique for finding min′
i[1] by Fan et al. [32] will

be explained shortly in Section 3.9.1.

Incorporating this technique, we can obtain the maximum subarray end-

ing at i, starting somewhere between [i − U + 1, i − L + 1]. Let Cand be

{sum[L]−min′
L[1], sum[L+1]−min′

L+1[1], .., sum[n]−min′
n[1]}. We build a
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max heap HCand consisting of these (n−L) elements and find the maximum

sum located at the root.

The subsequent maximum sum can be searched by replacing the root

sum[i]−min′
i[1] with sum[i]−min′

i[2] and updating HCand.

We also build a min-tournament T0 with sum[0],..sum[n−L]. Note that

sum[n−L + 1],..sum[n] can be omitted as none of these will be a minimum

prefix sum satisfying the length constraint L. When min′
i[k] for k ≥ 2 is

required, we can retrieve the i-th version T ′
i from T0 in O(log(n− L)) time,

such that T ′
i would cover sum[i−U ],..sum[i−L]. On the other hand, in the

original form of the algorithm, Ti covers sum[0],..sum[i− 1]. The root of the

min-tournament T ′
i corresponds to min′

i[1], hence min′
i[2] can be obtained

by removing the root spending O(log(n− L)) time.

The total time for finding K maximum sums meeting the length con-

straints is then O(n + K log(n − L)), or it can be expressed as O(n +

K log min(K,n − L)) due to Bengtsson and Chen [16]. This algorithm is

superior to the one described earlier in general.

For a 2D array of size m × n, we can make an interesting observation.

Suppose that we place the height constraints Lh and Uh, such that the height

of the found maximum subarray would be between Lh and Uh. Let us ignore

the length (width) constraints for now.

Interestingly, the height constraints can be handled with no modification

to the original algorithm. We simply prepare strips which are between Lh

and Uh rows tall only. The number of strips to process is now reduced to

(Uh − Lh + 1)(2n + 2− Uh − Lh)/2, which is O(nDh) where Dh = Uh − Lh.

If Dh is considerably smaller than m, having the height constraints would

result in sharply sub-cubic time, standing at O(mnDh) for a single maximum

sum.

Combining both the length and the height constraints, K maximum sub-

arrays in a 2D array can be computed in O(mnDh + K log min(K,n)) time.
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Figure 3.11: Finding the length-constraints satisfying minimum prefix sum

3.9.1 Finding the Length-constraints satisfying Minimum prefix

sum

As shown Figure 3.11, we have min′
i[1], that is sum[ji] where i − U ≤ ji ≤

i−L, such that the length of candi, the candidate formed by sum[i]−min′
i[1],

would be between L and U . In the following, we use the notation id(X) to

denote the index of the prefix sum X. For example, id(min′
i[1]) or id(sum[ji])

is ji.

From definition, we have

min′
i[1] = MIN{sum[j] | i− U ≤ j ≤ i− L},

and

min′
i+1[1] = MIN{sum[j] | i + 1− U ≤ j ≤ i + 1− L},

Then min′
i+1[1] can be determined by the following computation, where

ji = id(min′
i[1]).

mini+1[1]′ =

{

MIN{min′
i[1], sum[i + 1− L]}, if ji > i− U

MIN{sum[j] | ji + 1 ≤ j ≤ i + 1− L}, otherwise

The first case is trivial. To compute the second case efficiently, however,

we need to devise an efficient algorithm to retrieve the minimum sum[j] for
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Figure 3.12: Maintaining the list m id

j ∈ [ji + 1, i + 1 − L]. We prepare a list m id to facilitate this. Suppose

there are p nodes in m id at present, where the head of the list is denoted

by m id[1], and the subsequent nodes are referred to as m id[2] etc. We

maintain m id such that the following properties would hold.

1. i− U ≤ m id[1] < m id[2] < .. < m id[p] ≤ i− L

2. m id[1] = id(min′
i[1])

3. m id[q] = id(w) for q > 1, where w = MIN{sum[j] | m id[q − 1] + 1 ≤
j ≤ i− L}

For example, when L = 3 and U = 7, m id is maintained as shown in

Figure 3.12. Note that sum[m id[1]] always corresponds to min′
i[1] for any i.

Algorithm 24 outlines the details for computing all min′
i[1]’s for L ≤ i ≤

n. This idea is attributed to Fan et al.[32], who claimed that this algorithm

runs in O(n − L) time. To verify this, it is crucial to find the number of

iterations by the ‘while’-loop at lines 5-7.

We show that the ‘while’-loop performs at most O(n − L) iterations

throughout the entire process, and the total running time of Algorithm 24 is
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Algorithm 24 Computing all min′
i[1]’s (L ≤ i ≤ n) in O(n− L) time

1: m id[0]← 0
2: p← 0
3: for i← L to n do
4: q ← p //p: length of m id
5: while q > 0 and sum[i− L] < sum[m id[q]] do
6: q ← q − 1 //Search backward
7: end while
8: q ← q+1 //Found the left-most node where sum[i−L] ≤ sum[m id[q]]
9: m id[q]← i− L //Update m id[q]
10: p← q //Length of m id is now q
11: if m id[1] < i− U then
12: Drop m id[1]. The next node is now referred to as m id[1]
13: p← p− 1 //Length of m id is reduced by 1
14: end if
15: min′

i[1]← sum[m id[1]] //Found min′
i[1]

16: end for

indeed O(n− L).

During each iteration of the ‘for’ loop at lines 3-16, if the ‘while’ loop

is not executed at all, the length of m id may increase by 1, but its length

is limited by (U − L + 1) due to lines 11-14. This increase may happen at

most (n−L+1) times. On the other hand, each iteration of the ‘while’-loop

decreases the length of m id by 1. Note that the initial length of m id is 0.

Let us define d(i) as the length of m id at the end of the i-th iteration of

the ‘for’-loop and ∆d(i) as the change of the length, d(i)− d(i− 1).

Suppose that out of (n−L+1) total iterations of the ‘for’-loop, x of them

enters the ‘while’-loop. The remaining (n − L + 1 − x) iterations perform

O(1) time operations each, and increase d(i) by 1.

During the x iterations, let us assume that each entrance to the ‘while’-

loop runs w1, w2,..wx iterations. Each of these x entrances to the ‘while’-loop

spends w1,w2,..wx units of time each, and reduces d(i) by w1,w2,..wx.

Let us compute the total sum of ∆d(i) for L ≤ i ≤ n.

∑

∆d(i) = (n− L + 1− x)−
x

∑

y=1

wy
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Notice that,

∑

∆d(i) = (d(L)−d(L−1))+(d(L+1)−d(L))+...+(d(n)−d(n−1)) = d(L)+d(n)

Since d(L) = 1, we have

x
∑

y=1

wy = (n− L + 1− x)− (d(n) + d(L)) = n− L− x− d(n)

Here, notice that 1 ≤ d(n) ≤ U − L + 1.

The total running time T is expressed as the sum of time spent by x

iterations that enter the ‘while’-loop and the remaining (n − L + 1 − x)

iterations whose running time is O(1) each.

T = (n− L + 1− x) +
x

∑

y=1

wy = 2(n− L− x) + 1− d(n) ≤ 2(n− L)

Therefore, T = O(n− L).

3.10 Summary of Results

In this chapter, we studied K-overlapping maximum subarray problem for

1D and 2D cases and presented new algorithms.

For 1D case, we presented increasingly efficient algorithms, where each

achieves respectively O(Kn), O(K2 + n log K), O((n + K) log K) and O(n +

K log min(K,n)) time. All algorithms presented produce K maximum sub-

arrays in sorted order.

Independently, Bengtsson and Chen studied the same problem and pre-

sented O(min{K + n log2 n, n
√

K}) time [15] and O(n + K log min(K,n))

time algorithms. Note that in [15], the order of final K maximum sums is

not sorted, while sortedness is a part of requirement in [16].

This problem has been also studied by Cheng et al. [26], and they

achieved the equivalent complexity of O(n + K log min(K,n)) time.

It is interesting to observe that the 1D K-OMSP is of the same complexity

as the selection of K maximum values discussed in Section 2.3.1.
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For the 2D K-OMSP, we can compute K maximum sums in cubic time

for certain range of K. We showed that the sampling technique makes a

cubic time solution for K ≤
√

n3

log n
, and the selection in a two-level heap

results in a cubic time for wider range of K, that is K ≤ n3

log n
. Cheng et. al

[26] independently established the same result as the latter.

Extending the framework used in the latter, a simple algorithm can be also

derived for the general d-dimensions, which takes O(n2d−1+K log min(K,nd))

time. It is O(n2d−1) time for K ≤ n2d−1

log min(K,nd)
.

When length constraints L and U are imposed, such that the length

of the found maximum subarray should be between L and U , the pro-

posed algorithms can be used with minor modifications. We showed that

K maximum subarrays meeting the length constraints can be computed in

O(n + K log min(K,n− L)) time.

Takaoka [10] elaborated the framework based on the distance matrix mul-

tiplication, and showed that sub-cubic time is achievable for very small K,

that is K ≤ O(
√

α log n/ log log n) where 0 ≤ α ≤ 1.
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K-Disjoint Maximum Subarray Problem

4.1 Introduction

The goal of the K-disjoint maximum subarray problem (K-DMSP) is to

find K maximum subarrays, which are disjoint from one another. Ruzzo

and Tompa designed a linear time algorithm that finds all disjoint maximum

subarrays in a 1D array [82].

To best of the author’s knowledge, little study has been undertaken on

this problem for higher dimensions. Particularly, an algorithm for the 2D K-

DMSP may be used to select brightest spots in graphics, and such a technique

may be also applied to motion detection and video compression.

In this chapter, we discuss the difficulty involved in extending Ruzzo and

Tompa’s algorithm [82] to 2D and design an alternative algorithm for one-

dimension that is more flexible to extend to higher dimensions. Based on the

new framework, we first present an O(m2n + Km2 log n) time solution for

the 2D K-DMSP where m × n is the size of the input array. This is cubic

time when m = n and K ≤ n/ log n. We also show that the upper bound

converges to O(m2n log n) for K > n.

4.2 Problem Definition

For a given array a[1..n] containing a mixture of positive and negative real

numbers, the maximum subarray is the consecutive array elements of the

greatest sum. The definition of K disjoint maximum subarrays for one-

dimension is given as follows.

Definition 4.2.1. [Ruzzo and Tompa [82]] The k-th maximum subar-

ray is the consecutive array elements of largest possible sum that excludes

85



86 Chapter 4

elements contained in (k − 1) maximum subarrays

In addition, we impose sorted order on the sum of these maximum sub-

arrays.

Definition 4.2.2. The k-th maximum sum is not greater than the (k−1)-th

maximum sum.

It is possible for a subarray of zero sum adjacent to a subarray of positive

sum to create an overlapping subarray with tied sums. To resolve this, we

select the one with smaller area if there are overlapping subarrays of tied

sums. Another subtle problem arises with the value of K. For k < K,

it is possible that the k-th maximum subarray becomes non-positive. We

may stop the process at this point even if the K-th maximum is yet to be

found. A non-positive maximum subarray is essentially a single negative

array element, which is trivial to find. Let K̄ be the maximum number of

positive disjoint maximum subarrays. Theoretically 1 ≤ K̄ ≤ n/2 and is

data dependent. Throughout this thesis, we assume that K, the number of

maximum subarrays we wish to find, is not greater than K̄.

Example 4.2.3. a ={3,51,-41,-57,52,59,-11,93,-55,-71,21,21}. In the array

a, the maximum subarray is 193, a[5] + a[6] + a[7] + a[8] if the index of first

element is 1. We denote this by 193(5, 8). The second and third maximum

subarrays are 54(1, 2) and 42(11, 12). The fourth is −41(3, 3), so K̄ = 3.

A trivial solution may be based on the repeated application of Kadane’s

algorithm (Algorithm 1) [18, 19]. When the first maximum subarray is found

in O(n) time, we replace the element values within the solution with −∞.

The second and subsequent maximum subarrays are found by repeating this

process. This is O(Kn) time. Ruzzo and Tompa’s algorithm [82] takes O(n)

time for K̄ disjoint maximum subarrays, but requires sorting if Definition

4.2.2 needs to be met.

4.3 Ruzzo and Tompa’s Algorithm

For a given input array a[1..n], we first compute the prefix sum array sum[1..n].

The data structure used by this algorithm is a simple linked list of I1, I2, ..Ik−1,
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where each node is called an interval. A single-linked list, where a node points

to the previous node, is sufficient. Each interval Ij is a candidate for the fi-

nal solution set of K̄ disjoint maximum subarrays. We repeatedly merge

intervals if we can have a larger sum by doing so.

An interval Ij maintains two variables, from and to. Each value associ-

ated with Ij is denoted with a subscript j, such as fromj or toj. These two

variables represent a subarray (fromj, toj). The sum of contained elements

can be obtained by sum[toj]− sum[fromj − 1].

We can derive two extra values R and L specific to each interval, such that

Rj = sum[toj] and Lj = sum[fromj − 1]. Note that Rj − Lj = sum[toj] −
sum[fromj − 1].

On termination of the algorithm, each interval in I1..IK̄ represents each

disjoint maximum subarray.

Algorithm 25 Ruzzo, Tompa’s algorithm for K̄-unsorted disjoint maximum
subarrays

procedure examine() begin

1: From k, search for the first j satisfying Lj < Lk

2: if no such j exists then return //Case (a)
3: else // Lj < Lk for some j < k
4: if Rj ≥ Rk then return //Case (b)
5: else //Case (c)
6: /* Merge intervals Ij...Ik into Ij */
7: Set Rj ← Rk, toj ← tok and remove Ij+1...Ik. Set k ← j
8: examine()
9: end if
10: end if

end
/*main procedure*/

11: k ← 0
12: for i← 1 to n do
13: if a[i] > 0 then
14: k ← k + 1
15: Create Ik, having fromk ← i, tok ← i,

Lk ← sum[i− 1], Rk ← sum[i]
16: examine()
17: end if
18: end for
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Figure 4.1: Three cases in examine()

Inside the loop (lines 12–18) in main procedure of Algorithm 25, we

process each positive array element. On occurrence of a positive element

a[i], a new interval Ik is created such that it represents a subarray including

only this element∗. Then the examine() procedure is called. It goes through

the previous nodes in the list, searching for Ij whose L value, Lj, is smaller

than Lk (line 1). Note that if Lj < Lk and Rj < Rk (Case (c)), the sum

of interval (fromj, tok) is larger than any individual sum of Ij..Ik. Hence,

(fromj, tok) is maximal, in a sense that it can not be lengthened or shortened

without reducing its sum. In such a case, we merge intervals Ij...Ik into Ij

and remove Ij+1..Ik as per line 7. Once the intervals are merged, we now

have k(= j) intervals left in the list. We keep examining if further merge can

be made (line 8). Since we have to visit all intervals in the list in the worst

case, the examine procedure alone accounts for O(n) time. Then the total

time of Algorithm 25 is O(n2).

At the i-th iteration, due to line 2 of examine() procedure, if there is no

j satisfying Lj < Lk (Case (a)), we know that Lk = MIN {L0, L1, ..Lk−1}.
Now let us denote current k by k0 for further discussion. Suppose certain

time has passed and we have just created a node Ik (k > k0). We scan the list

backwards to find a Lj that is smaller than Lk. Note that when the search

ever arrives at Ik0
and examines Lk0

, the search may stop here, as we already

know that Lk0
is smaller than all preceding L values, L0, L1, ..Lk0−1.

In general, once the “if” condition at line 2 is met, no future search will

∗ Alternatively, we can initialize I1, I2, etc. to be positions of consecutive positive
elements without going through examine(). This, however, does not improve the com-
plexity
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require a visit to I1, ..Ik−1. Hence these nodes need not to be maintained in

the list. This observation allows us to modify the algorithm as follows.

2: if no such j exists then //All I1...Ik−1 are maximal
Output and remove I1..Ik−1 from the list. Set k ← 1 //Ik becomes I1

end if

Even if we proceed to line 3 by locating j satisfying Lj < Lk, if the

condition Rj < Rk at line 4 is not satisfied (Case (b)), we do nothing and

examine() terminates. We can not find any node prior to Ik that can be

merged with Ik, so Ik stands as it is. In such a case, the time spent for

locating Lj is wasted.

However, we can keep this information for the future use. Let j0 and

k0 be the current j and k for further discussion. Suppose certain time has

passed and we have just created a node Ik (k > k0). From Ik, we scan the list

backwards, and suppose we have found that all Lk0+1, ...Lk−1 are not smaller

than Lk and we arrive at Ik0
. If Lk0 is still not smaller than Lk, we need

to scan the list further backwards. However, earlier we have already found

that Ij0 is the first node whose L is smaller than Lk0
. Hence we can jump

from Ik to Ij0 without needing to revisit intervening nodes sequentially. If we

have set an additional link from Ik0
to Ij0 , this “jumping” or “bypassing”, is

achievable. Let us refer to this additional link as bypass link, and we replace

line 1 and line 4 of Algorithm 25 by the following.

1: From k, search for the first j satisfying Lj < Lk. Follow the bypass link
if available

4: if Rj ≥ Rk then Create a bypass link from Ik to Ij

Ruzzo and Tompa pointed out that each item is examined only a bounded

number of times after these modifications. While the details of it was not

fully described in their original literature, an amortized analysis can be given

as follows.

Lemma 4.3.1. Algorithm 25 runs in O(n) time.

Proof. Let us define,
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• t(k): actual time for adding Ik. Counted by the number of intervals

visited during the backward search.

• a(k): amortized time for adding Ik

• d(k): the total pointer distance from Ik to I1 after adding Ik

If there is a bypass link between Ik and Ij, we consider that the distance

between these two intervals is 1. For example, if there is a bypass link between

Ik and I1, d(k) is therefore 1. During the search for Lj that satisfies Lj < Lk,

the bypass link is used if available.

If Lk finds Lj such that Lj < Lk, we either merge them, or set up bypass

link between Ik and Ij. Suppose, we spent t(k) time to locate such a Lj

by visiting t(k) entries between Ij...Ik. This search uses bypassing links if

available.

Let d(k) be the potential, and the change of potential, d(k)− d(k− 1) be

denoted by ∆d(k). The following equation holds.

∆d(k) = d(k)− d(k − 1) = a(k)− t(k) (4.1)

Weiss [102] gives an intuitive savings account analogy. Suppose the cur-

rent balance in a savings account is d(k) for the k-th month. We budgeted

a(k) for monthly spending for the k-th month but actual expenditure was

t(k) during that month. If a(k) − t(k) > 0, we spent less than planned,

and the balance in the bank account increases. Otherwise the balance is

reduced. The change of balance, ∆d(k), is equal to the extra amount saved

(or wasted). Hence, ∆d(k) = a(k) − t(k). The term, “potential” is very

appropriate as money saved in the bank translates to the “purchasing power

for the future”.

Let us examine the change of potential, ∆d(k) on addition of the new

interval Ik.

Case (a): When there is no Lj that satisfies Lj < Lk, the search needs

to traverse the list all the way back to I1. Hence t(k), the number of intervals

visited during the search, is equal to d(k − 1). Due to modification to line 2

of Algorithm 25, the list then outputs all the intervals I1..Ik−1, leaving only
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Figure 4.2: Change of the Total Pointer Distance: Case (a)
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Figure 4.3: Change of the Total Pointer Distance: Case (b)

Ik, resulting in d(k) = 0. Then,

∆d(k) = d(k)− d(k − 1) = −t(k)

Case (b): When a bypass link is set up from Ik to Ij, t(k) is the pointer

distance between Ij and Ik−1, that is d(k − 1) − d(j) + 1. After the bypass

link is made, d(k) is equal to d(j)+1. Since d(k−1) = d(j)+d(k−1)−d(j),

we have,

∆d(k) = d(k)− d(k − 1) = 2− t(k)

Note that d(k) > d(k − 1) is still possible. It happens when the previous

entry has Lk−1 < Lk, but Rk−1 ≥ Rk. Here, we add a new entry Ik and set
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Figure 4.4: Change of the Total Pointer Distance: Case (c)

up a bypass link to Ik−1, making d(k) = d(k − 1) + 1. As t(k) = 1 in such a

case, ∆d(k) = 1 and the above holds.

Case (c): When Ij..Ik are merged, t(k) is the pointer distance between Ij

and Ik−1. After merge, d(k), d(k− 1) and t(k) satisfy the following relation.

∆d(k) = d(k)− d(k − 1) = 1− t(k)

Let N be the number of positive element in the input array of size n. Due

to line 13, we create N intervals. From (4.1), we derived that,

a(k) = t(k) + ∆d(k)

We compute A and T , the total amortized and actual time for all k =

1..N .

A = T + (d(1)− d(0)) + (d(2)− d(1)) + ... + (d(N)− d(N − 1))

, which is summarized to

T = A + d(N)− d(0)

Notice that a(k) is 0,1 or 2 based on the analysis for three cases. Hence
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A ≤ 2N . The initial total pointer distance d(0) is 0 and 0 ≤ d(N) ≤ N . The

number of positive elements, N , is obviously not greater than n. Therefore

T = O(n).

Let us note that, to be precise, there are subtle differences in the problem

definition. Firstly, as briefly mentioned above, Ruzzo and Tompa intend to

find “all positive” maximum subarrays without specifying K. Taking only

positive maximum subarrays into account is reasonable since a subarray with

a negative sum will consist of a single negative element, which is trivial.

Note that for a one-dimensional version of the problem, the total number

of all maximum subarrays is bounded by n/2. This case arises when the

input array consists of alternating positive element and negative infinity.

The other extreme is where all array elements are positive. There will be

only one maximum subarray in such a case, the input array itself. Thus the

total number of the maximum subarrays is input-dependent. Let K̄ stand

for the total number of maximum subarrays for later discussion.

Secondly, these all maximum subarrays found by Ruzzo and Tompa’s

algorithm are not in a particular order. To meet Definition 4.2.2, a fast

sorting algorithm may be applied after running Algorithm 25 and Algorithm

13 to select the K-th largest (K ≤ K̄) among K̄ maximum sums. This

results in the total of O(n + K log K) time. In the context of our problem

definition, Ruzzo and Tompa’s problem can be interpreted as that of “K̄-

unsorted disjoint maximum subarrays”.

4.4 A Challenge: K-DMSP in Two-Dimensions

For an (m,n) array, a[1..m][1..n], we wish to find K disjoint maximum sub-

arrays which are in rectangular shape. We denote a subarray of sum x

with coordinates of top-left corner (g, h) and bottom-right corner (i, j) by

x(g, h)|(i, j). In the following example, we compute K = 4 disjoint maxi-

mum subarrays in the array shown in Figure 4.5.

Example 4.4.1. For K = 4, K disjoint maximum subarrays are 21(3, 2)|(4, 3),

13(1, 4)|(2, 4), 7(1, 1)|(2, 1) and 1(4, 1)|(4, 1).
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Figure 4.5: Example: K = 4 disjoint maximum subarrays

In this example, K̄ = 4. When K > 4, the subsequent subarrays

will be comprised of a single negative array element such as −1(3, 4)|(3, 4),

−2(1, 3)|(1, 3) etc.

In two-dimensions, a slight delicacy arises if there are multiple subarrays

with the same sum. Consider Figure 4.6, which illustrates this issue. In the

given array, there are 3 subarrays with the maximum sum 4. If 4(3, 1)|(4, 2)

is taken as the first maximum subarray, the second and the third maximum

subarrays would be of the sum 3. On the other hand, if 4(4, 1)(4, 4) is chosen

as the first maximum subarray, the second subarray will have the sum 3, but

the third will have the sum 2 etc.

Each subsequent maximum subarray is computed from the remaining

portion of the original array after excluding the area occupied by the previous

maximum subarrays. Note that a different decision at each round can lead

to quite a different final result.

This problem does not occur in one-dimensional case, as long as we select

the one with the shorter length if there is a tie. A similar tie-breaking

scheme can be made available. The first tie-breaker is the area, and the

one with smaller area wins. However, in the figure, both 4(3, 1)|(4, 2) and

4(4, 1)|(4, 4) have the same area and we need a more specific tie-breaker.

In such a case, we may judge that the one with smaller row (or column)

size wins. If the tie is still not broken, we randomly choose the winner.

When such a tie-breaking scheme is applied, the maximum subarrays will be

computed as Figure 4.7. Note that the proposed tie-breaking scheme will

ensure that we have the consistent sequence of K maximum “sums”, but
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Figure 4.6: Inconsistent maximum sums with no tie-breaking scheme
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Figure 4.7: Maximum sums when a tie-breaking scheme is applied.

it does not guarantee the consistent sequence of K maximum “subarrays”.

