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We introduce a new sequential algorithm for making robust predictions in the presence of
changepoints. Unlike previous approaches, which focus on the problem of detecting and locating
changepoints, our algorithm focuses on the problem of making predictions even when such changes
might be present. We introduce nonstationary covariance functions to be used in Gaussian process
prediction that model such changes, and then proceed to demonstrate how to effectively manage
the hyperparameters associated with those covariance functions. We further introduce covariance
functions to be used in situations where our observation model undergoes changes, as is the case for
sensor faults. By using Bayesian quadrature, we can integrate out the hyperparameters, allowing
us to calculate the full marginal predictive distribution. Furthermore, if desired, the posterior
distribution over putative changepoint locations can be calculated as a natural byproduct of our

prediction algorithm.
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1. INTRODUCTION

We consider the problem of performing time-series prediction
in the face of abrupt changes to the properties of the variable
of interest. For example, a data stream might undergo a sudden
shift in its mean, variance or characteristic input scale; a periodic
signal might have a change in period, amplitude or phase; or
a signal might undergo a change so drastic that its behaviour
after a particular point in time is completely independent of
what happened before. We also consider cases in which our
observations of the variable undergo such changes, even if the
variable itself does not; as might occur during a sensor fault.
A robust prediction algorithm must be able to make accurate
predictions even under such unfavourable conditions.

The problem of detecting and locating abrupt changes in
data sequences has been studied under the name changepoint
detection for decades. A large number of methods have been
proposed for this problem; see [1–4] and the references therein
for more information. Relatively few algorithms perform pre-
diction simultaneously with changepoint detection, although
sequential Bayesian methods do exist for this problem [5, 6].

However, these methods—and most methods for changepoint
detection in general—make the assumption that the data stream
can be segmented into disjoint sequences, such that in each
segment the data represent i.i.d. observations from an associ-
ated probability distribution. The problem of changepoints in
dependent processes has received less attention. Both Bayesian
[7, 8] and non-Bayesian [9, 10] solutions do exist, although they
focus on retrospective changepoint detection alone; their simple
dependent models are not employed for the purposes of predic-
tion. Sequential and dependent changepoint detection has been
performed [11] only for a limited set of changepoint models.

Fault detection, diagnosis and removal is an important
application area for sequential time-series prediction in the
presence of changepoints. Venkatasubramanian et al. [12]
classify fault recognition algorithms into three broad categories:
quantitative model-based methods, qualitative methods and
process history-based methods.

Particularly related to our work are the quantitative methods
that employ recursive state estimators. The Kalman filter is
commonly used to monitor innovation processes and prediction
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error [13, 14]. Banks of Kalman filters have also been applied
to fault recognition, where each filter typically corresponds to
a specific fault mode [15–17]. Gaussian processes (GPs) are a
natural generalization of the Kalman filter and, recently, fault
detection has also been studied using GPs [18, 19].

We introduce a fully Bayesian framework for performing
sequential time-series prediction in the presence of change-
points. We introduce classes of nonstationary covariance func-
tions to be used in Gaussian process inference for modelling
functions with changepoints. We also consider cases in which
these changepoints represent a change not in the variable of
interest, but instead a change in the function determining our
observations of it, as is the case for sensor faults. In such
contexts, the position of a particular changepoint becomes a
hyperparameter of the model. We proceed as usual when mak-
ing predictions and evaluate the full marginal predictive dis-
tribution. If the locations of changepoints in the data are of
interest, we estimate the full posterior distribution of the related
hyperparameters conditioned on the data. The result is a robust
time-series prediction algorithm that makes well-informed pre-
dictions even in the presence of sudden changes in the data. If
desired, the algorithm additionally performs changepoint and
fault detection as a natural byproduct of the prediction process.

The remainder of this paper is arranged as follows. In
the next section, we briefly introduce GPs and then discuss
the marginalization of hyperparameters using Bayesian Monte
Carlo numerical integration in Section 3. A similar technique
is presented to produce posterior distributions and their
means for any hyperparameters of interest. In Section 4, we
introduce classes of nonstationary covariance functions to
model functions with changepoints or faults. In Section 5, we
provide a brief expository example of our algorithm. Finally, we
provide results demonstrating the ability of our model to make
robust predictions and locate changepoints effectively.