For example, in the given array, the third maximum sum is guaranteed to

be 2, but the third maximum subarray, M [3], will be randomly decided

between 2(2, 3)|(2, 4) and 2(3, 1)|(3, 2). At least, we can be assured that the

given array will always return the same sequence of K = 6 maximum sums,

M = {4, 3, 2, 2, 1, 1}.
As is in one-dimension, a trivial solution for finding K disjoint maximum

subarrays can be easily made based on the repeated application of Kadane’s

algorithm. This is O(Km2n) time or O(Kn3) time for m = n. In the worst

case, where K̄ = n2/2, we have O(n5) time for K = K̄. If we apply the sub-

cubic algorithm [94, 89], whose complexity is, say, M(n), we have O(KM(n))

time by the repeated application. Using the best known distance matrix

multiplication algorithm by Takaoka [91] as an algorithmic engine for [94, 89],

M(n) = O(n3 log log n/ log n). If K is small, such that K ≤ log n/ log log n,
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Figure 4.8: Computing maximum subarrays in each strip

O(KM(n)) is sub-cubic in terms of n.

For more efficient solution, it is natural to consider extending Ruzzo and

Tompa’s algorithm presented in Section 4.3. It would be tempting to use

a simple technique based on strip separation such that Ruzzo and Tompa’s

algorithm is applied strip-wise. This idea, however, does not work. Figure 4.8

illustrates a typical pitfall. For an input array given in Figure 4.5, Algorithm

25 is applied strip-wise and identifies all disjoint maximum subarrays in each

strip. Note that a maximum subarray obtained from a strip ag,i has a row-

wise size (i − g + 1) as ag,i produces a subarray spanning between row g

and row i. It is observed that disjoint maximum subarrays in one strip can

still overlap solutions in other strips. For example, 21 in strip a3,4 overlaps

9 in a2,3, 13 in a3,3, 13 in a2,4 and 14 in a1,4. Also notice that the fourth

maximum subarray in Figure 4.5, 1(4, 1)|(4, 1), is missing in Figure 4.8. It is

only included as a part of 9(4, 1)|(4, 3) in a4,4.

This example illustrates the difficulty involved in computing the 2D K-

DMSP strip-wise. In the 2D K-OMSP, the only factor that determines the

final K solutions was the sum of a subarray, hence it was possible to compute

strip-wise and select the final K maximum values from the collection of

solutions without concerning of their locations.
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Algorithm 26 Maximum subarray for one-dimension

1: If the array becomes one element, return its value.
2: Let Mleft be the solution for the left half.
3: Let Mright be the solution for the right half.
4: Let Mcenter be the solution for the center problem.
5: M ← MAX {Mleft,Mright,Mcenter}.

In the K-DMSP, however, the location of each subarray imposes an extra

decision criteria. Hence, the simple approach based on strip separation and

strip-wise computation is erroneous. This observation also automatically

invalidates the sampling technique discussed in Section 3.7.1.

Alternatively, one may consider modifying Algorithm 25, such that it

could process a 2D array as a whole without separating strips. This option,

however, seems difficult to formulate. The first difficulty may involve the

direction of the scanning. The scanning in the original algorithm is per-

formed in one direction, backwards. In 2D, it will need to be performed

both horizontally and vertically. It is expected to involve some difficulty to

organize two directional scanning and to decide when to go left and when

to go up. Secondly, when some of current solutions are merged to obtain a

better solution, the shape of the merged area must be predicted. In 1D, the

result of merge is guaranteed to be a legitimate subarray. In 2D, a subarray

must be rectangular shaped. Resolving these two difficulties is expected to

be challenging, if not impossible.

In the following section, we present another algorithm for one-dimension.

This algorithm provides solid framework to extend to the two-dimensional

case.

4.5 New Algorithm for 1D

For a one-dimensional array a[1..n], we compute the prefix sum s such that

sum[x] =
∑x

i=1 a[i]. We assume sum[0] = 0. Note that the prefix sums once

computed are used throughout recursion.

We revisit Lemma 2.1.4 and present Algorithm 26 to show the outer

framework. In this algorithm, the center problem is to obtain an array por-
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tion that crosses over the central point with maximum sum, and can be

solved in the following way. We assume that n is power of 2 without loss of

generality.

Mcenter = MAX
n/2<i≤n
0≤j<n/2

{sum[i]− sum[j]} = MAX
n/2<i≤n

{sum[i]} − MIN
0≤j<n/2

{sum[j]}

(4.2)

The recursive computation of this algorithm can be conceived as a tournament-

like selection process, which we describe in the following.

4.5.1 Tournament

In Section 2.3.1, we described a binary tree, tournament, whose features are

similar to that of a heap. It was regarded as a conceptual representation of

a recursive routine that computes the maximum(or minimum) of a given list

of elements. While actual building of a tree is not necessary when only the

first maximum is computed, actual tree-building gives an effective platform

to retrieve the subsequent maximum values in order.

To compute the K-DMSP, a tournament is again a data structure of

choice. In Section 3.6.2, this data structure was employed to maintain the

minimum prefix sum. For that task, it was a favored data structure, as it is

particularly effective to rank items and to learn the original position of the

selected item. Both needs cannot be met by other data structures, even a

heap, a close relative of the tournament.

We explore a new framework based on Algorithm 6. If an actual tourna-

ment is built while the first maximum subarray is recursively computed, we

could utilize the tournament as a basis to retrieve the subsequent maximum

subarrays.

We build a modified version of the tournament to compute the maximum

subarray problem. Each node contains attributes defined as follows.

Definition 4.5.1. A node contains,

• (from,to): the coverage, i.e., the range of elements covered by this

node.
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Algorithm 27 Build tournament for a[f..t]

procedure buildtree(node, f, t) begin

1: (from, to)← (f, t)
2: if from = to then
3: (L,M,G)← (sum[f − 1], a[f ], sum[f ]) // node is a leaf
4: else // node is an internal node
5: create two children left and right
6: buildtree(left,f ,f+t−1

2
) //build left subtree

7: buildtree(right,f+t+1
2

,t) //build right subtree
8: L← MIN{left.L, right.L}, G← MAX{left.G, right.G}
9: M ← MAX{Mleft,Mcenter,Mright} where Mcenter ← right.G− left.L
10: end if

end

• L: the minimum prefix sum within (from − 1, to − 1). Abbreviates

“least”.

• G: the maximum prefix sum within the coverage. Abbreviates “great-

est”.

• M : the maximum sum found within the coverage. Refer to Lemma

4.5.3.

We specify an attribute of node x with a dot, such as x.L. Attributes of

two children left and right of node x are denoted by left.L etc. Note that,

however, we use Mleft instead of left.M following the notation in Algorithm

26.

Throughout this thesis, when we use a term “tournament”, it is assumed

that this modified tournament is being discussed. The tournament will be

simply referred to as T and the root of T will be denoted by root(T ). Con-

versely, the tree rooted at a node x is denoted by tree(x).

Based on Algorithm 26, we design Algorithm 27 that recursively builds

T . Note that the computation of Mcenter at line 9 is due to Eq. 4.2. We

assume that the fraction at lines 6 and 7 are truncated to take the closest

integer. After buildtree(root,1,n) is processed, the value of M at root(T ) is

the maximum sum in the array a[1..n].
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The coverage of a node, (from, to) is a union of those of its two chil-

dren, namely (from, to) = (left.from, right.to). We let M carry two indices

such as M.from and M.to to indicate that M is the sum of array elements

a[M.from]..a[M.to]. Also L and G have an index to. If Mcenter is chosen for

M , we set M.from = left.L.to + 1 and M.to = right.G.to.

Lemma 4.5.2. Algorithm 27 computes L and G correctly for any node x.

Proof. (by induction)

Basis. Node x is a leaf. Then x.L = sum[from− 1] and x.G = sum[to]

Induction step. Suppose left and right, two children of x satisfy the

lemma.

left.L = MIN
left.from−1≤i≤left.to−1

{sum[i]}

right.L = MIN
right.from−1≤i≤right.to−1

{sum[i]}

Since left.to = right.from− 1, from = left.from and to = right.to,

x.L = MIN{left.L, right.L}
= MIN

left.from−1≤i≤right.to−1
{sum[i]}

= MIN
from−1≤i≤to−1

{sum[i]}

Proof for x.G is similar.

The following two facts are easily observed. Proofs are omitted.

Lemma 4.5.3. When a node x has coverage (from, to), its M is the maxi-

mum sum that can be obtained within this coverage and a[M.from..M.to] is

the maximum subarray.

Lemma 4.5.4. The maximum subarray of a[1..n] is M at root(T ).

When there is a tie during computation, such as left.L = right.L, we

select the one that will result in M with smaller physical size. For example,

when left.L = right.L, we select right.L as Mcenter will have smaller physical
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Figure 4.9: Tournament T

size by subtracting right.L. Similarly, when left.G = right.G, we select

left.G. For the same reason, we choose the one with smaller physical size in

computing M = MAX {Mleft,Mright,Mcenter}.
Figure 4.9 shows the example in Section 4.2 computed by the tourna-

ment. Each node shows a 3-tuple of (L,M,G). The value of M at root, 193

represents the maximum sum. The figure omits the location (M.from,M.to)

which is (5, 8).

4.5.2 Finding the next maximum sum

We discuss how we compute the next maximum subarray that is disjoint

from the previous ones.

For efficient computation, we attempt to obtain the next solution from

the existing tree. This needs a careful maintenance of the tree such that

the computation of the next solution will not be interfered by the previous

solutions. We use a term hole to refer to the range that the next solution

should exclude. Typically the hole is given as (holeBegin, holeEnd). Note

that when the k-th maximum subarray is to be computed, there are (k − 1)

holes in the tree. We also use h-node to refer to a node whose coverage

overlaps a hole. We regard an h-node is inside the hole when the coverage of

an h-node is contained within the range of a hole. On the other hand, when

the coverage of an h-node completely surrounds whole range of a hole, we

regard this h-node encompasses the hole.

It may be tempting to delete h-nodes inside the hole and process the
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Figure 4.10: Subarray deletion

remaining tree, expecting that the root of the updated tree will provide the

next maximum subarray. This simple approach, however, does not compute

correctly. To illustrate this, let us consider Figure 4.10, where dark subtrees

are rooted at such deleted h-nodes.

We trace the tree from the root to locate the h-nodes inside the hole and

delete them. Deletion can be performed by simply removing the link a, b

and c. After the deletion, some nodes may have only one child. Note that

an internal node should have at least one child. It is because losing both

children means this node is inside the hole, and this node itself must have

been deleted.

Nodes 2,4,6 are those having one child in the figure. When a node has

one child missing, we assume that this node receives a 3-tuple (L,M,G) =

(∞,−∞,−∞) from the missing child.

The maximum subarray in the range of (u, v) is determined by node 1. We

want it to be disjoint from the hole. If Mcenter becomes M at node 1, we have

(M.from,M.to) = (left.L.to + 1, right.G.to). This M is a “superarray” of

the hole as its range surrounds the hole. In general, an h-node encompassing

the hole can “potentially” produce Mcenter overlapping the hole. Node 0 is

another h-node that has such potential, however, if left.L comes from region

II,III or IV, Mcenter at node 0 can be disjoint from the hole. So we can not

simply disable computing Mcenter at such h-nodes. It further implies that

a simple “node deletion and process” strategy fails to compute the correct

next maximum subarray.
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As described, an h-node encompassing the hole potentially produces Mcenter

being a superarray of the hole. Specifically, this problem occurs when Mcenter

is computed by coupling L from the left to the hole and G from the right to

the hole. Hence those L and G values must be blocked from being delivered

upwards.

Suppose a node x is an h-node, and there are some holes in its leaf level.

Let holeBeginl be the left boundary of the leftmost hole and holeEndr be

the right boundary of the rightmost hole. In the following discussion, we

consider (from, to) being the coverage of node x. L and G at the node x

should satisfy the following.

x.L = MIN
holeEndr≤i≤to−1

{sum[i]}

x.G = MAX
from≤i≤holeBeginl−1

{sum[i]}

We can establish a general definition of L and G that holds regardless of

the type of node x.

Definition 4.5.5.

x.L = MIN
lb≤i≤to−1

{sum[i]}, where lb = MAX{from− 1, holeEndr}

x.G = MAX
from≤i≤rb

{sum[i]}, where rb = MIN{to, holeBeginl − 1}

Here, lb and rb stand for the left boundary and right boundary respectively.

If lb ≥ to, there is no i that satisfies the given range. Then x.L = ∞.

Similarly, if rb < from, x.G = −∞.

We now devise how we compute L and G satisfying the definition above.

We introduce an extra Boolean value “hole” to each node. This attribute at

a node x indicates if x is an h-node. Suppose a node x has two children left

and right.

Let P (x) be the following.

(A). If x is a leaf (i.e. from = to), Let left.L = sum[from− 1], right.G =

sum[to] and x.L = left.L, x.G = right.G.
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Otherwise,

(B).

x.L =

{

right.L, if right.hole = true

MIN{left.L, right.L}, otherwise

(C).

x.G =

{

left.G, if left.hole = true

MAX{left.G, right.G}, otherwise

If the node x is inside a hole, we set x.L←∞ or x.G← −∞.

Lemma 4.5.6. P (x) computes correct x.L and x.G for any node x

Proof. (by induction)

Basis. x is a leaf. A leaf with x.hole = true makes x inside the hole. Thus we

have x.L =∞ and x.G = −∞. When x.hole = false, x.L = sum[from− 1]

and x.G = sum[to].

Induction step. Suppose left and right, the two children of x satisfy

lemma.

If x.hole = false, both right.hole and left.hole are false. The subtree

tree(x) is free of a hole and x.L is computed by MIN {left.L, right.L}. This

is correct due to Lemma 4.5.2.

If x.hole = true, right or left is an h-node, or both are.

If right.hole = true, let the rightmost hole have a range (holeBegin,

holeEnd). Then,

x.L = right.L = MIN
holeEnd≤i≤right.to−1

{sum[i]} = MIN
holeEnd≤i≤to−1

{sum[i]}

Otherwise, i.e. right.hole = false, the hole should be in the left subtree.

Let the rightmost hole in the left subtree have a range (holeBegin, holeEnd).
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Then,

x.L = MIN{left.L, right.L}

= MIN

{

MIN
holeEnd≤i≤left.to−1

{sum[i]} , MIN
right.from−1≤i≤right.to−1

{sum[i]}
}

= MIN
holeEnd≤i≤right.to−1

{sum[i]} = MIN
holeEnd≤i≤to−1

{sum[i]}

, which proves (B) of P (x). (C) can be similarly proved.

Lemma 4.5.7. The maximum sum M for any node x is correctly computed

by,

M = MAX {Mleft,Mcenter,Mright} ,where Mcenter = right.G− left.L

Proof. (by induction)

Basis. x is a leaf, where Mleft and Mright are not available. If x is not an

h-node, M = Mcenter = right.G− left.L = a[from(= to)]. If x is an h-node,

M = Mcenter = −∞−∞ = −∞.

Induction step. Suppose lemma is correct for left and right, two children

of x. There are three possibilities of the range of M .

(1). The range is completely in left.

(2). The range is completely in right.

(3). Stretches over left and right subtrees.

The first two cases result in a correct computation of M due to the as-

sumption. For the third case, M stretching over both subtrees implies

M = Mcenter. When x is not an h-node, neither left nor right is an h-

node and Mcenter is computed by right.G− left.L correctly. Otherwise, (3a)

left is an h-node or (3b) right is, or (3c) both are. For case (3a), we have

left.hole = true but not right.hole. Due to Definition 4.5.5,

left.L = MIN
holeEnd≤i≤left.to−1

{sum[i]}
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, and the resulting Mcenter is disjoint from the hole. Case (3b) can be shown

similarly. Note that either left.L = ∞ or right.G = −∞ means Mcenter =

−∞ implying that Mcenter is not taken for the final value of M . This is then

case (1) or (2) above.

Case (3c) implies the hole does not stretch over both subtrees. If a hole

stretches over, we have right.G = −∞ and left.L = ∞ due to Definition

4.5.5 as lb > to − 1 and rb < from, resulting in Mcenter = −∞. Then it

becomes case (1) or (2) above. So we consider that left and right have

separate holes, which do not stretch over. Let the rightmost hole in left be

(holeBeginr, holeEndr) and the leftmost hole in right be (holeBeginl, holeEndl).

Due to Definition 4.5.5,

left.L = MIN
holeEndr≤i≤left.to−1

{sum[i]}

right.G = MAX
right.from≤i≤holeBeginl−1

{sum[i]}

The resulting Mcenter lies in (holeEndr +1, holeBeginl−1), which is disjoint

from both holes.

We design Algorithm 28 based on P (x) above. This algorithm recursively

visits h-nodes that belong to (holeBegin, holeEnd) and updates them. As

non h-nodes are irrelevant, the recursion terminates if node is disjoint from

the hole. An h-node inside the hole are not explicitly deleted. Instead,

we perform “pseudo-deletion” by setting hole attribute and (L,M,G) ←
(∞,−∞,−∞). By terminating the recursion after this action, we conse-

quently have the same effect as deleting such a node. Note that no special

handling is needed for a leaf. A leaf is either disjoint from the hole or inside

the hole. These two cases are handled by lines 1 and 2-3 respectively. If the

currently visiting node has been “pseudo-deleted” already, we may terminate

the recursion as per line 4.

If we update the tree in Figure 4.9 with a hole (5, 8) by Algorithm 28,

the second maximum subarray 54(1, 2) is obtained from the root.
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Algorithm 28 Update tournament T

procedure update(node, holeBegin, holeEnd) begin
//Execute by update(root(T ), holeBegin, holeEnd)
//Attributes L,M,G and hole are local to node.
//left and right are two children of node.

1: if the coverage of node is disjoint from the hole (non h-node) then re-
turn

2: if the coverage of node is completely inside the hole then
3: hole← true; (L,M,G)← (∞,−∞,−∞); return
4: if hole = true and (L,M,G) = (∞,−∞,−∞) then return
5: update(left, holeBegin, holeEnd) //updates left subtree
6: update(right, holeBegin, holeEnd) //updates right subtree
7: if right.hole then L← right.L else L← MIN {left.L, right.L}
8: if left.hole then G← left.G else G← MAX {left.G, right.G}
9: if left.hole or right.hole then hole← true
10: M ← MAX {Mleft,Mright,Mcenter}, where Mcenter ← right.G− left.L

end

4.5.3 Analysis

We find the first maximum subarray by building T in O(n) time. To compute

the next maximum subarray, we regard the previous solution as a hole and

run Algorithm 28. The update involves traversing two paths from the root

to holeBegin and holeEnd. Since the height of the tree is O(log n), the

time for the next maximum subarray is bounded by O(log n). To obtain

K disjoint maximum subarrays in sorted order, the total time is therefore

O(n + K log n). Note that O(n + K log n) = O(n + K log K) for any integer

K due to Lemma 2.3.1. To obtain K disjoint maximum subarrays in sorted

order, this is asymptotically equivalent to Ruzzo and Tompa’s algorithm [82],

which requires extra time for sorting.

As we wish to output K disjoint maximum subarrays in sorted order, a

lower bound similar to Lemma 3.6.4 can be established.

Lemma 4.5.8. The lower bound for the 1D K-DMSP is Ω(n + K log K)

The proof for Lemma 3.6.4 is equally applicable. Since the lower bound

matches the upper bound, we have,

Theorem 4.5.9. Algorithm 27 augmented with Algorithm 28 is optimal



108 Chapter 4

4.6 New Algorithm for 2D

In this section, we extend the algorithm for one-dimension to two-dimensions.

4.6.1 Strip Separation

We apply the strip separation technique discussed in Chapter 2. We first

compute the prefix sums sum[1..m][1..n] and from them, we retrieve strip

prefix sumg,i[1..n] for all pairs of g and i, where 1 ≤ g ≤ i ≤ m. Each strip

prefix array sumg,i[1..n] needs O(n) time to build, and there are m(m+1)/2

combinations of g and i, hence computing all strip prefixes takes O(m2n)

time in total.

4.6.2 Finding the first maximum subarray

We apply Algorithm 27 to each strip prefix. The tournament produced from

a strip prefix sumg,i, is denoted by Tg,i. The M attribute at the root of

Tg,i, which we denote by Mg,i, is the maximum subarray that spans from the

g-th row to the i-th row. Since each strip is treated as a one-dimensional

problem, the locational information stored in Mg,i, Mg,i.from and Mg,i.to,

are the column addresses. Note that the rows where subarray starts and

ends are subject to the strip and fixed to g and i respectively. Thus if

(Mg,i.from,Mg,i.to) = (h, j), the subarray corresponds to Mg,i is (g, h)|(i, j).
There are total of O(m2) tournaments and same number of Mg,i’s (for

1 ≤ g ≤ i ≤ m). Among them, the one with the largest sum can be found

by a simple iteration, 2dMaxSelect().

Finding the maximum through the iteration is an O(m2) time process.

As each tournament is built by Algorithm 27 spending O(n) time, the overall

time for finding the first maximum subarray is O(m2n).

4.6.3 Next maximum

Finding the next maximum subarray disjoint from the previous ones involves

update operations in the tournament-level and 2dMaxSelect(). Let us denote

the x-th maximum subarray by M(x).
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Algorithm 29 Find the maximum subarray of a 2D array

procedure 2dMaxSelect() begin

1: M ← 0
2: for g ← 1 to m do
3: for i← g to m do
4: if Mg,i > M then M ←Mg,i; r1 ← g; r2 ← i
5: end for
6: end for
7: return M(r1,M.from)|(r2,M.to)

end

Suppose 2dMaxSelect() computed M(1), the first maximum subarray,

that is Mg1,i1(g1, h1)|(i1, j1) coming from a tournament Tg1,i1 . Here Mg1,i1 cor-

responds to the subarray (g1,Mg1,i1 .from)|(i1,Mg1,i1 .to), thus h1= Mg1,i1 .from

and j1= Mg1,i1 .to here.

Let us consider a tournament Tg,i. If its vertical coverage (g, i) is disjoint

from (g1, i1), this tournament definitely produces Mg,i that is disjoint from

the first maximum. Otherwise, Mg,i may possibly overlap M(1).

There are O(m2) tournaments of such a possibility. By creating a hole

(h1, j1) in such tournaments and updating the tree as per Section 4.5.2,

we ensure that Mg,i’s at the root of these tournaments are disjoint from

(g1, h1)|(i1, j1).

Now we run 2dMaxSelect() to select M(2). Subsequent disjoint maximum

subarrays are found by repeating these steps. Each maximum subarray is

computed by updating O(m2) tournaments followed by 2dMaxSelect(), which

take O(m2 log n) time and O(m2) time respectively. The latter time is ab-

sorbed into the former. For K maxima, it is O(Km2 log n) time. Including

the time for strip separation, the total time for K-disjoint maximum subar-

rays is O(m2n + Km2 log n), which is a cubic time for K ≤ n
log n

.

4.6.4 Improvement for K > n

It has been stated that K̄ can be as large as mn/2 in two-dimensions. In

such a case, the algorithm above is O(m3n log n) time.

As described in the previous section, on computation of each maximum
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Algorithm 30 Find K-disjoint maximum subarrays in 2D

1: for k ← 1 to K do
2: compute M(k) that is Mgk,ik(gk, hk)|(ik, jk) returned by 2dMaxSelect()
3: for g ← 1 to m do
4: for i← g to m do
5: if not(i < gk or g > ik) then create a hole (hk, jk) in Tg,i

6: end for
7: end for
8: end for

subarray M∗(g∗, h∗)|(i∗, j∗), we update up to O(m2) tournaments Tg,i whose

vertical range (g, i) overlaps (g∗, i∗). Each update involves creation of a hole

(h∗, j∗) by Algorithm 28 taking O(log n) time.

Suppose a tournament has already created a hole (h∗, j∗) in the previous

computation and now we attempt to create a hole (h∗, j∗) again. Clearly, this

hole creation may be skipped. The algorithm above does not consider such

a case and will spend another aforementioned O(log n) time, attempting to

create the same hole again.

In general, when we wish to create a hole (h∗, j∗) in a tournament, if there

is a hole (h∗
0, j

∗
0) that contains (h∗, j∗), we can skip the hole creation process.

Let us refer to such a situation as the skipping condition.

Each tournament is regarded as a one-dimensional problem. Since K̄ for

one-dimension is n/2, each strip can not have more than n/2 = O(n) holes.

The total number of holes in all O(m2) tournaments is then bounded by

O(m2n).

If the skipping condition is checked before attempting to create the hole,

we may avoid redundant computation. Then the total number of hole cre-

ating operations during the computation of K disjoint maximum sums is

bounded by O(m2n), which means that the second term of the complexity

can not exceed O(m2n log n) even if K > n. Assuming that the skipping

condition is checked in less than O(log n) time, we propose the following

improved complexity.

Proposition 4.6.1. K disjoint maximum subarrays for two-dimensions can

be computed in O(m2n + m2 ·min(K,n) log n) time.
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Figure 4.11: Disjoint set representation

We describe how we achieve this in the following.

Union/Find problem

To achieve the suggested improvement for K > n, the skipping condition

needs to be examined in less than O(log n) time.

We solve this by a classical Union/Find problem [34, 42, 51, 95, 13, 96].