2. GP PREDICTION

GPs offer a powerful method to perform Bayesian inference
about functions [20]. A GP is defined as a distribution over the
functions X → R such that the distribution over the possible
function values on any finite setF ⊂ X is multivariate Gaussian.
Consider a function y(x). The prior distribution over the values
of this function is completely specified by a mean function μ(·)
and a positive-definite covariance function K(·, ·). Given these,
the distribution of the values of the function at a set of n inputs,
x, is

p( y | I ) � N(y; μ(x), K(x, x))

� 1√
(2π)n det K(x, x)

exp

(
−1

2
(y − μ(x))T K(x, x)−1 (y − μ(x))

)
,

where I is the context, containing all background knowledge
pertinent to the problem of inference at hand. We typically
incorporate knowledge of relevant functional inputs x into I

for notational convenience. The prior mean function is chosen
as appropriate for the problem at hand (often a constant),
and the covariance function is chosen to reflect any prior
knowledge about the structure of the function of interest, for
example periodicity or a specific amount of differentiability.
A large number of covariance functions exist, and appropriate
covariance functions can be constructed for a wide variety
of problems [20]. For this reason, GPs are ideally suited for
both linear and nonlinear time-series prediction problems with
complex behaviour. In the context of this paper, we will take
y to be a potentially dependent dynamic process, such that X

contains a time dimension. Note that our approach considers
functions of continuous time; we have no need to discretize our
observations into time steps.

Our GP distribution is specified by the values of various
hyperparameters collectively denoted θ . These hyperparameters
specify the mean function, as well as parameters required by
the covariance function: input and output scales, amplitudes,
periods etc. as needed.

Note that we typically do not receive observations of
y directly, but rather of noise-corrupted versions z of
y. We consider only the Gaussian observation likelihood
p( z | y, θ, I ). In particular, we typically assume independent
Gaussian noise contributions of a fixed variance η2. This noise
variance effectively becomes another hyperparameter of our
model and, as such, will be incorporated into θ . To proceed,
we define

V (x1, x2; θ) � K(x1, x2; θ) + η2δ(x1 − x2) , (1)

where δ(·) is the Kronecker delta function. Of course, in the
noiseless case, z = y and V (x1, x2; θ) = K(x1, x2; θ). We
define the set of observations available to us as (xd , zd). Taking
these observations, I , and θ as given, we are able to analytically
derive our predictive equations for the vector of function values
y� at inputs x� as follows:

p
(
y� | zd , θ, I

) = N
(
y�; m

(
ẙ� |zd , θ, I

)
, C

(
ẙ� |zd , θ, I

) )
,

(2)
where we have1

m
(
ẙ� |zd , θ, I

)
= μ(x�; θ) + K(x�, xd; θ)V(xd , xd; θ)−1(zd − μ(xd; θ))

C
(
ẙ� |zd , θ, I

)
= K(x�, x�; θ) − K(x�, xd; θ)V(xd , xd; θ)−1K(xd , x�; θ).

We also make use of the condensed notation my|d(x�) �
m

(
ẙ� |yd , I

)
and Cy|d(x�) � C

(
ẙ� |yd , I

)
.

1Here the ring accent is used to denote a random variable, e.g. å = a is the
proposition that variable å takes the particular value a.
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We use the sequential formulation of a GP given by [21]
to perform sequential prediction using a moving window.
After each new observation, we use rank-one updates to the
covariance matrix to efficiently update our predictions in light of
the new information received. We efficiently remove the trailing
edge of the window using a similar rank-one ‘downdate’. The
computational savings made by these choices mean that our
algorithm can be feasibly run on-line.

3. MARGINALIZATION

3.1. Posterior predictive distribution

Of course, we can rarely be certain about θ a priori, and
so we proceed in the Bayesian fashion and marginalize our
hyperparameters when necessary.

We assume that our hyperparameter space has finite
dimension and write φe for the value of the eth hyperparameter
in θ .We use φi,e for the value of the eth hyperparameter in θi . For
each hyperparameter, we take an independent prior distribution
such that

p( θ | I ) �
∏
e

p( φe | I ) .

For any real hyperparameter φe, we take a Gaussian prior

p( φe | I ) = N
(
φe; νe, λe

2) ; (3)

if our hyperparameter is restricted to the positive reals, we
instead assign a Gaussian distribution to its logarithm. For a
hyperparameter φe known only to lie between two bounds le
and ue, we take the uniform distribution over that region as
follows:

p( φe | I ) = �(φe; le, ue)


e

, (4)

where 
e � ue − le and �(θ; l, u) is used to denote the
rectangular function

�(φe; le, ue) �
{

1, le < φe < ue

0, otherwise
. (5)

Occasionally, we may also want to consider a discrete
hyperparameter φe. In this case, we take the uniform prior

P( φe | I ) = 1


e

, (6)

where 
e is here defined as the number of discrete values the
hyperparameter can take.

Our hyperparameters must then be marginalized as

p
(
y� | zd , I

) =
∫

p
(
y� | zd , θ, I

)
p(zd | θ, I ) p(θ | I ) dθ∫

p(zd | θ, I ) p(θ | I ) dθ
.

(7)
Although these required integrals are non-analytic, we can
efficiently approximate them by the use of Bayesian Quadrature

(BQ) [22] techniques. As with any method of quadrature, we
require a set of samples of our integrand. Following [21], we take
a grid of hyperparameter samples θs � ×e φu,e, where φu,e is
a column vector of unique samples for the eth hyperparameter
and × is the Cartesian product. We thus have a different mean,
covariance and likelihood for each sample. Of course, this
sampling is necessarily sparse in hyperparameter space. For
θ far from our samples, θs , we are uncertain about the values of
the two terms in our integrand: the predictions

q̊(θ) � p
(
y� | zd , θ, I

)
,

and the likelihoods

r̊(θ) � p( zd | θ, I ) .

It is important to note that the function q evaluated at a point θ

returns a function (a predictive distribution for y�), whereas the
function r evaluated at a point θ returns a scalar (a marginal
likelihood).

To estimate (6), BQ begins by assigning GP priors to both q

and r . Given our (noiseless) observations of these functions,
qs � q(θs) and rs � r(θs), the GPs allow us to perform
inference about the function values at any other point. Because
integration is a projection, and variables over which we have a
multivariate Gaussian distribution are joint Gaussian with any
affine transformation of those variables, our GP priors then
allow us to use our samples of the integrand to perform an
inference about the integrals. We define our unknown variables

�̊ � p
(
y� | zd , I

) =
∫

q(θ)r(θ)p(θ | I ) dθ∫
r(θ)p(θ | I ) dθ

.

and

m
(
�̊ |qs , r, I

)
�

∫
mq|s(θ)r(θ)p(θ | I ) dθ∫

r(θ)p(θ | I ) dθ
,

in order to proceed as follows:

p
(
y� | qs , rs , zd , I

)
=

∫∫∫
p
(
y� | q, r, zd , I

)
p( � | q, r, I )

× p
(
q | qs , I

)
p( r | rs , I ) d�dqdr

=
∫∫∫

�δ
(
� − �̊

)
N

(
q; mq|s , Cq|s

)
× N

(
r; mr|s , Cr|s

)
d�dqdr

=
∫

m
(
�̊ |qs , r, I

)
N

(
r; mr|s , Cr|s

)
dr.

Here our integration again becomes non-analytic. As a
consequence, we take a maximum a posteriori (MAP)
approximation for r , which approximates N

(
r; mr|s , Cr|s

)
as
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δ
(
r − mr|s

)
. This gives us

p
(
y� | qs , rs , zd , I

) ∝∼
∫

mq|s(θ)mr|s(θ)p(θ | I ) dθ.

We now take the independent product Gaussian covariance
function for our GPs over both q and r as follows:

K(θi, θj ) �
∏
e

Ke(φi,e, φj,e)

Ke(φi,e, φj,e) � N
(
φi,e; φj,e, w

2
e

)
,

(8)

and so, defining

Ne(φi,e, φj,e) �
∫

Ke(φi,e, φ∗,e)p
(
φ∗,e | I

)
× Ke(φ∗,e, φj,e)dφ∗,e,

we have

Ne(φi,e, φj,e) = N

([
φi,e

φj,e

]
;
[
νe

νe

]
,

[
λ2

e +w2
e λ2

e

λ2
e λ2

e +w2
e

])
,

if p( φe | I ) is the Gaussian (3), and

Ne(φi,e, φj,e) = N
(
φi,e; φj,e, 2 w2

e

)
×

(
�

(
ue; 1

2
(φi,e + φj,e),

1

2
w2

e

)

− �

(
le; 1

2
(φi,e + φj,e),

1

2
w2

e

) )
,

if p( φe | I ) is the uniform (4). We use � to represent the usual
Gaussian cumulative distribution function. Finally, we have

Ne(φi,e, φj,e) =

e∑
d=1

1


e

Ke(φi,e, φd,e)Ke(φd,e, φj,e),

ifp( φe | I ) is the discrete uniform (6).We now make the further
definitions

M �
⊗

e

Ke

(
φu,e, φu,e

)−1
Ne

(
φu,e, φu,e

)
Ke

(
φu,e, φu,e

)−1

γ � Mrs

1T
s Mrs

, (9)

where 1s is a column vector containing only ones of dimensions
equal to rs , and ⊗ is the Kronecker product. Using these, BQ
leads us to

p
(
y� | qs , rs , zd , I

)

 γTqs

=
∑

i

γiN
(
y�; m

(
ẙ� |zd , θi, I

)
, C

(
ẙ� |zd , θi, I

) )
. (10)

That is, our final posterior is a weighted mixture of the Gaussian
predictions produced by each hyperparameter sample. This is
the reason for the form of (8)—we know that p

(
y� | zd , I

)
must integrate to one, and therefore

∑
i γi = 1.

3.2. Hyperparameter posterior distribution

We can also use BQ to estimate the posterior distribution for
hyperparameter φf (which could, in general, also represent
a set of hyperparameters) by marginalizing over all other
hyperparameters φ−f

p
(
φf | zd , I

) =
∫

p(zd | θ, I ) p(θ | I ) dφ−f∫
p(zd | θ, I ) p(θ | I ) dθ

.