Two major operations, find and union, are involved. Among the collection of

disjoint sets, find operation tells whether certain two items are in the same

set, and union operation merges two sets. We can make either find or union

take O(1) time, but not both simultaneously. We thus adopt a strategy

supporting O(1) time find operation to achieve fast skipping condition check

in the context of our problem.

We first introduce an auxiliary array-based data structure I for each strip

to represent disjoint sets. Let Ig,i be the array we prepare for a tournament

Tg,i. Initially all the elements are null. The snapshot of Ig,i is shown in Figure

4.11.

In this context, a set of contiguous array elements of Ig,i that forms a

disjoint set is referred to as a block. A block of Ig,i[x..y] is made when we

create a hole (x, y) at Tg,i. However, a block can be concatenated with

another adjacent block, to form a union of two blocks. For example, when

two holes (2, 5) and (6, 8) are created at Tg,i, we have one concatenated block

of Ig,i[2..8]. In this figure, two blocks of (8, 12) and (16, 18) are shown. Each

element contained in a block references an intermediate B-node, then B-

node references a C-node that stores two indices from and to, the beginning

and ending indices of the block. B and C stand for block and concatenated

block respectively. Each C-node may have a number of B-nodes pointing



112 Chapter 4

Algorithm 31 Check if (h∗, j∗) can skip hole creation

procedure canSkip(Ig,i, h
∗, j∗) begin

1: return Ig,i[h
∗] 6= null and Ig,i[j

∗] 6= null
2: and (h∗, j∗) ⊂ (Ig,i[h

∗].from, Ig,i[j
∗].to)

3: and (Ig,i[h
∗].from, Ig,i[h

∗].to) = (Ig,i[j
∗].from, Ig,i[j

∗].to)

end

to it as several blocks can eventually get connected. In such a case, we will

perform union operation which will be described later. The size of C-node

is determined by the number of B-nodes pointing to it.

Suppose all the holes created in Tg,i in the past are maintained in Ig,i.

Before we attempt to make a hole (h∗, j∗) in Tg,i, we visit Ig,i and make a

query by Algorithm 31. Note that we use a short notation such as Ig,i[x].from

to represent the from attribute of the C node pointed by the B node pointed

by Ig,i.

This algorithm returns true if all the elements within (h∗, j∗) have been

already marked as hole. For example, if (h∗, j∗) = (9, 11), which is a subarray

of (8, 12) shown in Figure 4.11 is given, true is returned and we can safely

skip the hole creation. When the query returns false, it implies that some

elements within (h∗, j∗) have not been marked yet and we still need to create

a hole at Tg,i. It is obvious that such a query needs O(1) time, satisfying the

sub-O(log n) time requirement for the skipping condition check.

Nevertheless, to achieve the proposed complexity in Proposition 4.6.1, we

need to show that the extra cost for maintenance of Ig,i does not exceed the

proposed complexity. In the following, we describe how Ig,i is maintained.

When a hole (h∗, j∗) is made at the tournament tree, we visit Ig,i to mark

that each element in this range at sumg,i constitutes a hole. If some elements

in this range are already marked, we only process remaining unmarked por-

tions. This way, each element of Ig,i is processed at most once.

If h∗ is inside an existing block, we look up Ig,i[h
∗].to and update h∗ to the

index of the first unmarked element. Likewise, if j∗ is inside another existing

block, we update j∗ by j∗ ← Ig,i[j
∗].from − 1. Note that both h∗ and j∗

can not be inside the same existing block at this stage, as such a case would

have returned true by the query above. After updating h∗ and j∗, the range
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Figure 4.12: Marking where no union operation is needed

(h∗, j∗) is now either totally disjoint from all existing blocks, or superarray

of some existing blocks. We first describe a strategy for the former scenario.

Marking a range (h∗, j∗) involves setting a pointer at Ig,i[h
∗..j∗] sequen-

tially. As shown in Figure 4.12(a), we create one B-node and let the pointer

from each array element reference it. We also create a C-node and make

a pointer reference from the B-node. Finally indices (h∗, j∗) are stored at

(from, to) of the C-node.

If there is an existing block adjacent to the beginning index h∗, we do not

need to create an additional B-node. Ig,i[h
∗] and subsequent elements simply

point to the B-node of the adjacent block. We need to update Ig,i[h
∗].to

accordingly. Such an example is shown in Figure 4.12(b), where we insert

(X, 21) for 16 ≤ X ≤ 21.

After marking, we see if a new block Ig,i[h
∗..j∗] happens to be connected to

the existing block. If so, we perform union operation to form a concatenated

block. This is essential to ensure the returned value of Algorithm 31 is

correct.

Each union operation only involves the pointer redirection from B-nodes

to a C-node. When two blocks are concatenated, let us suppose each block

itself may be the result of previous union operations. Each block will be com-

posed of one C-node pointed by multiple B-nodes, which are also pointed by

array elements. We determine the larger C-node, the one pointed by greater

number of B-nodes. The pointers of B-nodes referencing the smaller C-node

are then redirected to the larger C-node. Certainly, from and to at the

C-node need to be updated accordingly. Figure 4.13 illustrates such a case

where insertion of a block is followed by a union operation. In the imple-
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Figure 4.13: Marking followed by union operation:Inserting (2, X) (for 7 ≤
X ≤ 12) to Figure 4.11

mentation level, one may consider creating a linked-list of B-nodes during

the union operation, as shown by the dotted line in the figure. As a group

of B-nodes referencing the same C-node are all linked, we may simply follow

these links and redirect the pointers to another C-node in the future union

operations.

Even if a new entry (h∗, j∗) is a superarray of some existing blocks as

shown in Figure 4.14, the general framework described above can be applied

without change. We can skip already marked array elements and process

unmarked elements only. When a new B-node is required, it is created and

the indices at C-node are updated to indicate the position of the concatenated

block. Notice that we only need to create at most one additional B-node,

but we may have to perform several union operations. In Figure 4.14, for

example, it is only Ig,i[1] that requires a new B-node, while other entries

simply reference the existing B-nodes.

Analysis

On insertion of a block, we create one or no B-node. As no more than

min(K,n) blocks can be inserted to Ig,i, we have at most min(K,n) B-nodes.

The number of union operations we need to process is dependent on the num-

ber of blocks. As each union operation puts two blocks into one concatenated

block, the maximum number of union operations is O(min(K,n))− 1, since

then everything is in one block. As the pointers of B-nodes referencing the

smaller C-node are redirected to the larger C-node, the total time spent for

min(K,n)− 1 unions is O(min(K,n) log min(K,n)). Note that this justifies

separation of B- and C-nodes in the design of our data structure. Suppose
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Figure 4.14: Inserting (1, 21) to the result of Fig 4.13

we have B∗-node only, a combined version of B- and C-node. On each union

operation, pointer redirection is made from each array element of Ig,i to a

B∗-node, resulting in O(n log n) time in total. It lacks efficiency when K < n.

In addition, marking each array element of Ig,i is O(1) time, thus O(n)

time in total. Then combined time for marking and union is O(n + p log p),

where p = min(K,n). For all O(m2) strips, it is O(m2n + m2 · p log p) time,

but this time can be absorbed into the suggested complexity in Proposition

4.6.1. Therefore the proposed complexity of O(m2n + m2 · min(K,n) log n)

is achieved.

4.7 Run-time Performance Consideration

In the current form of our algorithm, 2dMaxSelect() in Algorithm 29 is given

as a simple iteration. In fact, a binary heap (max-version) may be used

instead without increasing the complexity, and considerable run-time speed

up can be achieved with the following modification. We can say this is a

two-level priority queue.

We build a heap each of whose nodes references the root of each tourna-

ment Tg,i for some g and i. Let the value of a node in the heap be determined

by Mg,i, the M attribute at the root of Tg,i. Then the maximum subarray
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for two-dimensions is retrieved from the root of the heap.

We prepare a list HL, which stands for a hole-list, associated with each

tournament. When a maximum sum is found at the root of the heap, we add

the range of a hole to HL of all potentially overlapping tournaments in O(1)

time each, instead of creating a hole in each tournament.

While the root of the heap references a tournament that has a non-empty

list, we take the first element of HL and create a hole specified by it. The

heap property may have been broken after this, so we adjust the heap. If

the root of the heap has an empty list, we are assured that the subarray

specified by the root is disjoint from all the previous solutions, and its Mg,i

is greater than that of other nodes in the heap. Thus Mg,i is selected as the

next maximum sum.

This effectively enables us to update some small number of tournaments

whose Mg,i are high-ranked in the heap.

Also, if there is a node in the heap referencing non-positive Mg,i, we

can safely delete this node from the heap. Effectively, the size of heap may

reduce over time. For example, if K̄ = mn/2, only O(m) nodes referencing

tournaments T1,1, T2,2, ..Tm,m will be present in the heap.

Alternative routines to Algorithm 29 and Algorithm 30 are given in Al-

gorithm 32.

Indeed, this modification does not improve the asymptotic complexity.

Line 1 of the main routine takes O(m2) time. Inside the loop starting at line

2, the complexity of line 3, is still bounded by O(m2 log n). In the worst case,

the ”while” loop starting at line 2 of 2dMaxSelectHEAP() may run O(n2)

times, and inside the loop, line 4 and line 5 or 6 are all O(log n) time process.

The O(m2) time by lines 4–7 in the main routine is absorbed.

However considerable run-time speed up can be observed with random

inputs. The quantitative analysis is still open at the stage.

4.8 Extending to Higher Dimensions

For a d-dimensional array of size n×· · ·×n, there are O(n2d−2) 1D problems.

We spend O(n2d−1) time to build a tournament for each 1D problem. Upon

the retrieval of each subsequent maximum sum in the d-dimensional array,
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Algorithm 32 Find K-disjoint maximum subarrays in 2D (heap version)

procedure 2dMaxSelectHEAP() begin

1: take the root of the heap given as Mr1,r2

2: while HLr1,r2
is not empty do

3: take the first entry from HLr1,r2
given as (holeBegin, holeEnd)

4: create a hole in Tr1,r2
// Mr1,r2

is updated.
5: if Mr1,r2

≤ 0 then delete the root from the heap
6: else adjust the heap
7: take the root of the heap given as Mr1,r2

8: end while
9: return M(r1,M.from)|(r2,M.to)

end
begin // main

1: build the heap where each node points to the root of each tournament
2: for k ← 1 to K do
3: compute M(k) that is Mgk,ik(gk, hk)|(ik, jk) returned by 2dMaxSe-

lectHEAP()
4: for g ← 1 to m do
5: for i← g to m do
6: if not(i < gk or g > ik) then add a hole entry (hk, jk) to HLg,i

7: end for
8: end for
9: end for

end

we need to update O(n2d−2) tournaments. The total time for K maximum

sums is then O(n2d−1 + Kn2d−2 log n). Using the same technique described

in Section 4.6.4, the second term can be bounded by O(n2d−1 log n), making

the total time O(n2d−1 + n2d−2 ·min(K,n) log n).

4.9 Alternative Algorithm for 1D

In relation to Algorithm 20 presented in the previous chapter, an alternative

algorithm for 1D can be devised.

Suppose we have computed the first maximum subarray (x, y) by Algo-

rithm 27. To obtain the second maximum, we create a hole (x, y) by explicitly

deleting the relevant nodes and split the tournament into two smaller tour-
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Figure 4.15: Alternative algorithm for 1D based on a combination of a heap
and tournaments

naments, as shown in Figure 4.15. Two smaller tournaments cover the range

(1, x − 1) and (y + 1, n) respectively. It is easy to see that the split takes

O(log n) time. The split procedure may be similar to the technique used

in Algorithm 22, but we do not copy nodes during the split as the original

tournament does not need to be kept.

Each split results in at most two smaller tournaments. We take the root

of each tournament and inserted them into an auxiliary heap. The root of

the heap is the next maximum subarray. Note that this is disjoint from the

previous one.
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In general, to find the subsequent maximum, we delete the root of the

heap, and visit the tournament that is associated with the root of the heap.

In the tournament, we create a hole and split this tournament. Finally, the

roots of new smaller tournaments are inserted into the heap. This routine is

repeated until K maximum subarrays are found.

The size of the heap is bounded by K̄, and each maximum subarray

is found in O(log n) time, making the total time including the tournament

building O(n + K log n). This is intuitively easier than the algorithm de-

scribed in this chapter (Algorithm 27 coupled with Algorithm 28), yet not

particularly simpler to implement.

The major problem of the alternative algorithm arises from its difficulty

in creating a random hole. Suppose that a tournament has been split into

several tournaments over time, for example, five tournaments with coverage

(1, 3), (6, 8), (10, 12), (15, 19) and (22, 23) respectively. Five roots of these

tournaments form a heap. Notice that it is difficult to create a hole (2, 22). As

shown in line 5 of Algorithm 30 or line 4 of Algorithm 32, a simple extension

to 2D is heavily dependent on this random hole creation. The lack of such a

capability makes the alternative algorithm difficult to extend to 2D.

4.10 Summary of Results

In this chapter, we established O(n + K log K) time for ranking K disjoint

maximum subarrays in 1D and extended this to 2D to achieve O(m2n +

Km2 log n) time, which is O(m2n) time for small K. To author’s knowledge,

this is the first improvement to the trivial O(Km2n) time solution. Since K̄,

the maximum possible K, can be as large as mn/2 depending on the data,

reduction of the factor K is significant. It will be an interesting question how

to determine K̄ in advance.

The improvement to the second term of complexity, O(m2·min(K,n) log n),

was achieved by incorporating a simple solution for the union/find problem.

It was shown that the complexity for the union/find problem, the extra

cost for the computing the union operations, is tightly within the overall

time. Thus, unless a different framework is used, a better solution for the

union/find problem may be a prerequisite for any attempt to further improve
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the second term. The best-known result for the problem is slightly more than

O(n + min(K,n)) [95, 13, 96].

The algorithm for the 2D problem can be further extended. For a d-

dimensional array of size n× ...×n, we need O(n2d−1+n2d−2 ·min(K,n) log n)

time.
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Experimental Results

The time complexity of new algorithms for the K-OMSP and K-DMSP

developed from this research were theoretically proved in earlier chapters.

This chapter presents the results of experimental comparison of newly devel-

oped algorithms, and relates their practical performance to what is expected

in theory. The experiments were performed using a 2.13 GHz Intel Core

2 Duo E6400 machine, with 2048MB of RAM. This CPU has two identical

processor cores and 2048KB of L2 cache shared by two cores [54]. All al-

gorithm implementations were written in the C programming language, and

all are single-threaded. Hence the effect of the multi-core is negligible. The

system is installed with Fedora Core 6 Linux operating system equipped

with kernel version 2.6.18.

Each program processes identical input array of size n that were randomly

generated∗ with the same seed. They were compiled using the GNU compiler

gcc (Version 4.1.3) with the -O3 optimization flag. The maximum size of

the input was determined not to exceed the available RAM, such that all

algorithms would run without slow virtual memory paging. All algorithms

were timed by GNU time (Version 1.7), and the amount of CPU time they

used were obtained from the sum of system time and user time. The time is

measured 20 times for each experiment and the average is shown in 2 decimal

places.

∗ Using a built-in function in C, rand() % 100 - 50, such that the array elements will
be roughly well distributed between −50 and 50
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n=50,000 n=500,000
K Algo.15 Algo.18 Algo.20 Algo.15 Algo. 18 Algo. 20
1 0.00 0.01 0.01 0.02 0.11 0.17
5 0.00 0.02 0.01 0.03 0.27 0.17
50 0.02 0.08 0.01 0.21 0.95 0.17
500 0.19 0.15 0.01 2.02 1.39 0.17

5,000 2.08 0.18 0.01 21.01 1.78 0.17
50,000 21.38 0.23 0.10 210.03 2.22 0.28
500,000 - - - 2108.91 2.85 1.71

Table 5.1: Total processing time (in seconds) spent by algorithms for the 1D
K-OMSP for n = 50, 000 and 500, 000

5.1 1D K-OMSP

Three algorithms, Algorithm 15, Algorithm 18 and Algorithm 20 were im-

plemented and their running times were measured as shown in Table 5.1.

It is easy to observe that Algorithm 20 runs faster than the other two

in most benchmarks, albeit it is initially even slower than Algorithm 15, the

theoretically least efficient one. This is due to overhead involved in building

tournaments and random access to the memory during the recursive routine.

Maintenance of persistent 2-3 tree in Algorithm 18 and persistent tournament

in Algorithm 20 requires frequent dynamic memory allocation. In contrast,

Algorithm 15 is implemented using arrays of fixed size whose memory are

allocated when the program starts. This explains Algorithm 15 running

faster for small K.

While K is small relative to n, the time by Algorithm 20 remains almost

constant. However, a significant increase in time is observed when K = 50000

and n = 50000 or n = 500000.

The time measurements displayed are very close to the theoretical esti-

mation. The pre-process time including the prefix sum computation and the

time for building a tournament and a max-heap contribute to the first term

of the complexity. This is a one-off process and its time is shown by the mea-

surement for K = 1. The fact that the time remains near-constant suggests

that the actual retrieval of maximum sums is very fast, and measured below
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2 decimal places. For K ≥ 50000, the effect of K on the time is starting to

be more pronounced. Excluding the initial setting time, the running times

are 0.11 and 1.54 seconds for K = 50000 and 500000 at n = 500000, slightly

more than 10 times increase, hinting the second term of the complexity,

O(K log K), has become dominant.

Algorithm 18 is initially slower than Algorithm 15 for small K, but it

eventually overtakes at K = 500 in both cases, n = 50000 and n = 500000.

Note that the time increases approximately 10 times when n increases from

50000 to 500000, which confirms the factor of n in the complexity. Also its

relatively slow increase in running time in relation to K demonstrates log K

factor.

Algorithm 15 is the least efficient algorithm theoretically, and the exper-

imental result demonstrates the theoretical estimation. The factor of K in

the complexity is shown by the linear increase in running time. When n

increases from 50000 to 500000, for the same value of K, it is also observed

that the running time increases ten times, which demonstrates the factor of

n in the theoretical complexity. This algorithm, while it is the least effi-

cient, is simple to implement, and may still serve as a good option for some

applications where very small value of K is required.

Algorithm 18 requires O(n log K) space complexity due to n versions of

min maintained in a persistent 2-3 tree. For K = O(n), this is more complex

space-wise than Algorithm 20 whose space complexity is O(n+K log n). Also

notice that each node in a 2-3 tree takes up more memory than a node in

a tournament does in Algorithm 20. In the implementations used in the

experiment, each node in Algorithm 18 reserves 37 bytes of memory space†,

while a node in the tournament in Algorithm 20 consumes about half amount

of memory. Due to this reason, Algorithm 18 exceeds the available memory

and starts the virtual memory paging once the setting is more demanding

than n = 1600000 and K = 1600000. On the other hand, Algorithm 20

† Based on a simple implementation such that a single structure can be used for any of
1..4-node, which allocates sufficient memory in case the node expands to a 4-node. We
need four integer variables and four pointers to children nodes. In addition, we prepare
another integer variable to store the number of leaf nodes under the node (similar to
Figure 3.4), and a one-byte (such as char) variable to specify a node-type. For optimal
memory usage, separate structures can be defined for each type of nodes
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is more durable, and consistently stays below the physical memory until

n = 8000000 and K = 8000000.

5.2 2D K-OMSP

The following four algorithms for the 2D K-OMSP are implemented and

their running times are measured. For simplicity, we assume that m = n

here. Each implementation will be referred to by the keyword.

• LOOP (Quadruple-nested loops): O(Kn3) time. Extended from Algo-

rithm 7 through a similar modification from Algorithm 3 to Algorithm

15.

• SAMP (Sampling in two dimensions): Refer to Section 3.7.1. O(n3 +

K2 log n) time. Algorithm 20 is used to compute K 1D problems.

• HEAP (Selection in two-level Heap): Refer to Section 3.7.2. O(n3 +

K log min(K,n)) time.

• COMB (Combination of SAMP and HEAP):

The fourth version, COMB, deserves some remark. If K is relatively

small, we do not need to build a tournament and a first-level heap for every

strip. We first collect K good strips by sampling process. As is in SAMP,

we only construct a tournament and an associated first-level heap for these

selected strips. Then the second-level heap has only K nodes. For small K,

it can be a considerable reduction from n(n + 1)/2, the number of nodes in

the second-level heap will need to maintain otherwise. Note that it is not

an asymptotic improvement on HEAP, since preprocessing of O(n2) strips

still involves O(n3) time and retrieval of each subsequent maximum sum still

requires O(log min(K,n)) time.

LOOP closely matches the theoretical estimation. The processing time

increases in proportion to K. Also when n is doubled, the processing time

increases approximately eight times.

SAMP achieves noticeable efficiency through the sampling pre-process

and application of an efficient algorithm for the 1D K-OMSP, Algorithm
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m× n 64× 64 128× 128 256× 256 512× 512 1, 024× 1, 024
K = 1 0.00 0.02 0.17 1.31 10.41

2 0.00 0.02 0.24 1.88 14.65
4 0.00 0.04 0.38 3.03 24.06
8 0.00 0.08 0.67 5.30 41.52
16 0.02 0.15 1.27 9.77 78.22
32 0.03 0.30 2.42 19.28 152.39
64 0.07 0.59 4.76 37.51 298.78
128 0.15 1.22 9.63 76.69 618.63
256 0.29 2.40 19.00 152.11 1212.70
512 0.60 4.76 37.88 303.80 2421.88

1, 024 1.49 11.72 93.47 743.88 5981.25

Table 5.2: Total processing time (in seconds) spent by LOOP

m× n 64× 64 128× 128 256× 256 512× 512 1, 024× 1, 024
K = 1 0.00 0.00 0.05 0.35 2.71

2 0.00 0.00 0.05 0.36 2.70
4 0.00 0.00 0.05 0.36 2.72
8 0.00 0.00 0.05 0.36 2.71
16 0.00 0.00 0.05 0.36 2.70
32 0.00 0.00 0.05 0.37 2.71
64 0.00 0.01 0.06 0.38 2.72
128 0.01 0.02 0.07 0.41 2.75
256 0.04 0.08 0.15 0.50 2.91
512 0.20 0.26 0.40 0.85 3.34

1, 024 0.73 0.94 1.21 1.92 4.83

Table 5.3: Total processing time (in seconds) spent by SAMP

20. The processing time remains little influenced by the increase of K while

K < 256 for an array of every selected size. If we exclude the time spent for

the initial setting, i.e. the time for K = 1, the change of running time with

respect to K becomes more apparent. For example, in case of an array of size

1024 × 1024, we subtract the initial setting time of 2.71 seconds from each

running time and obtain the following table showing the times for computing

the rest (K − 1) maximum sums.
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m× n 64× 64 128× 128 256× 256 512× 512 1, 024× 1, 024
K = 1 0.04 0.38 2.89 - -

2 0.04 0.37 2.93 - -
4 0.03 0.37 2.92 - -
8 0.03 0.38 2.92 - -
16 0.04 0.37 2.92 - -
32 0.03 0.37 2.93 - -
64 0.04 0.37 2.92 - -
128 0.04 0.37 2.93 - -
256 0.04 0.37 2.92 - -
512 0.04 0.37 2.92 - -

1, 024 0.03 0.37 2.92 - -

Table 5.4: Total processing time (in seconds) spent by HEAP

K 2..32 64 128 256 512 1024

Time(sec) 0.00 0.01 0.04 0.20 0.63 2.12

Times for K ≤ 32 are almost constantly zero. After the sampling pre-

process, only K strips are left and we run Algorithm 20 K times. Here, let

us review the running time by Algorithm 20 for n = 50000 and K = 50 in

Table 5.1. Assuming the validity of this measured data, K-times repetition

of Algorithm 20 for n = 1024 and K ≤ 32 is expected to run less than 0.01

second.

It is K ≥ 128 where we can observe a noticeable increase in running

time. Approximately, the time increase is proportional to the square of K

with slight deviation at K = 256 and K = 1024. What is shown in the

second term of the complexity suggests the time will be proportional to K2,

and such a trend is roughly observed.

The size of input array is doubled vertically and horizontally, enlarging it

4 times from 64× 64 to 128× 128 etc. The impact of the size of input array

on the running time is well displayed in the row with K = 1. Approximately

8 times increase in time is observed.