Here we can again take a GP for r and use it to perform an
inference about ρ̊ � p

(
φf | zd , I

)
. We define

m
(
ρ̊ |r, I) =

∫
r(θ)p(θ | I ) dφ−f∫
r(θ)p(θ | I ) dθ

,

and can then write

p
(
φf | rs , zd , I

)
=

∫
p
(
φf | r, zd , I

)
p( ρ | r, I ) p( r | rs , I ) dρdr

=
∫

ρδ
(
ρ − m

(
ρ̊ |r, I))

N
(
r; mr|s , Cr|s

)
dρdr.

As before, we take a MAP approximation for r to give us

p
(
φf | rs , zd , I

) ∝∼
∫

mr|s(θ) p(θ | I ) dφ−f .

We again take the covariance defined by (7), and define

Ke,f (φe, φi,e) �
{

Ke(φe, φi,e)p(φe | I ) , e ∈ f∫
Ke(φe, φi,e)p(φe | I ) dφe, e /∈ f

,

which leads to

Ke,f (φe, φi,e) =
{

N
(
φe; φi,e, w

2
e

)
N

(
φe; νe, λe

2
)
, e ∈ f

N
(
φi,e; νe, λ

2
e + w2

e

)
, e /∈ f

,

if p( φe | I ) is the Gaussian (3);

Ke,f (φe, φi,e)

=

⎧⎪⎨
⎪⎩

N
(
φe; φi,e, w

2
e

) �(φe; le, ue)


e

, e ∈ f

1


e

(
�

(
ue; φi,e, w

2
e

) − �
(
le; φi,e, w

2
e

) )
, e /∈ f

,

if p( φe | I ) is the uniform (4); and

Ke,f (φe, φi,e) =

⎧⎪⎨
⎪⎩

1


e

Ke(φe, φi,e), e ∈ f∑
e

d=1

1


e

Ke(φd,e, φi,e), e /∈ f
,

if p( φe | I ) is the discrete uniform (5). We now define

m
T
f (φf ) �

⊗
e

Ke,f

(
φf , φu,e

)TKe

(
φu,e, φu,e

)−1
,
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and arrive at

p
(
φf | rs , zd , I

) 
 mT
f (φf )rs

mT
∅ (∅)rs

, (11)

where ∅ is the empty set; for mT
∅ (∅) we use the definitions above

with f = ∅. This factor will ensure the correct normalization
of our posterior.

3.3. Hyperparameter posterior mean

For a more precise idea about our hyperparameters, we can
use BQ one final time to estimate the posterior mean for a
hyperparameter φf

m
(
φ̊f |zd , I

)
=

∫
φf p(zd | θ, I ) p(θ | I ) dθ∫
p(zd | θ, I ) p(θ | I ) dθ

.

Essentially, we take exactly the same approach as in Section 3.2.
Making the definition

K̄e,f (φi,e) �
{∫

φe Ke(φe, φi,e)p(φe | I ) dφe, e ∈ f∫
Ke(φe, φi,e)p(φe | I ) dφe, e /∈ f

,

we arrive at

K̄e,f (φi,e) =

⎧⎪⎨
⎪⎩

N
(
φi,e; νe, λ

2
e + w2

e

) λ2
eφi,e + w2

e νe

λ2
e + w2

e

, e ∈ f

N
(
φi,e; νe, λ

2
e + w2

e

)
, e /∈ f

,

if p( φe | I ) is the Gaussian (3);

K̄e,f (φi,e)

=

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

φi,e


e

(
�

(
ue; φi,e, w

2
e

) − �
(
le; φi,e, w

2
e

) )
− w2

e


e

(
N

(
ue; φi,e, w

2
e

) − N
(
le; φi,e, w

2
e

) )
,

e ∈ f

1


e

(
�

(
ue; φi,e, w

2
e

) − �
(
le; φi,e, w

2
e

) )
, e /∈ f

,

if p( φe | I ) is the uniform (4); and

K̄e,f (φi,e) =

⎧⎪⎪⎨
⎪⎪⎩

∑
e

d=1

φd,e


e

Ke(φd,e, φi,e), e ∈ f

∑
e

d=1

1


e

Ke(φd,e, φi,e), e /∈ f

,

if p( φe | I ) is the discrete uniform (6). We now make the
corresponding definition

m̄
T
f �

⊗
e

K̄e,f

(
φu,e

)TKe

(
φu,e, φu,e

)−1
,

giving the posterior mean as

m
(
φ̊f |zd , I

)

 m̄T

f rs

m̄T
∅rs

. (12)

Note that m̄T
∅ = mT

∅ (∅).

4. COVARIANCE FUNCTIONS FOR PREDICTION IN
THE PRESENCE OF CHANGEPOINTS

We now describe how to construct appropriate covariance
functions for functions that experience sudden changes in their
characteristics. This section is meant to be expository; the
covariance functions we describe are intended as examples
rather than an exhaustive list of possibilities. To ease exposition,
we assume that the input variable of interest x is entirely
temporal. If additional features are available, they may be
readily incorporated into the derived covariances [20].

We consider the family of isotropic stationary covariance
functions of the form

K(x1, x2; {λ, σ }) � λ2κ

( |x1 − x2|
σ

)
, (13)

where κ is an appropriately chosen function. The parameters λ

and σ represent, respectively, the characteristic output and input
scales of the process. An example isotropic covariance function
is the squared exponential covariance, given by

KSE(x1, x2; {λ, σ }) � λ2 exp

(
−1

2

( |x1 − x2|
σ

)2
)

. (14)

Many other covariances of the form (13) exist to model
functions with a wide range of properties, including the
rational quadratic, exponential and Matérn family of covariance
functions. Many choices for κ are also available; for example,
to model periodic functions, we can use the covariance

KPE(x1, x2; {λ, σ }) � λ2 exp

(
− 1

2ω
sin2

(
π

|x1 − x2|
σ

))
,

(15)
in which case the output scale λ serves as the amplitude, and
the input scale σ serves as the period. We have ω as a roughness
parameter that serves a role similar to the input scale σ in (13).

We now demonstrate how to construct appropriate covariance
functions for a number of types of changepoint. Some examples
of these are illustrated in Fig. 1.

4.1. A drastic change in covariance

Suppose that a function of interest is well-behaved except for a
drastic change at the point xc, which separates the function into
two regions with associated covariance functions K1(·, ·; θ1)

before xc and K2(·, ·; θ2) after, where θ1 and θ2 represent the
values of any hyperparameters associated with K1 and K2,
respectively. If the change is so drastic that the observations
before xc are completely uninformative about the observations
after the changepoint; that is, if

p
(
y≥xc

| z, I
) = p

(
y≥xc

| z≥xc
, I

)
,

where the subscripts indicate ranges of data segmented by xc

(e.g. z≥xc
is the subset of z containing only observations after the
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FIGURE 1. Example covariance functions for the modelling of data with changepoints, and associated example data for which they might be
appropriate.

changepoint), then the appropriate covariance function is trivial.
This function can be modelled using the covariance function KA

defined by

KA(x1, x2; θA) �

⎧⎪⎨
⎪⎩

K1(x1, x2; θ1), x1, x2 < xc

K2(x1, x2; θ2), x1, x2 ≥ xc

0, otherwise.

. (16)

The new set of hyperparameters θA � {θ1, θ2, xc} contains
knowledge about the original hyperparameters of the covariance
functions as well as the location of the changepoint. This
covariance function is easily seen to be semi-positive definite
and hence admissible.

Theorem 4.1. KA is a valid covariance function.

Proof. We show that any Gram matrix given by KA is positive
semidefinite. Consider an arbitrary set of input points x in the
domain of interest. By appropriately ordering the points in x,
we may write the Gram matrix KA(x, x) as the block-diagonal
matrix [

K1(x<xc
, x<xc

; θ1) 0
0 K2(x≥xc

, x≥xc
; θ2)

]
;

the eigenvalues of KA(x, x) are therefore the eigenvalues of the
blocks. Because both K1 and K2 are valid covariance functions,
their corresponding Gram matrices are positive semidefinite,
and therefore eigenvalues of KA(x, x) are non-negative.

4.2. A smooth drastic change in covariance

Suppose that a continuous function of interest is best modelled
by different covariance functions, before and after a changepoint

xc. The function values after the changepoint are conditionally
independent of the function values before, given the value at the
changepoint itself. The Bayesian network for this probabilistic
structure is depicted in Fig. 2. This represents an extension to
the drastic covariance described above; our two regions can be
drastically different, but we can still enforce smoothness across
the boundary between them.

The changepoint separates the function into two regions
with associated covariance functions K1(·, ·; θ1) before xc and
K2(·, ·; θ2) after, where θ1 and θ2 represent the values of
any hyperparameters associated with K1 and K2, respectively.
We introduce a further hyperparameter, kc, which represents
the covariance function value at the changepoint. We may
model the function using the covariance function KB

defined by

KB(x1, x2; θ1, θ2) �⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

K1(x1, x2; θ1) + G1(kc − K1(xc, xc; θ1))G
T
1 ,

x1, x2 < xc

K2(x1, x2; θ2) + G2(kc − K2(xc, xc; θ2))G
T
2 ,

x1, x2 > xc

G1kcG
T
2 , otherwise

(17)

FIGURE 2. Bayesian Network for the smooth drastic change model.
I is the context, correlated with all other nodes.
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where

G1 = K1(x1, xc; θ1)

K1(xc, xc; θ1)
and G2 = K2(x2, xc; θ2)

K2(xc, xc; θ2)
.