The performance of HEAP raises some interesting points. As estimated

by the time complexity, the processing time almost remains constant while

K grows. Most of time is spent for the initial memory allocation, and re-
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trieval of maximum sums is done very fast, even below the time measurement

limit. Nevertheless, the large numbers of dynamic memory allocation makes

it slower than SAMP in most cases, and even slower than LOOP when K

is relatively small. In total, memory spaces for O(n3 + K log n) nodes are

dynamically allocated. A related issue is that the algorithm fails to allo-

cate required memory and starts virtual memory paging for an array of size

512× 512. Hence the times for 512× 512 and 1024× 1024 are missing.

m× n 64× 64 128× 128 256× 256 512× 512 1, 024× 1, 024
K = 1 0.00 0.00 0.05 0.40 2.94

2 0.00 0.00 0.05 0.40 2.96
4 0.00 0.00 0.05 0.40 2.99
8 0.00 0.00 0.05 0.40 2.98
16 0.00 0.00 0.05 0.40 2.96
32 0.00 0.00 0.05 0.40 2.99
64 0.00 0.01 0.06 0.41 2.99
128 0.00 0.01 0.06 0.41 3.01
256 0.00 0.01 0.07 0.44 3.01
512 0.01 0.02 0.10 0.49 3.13

1, 024 0.02 0.05 0.15 0.59 3.34

Table 5.5: Total processing time (in seconds) spent by COMB

COMB is implemented to overcome this undesirable characteristics of

HEAP. For relatively small K, it performs as fast as SAMP. Yet, its running

time is much less affected by K. This is because the incorporation of HEAP

reduces the second term of the complexity to O(K log min(K,n)). Still, the

increase of processing time depending on K is slightly more pronounced than

HEAP. This is mainly attributed to the diminishing gain of sampling. The

sampling pre-process is most effective for small K as many number of strips

can be discarded. The gain of sampling diminishes as K grows and sampling

is no longer useful or even unnecessary once K reaches n(n + 1)/2 since no

strips are discarded and all the tournaments need to be built. One may skip

the sampling in such a case to avoid extra overhead.
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5.3 1D K-DMSP

Three algorithms for the 1D K-DMSP were implemented and their running

times were measured.

• RK (Repeated application of Kadane’s algorithm (Algorithm 1)) :

O(Kn) time.

• RT (Extended version of Ruzzo and Tompa’s algorithm (Algorithm

25): O(n + K log K)) time.

• NEW (New Algorithm based on Section 4.5): O(n + K log K)) time.

For a fair comparison, RT extends the original Ruzzo and Tompa’s al-

gorithm by adding an extra selection and sorting process, such that it will

output the K maximum sums in sorted order. We adopt Algorithm 11 for

this purpose ‡. This makes RT asymptotically equivalent to NEW.

In this experiment, if K̄, the number of positive maximum subarrays

in the input array, is fewer than the desired K, the program terminates

and outputs only K̄ values. Note that the value of K̄ is dependent on the

randomly generated input array a, and may vary with a different pseudo

random number generator and seed.

When n = 100000, the processing times of RT and NEW remain almost

constant, and indeed, the time by RT is below measurement limit. It is

interesting to note that these algorithms are O(n) time for K ≤ n/ log n,

and n/ log2 n = 6020.6 for n = 100000. In this experiment, only K̄ = 5945

disjoint maximum subarrays are available.

It appears that sorting, the extra overhead required by RT, needs negligi-

bly short running time. The most time consuming process in NEW appears

to be the one of tournament building due to frequent dynamic memory allo-

cation. The first maximum sum is obtained as a direct result of tournament

building. The rest (K − 1) maximum sums are obtained spending minimal

time. The near-constant running time of RT and NEW makes the value of

K almost irrelevant, supporting the O(n) time complexity. However, the

‡ Instead of a tournament, a heap is used as it reduces the memory consumption by half
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• n = 100, 000

K RK RT NEW
1 0.00 0.00 0.02
10 0.00 0.00 0.02
100 0.02 0.00 0.02

1,000 0.27 0.00 0.02
K̄=5,945 1.42 0.00 0.02

• n = 1, 000, 000

K RK RT NEW
1 0.02 0.06 0.30
10 0.05 0.06 0.30
100 0.22 0.06 0.30

1,000 2.33 0.06 0.30
10,000 27.50 0.06 0.31

K̄=60,790 151.39 0.08 0.42

Table 5.6: Total processing time (in seconds) spent by algorithms for the 1D
K-DMSP

frequent dynamic memory allocation incurred by NEW makes it running

considerably slower than RT, which can be implemented exclusively using

arrays only.

The running times of NEW for K = 1 and n = 1000000 illustrate the

overhead caused by dynamic memory allocation more evidently. For K = 1,

NEW is approximately 5 times slower than RT and 15 times slower than RK.

Indeed, it is roughly 5 times slower than RT for all values of K tested.

In this experiment, the maximum value for K, that is K̄, is 60790. Both

RT and NEW show slight time increase at K = 60790 but their running

times are near-constant under this point. In theory, both RT and NEW

would be O(K log K) time once K exceeds n/ log2 n, that is K > 50171.7, as

the second term in the complexity becomes dominant. While such a behavior

is not very clearly pronounced in RT, NEW experiences a noticeable increase

in running time for K = 60790.

The slight increase in time for RT at this point is attributed to the in-

creased number of values to sort, since it would run in O(n) time regardless



130 Chapter 5

of the value of K if sorting is not performed. On the other hand, the in-

creased running time for NEW is caused by more number of the tournament

updates. Certainly, the overhead involved in updating a tournament is heav-

ier, as it requires to traverse two paths and modify many attributes of each

node visited. On the other hand, RT maintains an array-implemented heap,

which involves much lighter overhead. Excluding the initial setting time, the

running time of NEW for computing the remaining (K − 1) maximum sums

is 0.01 and 0.12 seconds for K = 10000 and K = 60790 respectively. This

is slightly steeper than linear increase, but whether its time is affected by

the dominant second term, O(K log K), is not clear. While it will need more

measured data to confirm the trend, an attempt to generate a different ran-

dom sequence that would lead to higher value for K̄ was not very successful.

In many random sequences, K̄ tends to be relatively small with respect to n.

The theoretical estimation for RK is best demonstrated for K ≥ 100,

where running time increases linearly in proportion to K.

5.4 2D K-DMSP

The following three algorithms were implemented for the 2D K-DMSP:

• RK (Repeated application of Kadane’s algorithm (Algorithm 9)): O(Km2n)

time

• NEW1 (New algorithm based on Section 4.6): O(m2n + Km2 log n)

time

• NEW2 (New algorithm based on Section 4.7 (Algorithm 32)): O(m2n+

Km2 log n) time

For each algorithm, we prepare two tables, for m = 128 and m = 256

with values of n ranging from 64 to 1024 and K ranging from 1 to 1024.

RK clearly demonstrates its O(Km2n) time complexity. The running

time increases in proportion to K and n, also m2, which is observed by

four-fold time increase when m is increased from 128 to 256.

NEW1 and NEW2 are slower than RK for small K due to expensive

setting time that arises from tournament building. The complexity of the
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m = 128 n = 64 n = 128 n = 256 n = 512 n = 1, 024
K = 1 0.00 0.00 0.01 0.02 0.04

2 0.00 0.01 0.02 0.04 0.09
4 0.01 0.02 0.04 0.10 0.19
8 0.02 0.04 0.09 0.18 0.38
16 0.03 0.09 0.17 0.37 0.74
32 0.08 0.16 0.35 0.72 1.46
64 0.14 0.30 0.63 1.36 2.82
128 0.28 0.59 1.23 2.61 5.47
256 0.52 1.11 2.34 4.86 10.28
512 1.03 2.15 4.44 9.05 19.29

1, 024 2.00 4.18 8.42 17.78 36.71

m = 256 n = 64 n = 128 n = 256 n = 512 n = 1, 024
K = 1 0.01 0.02 0.04 0.08 0.17

2 0.01 0.03 0.08 0.16 0.33
4 0.04 0.08 0.16 0.33 0.65
8 0.07 0.16 0.32 0.66 1.30
16 0.15 0.32 0.66 1.30 2.56
32 0.28 0.61 1.26 2.56 5.10
64 0.56 1.17 2.39 5.07 9.97
128 1.08 2.22 4.56 9.67 19.66
256 2.12 4.29 9.11 18.51 37.56
512 4.14 8.38 17.45 35.55 73.25

1, 024 7.95 16.39 33.65 68.77 139.88

Table 5.7: Total processing time (in seconds) spent by RK

second term is relatively high, and results in the running time for retrieval

of the rest (K − 1) maximum sums after the initial setting more pronounced

than similar experiment with algorithms for the 2D K-OMSP.

If we subtract the initial setting time measured at K = 1 from the rest

measured times in the same column, the pattern of increase in time with

respect to K becomes more visible. For example, the running times of NEW1

for m = 128 and n = 1024 in Table 5.8 excluding the initial setting are given

as:
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m = 128 n = 64 n = 128 n = 256 n = 512 n = 1, 024
K = 1 0.08 0.17 0.34 0.73 1.43

2 0.09 0.18 0.35 0.75 1.44
4 0.10 0.19 0.36 0.76 1.45
8 0.12 0.21 0.39 0.77 1.47
16 0.13 0.25 0.43 0.85 1.54
32 0.16 0.29 0.52 0.95 1.67
64 0.18 0.32 0.63 1.11 1.95
128 0.22 0.40 0.78 1.33 2.37
256 0.26 0.46 0.91 1.60 3.13
512 0.34 0.56 1.08 2.04 4.02

1, 024 0.50 0.74 1.28 2.54 5.30

m = 256 n = 64 n = 128 n = 256 n = 512 n = 1, 024
K = 1 0.35 0.70 1.39 2.88 5.62

2 0.37 0.72 1.43 2.93 5.63
4 0.38 0.74 1.47 2.99 5.68
8 0.43 0.80 1.52 3.13 5.75
16 0.50 0.92 1.71 3.28 5.96
32 0.58 1.06 1.95 3.71 6.26
64 0.75 1.29 2.33 4.28 7.25
128 1.06 1.65 2.88 5.18 8.78
256 1.62 2.33 3.66 6.28 10.66
512 2.72 3.56 4.99 8.12 13.77

1, 024 4.78 5.86 7.55 11.39 18.20

Table 5.8: Total processing time (in seconds) spent by NEW1

K 2 4 8 16 32 64 128 256 512 1024

Time(sec) 0.01 0.02 0.04 0.11 0.24 0.52 0.94 1.70 2.59 3.87

Since m and n are fixed, a linear increase in time with respect to K

is theoretically estimated. Indeed, the time increases almost linearly while

K ≤ 256, but a slight deviation is observed for large K’s.

There are two reasons for such a non-linearity for large K’s. Note that

in NEW1, all O(m2) strips are examined by lines 3–7 of Algorithm 30, but

actual number of strips that require a hole creation (line 5) is dependent on

gk and ik of each maximum subarray M(k).
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m = 128 n = 64 n = 128 n = 256 n = 512 n = 1, 024
K = 1 0.08 0.17 0.34 0.73 1.42

2 0.08 0.17 0.34 0.74 1.39
4 0.08 0.17 0.34 0.74 1.42
8 0.09 0.17 0.35 0.74 1.43
16 0.09 0.18 0.35 0.74 1.41
32 0.11 0.20 0.37 0.75 1.45
64 0.14 0.24 0.40 0.79 1.52
128 0.21 0.33 0.52 0.93 1.66
256 0.28 0.44 0.71 1.21 2.07
512 0.41 0.59 0.95 1.60 2.74

1, 024 0.60 0.83 1.28 2.11 3.74

m = 256 n = 64 n = 128 n = 256 n = 512 n = 1, 024
K = 1 0.35 0.71 1.40 2.91 5.64

2 0.35 0.71 1.40 2.88 5.54
4 0.35 0.71 1.38 2.88 5.63
8 0.37 0.73 1.39 2.94 5.60
16 0.40 0.75 1.41 2.93 5.66
32 0.43 0.78 1.47 3.01 5.72
64 0.51 0.90 1.58 3.05 5.86
128 0.72 1.15 1.83 3.38 6.00
256 1.07 1.66 2.37 4.09 6.73
512 1.65 2.41 3.31 5.66 8.49

1, 024 2.69 3.68 4.94 7.82 11.64

Table 5.9: Total processing time (in seconds) spent by NEW2

For optimization purposes, an additional condition was used to implement

line 5, which reads,

5: if not(i < gk or g > ik) and Mg,i > 0 then create a hole (hk, jk) in Tg,i

This extra condition prevents updating Tg,i if the current root of a tour-

nament, Mg,i, is non-positive. As Tg,i will no longer produce a positive max-

imum sum, we do not need to waste O log n) time for updating it. Note

that this extra condition becomes increasingly effective for large K, as many

tournaments may have a non-positive root after many updates have been
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performed.

Hence, each iteration of the outer-most loop (lines 1–8) would require

somewhere between O(m2) and O(m2 log n) time, not exact O(m2 log n) time.

This explains the non-linear increase in time for large K’s.

As expected in Section 4.7, NEW2 has a slight performance improvement

to NEW1, especially for relatively large K. Notice that the running times

are almost constant for small K. In such a case, the hole-lists associated with

each first-level tournament are near-empty, making 2dMaxSelectHeap() in

Algorithm 32 take negligible amount time.

Due to large memory requirement, the physical memory is totally con-

sumed by two new algorithms when m, the number of rows in the array, is

512. Note that HEAP in the 2D K-OMSP had the same problem and failed

to run for an array of size 512× 512. The optimization technique based on

the sampling pre-process used for the 2D K-OMSP can not be applied. In

the case of the 2D K-DMSP, many subarrays that appear to be promising in

the early stage will be eventually eliminated over time when an overlapping

subarray with greater sum is selected and holes are created as a result. Hence

we can not easily predict if a strip has absolutely no chance of producing a

subarray that will be included in the final K subarrays.

The improvement for K > n described in Section 4.6.4 is not implemented

as it inevitably adds extra memory requirement. Even with this idea incor-

porated, little change is expected for Table 5.8 and Table 5.9, as there are

few cases for K > n.

5.4.1 Experiment with Image Data

If we have some prior knowledge of the data to process, further optimization

is possible. To illustrate this point, let us test the algorithm with image data

and discuss some implementation-level optimization techniques.

From the USC-SIPI image database§, we chose 85 image files under Aeri-

als and Miscellaneous categories. The image sizes vary between 256 × 256

§ Signal & Image Processing Institute, University of Southern California. Retrieved from
the institute website: http://sipi.usc.edu/database
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m = 256 n = 256 n = 512
K = 1 1.31 (0.01) 2.72 (0.05)

2 1.39 (0.04) 2.82 (0.07)
4 1.45 (0.06) 2.89 (0.09)
8 1.52 (0.08) 2.97 (0.11)
16 1.58 (0.10) 3.04 (0.13)
32 1.66 (0.12) 3.13 (0.15)
64 1.79 (0.15) 3.26 (0.17)
128 1.97 (0.18) 3.46 (0.21)
256 2.28 (0.21) 3.79 (0.25)
512 2.83 (0.28) 4.44 (0.32)
1024 4.13 (0.30) 5.47 (0.46)

Table 5.10: Average processing time (in seconds) and standard deviation
(inside parenthesis) for processing image files by NEW2

and 2250× 2250, but they all have been resized to 256× 256 and 256× 512¶

When an image file is loaded, we obtain the luminance value (Y = 0.30R+

0.59G+0.11B) of each pixel and subtract an anchor value from each pixel, to

ensure that the array is not all non-negative. The processed 2D array is then

fed to NEW2. In this experiment, the sum of the average pixel value and the

standard deviation was used as the anchor value. This makes the input 2D

array slightly negative-biased and tends to extract tighter subarrays.

The average processing time and the standard deviation for varying K

are given in Table 5.10.

Considering the standard deviation, this result is fairly consistent with

Table 5.9 which was obtained from processing the random data. For larger K,

the image data processing is observed to be slightly faster. This is possibly

attributed to the second-level heap. Typically in the image data, pixels with

similar luminance level are likely to be positioned close to each other. In

the second-level heap, nodes associated with the tournament containing high

luminance pixels are located near the root and other nodes related to the

low luminance regions will be occupying the lower part of the heap. After we

¶ In graphics, the dimension of the image is usually represented by width×height, so it
is indeed 512× 256 according to the norm.
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Figure 5.1: Example: Processing image data by NEW2

create a hole in the tournament referenced by the root node, the tournament

is still likely to contain some large positive subarrays, resulting in a positive

new value for the node. When the second-level heap is adjusted, the updated

root node will not be pushed down too far. Such a behavior is less pronounced

with the random data, and may explain the slightly faster processing speed

when a large K is tried with an image data.
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5.4.2 Implementation-level Optimization

Considering the characteristics of the image data, some optimization tech-

niques can be proposed.

Filtering and choice of a good anchor value

It was previously pointed out that the sampling technique, as it is, is not

applicable to the 2D K-DMSP. However, we can still reduce some number of

strips at the early stage. As a pre-process, we compute the first maximum

sum only in each strip by Algorithm 7 or Algorithm 8. During the pre-

process, only O(n2) memory space is used. If the first maximum sum in a

strip is not positive, we avoid making a tournament out of this strip.

Obviously, this simple filtering is weak and may only achieve satisfactory

result when the array contains predominantly many negative values. With

this filtering incorporated, in some favorable conditions‖, NEW1 and NEW2

were able to compute an array of size 256 × 1024 for K = 1024 at signifi-

cantly improved 0.98 seconds. Under the same condition, NEW2 managed

to process an array of size 1024 × 1024 in 5.84 seconds for K = 1024. Pro-

cessing an array of such a size was previously impossible without running

into the memory problem, but in this particular case, more than 90% strips

were discarded before tournament is being built. When the default setting

for the random number generation is used, no strip is discarded at all, and

both NEW1 and NEW2 fail to process an array of size 512× 512.

The filtering pre-process may be usefult for image data processing, as we

can make the array filtering-friendly by subtracting a large anchor value.

With addition of the filtering pre-process while preserving the same set-

ting as the experiment above, the processing time and standard deviation

were obtained as shown in Table 5.11. Compared with Table 5.10, a sig-

nificant reduction in processing time is observed. The standard deviation

is higher as the effect of the filtering pre-process varies depending on each

image data.

With larger anchor value, the filtering pre-process is expected to be more

‖ The elements in the input array are generated by rand()%100-70, such that the array
may consist of many negative values
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m = 256 n = 256 n = 512
K = 1 0.52 (0.36) 1.10 (0.77)

2 0.53 (0.37) 1.11 (0.78)
4 0.53 (0.39) 1.11 (0.79)
8 0.56 (0.41) 1.14 (0.82)
16 0.57 (0.43) 1.16 (0.84)
32 0.62 (0.45) 1.19 (0.86)
64 0.66 (0.49) 1.27 (0.90)
128 0.75 (0.51) 1.39 (0.90)
256 0.88 (0.58) 1.56 (0.99)
512 1.15 (0.72) 1.78 (1.15)

1, 024 1.52 (1.01) 2.27 (1.38)

Table 5.11: With filtering: Average processing time (in seconds) and stan-
dard deviation (inside parenthesis) for processing image files by NEW2

effective, reducing the memory usage as well as running time. However, some

loss of precision may occur, if far too a large anchor value is chosen. What

defines the precision may be a complex topic itself, so we simply regard it as

the satisfactory level of matching our perception.

If we have some domain knowledge of image data to process, we may be

able to determine a good anchor value heuristically, ensuring a good balance

of speed and precision. For example, an astronomy image typically contains

predominantly many low-valued pixels. The average pixel value of the satel-

lite image of size m = 512 and n = 1024 shown in Figure 5.2∗∗ is 14, which is

very low. If we use 128 as the anchor value, after subtraction, the resulting

2D array is heavily biased to negative values. The filtering pre-process be-

comes very effective, managing to reject 129, 001 out of 131, 328 total strips.

Only 2, 327 strips survived the filtering. This 98% rejection rate greatly

reduced the computation speed as well as the memory usage, resulting in

K = 1, 024 maximum subarrays computed in 1.28 second. Each maximum

subarray roughly corresponds to a major city in the world, matching our

perception fairly well.

∗∗ Earth at Night: November 27, 2000. Astronomy Picture of the Day.
National Aeronautics and Space Administration (NASA).
Retrieved from http://antwrp.gsfc.nasa.gov/apod/ap001127.html.
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Amalgamation

In a typical image data, the pixel value distribution is reasonably smooth in

a sense that neighboring pixels are likely to have close values. When we build

a tournament for each strip, we may consider amalgamating all consecutive

positive values and all consecutive negative values. For example, the array

a = {3, 51,−41,−57, 52, 59,−11, 93,−55,−71, 21, 21} is amalgamated into

{54,−98, 111,−11, 93,−55,−71, 42}. In this case, when we build a tourna-

ment with the latter array, we have 33% reduction in the memory usage.

Note that the original indices should be preserved after the amalgamation.

When a tournament is build, the from and to attributes of the leaf node

representing 54 should be 1 and 2 respectively.

This idea can be easily generalized to a strip with multiple rows. An

interval where the strip prefix sum monotonously increases is amalgamated

into one positive value. Conversely, an interval with monotonously decreas-

ing strip prefix sum is converted to a single negative value. Considering the

smooth value distribution observed in a typical image data, this amalgama-

tion technique is expected to give a significant saving in the memory usage.

When a hole is created in a strip, a special care needs to be taken to update

the tournament correctly. This will involve some modification to Algorithm

28.

Height constraints

Let us suppose that we know the approximate dimension of the maximum

subarrays to extract. In particular, as discussed in Section 3.9, if the height

of the maximum subarrays should be between Lh and Uh, the total number of

strips to process is only O(mDh) where Dh = Uh−Lh. If Dh is considerably

smaller than m, this leads to a sharp reduction in the number of tournaments

to build, i.e., from O(m2) to O(mDh). This idea obviously requires more

involved user input, as the user should know the approximate height of the

expected maximum subarrays in advance. For this reason, this idea may be

only suitable if the user has some prior knowledge of the image data that

he/she wishes to process.

The experiment of the last two techniques are left as future work.
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Figure 5.2: K=1,024 brightest spots by NEW2 with filtering pre-process.



Chapter 6

Concluding Remarks and Future Work

6.1 Concluding Remarks

In Part I, we identified two categories of K-maximum subarray problem, the

K-overlapping maximum subarray problem (K-OMSP) and the K-disjoint

maximum subarray problem (K-DMSP), and presented various techniques

to speed up computing these problems.

We adopted the general framework based on the subtraction of minimum

prefix sum from each prefix sum to produce candidates for the final solution.

Given the framework, various methods have been investigated to compute

the K-OMSP efficiently. The major challenges involved in the problem are

reduction of the total number of candidates generated and maintenance of

the list of minimum prefix sums.

We initially studied the iterative framework based on Algorithm 15 and

improved the time complexity from O(Kn) to O(K2 + n log K) through a

simple technique based on sampling. Each prefix sum sum[i] produces the

maximum candidate candi[1] by subtracting the minimum prefix sum prior to

sum[i], that is mini = MIN {sum[0], ..sum[i− 1]}. Among these n samples,

we execute the linear time selection algorithm (Algorithm 13) and select

the K-th largest. We can identify only (K − 1) prefix sums that requires

further candidate generation, then the total number of candidates produced

are bounded by O(K2). It was also discussed that a 2-3 tree is a suitable

data structure to efficiently maintain the minimum prefix sums.

We further explored this simple idea and reduced the number of can-

didates to O(K log K) by incorporating the efficient method for selection in

sorted columns. When we have a two-dimensional array of Kn candidates, A,

whose element A[i][j] is candj[i] = sum[j]−minj[i]. Each column is sorted in

141
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non-increasing order. The algorithm for selection in sorted columns proposed

by Frederickson and Johnson [38] examines small number of elements in rows

1,2,4.. and rearranges the array such that O(K log K) maximum elements

in A would be relocated at the top-left corner of A. However, the selection

technique is not directly applicable, since we do not have A pre-built, and

cannot afford to spend time to fully build it.

We observed that a slight modification to the original selection technique

alleviates this requirement, and showed that the modified selection technique

can be applied on-the-fly such that elements in rows 1,2,4.. are being pro-

duced and examined at the same time, i.e. being sampled. The sampling

and rearrangement can be done in O(K log K) time, if an appropriate data

structure for the minimum prefix sums is used. We proposed to use a persis-

tent 2-3 tree to maintain the minimum prefix sums. The i-th version of the

minimum prefix sums, mini, is maintained by the i-th version of the 2-3 tree.

This combination of the sampling/rearrangement technique and a persistent

2-3 tree resulted in O((n + K) log K) time.

Our final effort to improve this result included the design of a new frame-

work for selection in Cartesian sums. We devised a simple algorithm using

a two-level heap to retrieve the K maximum values in X + Y = {xi + yj |
xi ∈ X, yj ∈ Y } in sorted order, in O(n + K log min(K,n)) time. This

simple algorithm is easy to modify to compute the K-OMSP. We use a per-

sistent tournament to maintain different versions of min, and compute the

K maximum subarray in O(n + K log min(K,n)) time.

For two-dimensions, we explored two methods to speed up. It is trivial to

extend a 1D algorithm to 2D through the strip separation technique, which

would result in O(n2) factor multiplied to the complexity of 1D.

A simple sampling technique can be applied, such that we select K strips

that would contain the final K maximum sums. This way, we can disqualify

O(n(n+1)
2
−K) strips at early stage, and can solve the problem in O(n3) time

for K ≤
√

n3

log n
.