We call this covariance function the continuous conditionally
independent covariance function. This covariance function can
be extended to multiple changepoints, boundaries in multi-
dimensional spaces, and also to cases where function derivatives
are continuous at the changepoint. For proofs and details of this
covariance function the reader is invited to see [19].

As a slight extension of this covariance, consider a function
that undergoes a temporary excursion from an otherwise
constant value of zero. This excursion is known to be smooth,
that is, it both begins and ends at zero. We define the beginning
of the excursion as xc1 and its end as xc2 . Essentially, we have
changepoints as considered by (17) at both xc1 and xc2 . We
can hence write the covariance function appropriate for this
function as

KC(x1, x2; {θ, xc1 , xc2})

� K(x1, x2; θ) − K

(
x1,

[
xc1

xc2

]
; θ

)
K

([
xc1

xc2

]
,

[
xc1

xc2

]
; θ

)−1

× K

( [
xc1

xc2

]
, x2; θ

)
, (18)

for xc1 < x1 < xc2 and xc1 < x2 < xc2 , and
KC(x1, x2; {θ, xc1 , xc2}) = 0 otherwise. Here (unsubscripted)
K is a covariance function that describes the dynamics of the
excursion itself.

4.3. A sudden change in input scale

Suppose that a function of interest is well-behaved except for a
drastic change in the input scale σ at time xc, which separates
the function into two regions with different degrees of long-term
dependence.

Let σ1 and σ2 represent the input scale of the function before
and after the changepoint at xc, respectively. Suppose that we
wish to model the function with an isotropic covariance function
K of the form (12) that would be appropriate except for the
change in input scale. We may model the function using the
covariance function KD defined by

KD(x1, x2; {λ2, σ1, σ2, xc})

�

⎧⎪⎪⎨
⎪⎪⎩

K(x1, x2; {λ, σ1}), x1, x2 < xc

K(x1, x2; {λ, σ2}), x1, x2 ≥ xc

λ2κ

( |xc − x ′
1|

σ1
+ |xc − x ′

2|
σ2

)
, otherwise

. (19)

Theorem 4.2. We have that KD is a valid covariance
function.

Proof. Consider the map defined by

u(x; xc) �

⎧⎪⎨
⎪⎩

x

σ1
, x < xc

xc

σ1
+ x − xc

σ2
, x ≥ xc

. (20)

A simple check shows thatKD(x1, x2; {λ, σ1, σ2, xc}) is equal to
K(u(x1; xc), u(x2; xc); {λ, 1}), the original covariance function
with equivalent output scale and unit input scale evaluated on
the input points after transformation by u. Because u is injective
and K is a valid covariance function, the result follows.

The function u in the proof above motivates the definition of
KD: by rescaling the input variable appropriately, the change in
input scale is removed.

4.4. A sudden change in output scale

Suppose that a function of interest is well-behaved except for a
drastic change in the output scale λ at time xc, which separates
the function into two regions.

Let y(x) represent the function of interest and let λ1 and
λ2 represent the output scale of y(x) before and after the
changepoint at xc, respectively. Suppose that we wish to model
the function with an isotropic covariance function K of the form
(12) that would be appropriate except for the change in output
scale. To derive the appropriate covariance function, we model
y(x) as the product of a function with unit output scale, g(x),
and a piecewise-constant scaling function, a(x), defined by

a(x; xc) �
{

λ1, x < xc

λ2, x ≥ xc

. (21)

Given the model y(x) = a(x)g(x), the appropriate covariance
function for y is immediate. We may use the covariance function
KE defined by

KE(x1, x2; {λ2
1, λ

2
2, σ, xc})

� a(x1; xc)a(x2; xc)K(x1, x2; {1, σ })

=

⎧⎪⎨
⎪⎩

K(x1, x2; {λ1, σ }), x1, x2 < xc

K(x1, x2; {λ2, σ }), x1, x2 ≥ xc

K(x1, x2; {(λ1λ2)
1
2 , σ }), otherwise

. (22)

The form of KE follows from the properties of covariance
functions; see [20] for more details.

4.5. A change in observation likelihood

Hitherto, we have taken the observation likelihood
p( z | y, θ, I ) as being both constant and of the simple
independent form represented in (1). We now consider other
possible observation models, as motivated by fault detection
and removal [19]. A sensor fault essentially implies that the
relationship between the underlying, or plant, process y and
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the observed values z is temporarily complicated. In situations
where a model of the fault is known, the faulty observations
need not be discarded; they may still contain valuable infor-
mation about the plant process. We distinguish fault removal,
for which the faulty observations are discarded, from fault
recovery, for which the faulty data are utilized with reference
to a model of the fault.

The general observation model we now consider is

p( z | y, θ, I ) = N(z; M(x; θ)y + c(x; θ), KF (x, x; θ)) ,

(23)
which allows us to consider a myriad of possible types of fault
modes. Here KF is a covariance matrix associated with the the
fault model, which will likely be different from the covariance
over y, K . With this model, we have the posteriors

p
(
y� | zd , θ, I

) = N
(
y�; m

(
ẙ� |zd , θ, I

)
, C

(
ẙ� |zd , θ, I

))
,

(24)
where we have

m
(
ẙ� |zd , θ, I

) = μ(x�; θ) + K(x�, xd; θ)M(xd; θ)T

× VF (xd , xd; θ)−1(zd − M(xd; θ)μ(xd; θ)

− c(xd; θ))

C
(
ẙ� |zd , θ, I

) = K(x�, x�; θ) − K(x�, xd; θ)M(xd; θ)T

× VF (xd , xd; θ)−1M(xd; θ)K(xd , x�; θ),

and

VF (xd , xd; θ) � KF (x, x; θ) + M(x; θ)TK(x, x; θ) M(x; θ).

If required, we can also determine the posterior for the fault
contributions, defined as f � z − y.

p
(
f � | zd , θ, I

)
=

∫∫
p
(
f � | z�, y�, θ, I

)
p
(
z� | y�, θ, I

)
× p

(
y� | zd , θ, I

)
dy�dz�

=
∫∫

δ
(
f � − (z� − y�)

)
× N

(
z�; M(x�; θ) y� + c(x; θ), KF (x, x; θ)

)
dz�

× N
(
y�; m

(
ẙ� |zd , θ, I

)
, C

(
ẙ� |zd , θ, I

))
dy�

= N
(
f �; m

(
f̊ � |zd , θ, I

)
, C

(
f̊ � |zd , θ, I

) )
, (25)

where we have

m
(
f̊ � |zd , θ, I

)
= (M(x�; θ) − E)m

(
ẙ� |zd , θ, I

) + c(x�; θ)

C
(
f̊ � |zd , θ, I

)
= KF (x�, x�; θ) + (M(x�; θ) − E�)

× C
(
ẙ� |zd , θ, I

)
(M(x�; θ) − E�)

T,

where E� is the identity matrix of side length equal to x�. We
now consider some illustrative examples of fault types modelled
by this approach.

4.5.1. Bias
Perhaps the simplest fault mode is that of bias, in which
the readings are simply offset from the true values by some
constant amount (and then, potentially, further corrupted by
additive Gaussian noise). Clearly, knowing the fault model
in this case will allow us to extract information from the
faulty readings; here we are able to perform fault recovery. In
this scenario, M(x; θ) is the identity matrix, KF (x, x; θ) is a
diagonal matrix whose diagonal elements are identical noise
variances (as implicit in (1)) and c(x; θ) is a non-zero constant
for x lying in the faulty period, and zero otherwise. The value of
the offset and the start and finish times for the fault are additional
hyperparameters to be included in θ .

4.5.2. Stuck value
Another simple fault model is that of a stuck value, in which
our faulty readings return a constant value regardless of the
actual plant process. We consider the slightly more general
model in which those faulty observations may also include a
Gaussian noise component on top of the constant value. Here, of
course, we can hope only for fault removal; the faulty readings
are not at all pertinent to an inference about the underlying
variables of interest. This model has, as before, KF (x, x; θ)

equal to a diagonal matrix whose diagonal elements are identical
noise variances. M(x; θ) is another diagonal matrix whose ith
diagonal element is equal to zero if xi is within the faulty region,
and is equal to one otherwise. M(x; θ) hence serves to select
only non-faulty readings. c(x; θ), then, is equal to a constant
value (the stuck value) if xi is within the faulty region, and is
equal to zero otherwise. Here, as for the biased case, we have
additional hyperparameters corresponding to the stuck value
and the start and finish times of the fault.

4.5.3. Drift
The final fault we consider is that of drift. Here our sensor
readings undergo a smooth excursion from the plant process;
that is, they gradually ‘drift’ away from the real values, before
eventually returning back to normality. Unsurprisingly, here
KF (x, x; θ) is a drift covariance KC as defined in (18), with
the addition of noise variance terms to its diagonal as required.
Otherwise, M(x; θ) is the appropriate identity matrix and
c(x; θ) is a zero vector. With knowledge of this model, fault
recovery is certainly possible. The model requires additional
parameters that define the relevant covariance K used in (18),
as well as the fault start and finish times.

4.6. Discussion

The key feature of our approach is the treatment of the
location and characteristics of changepoints as covariance
hyperparameters. As such, for the purposes of prediction, we
marginalize them using (10), effectively averaging over models
corresponding to a range of changepoints compatible with the
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data. If desired, the inferred nature of those changepoints can
also be directly monitored via (11) and (12).