Through a technique based on the selection in a two-level heap, we prepare

a heap-tournament pair for each strip, and build a second-level heap with

values of the root of each heap-tournament pair. The second-level heap has

O(n2) elements, and its root holds the maximum sum in 2D. To get the next
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maximum sum in 2D, we update the second-level heap as well as the first-

level heap-tournament pair. The total time is O(n3 + K log min(K,n)), that

is O(n3) for K ≤ n3

log n
. In general, we need O(n2d−1 +K log min(K,nd)) time

to compute the K-OMSP in a d-dimensional array of size n× · · · × n.

When we have the length constraints L and U , such that the length of

K maximum subarrays would be between L and U , the proposed algorithms

can be extended with minor modifications. Based on the algorithm that finds

the minimum prefix sums satisfying the length constraints by Fan et al.[32],

the first maximum subarray meeting the length constraints is computed in

O(n) time. For each position of the prefix sum, we can retrieve a tournament

tree that maintains the associated minimum prefix sums meeting the length

constraints easily, and compute K maximum subarrays meeting the length

constraints in O(n + K log min(K,n− L)) time.

A tournament is proved to be an efficient data structure for the K-OMSP,

and we applied the same data structure to compute the K-DMSP. While

Ruzzo and Tompa’s algorithm [82] computes all disjoint maximum subarrays

in linear time, the problem definition is slightly different. As their algorithm

does not produce solutions in order, it would spend extra O(K log K) time

if the sorted order is required. This algorithm is also optimized for 1D and

seems difficult to extend to higher dimensions. We devised a new algorithm

for 1D that computes the first maximum subarray recursively and builds a

tournament during the computation. The subsequent maximum subarray

can be retrieved in O(log n) time by updating the tournament, meaning that

K maximum subarrays can be computed in O(n+K log K) time. As the so-

lutions are sorted by default, this new algorithm is considered asymptotically

equivalent to Ruzzo and Tompa’s.

This new algorithm for 1D is extended to 2D through the strip separation,

resulting in O(n2) tournaments. When a maximum subarray (r1, c1)|(r2, c2)

is selected, we create a hole (c1, c2) in a tournament Tg,i whose row cov-

erage (g, i) overlaps (r1, r2). In the worst case, we would need to create

a hole in O(n2) tournaments before the next maximum subarray can be

computed. This results in O(n3 + Kn2 log min(K,n)) time, which is O(n3)

time for K ≤ n
log n

. Considering that the only currently available alternative

is O(Kn3) time process based on repeated application of Kadane’s algo-
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rithm, this algorithm has enhanced practicality. Marginal improvement of

O(n3+min(K,n)·n2 log min(K,n)) time has been also presented through the

incorporation of union/find method. In general, we need O(n2d−1 + n2d−2 ·
min(K,n) log n) time to compute the K-DMSP in a d-dimensional array of

size n× · · · × n.

The new algorithms developed from this thesis contribute to understand-

ing the K-maximum subarray problem associated with the selection problem.

It has been identified that the K-OMSP and K-DMSP are essentially the

extended version of the selection problem, especially the tournament-based

selection described in Chapter 2.

6.2 Future Works

We concluded that both 1D K-OMSP and K-DMSP can be computed in

O(n + K log K) time for K ≤ n. This complexity suggests that the tour-

nament(or heap)-based selection of K maximum elements (Algorithm 11) is

computationally equivalent to both kinds of K-MSP’s.

This observation poses an interesting open problem. Considering that

a linear time selection of the K-th maximum is possible (Algorithm 13), is

it also possible to compute the K-th maximum subarray, not K maximum

subarrays in sorted order, in O(n) time? It will be also interesting to see if

we can compute K maximum subarrays in O(n+K) time without the sorted

order requirement∗.

For the K-DMSP, the selection of the K-th maximum subarray can be

done in O(n) time through the combination of Ruzzo and Tompa’s algorithm

(Algorithm 25) and the linear time selection (Algorithm 13). We find all K̄-

disjoint maximum subarrays, then select the K-th (K ≤ K̄) maximum. Our

algorithm for the K-DMSP can not enjoy any speed up as it must produce

K maximum subarrays in sorted order.

The biggest difference between the K-OMSP and the K-DMSP is, how-

ever, the maximum value of K, i.e., K̄. In the K-OMSP, K̄ = n(n+1)
2

, while

in the K-DMSP, K̄ = n
2
. Hence, it is unrealistic to expect an algorithm that

∗ See the end of this section for the latest results.
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computes the K-th maximum subarray in the overlapping condition in O(n)

time when K > n. For this reason, an attempt to establish an O(n) time

will need to impose a condition on the range of K, such that K ≤ n.

An interesting related problem will be a combined version of the K-OMSP

and K-DMSP, that is the problem of K partially overlapping maximum sub-

arrays. For example, we wish to find the k-th maximum subarray, that is

at most 50% overlapping the previously determined solutions. This prob-

lem seems not very difficult for K = 2. When the first maximum subarray

M(from, to) is found, we create a hole (from+to−1
2

, to) and find the next

maximum subarray in a[1..to], such that it is disjoint from the hole. This

maximum subarray overlaps (from, to) at most by 50%. Similarly, we cre-

ate another hole (from, from+to+1
2

) and find the next maximum subarray in

a[from + to + 1..n]. This again overlaps (from, to) at most by 50%. The

greater of two is then the desired second maximum sum. A solution for

general K is open.

While the algorithms for 1D have the same complexity in both cases, the

K-OMSP and K-DMSP, there is a gap between the presented algorithms for

2D. Namely, O(n3 +K log min(K,n)) time versus O(n3 +Kn2 log min(K,n))

time. It is expected that the second term in the complexity of the 2D K-

DMSP can match that of the 2D K-OMSP. If it is achieved, as K̄ ≤ n2/2,

the total complexity will be simply O(n3) for any K.

Nevertheless, it appears that the n2 factor in the second term is inherently

difficult to eliminate unless a different approach is taken. The simple tech-

nique based on strip separation inevitably introduces n(n+1)
2

strips to handle.

In the 2D K-OMSP, we could reduce the number of necessary strips by the

sampling technique as it is guaranteed that the K maximum subarrays are

contained in the K selected strips. It was observed that this strategy is,

however, not applicable to the 2D K-DMSP. An attempt to improve the n2

factor, therefore, might involve a new framework specifically developed for 2D

problem, such as the approach based on the distance matrix multiplication

(DMM).
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6.3 Latest Results

After this thesis was submitted for the examination, some new results have

been reported.

As expected in Section 6.2, O(n + K) worst-case time algorithm has be-

come finally available for the 1D K-OMSP when the sorted order requirement

is waived. Brodal and Jørgensen [24] achieved O(n + K) time by combining

the partially persistent Iheap, a binary heap optimized for insertion opera-

tion, and Frederickson’s algorithm for selection in a min-heap [39]. It is also

reported that Hsiao-Fei Liu and Kun-Mao Chao independently observed the

same result by applying Eppstein’s algorithm for finding the k shortest paths

in a directed acyclic graph (DAG) [31].

For the same problem, Lin and Lee [73] presented an expected O(n log n+

K) time algorithm, which needs only O(n) space. For K ≤ n, however, this

is not as efficient as the O(n + K log min(K,n)) worst-case time solutions

given in Section 3.6 and [26, 16]†.

† Latest form of these papers are also available as [27] and [17].
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Parallel Algorithm

7.1 Introduction

You cannot have a baby in one month by getting nine women pregnant.

–Fred Brooks, “The Mythical Man-Month”∗

Gordon E. Moore, the co-founder of Intel, predicted that the speed of a

central processing unit (CPU) will be doubled every 24 months [76], and

this prediction has been empirically observed for the last four decades in

terms of the increase in frequency of operation. However, considering the

clock speed alone, Moore’s law is unlikely to hold in the foreseeable future,

as improving the performance of individual processors has become increas-

ingly difficult. Higher clock speed corresponds to exponential increases in

temperature, which makes it very difficult to make a CPU that runs reliably

at a fast clock speed. There are fundamental barriers too. In terms of size,

transistors built on a CPU may reach the limits of miniaturization at atomic

levels. Also the speed of electronic circuit is limited by the speed of light.

Recently, Intel and Advanced Micro Devices (AMD) have instead

opted for another strategy to increase the computation speed by provid-

ing multiple computing cores packaged in a single CPU. A multi-core CPU

enables parallel processing of multi-threaded application, thus results in in-

creased computation speed. With dual-core CPUs becoming increasingly

popular in the consumer market, such as Intel’s Core Duo and AMD’s

Athlon 64 X2 processors, processors with tens or hundreds cores are ex-

pected within the next decade [56].

∗ Sometimes quoted as “One woman can have a baby in nine months, but nine women
can’t have a baby in one month.” or “The bearing of a child takes nine months, no
matter how many women are assigned”
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While the parallel computing with a multi-core CPU has become a recent

phenomenon in the consumer market, the history of parallel computing can

be traced back to early 1960s. Daniel Slotnick at the University of Illinois de-

signed two early parallel computers, Solomon in early 1960s and ILLIAC

IV in early 1970s. At Carnegie-Mellon University, C.mmp and Cm∗ were

constructed during the 1970s. In the early 1980s, Caltech built the Cos-

mic Cube, the ancestor of multi-computers built by Ametek, Intel, and

nCUBE. Brief history of early parallel computers is given in [80].

It should be noted that having multiple processors does not automati-

cally mean faster computation. In fact, not all problems can be parallelized.

This is because many algorithms are inherently sequential in nature. The

quotation in the beginning of this chapter, often referred to as Brooks’ law,

describes this situation colloquially. Bearing of a baby is inherently sequen-

tial process, thus having multiple women cannot speed up. More formally,

Amdahl’s law [4] addresses this problem. The speedup possible through par-

allel processing is limited by the portion of the computation that must be

performed sequentially.

Let Tseq be the fastest known worst-case running time of a sequential

algorithm for one problem. Obviously, the best upper bound on the parallel

time achievable using P processors is Tpar = O(Tseq/P ). A parallel algorithm

that achieves this running time is said to be optimal. The total cost of a

parallel algorithm is thus defined as C, such that,

C = PTpar

Here, if C = Tseq, the parallel algorithm is optimal. In practice, linear

speedup, the speed-up proportional to the number of processors is difficult

to achieve, and indeed is the major challenge.

Often, a parallel algorithm can be constructed by redesigning a sequential

algorithm to make effective use of parallel hardware. Previously known par-

allel algorithms for the maximum subarray problem (MSP) [103, 77, 79] are

also derived from the sequential solutions. While these previous results are

made for both one- and two-dimensional problems, the parallel computation

for one-dimensional problem is less interesting since the sequential algorithm
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P1Processors

Memory Access Unit

PnP2 P3
....

....

Global Memory

....

Figure 7.1: The structure of PRAM machine. It consists of a set of processors
connected to a global memory through a memory access unit. All memory
accesses are assumed to take O(1) time.

can already computes in O(n) time.

In the remaining part of this thesis, we briefly describe these parallel

algorithms for the MSP and propose a new parallel algorithm for the two-

dimensions. Since a parallel algorithm inherently is designed for a specific

architecture, we describe several architectures adopted by the previous algo-

rithms.

7.2 Models of Parallel Computation

7.2.1 Parallel Random Access Machine(PRAM)

The random access machine (RAM) is an abstract machine, a traditional

sequential model of computation. This model is also called the von Neumann

model. The RAM contains a single processor, which operates under the

control of a sequential algorithm where one instruction at a time is issued.

The parallel RAM (PRAM) is a parallel extension of the RAM. The PRAM

was developed in order to provide a platform upon which people could design

theoretical algorithms that would behave as predicted by the asymptotic

analysis on real parallel computers. The advantage of the PRAM is that it

ignores communication issues and allows the user to focus on the potential

parallelism available in the design of an efficient solution to the given problem.

The PRAM maintains n processors, P1,P2...Pn, each of which is identical to a

RAM processor and a global memory shared by all processors. Each processor

is assumed to access to every memory location in O(1) time.



7.2 Models of Parallel Computation 151

The processors in the PRAM are not directly connected to each other,

meaning that if two processors wish to communicate during the computation,

the communication must be made through the global memory. This condi-

tion, however, may cause the classical race condition, where two processors

are trying to read/write to the same memory location. We discuss the three

PRAM models that are designed to resolve the memory access conflict issue.

• CREW: Concurrent Read, Exclusive Write. Multiple processors are

allowed to read from the same memory location during a clock cycle,

but only one processor is allowed to write to a given memory location.

If multiple processors attempt to write to the same memory location

during the same clock cycle, it is considered to be an error.

• EREW: Exclusive Read, Exclusive Write. This is the most restrictive

PRAM model as it forbids both concurrent reads and concurrent writes.

This restriction presents a challenge to design efficient algorithms for

the EREW PRAM model.

• CRCW: Concurrent Read, Concurrent Write. To allow multiple proces-

sors to write to the same memory location during the same clock cycle,

various schemes have been proposed, such as Priority CW, Common

CW, Arbitrary CW, Combining CW.

In fact, ERCW model is also possible, but it is hardly interesting. Indeed,

it is hard to imagine a machine that is sophisticated enough to support the

concurrent write, but not the easier concurrent read.

Despite the popularity as bases for parallel algorithm design, no actual

PRAM machines have been built. Possibly, a PRAM machine with relatively

few processors may be built, but such a machine cannot scale to large num-

bers of processors while preserving uniformly fast access time to memory.

This is mainly due to current technological limitations in connecting proces-

sors and memory. In the end, it is not feasible to allow n processors to access

any n-memory locations simultaneously.

Nevertheless, the PRAM is a powerful model for studying the logical

structure of parallel computation under conditions that permits theoretically
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optimal communication. If a PRAM algorithm is cost optimal, it may be a

suitable basis for the design of a parallel program targeted to a real parallel

computer [80].

7.2.2 Interconnection Networks

As the global memory in the PRAM model is technically difficult, it is natural

to consider distributed-memory machines as an alternative to construct a real

parallel computer. An interconnection network is a parallel computer made

of processor-memory pairs (which we shall refer to as “processors”) connected

to each other in a well-defined pattern. Unlike the PRAM model where a

global memory is used, parallel computers based on interconnect network

need to employ some kind of routing to enable passing of messages between

nodes that are not directly connected.

Clearly, the topology providing more connections mean faster commu-

nication between processors. For example, if processors are organized in a

complete graph, where every processor is connected to all others, it guaran-

tees one-step communication between any pair of processors. However, such

a system is very expensive to build and scale.

There are number of ways to organize processors, such as a linear array,

ring, mesh, tree, pyramid, mesh-of-trees and hypercube. As the description

of all these processor organizations is beyond the scope of this thesis, we

describe the mesh and the hypercube models with respect to the parallel

algorithm for the MSP.

Mesh

A mesh is a 2-dimensional, checkerboard-type organization of processors,

where each processor has four neighbors.

Communication is allowed only between neighboring processors and there

is no global communication, even control flow is strictly local.

The mesh is therefore very restrictive in comparison to other topologies.

However, this structure is considered as a good option to develop a chip-based

parallel algorithm, because its regular grid structure is easy to be built on

a one-level chip. In case of a complete graph, for example, this is infeasible
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Direction of data transmission

m

n

Figure 7.2: Mesh network

if there are more than 4 processors, since more than 4 nodes in a complete

graph means it is not planar.

The mesh is often implemented as a systolic array [68]. The word “sys-

tole” refers to the rhythmical contraction of the heart by which the blood is

forced onward and the circulation kept up†. Systolic array imitates the pump-

ing of blood. A processor starts computation when data from its neighbors

arrives, then outputs results to other neighbors. The regular communication

pattern with the systolic array means it requires no routing.

Examples of mesh algorithms usually involve two-dimensional array in-

puts, such as the matrix multiplication [36, 78, 97, 98] and the all-pairs

shortest-paths (APSP) problem [92] achieving the time bound of Ω(n).

We save further description for the detailed discussion in Chapter 8.

Hypercube

A hypercube of size n consists of n processors, where n is a power of 2. Let

the index of a processor Pb(i), b(i) be a binary representation of an integer i

for 0 ≤ i < n. For example, when n = 4, processors are indexed P00, P01,

† systole. (n.d.). Merriam-Webster’s Medical Dictionary. Retrieved October 25, 2006,
from Dictionary.com website: http://dictionary.reference.com/browse/systole
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Figure 7.3: Hypercube-connected architectures of zero, one, two , three and
four dimensions.

P10 and P11. Note that the length of the binary index is log2 n.

Processors A and B are connected if the binary indices differ in exactly

one position. So suppose than n = 8, then the processor P011 is connected

to P111, P001 and P010.

Constructing a hypercube is easily done in recursive manner. A hyper-

cube of size n can be constructed from two hypercubes of size n/2, which we

refer to as H1 and H2.

We place H1 and H2 side by side and add a leading zero to every binary

index of H1 and a leading 1 to every binary index of H2. Finally, we connect

the processors of H1 and H2 if two processors differ only in their leading bit

of the index.

Note that a processor in a hypercube of size n is connected to exactly

log2 n other processors. Thus all processors are considered identical in terms

of the number of attached communication links.

7.3 Example: Prefix sum

As a working example of the parallel algorithms designed for a specific archi-

tecture, we describe the prefix sum computation. This choice is based on two

reasons. Firstly, the prefix sum provides the basis for the MSP computation.

Secondly, the prefix sum computation has been well studied for various archi-

tectures and almost all parallel computers contain hardware implementation

for this problem. Note that the prefix sum computation can be done in O(n)

time sequentially, i.e. Tseq = O(n). We will also examine the cost of the
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Figure 7.4: Computing prefix sums on a CREW PRAM, for n = 8. We
denote

∑q
i=p a[i] by a[p..q] in the figure.

parallel algorithm is optimal.

7.3.1 PRAM

The PRAM prefix sum computation is covered in various texts [52, 80, 72, 57],

and we present the description of CREW PRAM algorithm given in [52].

Without the loss of generality, we assume that n is power of 2. We first

present an n-processor and O(log n) time algorithm (Algorithm 33).

Algorithm 33 CREW PRAM algorithm to find prefix sums of an n element
list using n processors.

procedure prefixsum(p,q) begin
// computes

∑p
i=p a[i],

∑p+1
i=p a[i],...

∑q
i=p a[i]. Set sum[i]← a[i] initially

1: if p = q then return sum[p]
2: call prefixsum(p,p+q−1

2
) and prefixsum(p+q+1

2
,q) in parallel

3: for all Pi, where p+q+1
2
≤ i ≤ q in parallel do

4: sum[i]← sum[i] + sum[p+q−1
2

]
5: end for

end

This algorithm runs recursively. It continuously halves the input until

only one element remains (line 1), then a processor Pi adds the prefix sum of
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the first half, sum[p+q−1
2

], which holds the sum a[p] + .. + a[p+q−1
2

], to sum[i]

whose current value is a[p+q+1
2

]+ ..+a[i]. Figure 7.4 illustrates this recursive

procedure.

As shown in the figure, one memory location may be concurrently read by

multiple processors, but not written concurrently. So this is a CREW PRAM

algorithm. Let T (n) be the run time of the above algorithm. Line 2 takes

T (n
2
) time as two recursive calls with halved input are executed in parallel.

The rest takes O(1) time. The following recurrence relation for T (n) holds.

T (n) = T
(n

2

)

+ O(1), T (1) = 1

This solves to T (n) = O(log n). Then C = PTpar = n log n = O(n log n).

Here, we have C > Tseq, meaning this parallel algorithm is not cost-optimal.

Note that P1 is redundant as it merely sits idle throughout the computation.

Indeed, only n/2 processors are involved in the computation at each step,

and it is possible to run this algorithm with n/2 processors. Still, there is no

improvement to the total cost.

Now we consider a cost-optimal algorithm that needs only n
log n

processors

, while keeping the run time the same.

On termination of Algorithm 34, we regard the final prefix sum[1..n] as

the concatenation of the result computed by each processor, such that,

sum[1..n] = sum1[1.. log n] ∪ sum2[1.. log n] ∪ .. ∪ sum n
log n

[1.. log n]

Each step of the algorithm is bounded by O(log n) time, therefore O(log n)

total time using n
log n

CREW PRAM processors.

A similar algorithm with the same cost running on EREW PRAM is

possible [57].

This result can be extended to two-dimensions. For an array of size

n × n, we can easily obtain an algorithm employing O(n2/ log n) processors

running in O(log n) time. In phase one, we assign n/ log n processors to

each row such that each group of n/ log n processors compute the row-wise

prefix sums, r[i][j] = a[i][1] + .. + a[i][j] on each row 1..n in parallel by

Algorithm 34. In phase two, we process r[1..n][1..n] vertically. Notice that
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Algorithm 34 Optimal O(log n) time prefix computation using n
log n

CREW
PRAM processors

1. We first divide the input into n
log n

groups each containing log n ele-
ments. Each processor is allocated to each group, and computes the
prefix sums of its log n assigned elements sequentially. Note that all
processors performs this sequential computation simultaneously. This
takes O(log n) time. Let the result be contained in sumi[1.. log n] for
the i-th group.

2. Each processor collects the last prefix sum of each group as a del-
egate, forming an auxiliary list containing n

log n
elements. A to-

tal of n
log n

processors run Algorithm 33 on this auxiliary list, tak-

ing O(log n
log n

)=O(log n) time. Let the result be contained in

sumdel[1..
n

log n
].

3. Processor Pi (2 ≤ i ≤ n
log n

) collects sumdel[i − 1], and performs

sumi[1.. log n] + sumdel[i − 1] sequentially. Each processor spends
O(log n) time, where all processors work in parallel. Let the result
be stored back in sumi[1.. log n].

sum[i][j] = r[1][j] + .. + r[i][j], the prefix sum of r[1..i][j]. Again, we assign

n/ log n processors to each column and each group of n/ log n processors

perform similar parallel computation. Both phase one and two are O(log n)

time, and we have C = O(n2), an optimal cost.

7.3.2 Mesh

The two-dimensional structure of a mesh makes it readily suited to the two-

dimensional prefix sum computation. Certainly, a one-dimensional input can

be processed on a mesh [52], but it would be less interesting when our moti-

vation is to speed up the computation of the two-dimensional MSP through

parallel processing. Hence we focus on the two-dimensional prefix sum in the

following.

A processor in the mesh is often referred to as a cell. A cell located at

the i-the row and the j-th column is denoted by cell(i, j). Each cell contains

a set of registers that is private to itself. For the prefix sum computation,
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Algorithm 35 Mesh prefix sum algorithm using m× n processors

1: for all cell(i, j) where 1 ≤ i ≤ m and 1 ≤ j ≤ n in parallel do
2: if cell(i, j) is active then
3: r(i, j)← rin(i, j − 1) + a(i, j)
4: s(i, j)← sin(i− 1, j) + r(i, j)
5: end if
6: end for

we have register a, r and s, and these registers at cell(i, j) are denoted by

a(i, j), r(i, j) and s(i, j) respectively. We assume that a[i][j] resides on the a

register of cell(i, j), i.e. a(i, j) = a[i][j]. We store the row-wise (horizontal)

prefix sum in r(i, j) and the prefix sum in s(i, j).

We design the mesh network to behave as a systolic array, such that the

outcome of a cell is collected by its neighboring cells. Scheduling when each

cell starts computation is one of the most significant design issue to ensure

the correct result.

We initiate the control signal at the left boundary of the network, that

is gradually propagated towards right. Each cell becomes active when it

receives the signal. An active cell can communicate with its neighbors and

perform internal computation. The data flow from one cell to its neighbors

takes one communication step, and the control signal also takes one step

to transmit from one cell to its right neighbor. In general, at step=α, we

consider all cells in the first MIN (α, n) columns are active.

An active cell sends a packet containing set of register values. There are

two types of packet in Algorithm 35. A packet delivered to right contains

the register value r, and the other delivered downwards contains the register

value s.

We assume that r and s registers in the network are initialized to 0. We

also assume that s(0, 1..n) = 0 and r(1..m, 0) = 0, to deal with the index 0

at lines 3 and 4. We denote the name of a register contained in the incoming

packet with a subscript “in”, for example, rin(i − 1, j) means the r register

value from cell(i− 1, j).

Here, each prefix sum sum[i][j] will be retrieved from s(i, j), and the sum

of all elements, sum[m][n] will be computed at step=m + n− 1.
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Figure 7.5: Computing prefix sums on a 3× 3-processor mesh. a(i, j) is not
shown. We denote

∑r2

i=r1

∑c2
j=c1

a[i][j] by a[r1..r2][c1..c2] in the figure.

In a interconnection network, the network diameter is the maximum dis-

tance between any pair of processors. The mesh of size m× n has diameter

m+n−2. For s(m,n) to be the correct prefix sum, s(1, 1), the sum of a[1][1]

alone must travel to cell(m,n). Since s(1, 1) is computed at step 1, the total

number of steps is therefore (m + n− 2) + 1.

If the input array is of size n×n, this algorithm is O(n) time with O(n2)
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processors, and the total cost is O(n3). This is clearly non-optimal, as for

two-dimensions, we know that Tseq = O(n2).

The major limitation for the mesh, in this case, is the network diameter.

In order to reduce the network diameter, the only option is to have smaller

sized mesh network, and assign more work to each cell. The extra work

allocated to a cell is computed sequentially. We call such a configuration

a coarse-grained mesh. On the contrary, when a single input element is

assigned to each cell, it is fine-grained. The extreme cases, a coarse-grained

mesh can be of size 1, or a sequential machine, which runs the algorithm in

O(n2) time. A move from Algorithm 33 to obtain Algorithm 34 with CREW

PRAM is based on a similar motivation.

While it may be possible to achieve a cost-optimal algorithm by finding a

balance between the network diameter and the amount of work each processor

must perform, we omit the further discussion. Later we will see that this non-

optimal mesh algorithm still suits as a basis for the MSP in Chapter 8.

Once the prefix sum is computed by the mesh, we could use the same

architecture to compute the MSP. However, we design a parallel algorithm

that computes the MSP spending the minimum number of parallel steps.

7.3.3 Hypercube

To compute the prefix sum sum[1...n], we prepare a d(= log n)-dimensional

hypercube, which has n processors. Each processor is labeled with b(i), the

binary representation of i for 0 ≤ i ≤ n− 1.

Each processor Pb(i) maintains two values, s(i) and t(i). In the beginning,

s(i) and t(i) are both set to a[i + 1]. In the end, we want each local value

s(i) to be sum[i + 1]. Each processor exchanges data with its all directly

connected neighboring processors, one at a time. The partner processor is

determined by line 5 of Algorithm. The bit-wise operator “XOR” returns 1 if

“1 XOR 0” or “0 XOR 1”. For example, if n = 8 and d = 3, the 5-th processor

Pb(5) = P101 communicates with P100 first, because 101 XOR 001(= 20) is 100,

followed by P111 and P001 in order. Inside the sequential “for” loop between

lines 4 and 10, hence x = 4, 7 and 1 respectively at each iteration.

At the end of a communication step, t(x), the incoming value from a
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Algorithm 36 Hypercube prefix sum algorithm using n processors

1: for all Pb(i) where 0 ≤ i ≤ n− 1 in parallel do
2: s(i)← a[i + 1]
3: t(i)← s(i)
4: for j ← 0 to d− 1 do
5: partner ← Pb(x) where b(x)← b(i) XOR 2j

6: send t(i) to partner
7: receive t(x) from partner
8: t(i)← t(i) + t(x)
9: if x < i then s(i)← s(i) + t(x)
10: end for
11: end for

end

neighboring processor is added to the result s(i) only if the message comes

from a processor with a smaller label than that of the recipient processor, i.e.

x < i. The contents of the outgoing message kept in t(i) are updated with

every incoming message. For instance, after the first communication step,

P000, P010, and P100 do not add the data received from P001, P011 and P101 to

their s(i). However, their t(i) are updated. The detailed description of the

algorithm may be found in [67, 81, 28].

As each processor communicates with its all log n directly-connected pro-

cessors sequentially, the overall time Tpar is O(log n) given n processors.

Again, C = n log n and this algorithm is not optimal. Certainly, optimal

algorithm can be designed using a coarse-grained hypercube, where we have

only p (p < n) processors and each processor maintains n/p elements, a sim-

ilar transition from Algorithm 33 to Algorithm 34. Qui and Akl presented

that O(n/p + log p) times is possible [79], meaning that when p = log n,

Tpar = O(n/ log n) with O(log n) processors. Here C = O(n) and therefore it

is optimal. Qui and Akl applied this optimal parallel prefix sum algorithm

as a basis for the MSP computation on the hypercube.
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Parallel Algorithm for Maximum Subarray

Problem

8.1 Parallel Maximum Subarray Algorithm

In the previous chapter, we have reviewed O(log n) time PRAM and hyper-

cube parallel algorithms for the prefix sums using O(n/ log n) processors.

Considering the close relation between the prefix sum computation and the

MSP, a parallel algorithm for the MSP is well expected.

Perumalla and Deo [77]∗, Wen [103] and Qiu and Akl [79] gave optimal

parallel algorithms. They all run in O(log n) time with O(n/ log n) processors

for one-dimension, and O(log n) time with O(n3/ log n) processors for two-

dimensions. For easy comparison, we present Table 8.1.

Table 8.1: Parallel Algorithms for the MSP
Model 1D 2D

Tpar P Read Tpar P Read

P. & D.[77] PRAM O(log n) n
log n

ER O(log n) n3

log n
CR

Wen [103] PRAM O(log n) n
log n

ER O(log n) n3

log n
ER

Q. & A.[79] Hypercube O(log n) n
log n

- O(log n) n3

log n
-

For CREW PRAM, EREW PRAM, and Hypercube, we know the follow-

ing fact.

∗ It should be noted that the authors of [77] adopted the parallel prefix sum computation
by Ladner and Fisher [71] which takes O(log n) time, but with O(n) processors for Phase
1 of Algorithm 37. It is believed that the reference to [71] is incorrectly given, and the
authors meant an optimal EREW PRAM algorithm [57].

163
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Theorem 8.1.1. Prefix (or suffix) sums of n elements can be computed in

O(log n) time using O(n/ log n) processors.

Note that Theorem 8.1.1 also holds true with any associative operator

⊕, meaning that prefix minimum, for example, can be computed similarly,

when MIN operator is used instead of +.

Let us examine Algorithm 37, an EREW PRAM-type algorithm by Pe-

rumalla and Deo [77]. This can be viewed as a parallel version of Algorithm

3.

Algorithm 37 EREW PRAM Algorithm for 1D MSP

1: //Phase 1
2: for all Pi, where i← 1 to n/ log n in parallel do
3: compute prefix sum sum[1..n]
4: end for
5: //Phase 2
6: for all Pi, where i← 1 to n/ log n in parallel do
7: compute min[1..n] //min[i] = MIN {sum[0], ..sum[i− 1]}
8: end for
9: //Phase 3
10: for all Pi, where i← 1 to n/ log n in parallel do
11: compute cand[1..n] //cand[i] = sum[i]−min[i]
12: end for
13: //Phase 4
14: for all Pi, where i← 1 to n/ log n in parallel do
15: compute M [1..n] //M [i] = MAX {cand[1], ..cand[i]}
16: end for
17: output M [n]

Theorem 8.1.1 is applied to Phases 1,2 and 4, where the associative op-

erators +, MIN and MAX are used respectively, hence they take O(log n)

time each. Each processor in Phase 3 computes sum[x]−min[x] sequentially

log n times, hence it is O(log n) time too.

The hypercube algorithm by Qiu and Akl [79] follows essentially the same

framework, with some detailed techniques inherent to the hypercube model.

Qiu and Akl also presented similar results for other interconnection networks,

including pancakes and stars.
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Wen’s EREW PRAM algorithm [103] employs Smith’s recursive linear

time algorithm (Algorithm 5) [84] and does not separate four different phases.

Its full details are omitted.

When the one-dimensional MSP is solved in O(log n) time with O(n/ log n)

processors, it is fairly straightforward to extend to two-dimensions. In a two-

dimensional array of size n×n, there are O(n2) one-dimensional problems, i.e.

strips. We prepare O(n3/ log n) processors, where each group of O(n/ log n)

processors are assigned to solve each strip in O(log n) time. The total cost

is then O(n3).

8.2 Introduction: Mesh Algorithms for the 2D MSP

All the previous parallel algorithms for the MSP are extended from the par-

allel prefix sum algorithms for a specified architecture.

For an input array of size n×n, the mesh algorithm for the 2D prefix sums

(Algorithm 35) is non-optimal with Tpar = O(n) and P = O(n2). While this

parallel algorithm alone may not be considered efficient, its simplicity makes

it a good platform upon which we build a mesh algorithm for the MSP.

Considering that the sequential algorithms (Algorithm 9, Algorithm 8)

are O(n3) time, designing a mesh algorithm for the 2D MSP achieving O(n)

time with O(n2) processors is a worthwhile endeavor, which we set as the

objective of this chapter.

Such a mesh algorithm, at best, is arguably slower than other parallel

algorithms that achieve O(log n) time. Still, O(n) time computation with

much less number of processors poses a reasonable compromise between the

time and the hardware complexity. In addition, it is fairly straightforward to

build a VLSI circuit that embeds a mesh algorithm, implying that the parallel

algorithm of this type can be materialized at the fraction of the hardware

cost of other parallel algorithms.

Another justification for making an algorithm for the 2D MSP can be

made. It is known that the MSP, the distance matrix multiplication (DMM)

and the all-pairs shortest-paths (APSP) problems are of the same sequential

time complexity [89, 87, 94]. mesh algorithms for the matrix multiplication

[36, 78, 97, 98] and the APSP [92] all achieve Ω(n) time. We are naturally
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compelled to solve this problem in a similar manner.

We assume the same mesh model given in Figure 7.2.2. Each processing

unit, a cell is connected to four neighboring cells and exchanges data with

them.

This is an asynchronous array processing which uses the flow of data to

initiate the operation inside the cell, not the global control or global synchro-

nization [69]. As only directly connected cells are allowed to communicate,

no consideration for routing is required.

The data flow from one cell to its neighboring cells takes one communi-

cation step. The overall time spent by this network will be given in terms of

the total number of steps.

We start with choosing a sequential algorithm upon which the mesh al-

gorithm will be based. Kung [37] suggested a list of desirable properties of a

“good” sequential algorithm for mesh implementation. He stated a desirable

algorithm should

• be built upon a simple cell design

• not require many different types of cells

• have an iterative routine that is simple and regular

Iterative structure of Algorithm 8 and Algorithm 9 fit this criteria. The

sub-cubic algorithms [89, 94] are not favored due to divide-and-conquer, that

is, recursive nature.

In this chapter, we design a mesh algorithm based on Algorithm 8, which

can be trivially derived from the mesh prefix sum algorithm (Algorithm 35).

We also present a mesh-Kadane algorithm, a mesh implementation of Algo-

rithm 9 in the later part of this section.

8.3 Mesh Implementation of Algorithm 8

Algorithm 37 suggested that the MSP is solved by three phases of prefix

computation (Phases 1,2 and 4). By replacing the operator “+” with MIN

and MAX for Phase 2 and Phase 4 respectively, it is easy to see that three
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runs of Algorithm 35 can solve the MSP spending 3(m + n − 1) steps of

communication.

In this section, however, we show that m + n − 1 steps are sufficient.

This is only a constant factor improvement, not decreasing the asymptotic

time complexity. It should be noted, however, that when a mesh algorithm

is concerned, reduction by a constant factor is still regarded as a significant

improvement.

In comparison to Algorithm 35, each cell(i, j) has two more registers min

and M . We may prepare extra set of registers (r1, c1)|(r2, c2) to hold the

location of the subarray of sum M . For simplicity, let us neglect them in the

following description. Note that the register names follow the usage of the

variable names in Algorithm 8

Following the notation settled for Algorithm 35, we denote a register value

of an incoming packet with a subscript “in”, and each register of cell(i, j)

is denoted with a suffix (i, j), for example, a(i, j) etc. The register value at

step α is marked with a subscript “α” such as r(i, j)α.

The solid lines in Figure 8.1 deliver the value of a register, and the dotted

lines show how these registers are updated.
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Algorithm 38 Mesh version of Algorithm 8: Initialize and update registers
of cell(i, j)

Initialize:: cell(i, j) do begin

1: a(i, j)← a[i][j] //value assigned to cell(i, j), that is a[i][j]
2: r(i, j)← 0//row-wise sum a[i][1] + .. + a[i][j]
3: s(i, j)← 0//prefix sum
4: min(i, j)← 0//minimum prefix sum
5: M(i, j)← 0//Maximum sum

end
Update:: cell(i, j) do begin

6: if cell(i, j) is active then
7: r(i, j)← rin(i, j − 1) + a(i, j)
8: min(i, j)← MIN {sin(i, j − 1),minin(i, j − 1)}
9: s(i, j)← sin(i− 1, j) + r(i, j)
10: cand(i, j)← s(i, j)−min(i, j)
11: M(i, j)← MAX {Min(i− 1, j),Min(i, j − 1),M(i, j), cand(i, j)}
12: end if

end

8.3.1 Initialization

We assume there is a zeroth row and column in the input array, such that

the input data a[0][1..n] = 0 and a[1..m][0] = 0. We also assume that each

cell is aware of its coordinates (i, j).

Actually, cells not on the boundary of the network have no direct com-

munication line to the input array, hence line 1 is not executable. For the

sake of simple description, for now, we assume that the input array is already

residing in the network. We address the data loading issue in detail later in

Section 9.2.

When initiated, a(i, j) loads a[i][j], and all others are initialized to 0.

8.3.2 Update

The update routine is an extended version of Algorithm 35. Instead of hav-

ing separate three phases of parallel prefix computation exemplified in Al-

gorithm 37, we integrate prefix sums, prefix minimum, and prefix maximum

computations into one phase processing. Lines 8, 10 and 11 are the addi-
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tional operations for such an integration. Since separated runs of similar

prefix computations would require three times more communications, this

integrated one-phase processing reduces the total number of communication

steps, effectively maximizing the system throughput.

The control signal is initiated at the left boundary and propagated to-

wards right each step, triggering the vertical data flow. Each cell in a column

receives the control signal simultaneously from the left column. Active cells

are those which received the control signal. Once activated, they remain

active throughout the process.

The horizontal data flow is responsible for the prefix sum in each row,

while the vertical data flow takes care of the strip prefix sums. Specifically, a

packet sent to right contains register values r, s, min and M , and the other

sent down delivers s and M . Note that M is sent in both directions.

8.3.3 Boundary

In this mesh algorithm, each cell receives data from up and left neighbors,

meaning that the cells on the left and top boundary will try to receive data

from outside the network. However, a special treatment to the cells on the

boundary should be avoided to keep every cell homogeneous. Maintaining

homogeneity not only results in simpler hardware implementation, but also

ensures good modularity and regularity, two essential properties to make the

network indefinitely extensible. We resolve this issue by the imaginary 0-th

row and 0-th column and appropriate register initialization. While the cells

on the boundary gets data flows from these imaginary cells, the incoming

register values should not affect the correct computation.

8.3.4 Analysis

To prove the correctness of Algorithm 38, we identify the invariant of each

register at a specific time.

Register r(i, j) at step α Register r(i, j) maintains the row-wise prefix

sum. This register remains the initial value 0 until step j, when it receives



170 Chapter 8

r(i, j−1)j−1 from its left neighbor. At step j and onwards, the value of r(i, j)

remains unchanged. It is easy to see that,

r(i, j)α =

j
∑

q=1

a(i, q)

Register s(i, j) at step α Register s(i, j) is designed to maintain the sum

of row-wise prefix sums. At step j, s(i, j) = r(i, j). Each subsequent step,

s(i− 1, j) from the upper neighbor is delivered and added to r(i, j).

s(i, j)α =
i

∑

p=i+j−α

r(p, j) =
i

∑

p=i+j−α

j
∑

q=1

a(p, q)

If p = i + j − α ≤ 0, we reset p and start from 1. At step j, the value of

s(i, j) is the strip prefix sum sumi,i[j]. Each step, the top-boundary of strip

extends one row, such that sumi−1,i[j] at step j + 1, sumi−2,i[j] at step j + 2

etc.

We can formulate the value of s(i, j) as follows.

Lemma 8.3.1. s(i, j)α = sumg,i[j] ,where g = MAX {1, i + j − α}

At step (i + j − 1), s(i, j) = sum1,i[j], the prefix sum. This proves the

correctness of Algorithm 35.

Register min(i, j) at step α Due to line 8, min(i, j)α is computed by the

following operation, which we simplify.

min(i, j)α = MIN {s(i, j − 1)α−1,min(i, j − 1)α−1}
= MIN {s(i, j − 1)α−1, MIN {s(i, j − 2)α−2,min(i, j − 2)α−2}}
= MIN {s(i, j − 1)α−1, s(i, j − 2)α−2,min(i, j − 2)α−2} = ...

= MIN {s(i, j − 1)α−1, s(i, j − 2)α−2, .., s(i, 1)α−j+1, s(i, 0)α−j}
= MIN

0≤q≤j−1
{s(i, q)α−j+q}

Combining with Lemma 8.3.1, we establish an invariant of min(i, j)α.
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Lemma 8.3.2. min(i, j)α = MIN0≤q≤j−1 {sumg,i[q]} ,where g = MAX {1, i+
j − α}

Lemma 8.3.2 means that the minimum of prefix sums in sumg,i[0..j − 1]

is stored in min(i, j)α.

Register cand(i, j) at step α Notice that both s(i, j)α and min(i, j)α are

specific to the same strip that spans from row g to i, and the subtraction of

s(i, j)α − min(i, j)α produces cand(i, j), the candidate maximum subarray

in that strip.

Lemma 8.3.3. cand(i, j)α = sumg,i[j]−MIN {sumg,i[0..j − 1]} ,where g =

MAX {1, i + j − α}

Register M(i, j) at step α Due to line 11, M(i, j)α is computed by se-

lecting the maximum of the four values.

M(i, j)α = MAX {M(i− 1, j)α−1,M(i, j − 1)α−1,M(i, j)α−1, cand(i, j)α}

To simplify this, we first remove M(i, j)α−1 using the recurrence relation

and get,

M(i, j)α = MAX {M(i− 1, j)0..α−1,M(i, j − 1)0..α−1, cand(i, j)1..α}

We further simplify the recurrence relation. Notice that we can leave only

cand(i, j)j..α as cell(i, j) is not active until step j, nullifying cand(i, j)1..j−1.

M(i, j)α = MAX
1≤p≤i,1≤q≤j

{0, cand(p, q)q..β} , where β = α + (p + q)− (i + j)

Combining this with Lemma 8.3.3, we have the following lemma.

Lemma 8.3.4. M(i, j)α is the maximum sum in a[g..i][1..j] ,where g =

MAX {1, i + j − α}

The maximum sum in a[1..i][1..j] is found in M(i, j) when g = 1, which

is at step=i + j − 1. The maximum sum in the whole array is then retrieved

from M(m,n) at step m + n− 1.
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Theorem 8.3.5. Algorithm 38 computes the maximum sum of a[1..m][1..n]

in m + n− 1 steps, and returns M(m,n)m+n−1 as the solution.

8.4 Mesh Implementation of Algorithm 9: Mesh-Kadane

Another version of mesh algorithm based on Algorithm 9, namely mesh-

Kadane algorithm can be similarly designed.

8.4.1 Cell and its registers

Each cell(i, j) has six registers a, p, t,M, g and h. These register names are

the same as the variables in Algorithm 9. Their specific roles are described

in Algorithm 39.

The visual configuration of a cell may be similar to Figure 8.2. The

solid lines in this figure show how the values of each register are conveyed

and dotted line shows how a control signal is delivered. The control unit

performs the operation, and controls the flow of data. Each small square on

the line holds the current value of a register and send it to the control unit

and the neighboring cells.

Again, the register of an incoming packet is marked with a subscript “in”

such as pin(i, j). The register value at step α is marked with a subscript “α”.

Let the scope stand for the region that corresponds to a specific register.



8.4 Mesh Implementation of Algorithm 9: Mesh-Kadane 173

i

j

m

g(i,j)

h(i,j) j+1 n

i+1

cell(i,j)

scope of

scope of

t(i,j)

p(i,j)

Figure 8.3: The scopes of p(i, j) and t(i, j) and scope registers g(i, j) and
h(i, j)

For example, (r1, c1)|(r2, c2) is the scope of M(i, j). For simplicity, we only

focus on the maximum sum, leaving the location of the maximum subarray

(r1, c1)|(r2, c2) out of our discussion in the following description.

The registers g(i, j) and h(i, j) are scope registers. The scope of p(i, j)

is (g(i, j), j)|(i, j) and that of t(i, j) is (g(i, j), h(i, j))|(i, j). In Figure 8.3,

the scope of t(i, j) is the rectangle surrounded by thicker lines, whereas the

scope of p(i, j) is the shaded rectangle.

The basic idea of our parallel algorithm is to execute Kadane’s algorithm

on horizontal strips in parallel, while propagating candidate maximum sum

values down and right. Each cell has two operation routines, Initialize and

Update. We show that asynchronous operation of cells correctly computes

the maximum subarray. We describe each cell operation routine in Algorithm

39, which is executed for all i and j in parallel.

8.4.2 Initialization

Before initialization, we assume that the input array has the auxiliary 0-th

row and 0-th column, such that a[0][1..n] = 0 and a[1..m][0] = 0, and the

network also has corresponding 0-th row and column. Initialize routine in

Algorithm 39 is designed to work universally.

When cell(i, j) is initialized, for 0 ≤ i ≤ m and 0 ≤ j ≤ n, the value of
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Algorithm 39 Initialize and update registers of cell(i, j)

Initialize:: cell(i, j) do begin

1: a(i, j)← a[i][j] //value assigned to cell(i, j), that is a[i][j]
2: p(i, j)← 0 //column-wise sum a[g][j] + ..a[i][j]
3: t(i, j)← 0 //horizontal accumulation of p’s
4: g(i, j)← i+1 //g-th row is the top of the scope of p(i, j) and t(i, j)
5: h(i, j)← j+1 //h-th column is the left boundary of the scope of t(i, j)
6: M(i, j)← 0 //the largest sum found so far

end
Update:: cell(i, j) do begin

7: if cell(i, j) is active then
8: /∗ Vertical Data flow ∗/
9: p(i, j)← pin(i-1, j) + a(i, j)
10: g(i, j)← gin(i-1, j)
11: /∗ Horizontal Data flow ∗/
12: t(i, j)← tin(i, j-1) + p(i, j)
13: if t(i, j) > 0 then h(i, j)← hin(i, j-1)
14: else t(i, j)← 0, h(i, j)← j+1
15: /∗ Update M(i, j) ∗/
16: M(i, j)← MAX {Min(i-1, j),Min(i, j-1),M(i, j), t(i, j)}
17: end if

end

a[i][j] is copied to a(i, j) (line 1). The register p(i, j) and t(i, j) are set to

0. The scope registers g and h indicate where the scope begins, thus need to

be at least 1. They are initialized by line 4 and 5. The scopes of p(i, j) and

t(i, j) are initially empty. Finally, the current maximum sum, M(i, j) is set

to 0.

8.4.3 Update

The flow of data takes place in two directions- from up and left. Update is

performed when a cell gets data flow from its neighboring cells. In addition,

we discuss how we deal with the cells on the top and the left boundaries

which have no neighboring cells to receive register values from. Finally, we

show the area obtained by this data flow policy is a legitimate subarray, a

rectangle.
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The control signal is transmitted in the same way as the first mesh algo-

rithm (Algorithm 38).

Vertical data flow

The vertical data flow manages computation of the column-wise partial sum

p(i, j) and delivery of the current maximum sum M(i, j) and the scope reg-

ister g(i, j). This data flow is triggered by the control signal.

If cell(i, j) is active, it causes p(i, j)← pin(i− 1, j) + a(i, j), i.e., receives

the column-wise partial sum of the upper neighbor and adds a(i, j) to it.

(line 9).

Suppose the scope of p(i, j)α, which is p(i, j) at step α, is (x + 1, j)|(i, j).
It implies that g(i, j)α = x + 1 as shown in Figure 8.4. Then the scope of

p(i−1, j)α is (x, j)|(i−1, j), implying g(i−1, j)α = x. By adding pin(i−1, j)

and a(i, j), the scope of p(i, j) effectively extends one cell upwards causing

g(i, j)α+1 = x . Note that the scope of p(i, j)α has the equal length for every

i in the same column.

The vertical data flow also delivers the value Min(i−1, j) for the selection

of the maximum sum M(i, j) given in line 16.

Horizontal data flow

The horizontal data flow is the core of this algorithm which performs the

original Kadane’s solution. The data flow in this direction delivers t(i, j),

h(i, j) as well as M(i, j).
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Figure 8.5 illustrates how t(i, j) is updated in general case, where cell(i, j)

gets the data flow from both directions, left and up.

Let us assume that at step α, the register t of the left neighbor, t(i, j−1)α,

has the scope (x, y)|(i, j−1) shaded in light gray. At the same time, the scope

of p(i, j)α is (x+1, j)|(i, j) shaded in dark gray. Relevant scope registers are

g(i, j − 1)α = x, h(i, j − 1)α = y and g(i, j)α = x + 1 respectively.

At step α + 1, the value of t(i, j − 1)α travels to cell(i, j). This incoming

value is denoted by tin(i, j − 1). Meanwhile, the scope of p(i, j)α extends

one cell upwards and p(i, j)α+1 is obtained as shown in Figure 8.4. Then the

vertical scope of tin(i, j − 1) is precisely aligned with the scope of p(i, j)α+1,

forming a rectangular merged area (x, y)|(i, j). When t(i, j)α+1 is computed

by line 12, this area becomes the scope of t(i, j)α+1.

Following the idea of Algorithm 9, if t(i, j)α+1 is non-positive, we no longer

need to keep this value. In this case, we reset t(i, j)α+1 to 0. Depending on

the value of t(i, j)α+1, the scope register h(i, j)α+1 is updated accordingly

(lines 13, 14).

During the horizontal data flow, the value of maximum sum computed at

the left neighbor is received. This value Min(i, j−1) along with Min(i−1, j)

obtained from the vertical data flow are compared with the locally computed

t(i, j) and the current M(i, j) to select the largest (line 16). In Section 8.4.4,

we show the correct maximum sum is obtained this way.
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Timing

As shown in Algorithm 39 as well as Figure 8.5, p(i, j) is updated prior to

t(i, j). The i-th row of the array lags one step behind the (i− 1)-th row, and

the j-th column lags one step behind the (j − 1)-th column. The data flow

in both directions takes exactly one step. This ensures that tin(i, j − 1) and

p(i, j) are available when t(i, j) is updated.

Final Solution

After m + n − 1 steps, all the data flow inside the network is completed

and the final solution for the whole array a[1..m][1..n] is held by the register

M(m,n). Details of time analysis is given in the next section.

8.4.4 Correctness of Algorithm 39

We define the invariants of each register of cell(i, j) when the current time α

exceeds the column number j (α ≥ j). In other cases, each register retains

its initial value. With the invariants, we prove that Algorithm 39 correctly

computes the maximum subarray.

Register g(i, j) at step α The initial value of g(i, j), g(i, j)0, is i + 1

(line 4) and receives the value of g(i − 1, j)α−1 from up to obtain g(i, j)α.

The reception of g(i − 1, j)α−1 starts at step α = j when cell(i, j) becomes

active. This effectively decreases the value of g(i, j) by 1 each step. Note

that g(i, j)α can not be less than g(0, j), whose value is initialized and fixed

at 1. It is α = i + j − 1 when g(i, j)α becomes 1. Once this point is reached,

we consider this cell has completed the column-wise computation.

The value of g(i, j) at step α is defined by,

g(i, j)α = i + 1− (α− j + 1) = i + j − α (8.1)
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Register p(i, j) at step α p(i, j) at step α is the column-wise partial sum

of a[g(i, j)α..i][j], which is expressed as:

p(i, j)α =
i

∑

q=g(i,j)α

a(q, j) (8.2)

Register h(i, j) and t(i, j) at step α As suggested by lines 13 and 14 of

Algorithm 39, the register h(i, j) and t(i, j) are inter-related. Depending on

the value of t(i, j), the way h(i, j) is updated is affected. On the other hand,

h(i, j) defines the scope of t(i, j) such that t(i, j) may represent the sum of

subarray (g(i, j), h(i, j))|(i, j).
The line 12 of the algorithm dictates how t(i, j) is updated.

t(i, j)α = p(i, j)α + t(i, j − 1)α−1

This is naturally equivalent to

t(i, j)α =p(i, j)α + p(i, j − 1)α−1 + ... + p(i, h(i, j)α)α−(j−h(i,j)α)

=

j
∑

r=h(i,j)α

p(i, r)α−j+r (8.3)

By definition, the invariant of t(i, j) at step α is given as follows. For

simplicity, let us assume t(i, j)α is 0 when h(i, j)α > j. Note that line 13 sets

h(i, j) ← j + 1 if t(i, j) is non-positive. So the resulting t(i, j) is always at

least 0.

t(i, j)α =
i

∑

q=g(i,j)α

j
∑

r=h(i,j)α

a(q, r) (8.4)

Combining (8.1),(8.2) and (8.3), we can show that (8.3) and (8.4) are

equivalent, which proves that the algorithm computes t(i, j) correctly.

As t(i, j)α, the sum of subarray (g(i, j)α, h(i, j)α)|(i, j), is the correct

representation of t in Algorithm 9, it inherits the same characteristics of t

given in Corollary 2.2.1, therefore,

Corollary 8.4.1. t(i, j)α is the maximum sum that ends at a[i][j] with the

top boundary g(i, j)α.
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When the top boundary g(i, j)α is fixed, no subarray (g(i, j)α, x)(i, j) for

x 6= h(i, j)α has greater sum than t(i, j)α. In order words, h(i, j)α decides

the scope that maximizes t(i, j)α.

Register M(i, j) at step α In Algorithm 39, the value of M(i, j) at step

α is obtained by,

M(i, j)α = MAX {M(i− 1, j)α−1,M(i, j − 1)α−1,M(i, j)α−1, t(i, j)α}
(8.5)

We prove that M(i, j) obtained from the above computation is the correct

maximum sum.

For simplicity, let us introduce a term coverage. Suppose we have exam-

ined the array portion from a[e][f ] to a[i][j], i.e., (e, f)|(i, j), and found the

maximum sum M whose scope is (r1,, c1)|(r2, c2). Certainly, we refer to M as

the maximum sum within (e, f)|(i, j). Here, let (e, f)|(i, j) be the coverage

of the maximum sum M .

In the context of mesh solution, after the coverage (e, f)|(i, j) has been

examined, we want the maximum sum M to be available at cell(i, j). More

specifically, we want M(i, j) to be the true representation of M in Algo-

rithm 9 such that it is the maximum sum within the coverage (e, f)|(i, j).
For example, after the mesh network completes the whole process, we will

have found the value of M(m,n), the maximum sum within the coverage

(1, 1)|(m,n), the whole array.

Lemma 8.4.2. The coverage of M(i, j)α is (g(i, j)α, 1)|(i, j).

Proof. Suppose the coverage of M(i, j) is (e, f)|(i, j). It takes one step for

the register values of cell(i−1, j) and cell(i, j−1) to arrive at cell(i, j). These

incoming register values were made one step earlier such as M(i − 1, j)α−1

and M(i, j − 1)α−1. Inductively, it is observed that the register values of

cell(i − i1, j − j1) arriving at cell(i, j) at step α are those made at step

α− (i1 + j1), such as M(i− i1, j − j1)α−(i1+j1) etc.

For (e, f)|(i, j) to be the coverage of M(i, j)α, cell(e, f) should be located

(α − 1) steps away from cell(i, j) such that the register values of cell(e, f),

such as M(e, f)1, may arrive at cell(i, j) taking (α− 1) steps.
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Figure 8.6: Computation of M(i, j)α

At step α, the top boundary of the scope of t(i, j)α and p(i, j)α is g(i, j)α

meaning that cell(i, j) has received data originated from up as far as g(i, j)α.

Since cell(g(i, j)α, j) is the farthest cell in the same column whose register

values could reach cell(i, j), the top boundary of the coverage of M(i, j)α is

e = g(i, j)α.

Due to e = g(i, j)α, the vertical distance between cell(e, f) and cell(i, j) is

i−g(i, j)α. Then the horizontal distance, (j−f), should be α−1−(i−g(i, j)α).

From (8.1), f = 1.

Now we prove M(i, j)α computed by (8.5) is the correct maximum sum.

Due to Lemma 8.4.2, the coverage of M(i−1, j)α−1 is (g(i−1, j)α−1, 1)|(i−
1, j) and the coverage of M(i, j − 1)α−1 is (g(i, j − 1)α−1, 1)|(i, j − 1). From

(8.1), we know that g(i, j)α = g(i−1, j)α−1 = g(i, j−1)α−1. Let g(i, j)α = x.

The scope of t(i, j)α shares the same top boundary x and the coverage of

M(i, j)α−1 is (x + 1, 1)|(i, j). These four areas are shown in Figure 8.6. Let

us assume M(i, j)α−1, M(i, j − 1)α−1 and M(i − 1, j)α−1 are the maximum

sum found within their own coverage. Due to Corollary 8.4.1, t(i, j)α is the

maximum sum ending at a[i][j] with the top boundary x. Inductively, the

largest of four must be the maximum sum within the coverage (x, 1)|(i, j),
which proves the correctness of (8.5), and Algorithm 39.
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8.4.5 Analysis: Total Communication Cost

Let T be the total number of data flow steps required for the computation for

whole array. When the whole process in the mesh network is complete, i.e.,

at step T , the network has examined all candidate subarrays as Algorithm

9 does sequentially, and the register value M(m,n)T is the maximum sum

within the coverage (1, 1)|(m,n), the whole array a.

The top boundary of the coverage is g(m,n)T . To find T satisfying

g(m,n)T = 1, we apply (8.1) such that g(m,n)T = m + n − T = 1. Solving

this equation, T = m + n− 1.

We conclude that this algorithm solves the maximum subarray problem

in O(n) time with a mesh network of O(n2) size. The solution is found at

M(m,n). In the snapshot shown in Section 8.6, at step=7, M(4, 4) is the

maximum subarray, that is 17(3, 1)|(4, 3).

8.5 Summary of Results

We have discussed previous parallel algorithms for the MSP and presented

two new mesh algorithms for the 2D MSP. They both achieve O(n) time

with a mesh network of size O(n2). These mesh algorithms are designed

to minimize the communication cost by integrating several parallel prefix

computations, and achieve 2n − 1 steps in total for an input array of size

n× n.

In terms of the time and hardware complexity, these two mesh algorithms

are equivalent, while Algorithm 38 is conceptually easier to follow. Algorithm

39 is, however, of some historical value in a sense that it is the first parallel

algorithm based on a classical work by Jay Kadane. Indeed, Algorithm 39

was designed first and its preliminary version was published in [6] prior to

[7] which presented an earlier form of Algorithm 38.

These mesh algorithms are not as fast as O(log n) time parallel algorithms

previously developed, but require less number of processing units and pro-

vide better practicality. Their regular interconnected structure and modular

design are desirable characteristics for a hardware implementation whereas

previous solutions are in the realm of pure theoretics or at best, expensive to
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realize. Weddell and Langford, from the department of Electrical and Com-

puter Engineering at the University of Canterbury, implemented Algorithm

39 on a Virtex-II, FPGA , and experimentally demonstrated the validity

of the design [101].

So far, we intentionally avoided addressing the data loading issue and

assumed that the input array is loaded onto the network before the compu-

tation. The data loading issue as well as further enhancements to these mesh

algorithms will be given in the next chapter.

8.6 Example: Trace of Algorithm 39

Snapshots taken from a Java simulator running Algorithm 39 for a 4×4 input

array. The input array is pre-loaded onto the network.The arrow indicates

the direction of the data flow. The value in larger font is a register. Cells

activated are shaded. The set of coordinates next to the value of s register

represents the location. The second set being (0,0) indicates no subarray of

positive sum has been found.
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Figure 8.7: Example: Trace of Algorithm 39

At step 7, M(4, 4) and its associated coordinates represent the maximum
subarray 21(3, 2)|(4, 3).
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Enhancements to the Mesh MSP Algorithms

9.1 Introduction

In this chapter, we describe possible extensions and enhancements to the

mesh MSP algorithms. The correctness of the mesh MSP algorithms were

already proved. However, there are two details that need to be addressed to

utilize these algorithms in practice. The first is the data loading issue, which

we discuss in Section 9.2. Secondly, in Section 9.3, we show how to run these

algorithms on a coarse-grained mesh. This is particularly important to be

able to process the input array larger than the available mesh network. We

then present a constant factor improved version of Algorithm 38 by employing

bi-directional horizontal data flow in Section 9.4. The remaining part of this

chapter will give a description of modified mesh MSP algorithms to compute

K maximum subarrays.

9.2 Data Loading

So far it has been assumed that the each cell in the network is initialized

and an input array element a[i][j] (1 ≤ i ≤ m, 1 ≤ j ≤ n) is loaded onto the

corresponding cell of the network, cell[i][j], before the actual computation at

no cost. Consequently, the aforementioned time analysis did not count data

loading cost. In practice, the time for data loading should be considered as

another factor that affects the overall performance.

A problem involved in data loading is due to the structure of the mesh

network. Since the network consists of cells which have only four connec-

tions with neighboring cells, direct loading from the input array a[i][j] into

cell[i][j] is prohibited. Only cells on the boundary may accept input data

187
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from external sources.

We suggest a separate parallel data loader to resolve this issue. We as-

sume a parallel data loader similar to linear image sensors which are com-

monly found in scanning applications such as paper copiers, fax machines,

and film scanners [75]. This model has m cells itself, and scans the input

array a column at a time and injects these values simultaneously through the

connections from the right boundary of the network in one step, so that the

network can gradually build up a full array.

The first column of the input array is loaded onto the n-th column of the

network. When the next column of the input array is loaded, the current

data in the n-th column of the network shift left to evacuate the space for

the new one. This way, all input array elements can be loaded in n steps. If

we perform Algorithm 38 or Algorithm 39 after the data loading is complete,

it needs T = m + 2n− 1 steps for the whole process.

Now we describe how we eliminate these extra n steps.

In Algorithms 38 and 39, the column j receives the control signal at step

j, and only active cells perform data flows. Non-active cells sit idle until they

become active. We observe the following.

Lemma 9.2.1. The j-th column of the input array a[1..m][j] is not necessary

to compute Algorithm 38 and 39 until step j.

With the parallel data loader, the first j columns of the input array

are loaded onto the network by step j. All required data for executing the

algorithm for this step are already available, so we do not need to wait for

the data loading to complete. We instead, execute the algorithm on-the-fly

and optimize overall throughput of the network.

The parallel data loader fetches the α-th column of the input array at step

α − 1, such that this column can enter the network at the next step. Then

at step α (1 ≤ α ≤ n), as shown in Figure 9.1(a), the columns 1..α of the

input array are accommodated by the columns (n−α+1)..n of the network.

This part of the network may be viewed as a virtual network. Note that, for

j ≤ α, the j-th column of the input array is found in the j-th column of the

virtual network.

The (n−α+1)-th column of the “actual” network is then regarded as the
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At step=2

1. Fetch column 3

Virtual address: 1

Actual address : n−2+1
2. Load and Shift

Data Loader

Input Array aVirtual Network
Actual Network

(a) At step = 2(≤ n): Phase in

 

At step=n

NULL

Data Loader

Input Array a

(b) At step = α = n: Total Eclipse

Figure 9.1: Parallel Data Loading

first column of the virtual network. We let this virtual network emulate step

α of the mesh algorithm . In general, the j-th column (j ≤ α) of the virtual

network is actually located in the (n − α + j)-th column of the network at

step α.

By step n, all n columns of the input array have been loaded and the

network is totally eclipsed by the virtual one as shown in Figure 9.1(b).

Note that from this point on, the parallel data loader simply prepares null

data and feeds them to the network at the subsequent step. When a column

of null data is loaded onto the network, the data occupying the first column

of the network are phased out and the data in the rest of columns shift left.

One column of the input array stays in the network for n steps before it



190 Chapter 9

is eventually phased out. It is step 2n when the n-th column will leave the

network, but we never reach this point as 2n > m + n − 1(= T ) due to the

assumption m ≤ n.

Phasing out has no ill-effect on the correctness of the algorithm. The j-th

column of the input array enters the network at step j and shifts to the left

each step. It eventually phases out at step n+j, meaning that it stays within

the network for n steps. All horizontal data flow needed for this column is

done within this time frame. Similarly, all vertical data flow for this column

takes m − 1 steps, which can be done within these n steps since m ≤ n is

assumed.

It has been discussed that we can achieve T = m + n− 1 steps with data

loading inclusive.

We now design a modified network that can accommodate this idea. Un-

like the previous design, cell(i, j) will be no longer hard-wired to one specific

array element, a[i][j]. It will only store a[i][j′], one of a[i][1..n] at one step

and pass it to its neighbor at the next step. Thus each cell is provided with

an extra register j′ to learn which element it is currently processing. Cer-

tainly, the horizontal data flow will be in the opposite direction, towards left,

and it needs to deliver a register value as well as this new j′ register value.

The downwards data flow in the original design needs to change the di-

rection. To illustrate the situation, let us consider a classical example in

physics. Imagine a train that is moving along at a constant speed from right

to left. A ball is suspended by a wire attached to the ceiling. When we

cut the wire, it falls straight down to the floor, since the initial horizontal

velocity of the ball relative to the train is zero.In theory, the ball moves at

the same horizontal speed as the train as it falls, but so do the ceiling and

the floor. The downwards data flow from the i-th row to the (i + 1)-th row

can be regarded as the falling ball from the ceiling to the floor. In both rows,

we have data moving to the left at constant speed, one column at a step.

These two rows should see this downwards data flow as the straight-down

movement. To do so, we provide the connections between two rows in the

down-left direction as shown in Figure 9.2.
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m

n

Data Loader

Figure 9.2: Revised mesh network with run-time data loading support

Modifying Algorithm 39

In the following description, let us discuss how Algorithm 39 can be accom-

modated by the revised mesh network.

When a cell receives data flow from its right and upper-right neighbors, it

receives the register values of a, j′ and M from the right, and p, g and M from

the upper-right. Note that t register value no longer needs to be delivered

in either direction. We give a detailed description of the the parallel data

loader and revised update policy for each cell in Algorithm 40 and Algorithm

41 respectively. Both are executed in parallel for all i or for all i and j

respectively.

Algorithm 40 Loading input array into the mesh

Load(col):: loader[i] do begin
//col is the column to be loaded. If α < n, col = α + 1. Otherwise col = 0
and we load a set of null data

1: j′ ← col
2: a← a[i][j′]
3: p, t,M ← 0
4: g ← i+1
5: h← j′+1

end

One may notice a similarity between Algorithm 40 and Initialize routine

in Algorithm 39. In fact, the data loader is designed to initialize registers

on behalf of cells in the network. We explain this shortly. The parallel
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Algorithm 41 Revised routine for cell(i, j) for run-time data loading

Update:: cell(i, j) do begin

1: /∗ Data flow from right ∗/
2: j′(i, j)← j′in(i, j+1)
3: a(i, j)← ain(i, j+1)
4: /∗ Data flow from upper-right ∗/
5: p(i, j)← pin(i-1, j+1) + a(i, j)
6: g(i, j)← gin(i-1, j+1)
7: /∗ Check if null data received ∗/
8: if j′(i, j) = 0 //received null data then
9: /∗ Skip internal computation. Results in t(i, j) = M(i, j) = 0 and

h(i, j) = 1 ∗/
10: h(i, j)← hin(i, j+1), t(i, j)← tin(i, j+1), M(i, j)←Min(i, j+1)
11: else
12: /∗ Internal Computation ∗/
13: t(i, j)← t(i, j) + p(i, j)
14: if t(i, j) ≤ 0 then t(i, j)← 0, h(i, j)← j′(i, j)+1
15: /∗ Update M(i, j) ∗/
16: M(i, j)← MAX {Min(i-1, j+1),M(i, j),Min(i, j+1), t(i, j)}
17: end if

end

loader consists of m components and each handles the array element in the

corresponding row. Each component, loader[i] (0 ≤ i ≤ m) has an alias,

cell(i, n+1), and has the same set of registers and compatible data flow in-

terface as ordinary cells in the network. The a register of loader[i], for

example, is seen as a(i, n+1) by cell(i, n) performing Algorithm 41.

Since the data flow from a loading component to the connected cell in

the network also takes 1 step, each component of the data loader, loader[i],

fetches the first column of the array at step 0 and initializes its own registers.

These register values are loaded on to the n-th column of the network at step

1. Note here that t(i, n)1 is the sum of t(i, n)0 and p(i, n)1. While t(i, n)0

was not explicitly defined, for now, we assume its value is 0. We later show

that this assumption is valid.

In general, at step=α, the fetched array element is a[i][α + 1] if α < n.

When there is no remaining data to process, the loader prepares a set of null

data to signal the end of computation. This null data travels the network
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just like ordinary set of register values. When a cell receives this null data,

as shown in line 8 of Algorithm 41, it regards this as a terminating signal and

skips the internal computation. Instead, it passively copies the received set of

register values, which effectively initializes the registers. Then this cell relays

the null data to the left neighbor, effectively causing gradual initialization of

the entire network. This explains the lack of an explicit initialization routine

in Algorithm 41.

When a new input array needs to be processed right after the computa-

tion for one input is complete, the data loader prepares the null data only

once, and starts processing the new input in the next step. With this one

interleaving step, each column of the network will have been initialized just-

in-time, one step before the arrival of new data, meaning that no more than

one step delay is required before processing a new input. Once the network

is ready to accept a new input, it is therefore t(i, n)0 = 0. Effectively, such a

pipelining operation maximizes the throughput of the network.

Note that there is a dummy 0-th row in both network and the loader.

This is to provide every cell in the network with homogeneous intercon-

nection settings. Cells in this row, cell(0, 1..n), do not perform any update

operation, but supply register values to the neighbor cells below. Specifically,

p(0, 1..n) = M(0, 1..n) = 0 and g(0, 1..n) = 1.

With this modification, the n-th column of the input array enters the

mesh network at step n and is located at the n − m + 1-th column of the

network at step m + n− 1. The maximum sum and its location can then be

retrieved from cell(m,m + n− 1).

Figure 9.3 show the trace of running Algorithm 41 in conjunction with

Algorithm 40. The same input in Figure 8.7 is used. M(4, 1) and its asso-

ciated coordinates at step 7 represent the maximum subarray 21(3, 2)|(4, 3).

We assume that the network has processed a stream of null data previously,

and every cell is initialized. In practice, only the n(= 4)-th column needs to

be initialized, which can be done by loading a set of null data one step before

the process. For the same reason, the network is ready to accept a new input

at step 5.
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Figure 9.3: Example: Trace of Algorithm 41
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We conclude this revised algorithm running on the modified network cor-

rectly computes the maximum subarray with no extra time for data loading.

A cell in this revised network strictly communicates only with its neigh-

bors following the structural definition of the mesh model, accomplishing

completely asynchronous operation throughout. Similar modification to Al-

gorithm 38 can be made, whose details are omitted.

9.3 Coarse-grained Mesh: Handling Large Array

It has been shown that the maximum subarray in a two-dimensional array

of size m×n is computed by a mesh network consisting of m×n cells, i.e. a

fine-grained mesh. This size is far below the requirement of O(n3/ log n) size

by previous parallel solutions [103, 77, 79], and each processing unit used in

this solution is simple enough so that modern technology can include millions

of them in a single VLSI chip.

For any given array, however, there often arise situations where the size

of the network available is not as large as the size of the problem. When the

input array is larger than the network capacity, appropriate “segmenting” is

necessary to fit the input array into the network [69], and we run the mesh

algorithm on the coarse-grained mesh.

We divide the array of size (m,n) into arrays of size (r1, r2) as shown in

Figure 9.4. There are (m/r1) × (n/r2) such segments. Each segment may

itself be a smaller mesh network of size (r1, r2) that processes the mesh algo-

rithm (Algorithm 39) or a single processing unit that emulates it sequentially.

The former option may be useful when the hardware implementation of this

solution is available in quantity. Such a hardware version (e.g. a VLSI chip)

will have a fixed size, so many of them can be interconnected to form a

larger mesh network to fit the problem size. This is due to the homogeneous

interconnection pattern of the mesh network offering good modularity and

regularity. The second option may be practiced in a distributed network

where each unit is programmable (e.g. a PC) to handle variable size of the

segment.

In this arrangement on each parallel step, some of the data flows are taken

place inside the segment while others are made between segments. As these
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Figure 9.4: Segmenting into r1 × r2 arrays

two data flows may have different speed, let us separate the time spent inside

the segment (T1) and the time spent between segments (T2) respectively for

one step. The time for one step is dependent on the slower speed of the two,

i.e., O(max(T1, T2)) or simply O(T1 + T2). For simplicity, let m = n and

r1 = r2 = r for further analysis.

When a segment itself is a mesh network of size (r, r), the interconnected

segments behaves as if it was a mesh network of size (n, n). We simply follow

the algorithm and the total time after 2n− 1 steps is O ((T1 + T2)n) = O(n)

since (T1 + T2) is a constant coefficient.

When a segment is emulated by a single processing unit, each of p = n2/r2

(1 ≤ p ≤ n2) processors spends T1 = O(r2) time to emulate one parallel step.

The processing unit assigned to the segment controls the data flow to the

neighboring segments, making T2 = O (rτ) time where τ is the time to deliver

a group of register values of one cell (r(i, j), t(i, j), etc.) to the neighboring

segment.

Total time after 2n − 1 steps is O ((T1 + T2)n) = O ((r2 + rτ)n). When

τ < r, T2 is absorbed into T1 making the total time O(r2n) = O(n3/p). This

is O(r2) times slower than the full parallel execution whose time is O(n),

but still gains O(p) times of speedup compared with O(n3) time by a single

processor performing a sequential algorithm. We conclude that our mesh

algorithms are scalable in a sense that they can handle an input array larger

than the capacity of the hardware [69].
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9.4 Improvement to Algorithm 38

The mesh architecture provides limited inter-processor communication, fa-

voring an iterative sequential algorithm to be used as a basis. A recursive

algorithm, for example, Algorithm 5 would be difficult to parallelize with a

mesh architecture.

However, the essence of this recursive algorithm still carries implication.

M = MAX {Mleft,Mright,Mcenter}

Suppose we divide the mesh into two halves, and let the left half compute

Mleft, the maximum subarray in the left half of the input array, and the right

half compute Mright simultaneously. Obviously, Mleft and Mright are both

computed in m + n/2 − 1 steps. Can we also compute Mcenter in the mean

time? If so, without spending extra time, can these three values meet at a

specific processor, such that the maximum of three can be selected?

Let us investigate the latter issue first. When Mleft and Mright are com-

puted in a normal way, they will be located at the bottom-right corner of

left half, and right half respectively. These solutions are n/2 positions apart,

and there is no direct communication line. These two values are local to the

cell they are located, hence they cannot be compared unless extra steps are

spent to put them together.

To resolve this, we consider the right half of the mesh is the mirror version

of the left, such that the horizontal data flow is made from right to left. This

way, after m+n/2−1 steps, Mright will be available at the bottom-left corner

of the right half of the mesh, only one position away from Mleft, where one

step communication is possible. Suppose we have extra column between two

halves of the mesh, center. Let the i-th processor in this column be center(i).

Without loss of generality, we assume that n is an even number. Other-

wise, we can add an extra column with all −∞ to either side of the input

array.

As shown in Figure 9.5, Mleft and Mright are available at cell(m,n/2)

and cell(m,n/2+1) respectively at step m+n/2−1, and center(m) receives

them in the next step.
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Figure 9.5: Bidirectional horizontal data flow. Mleft and Mright are computed
in parallel and meet at center(m) at step=m + n/2.

Provided the bidirectional horizontal data flow, we describe how Mcenter

is computed. The prefix sum-based algorithm, Algorithm 38, can be modified

with minimal modification.

Mcenter in two dimensions is defined as

Mcenter = MAX
1≤g≤i≤m
1≤h≤n/2≤j≤n

{

i
∑

p=g

j
∑

q=h

a[p][q]

}

(9.1)

For fixed rows g and i, let MCg,i be defined as,

MCg,i = MAX
1≤h≤n/2≤j≤n

{

i
∑

p=g

j
∑

q=h

a[p][q]

}

(9.1) above is then,

Mcenter = MAX
1≤g≤i≤m

{MCg,i} (9.2)

Now we describe how to compute MCg,i. We obtain strip prefix sums

sumg,i[1..n/2] from a strip ag,i, that is a[g..i][1..n]. Let us focus on the left

half first. Let the left part of MCg,i be denoted by MC left
g,i , and likewise

MCright
g,i for the right part. Obviously, MC left

g,i is meant to be,

MC left
g,i = sumg,i[n/2]−MIN {sumg,i[0..n/2− 1]}
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Note that sumg,i[0] = 0.

Now, let us examine Algorithm 38 processing the left half. Due to Lemma

8.3.3, we know that cand(i, n/2)α = MC left
g,i , where α = n/2 + i− g.

The right half of the mesh has the horizontal data flow running from right

to left, and each register s(i, j) effectively maintains suffix sums ssumg,i[n/2+

1..n]. Here, we assume that ssumg,i[n + 1] = 0.

Similarly,

MCright
g,i = ssumg,i[n/2 + 1]−MIN {ssumg,i[n/2 + 2..n + 1]}

Again, cand(i, n/2 + 1)α = MCright
g,i , where α = n/2 + i− g.

Now both MC left
g,i (=cand(i, n/2)) and MCright

g,i (=cand(i, n/2 + 1)) are

available at step n/2 + i− g.

In the next step, at step n/2+ i− g +1, center(i) collects and adds them

to get MCg,i.

The following relation holds.

At step α, MCg,i = cand(i, n/2)α−1 + cand(i, n/2 + 1)α−1 (9.3)

, where α ≥ n/2 + 1, g = MAX {1, n/2 + i + 1− α}

Due to Lemma 8.3.3, it is step n/2 + 1 when center(i) becomes active

and computes MCi,i. Each step, the strip currently being processed extends

the top boundary by one row. For example, center(i) computes MCi−1,i at

step n/2 + 2, and MCi−2,i one step later etc. It is step n/2 + i when MC1,i

is computed at center(i).

We prepare a register M in center(i), which is denoted by M(i), and

initialized to 0. We maintain M(i) by the update operation given as (9.4).

M(i)← MAX {Min(i− 1),M(i), candin(i, n/2) + candin(i, n/2 + 1)} (9.4)

Now we examine the invariant of M(i) at step α. From (9.4), we have,

M(i)α = MAX {M(i−1)α−1,M(i)α−1, cand(i, n/2)α−1 +cand(i, n/2+1)α−1}

At step n/2+1, M(i) is computed first time, meaning that M(i−1)n/2 =
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M(i)n/2 = 0. Due to (9.3), we have M(i)n/2+1 = MCi,i, and MC(i)n/2+2 =

MAX {MCi−1,i−1, MCi,i, MCi−1,i} etc.

Inductively, this is reduced to

M(i)α = MAX
g≤p≤q≤i

{MCp,q}, where g = MAX {1, n/2 + i + 1− α} (9.5)

This means that,

M(m)n/2+m = MAX
1≤p≤q≤m

{MCp,q}

, and due to (9.2), it further means that,

M(m)n/2+m = Mcenter

Running Algorithm 38 on each half of the input in parallel, having the

horizontal data flow in the opposite direction in the right half, we have Mleft

and Mright available as M(m,n/2) and M(m,n/2 + 1) at step m + n/2− 1.

As shown in Figure 9.5, these two maximum values enter center(m) at the

next step, that is step m+n/2. It is precisely when Mcenter is finalized. Now

the maximum of three can be selected accordingly, to finalize the overall

maximum sum.

We have shown that the following theorem holds.

Theorem 9.4.1. The modified mesh algorithm for the 2D MSP takes m+n/2

communication steps.

We design an update routine for center(i) as given in Algorithm 42 whose

update routine is slightly modified from (9.4) to incorporate the selection of

three maximum sums, Mleft, Mright and Mcenter.

Note that the bidirectional technique is partly due the divide-and-conquer

approach. Each half problem is solved in parallel and the center problem

is solved by the “conquer” step. The recursion is only one level deep. It

would be a natural question if we could further this idea and achieve more

reduction in the number of steps. Due to the inherent limitation in the mesh

architecture, we may not be able to reduce the number of steps further,

unless extra interconnection is offered. For example, we divide the mesh into
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Algorithm 42 Update center(i) to compute Mcenter

Update:: center(i) do begin

1: if center(i) is active //current step ≥ n/2 + 1 then
2: M(i)← MAX {Min(i-1),Min(i, n/2),Min(i, n/2+1),M(i), candin(i, n/2)

+candin(i, n/2+1)}
3: end if

end

two halves twice, emulating two-level deep recursion, such that a quarter of

the network is in charge of a quarter of the input array. From the left-most

quarter, let them call LL, LR, RL and RR. Suppose LL and LR execute the

bidirectional horizontal data flow as described above, Mleft, the maximum

subarray in the left half of the whole array, will be located between LL and

LR after m + n/4 steps. Similarly Mright will be located between RL and

RR. These two solutions are n/2 positions apart and comparing them in one

step is not possible. Another difficulty arises in computing Mcenter. If we are

allowed to provide extra communication lines linking centers of each half,

this is possibly tractable. Even if it is possible, it may be arguable whether

extra complexity in the network can justify the reduction of communication

steps.

9.5 K maximum subarrays

9.5.1 2D K-OMSP

If we apply the same idea used in extending Algorithm 3 to Algorithm 15, the

mesh algorithm (Algorithm 38) is easily extended to compute the K-OMSP.

Specifically, we prepare lists of registers min[1..K], and M [1..K], and produce

cand[1..K] by s−min[1..K]. Note that m is in non-decreasing order, hence

cand is in non-increasing order. We maintain M in non-increasing order too.

Selection of K largest values among Min(i− 1, j), Min(i, j − 1), M(i, j) and

cand is easily done in O(K) time by merging them while maintaining the

order.

As a cell now transmits O(K) register values, each inter-processor com-

munication, would take O(K) times more. If we have O(K) communication
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lines between cells, this can be done in O(1) time. Still, the time for each

step is O(K) since each cell spends O(K) time internally.

While the total number steps is still m+n−1, the actual computing time

is hence K times more. For n× n array, it is O(Kn) time.

The bidirectional data flow can be applied similarly to reduce the num-

ber of steps. To obtain Mcenter, we compute Cartesian sums with M left
center

and M right
center, such that the K largest elements in {xi + yj|xi ∈ M left

center, yj ∈
M right

center} are selected. Frederickson and Johnson [38] showed that selection in

X+Y can be done in O(m+p log(K/p)) time, where |X| = n ≤ m = |Y | and

p =. In this context, m = n = K, hence O(K) time. Note that, Mcenter will

not be in sorted order. When Mcenter is not sorted, each center(i) (i = 1..m)

can no longer decide M [1..K] by simple merging method, so they will need

to perform the linear time selection algorithm [20]. It follows that the over-

all K maximum subarrays unloaded from center(m) after m + n/2 steps,

will not be in sorted order. When the order is required, we can perform

sequential sorting in extra O(K log K) time, or we can prepare additional

sorting network for parallel sorting. With the first option, the total time

is O(Kn + K log K), where the second term is absorbed since K = O(n4)

in extreme. The second option with the sorting network may be considered

more than necessary.

Note that the mesh algorithm with T = O(Kn) and P = O(n2) for the

2D K-OMSP is not optimal. In Chapter 3, we showed that this can be

solved in O(n3 + K log min(K,n)) time sequentially. The optimal sequential

algorithm, however, is intractable to run on the mesh, due to its framework

based on recursion. It is expected that PRAM or hypercube will be a suitable

architecture, which we leave as a future work.

9.5.2 2D K-DMSP

It was discussed that the trivial solution for the K-disjoint maximum sub-

arrays is based on repeated application of Kadane’s algorithm. We find the

first maximum subarray M1(r1, c1)|(r2, c2), then replace every element within

this subarray with −∞ and run Kadane’s algorithm again to find the second

maximum subarray, etc. This simple approach is easily applicable with the
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mesh algorithm, either Algorithm 39 or Algorithm 38, such that each run of

T = m + n− 1 steps will find the each subsequent maximum subarray. The

algorithm repeats the following three steps K times.

1. Compute Mk(r1, c1)|(r2, c2)k, the k-th maximum subarray

2. Update a by replacing all elements in (r1, c1)|(r2, c2)k with −∞.

3. Load the updated input array a into the mesh network to compute the

next maximum subarray.

The algorithm based on the three steps above requires to update the input

array before each run. Hence the major problem is how to update the input

array and load it into the mesh network.

We incorporate the data loader discussed in Section 9.2 to execute the step

2 and 3. This requires that each loading component to know the coordinates

of the previous maximum subarray, (r1, c1)|(r2, c2)k.

In the conventional mesh, this broadcasting problem takes O(m) time,

meaning that each subsequent maximum subarray requires extra interleav-

ing O(m) steps. For now, we assume a hybrid model of mesh and CREW

PRAM, such that this information is stored in the global memory and each

loading component can concurrently read it. We may ignore the cost for

broadcasting.

Now, we modify Algorithm 40 based on this assumption. Each loading

component updates the input element (if required), and loads the element

onto the mesh network on-the-fly, as shown in Algorithm 43. Again, α rep-

resents the current step.

This modified routine for loader[1..m] is combined with the mesh algo-

rithm for the single maximum subarray, such as Algorithm 41 or a modified

version of Algorithm 38 that is configured for run-time data loading.

At each run of the mesh algorithm for the k-th maximum subarray, we

spend n steps to load the updated input array, and extra m − 1 steps to

feed the null data until the k-th maximum is ready at cell(m,n − m + 1).

The coordinates (r1, c1)|(r2, c2)k is concurrently read by loader[1..m], and

the data loader restart loading the input array, updating the input when

required.
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Algorithm 43 Update and load input array

Load(col):: loader[i] do begin
//col = (α + 1)mod(m + n− 1). If col > n, set col = 0 and we load a set of
null data

1: j′ ← col
2: /∗ r1, r2, c1 and c2 are from (r1, c1)|(r2, c2)k. ∗/
3: if i ∈ [r1, r2] and j′ ∈ [c1, c2] then a[i][j′]← −∞, a← a[i][j′]
4: else a← a[i][j′]
5: p, t,M ← 0
6: k ← i+1
7: l← j′+1

end

Each disjoint maximum subarray is found in m + n − 1 steps. For K-

disjoint maximum subarrays, the total number of steps required is therefore

K(m + n− 1).

If we conform to the conventional mesh, the broadcasting will take m/2

steps. We establish a single line connection between cell(m,n−m + 1) and

loader(m
2
, 1). In m/2 steps, the packet containing the coordinates can arrive

at every loading component. It is then K(3m
2

+ n − 1) steps in total. If

Algorithm 38 is exclusively used, and it is combined with the bidirectional

computation as well as the run-time data loading scheme, we may reduce

n/2 steps for each run. This may compensate the extra m/2 steps incurred

due to the broadcasting. We omit the details of combining these techniques.

If we adopt less strict connection rules, we may allow m connections

from cell(m,n−m + 1) to all loader[1..m]’s. Then each loading component

can receive the packet in one step. As we have one extra step before start

computing the next maximum subarray, the total number of steps is then

K(m+n− 1)+K− 1=K(m+n)− 1. This result can be also improved with

the bidirectional computation.

We conclude that whichever option for the broadcasting is applied, the

total time for computing K-disjoint maximum subarrays is O(Kn) if m = n.

The time is comparable to that of the mesh algorithm for the 2D K-OMSP.
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9.6 Summary of Results

In this chapter, we presented possible enhancements to the mesh algorithms

for the 2D MSP. Run-time data loading can be implemented to minimize pos-

sible delays that involves input array loading. A coarse-grained configuration

is possible to run the algorithm even if the size of input array is beyond the

capacity of the mesh network.

We showed that Algorithm 38 can be further modified to achieve a con-

stant factor improvement of n/2 steps.

For an array of size n×n, we can easily modify Algorithm 38 to compute

the 2D K-OMSP and achieved O(Kn) time, and a simple repetition of either

of two mesh algorithms can compute the 2D K-DMSP in O(Kn) time. The

latter problem requires slightly more number of communication steps due to

the cost for broadcasting if the mesh topology is strictly complied.

Neither of the mesh algorithms for the 2D K-OMSP nor the 2D K-

DMSP is, however, optimal. Note that we have O(n3 + K log K) time

and O(n3 + min(K,n)n2 log n) time sequential algorithms. These algorithms

are recursive in nature and not suitable for mesh implementation. We in-

stead opted for less efficient sequential algorithms, whose times are both

Tseq = O(Kn3). At least, the total cost of our mesh algorithms match this

time complexity.
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Concluding Remarks and Future Work

10.1 Concluding Remarks

Sequential algorithms for the MSP are cubic time or slightly less than cu-

bic time. We discussed further speedup option through parallel processing.

Among various parallel architectures, we chose a mesh as an appropriate

platform to compute the MSP.

The main focus in designing mesh algorithms for the MSP are laid upon

their practicality. While the mesh algorithms for the 2D MSP are not as fast

as O(log n) time previous parallel algorithms, their biggest advantage over

previous solutions are its hardware implementability.

It is observed that the MSP is solved by four separate parallel phases,

which are computation of prefix sums, prefix minima, candidates and prefix

maxima. Previous parallel algorithms for the MSP are based on this ob-

servation and utilize the parallel prefix computation algorithm for a target

architecture.

A simple 2D prefix computation algorithm can be easily devised such that

it would run in O(n) time (2n− 1 steps) with a mesh network of size O(n2).

From the previous parallel algorithms for the MSP, we know that three runs

of the parallel prefix computations with different operator each time, such as

+, MIN , MAX would suffice computing the maximum subarray.

Even though no mesh algorithm for the 2D MSP has been previously

reported, an O(n) time (3(2n− 1) steps) mesh algorithm is well anticipated.

For the 2D MSP, O(n3) time is practically the best known upper bound, hence

the mesh algorithm based on this simple strategy can be considered cost-

optimal. It is also interesting to observe that the use of a non-optimal, yet

a simple mesh prefix computation algorithm results in an optimal algorithm

209
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for the 2D MSP.

The mesh algorithm based on such separate prefix computations has a

room for further optimization. Due to tight communication restriction in a

mesh, a constant factor improvement is highly considered. Our first mesh

algorithm (Algorithm 38) is an extended version of the mesh prefix sum al-

gorithm (Algorithm 35). Instead of running three prefix computations (+,

MIN and MAX ) separately, they are executed internally in one step, achiev-

ing total of 2n− 1 steps. The constant factor of 3 above is hence eliminated.

The second mesh algorithm is based on Kadane’s algorithm, and also com-

pletes the computation in 2n− 1 steps. Algorithm 38 is further improved by

n/2 steps with introduction of bi-directional data flow. This improvement

may be viewed as a parallel execution of the iterative sequential algorithm

with a limited divide-and-conquer flavor.

Some practical considerations have been taken. Particularly, efficient data

loading into the mesh might be an important issue in practice. Considerable

modification has been made to Algorithm 39 to enable run-time data loading,

which can be similarly applied to Algorithm 38. In a situation where the

size of mesh is smaller than the size of input, the mesh algorithms can be

configured to run on a coarse-grained mesh.

The mesh algorithms for the 2D MSP can be extended to compute K

maximum subarrays. Algorithm 38 in particular can be easily modified to

compute the 2D K-OMSP in O(Kn) time. A simple repetition of either of

two mesh algorithms can compute the 2D K-DMSP in O(Kn) time too. The

latter problem requires slightly more number of communication steps due to

the cost for broadcasting.

The mesh architecture is inherently not as powerful as other parallel com-

putational models, in terms of limited inter-processor communication capa-

bility. While this limitation often results in difficulty in increasing computa-

tional speed, its grid-like layout is desirable for a single layer chip implemen-

tation, and provides considerably superior practical implications. Various

techniques to design the mesh algorithm and to optimize the performance

discussed in the thesis are not limited to computing the MSP. Among var-

ious problems, those which involve a 2D array and have known sequential

iterative algorithms are particularly suitable. Due to its network diameter,



O(n) running time is the theoretical lower bound in a mesh computation.

Considering the total cost, one that requires at least O(n3) time to compute

sequentially may be a good problem to consider a mesh implementation.

10.2 Future Work

The presented mesh algorithm for the 2D K-DMSP is based on a simple

repeated run of either Algorithm 39 or Algorithm 38 followed by the update

to the input array. To facilitate loading the updated array, the data loader

employed in the run-time loading scheme is introduced. To update the input

array, such that the elements contained in the latest maximum subarray are

updated to −∞, each loading component should be aware of the location

of the latest maximum subarray. This inherently involves broadcasting from

cell(m,n − m + 1) to every single loading component. If the conventional

mesh topology is closely followed, zero-time consuming broadcasting is in-

feasible, making the mesh algorithm for the 2D K-DMSP running slower

than its counterpart for the 2D K-OMSP. If there are K connection lines

between neighboring cells, the 2D K-OMSP takes m + n − 1 steps, while

each cell spends O(K) time for internal computation. A matching result for

the 2D K-DMSP is an open problem. It is, however, expected to involve

the design of a completely new sequential algorithm as a basis. Algorithm

30 is not suitable for mesh implementation due to its extensive use of global

memory. For example, it maintains O(m2) tournaments, and the storage of

these tournaments are obstructive to localize.

The FPGA implementation of Algorithm 39 has been undertaken by Steve

Weddell and Bevan Langford from the department of Electrical and Com-

puter Engineering at the University of Canterbury. Currently, the FPGA

can handle the input array of size up to 14× 14. Weddell plans to undertake

further improvements, including implementation on a larger FPGA, incorpo-

ration of a pipelined data loading, and implementation of a serial interface

such as USB or RS232.
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Appendix A

Proteins and Amino acids

A.1 Protein Sequences

A protein is composed of large numbers of amino acids. The list of 20 amino

acids and their hydropathy index by Kyte and Doolittle [70] are given in

Table A.1.

1-Letter Code 3-Letter Code Name Hydropathy Index

1 A Ala Alanine 1.8
2 R Arg Arginine -4.5
3 N Asn Asparagine -3.5
4 D Asp Aspartic acid -3.5
5 C Cys Cysteine 2.5
6 Q Gln Glutamine -3.5
7 E Glu Glutamic acid -3.5
8 G Gly Glycine -0.4
9 H His Histidine -3.2
10 I Ile Isoleucine 4.5
11 L Leu Leucine 3.8
12 K Lys Lysine -3.9
13 M Met Methionine 1.9
14 F Phe Phenylalaline 2.8
15 P Pro Proline -1.6
16 S Ser Serine -0.8
17 T Thr Threonine -0.7
18 W Trp Tryptophan -0.9
19 Y Tyr Tyrosine -1.3
20 V Val Valine 4.2

Table A.1: The 20 Amino Acids and Their Official Codes

224



Example A.1.1. In 1955, Frederick Sanger, a two time Nobel laureate in

Chemistry, determined the first complete amino-acid sequence of insulin.

The sequence of human insulin is the following chain of 110 residues∗. The

sequence is given in FASTA format:

>P01308|INS_HUMAN Insulin [Contains: Insulin B chain; Insulin

A chain] - Homo sapiens (Human).

MALWMRLLPLLALLALWGPDPAAAFVNQHLCGSHLVEALYLVCGERGFFYTPKTRREAEDLQV

GQVELGGGPGAGSLQPLALEGSLQKRGIVEQCCTSICSLYQLENYCN

∗ Retrieved 20 December, 2006 from Expert Protein Analysis System (ExPASy) Pro-
teomics Server. website: http://ca.expasy.org/uniprot/P01308
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Appendix B

Data Mining and Numerical Attributes

B.1 Example: Supermarket Database

The following tables are reproduction of those given in [93].

customer items expenditure

1 ham, cheese, cereal, milk $42
2 bread, cheese, milk $22
3 ham, bread, cheese, milk $37
4 bread, milk $12
5 bread, cereal, milk $24
6 ham, bread, cheese, cereal $44

Table B.1: Customers’ Purchase Data

customer name gender age annual income address

1 Anderson female 33 $20,000 suburb A
2 Bell female 45 $35,000 suburb A
3 Chen male 28 $25,000 suburb B
4 Dickson male 50 $60,000 suburb B
5 Elias male 61 $65,000 suburb A
6 Foster female 39 $45,000 suburb B

Table B.2: Customers’ Personal Data
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Appendix C

Publications

Early forms of the research contained in this thesis were published in six

articles. The references to these articles are duplicated below:

[6] Bae, S. E., and Takaoka, T. Parallel approaches to the maxi-

mum subarray problem. In Proc. of the seventh Japan-Korea Workshop on

Algorithms and Computation (2003), pp. 94–104.

[7] Bae, S. E., and Takaoka, T. Algorithms for the problem of k

maximum sums and a VLSI algorithm for the k maximum subarrays prob-

lem. In Proc. of the International Symposium on Parallel Architectures,

Algorithms, and Networks (ISPAN 2004) (2004), pp. 247–253.

[8] Bae, S. E., and Takaoka, T. Improved algorithm for the k-

maximum subarray problem for small k. In Proc. of International Comput-

ing and Combinatorics Conference (COCOON 2005) , LNCS 3595 (2005),

pp. 621–631.

[9] Bae, S. E., and Takaoka, T. Algorithm for k disjoint maximum

subarrays. In Proc. of the International Conference on Computational Sci-

ence (ICCS 2006) (2006).

[10] Bae, S. E., and Takaoka, T. Improved algorithm for the k-

maximum subarray problem. Computer Journal 49, 3 (2006), 358–374.

[12] Bae, S. E., and Takaoka, T. Algorithms for k-disjoint maximum

subarrays. International Journal of Foundations of Computer Science 18, 2

(2007), 319–339.

In accordance with Section 8(c) of the University of Canterbury PhD

Regulations and Guidelines 2003, the following statement identifies my own

contribution to these articles.
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These articles constitute my own research which was carried out in co-

operation with Prof. Tadao Takaoka. The summary of my own contribution

to each article is given as below.

• [6]: Design of Mesh algorithm for the 2D MSP

• [7]: Design of Mesh algorithm for the 2D K-OMSP

• [8]: Establishing O(K2 + n log K) time for the 1D K-OMSP through

sampling before candidate generation

• [10]: Extending [8] by combining it with selection in sorted columns

and a persistent 2-3 tree. Sampling in two dimensions.

• [9]: Hole creation in a tournament for the next disjoint maximum sub-

array and extension to the 2D K-DMSP

• [12]: Application of Union/Find algorithm to the 2D K-DMSP and the

second-level heap

Prof. Tadao Takaoka provided the general topic of research and con-

tributed useful advice which added to the clarity of these articles, especially

regarding the general framework based on the prefix sums and the recursive

computation of the maximum subarray.
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