As such, we are able to calculate the posterior distributions
of any unknown quantity, such as the putative location of a
changepoint, xc, or the probability that a fault of a particular
type might have occurred. In some applications, it may be
necessary to make a hard decision, that is, to commit to a
changepoint having occurred at a given point in time. This
would be necessary, for example, if a system had correctional
or responsive actions that it could take when a changepoint
occurs. Fortunately, we can address the temporal segmentation
problem using simple Bayesian decision theory. Given our
observations (xd , zd), we can determine the probability that
there was a changepoint at xc, P( Changepoint(xc) | zd , I ),
using (11). Now after specifying the costs of false positive and
false negative changepoint reports as cI and cII, respectively
(and taking the cost of true positive and true negative
reports as zero), we can take the action that minimizes
the expected loss. If (1 − P( Changepoint(xc) | zd , I ))cI <

P( Changepoint(xc) | zd , I ) cII, we specify a changepoint at
time xc; otherwise, we do not. Continuing in this manner, we
can segment the entire data stream.

The covariance functions above can be extended in a number
of ways. They can firstly be extended to handle multiple
changepoints. Here we need simply to introduce additional
hyperparameters for their locations and the values of the
appropriate covariance characteristics, such as input scales,
within each segment. Note, however, that at any point in time our
model only needs to accommodate the volume of data spanned
by the window. In practice, allowing for one or two changepoints
is usually sufficient for the purposes of prediction, given that
the data prior to a changepoint is typically weakly correlated
with data in the current regime of interest. Therefore, we can
circumvent the computationally onerous task of simultaneously
marginalizing the hyperparameters associated with the entire
data stream. If no changepoint is present in the window,
the posterior distribution for its location will typically be
concentrated at its trailing edge.A changepoint at such a location
will have no influence on the predictions; the model is hence
able to effectively manage the absence of changepoints.

Additionally, if multiple parameters undergo a change at
some point in time, an appropriate covariance function can be
derived by combining the above results. For example, a function
that experiences a change in both input and output scales could
be readily modelled by

KG(x1, x2; {λ1, λ2, σ1, σ2, xc})
� a(x1; xc)a(x2; xc)K(u(x1; xc), u(x2; xc); {1, 1}), (26)

where u is as defined in (20) and a is as defined in (21).
For such models, we may be required to decide which type of

changepoint to report. Exactly as per our discussion on decisions
above, this would require the specification of a loss function, that
would, for example, stipulate the loss associated with reporting

a change in input scale when there was actually a change in
output scale. Given that, we again simply make the report that
minimizes our expected loss.

Note also that our framework allows for incorporating a
possible change in mean, although this does not involve
the covariance structure of the model. If the mean function
associated with the data is suspected of possible changes, we
may treat its parameters as hyperparameters of the model, and
place appropriate hyperparameter samples corresponding to, for
example, the constant mean value before and after a putative
changepoint. The different possible mean functions will then
be properly marginalized for prediction, and the likelihoods
associated with the samples can give support for the proposition
of a changepoint having occurred at a particular time.

5. EXAMPLE

As an expository example, we consider a function that
undergoes a sudden change in both input and output scales.
The function y(x) is displayed in Fig. 3; it undergoes a sudden
change in input scale (becoming smaller) and output scale
(becoming larger) at the point x = 0.5. We consider the problem
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FIGURE 3. Prediction over a function that undergoes a change in
both input and output scales using covariance KG.
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of performing one-step lookahead prediction on y(x) using GP
models with a moving window of size 25.

The uppermost plot in Fig. 3 shows the performance of a
standard GP prediction model with the squared exponential
covariance KSE (14), using hyperparameters {λ, σ } selected
by maximum-likelihood-II estimation on the data before the
changepoint. The standard GP prediction model has clear
problems coping with the changepoint; after the changepoint
it makes predictions that are very certain (that is, have small
predictive variance) that are nonetheless very inaccurate.

The central plot shows the performance of a GP prediction
model using the changepoint covariance function KG (26).
The predictions were calculated via BQ hyperparameter
marginalization using (10); three samples each were chosen
for the hyperparameters {λ1, λ2, σ1, σ2}, and 25 samples were
chosen for the location of the changepoint. Our model easily
copes with the changed parameters of the process, continuing
to make accurate predictions immediately after the changepoint.
Furthermore, by marginalizing the various hyperparameters
associated with our model, the uncertainty associated with
our predictions is conveyed honestly. The standard deviation
becomes roughly an order of magnitude larger after the
changepoint due to the similar increase in the output scale.

The lowest plot shows the posterior distribution of the
distance to the last changepoint corresponding to the predictions
made by the changepoint GP predictor. Each vertical ‘slice’ of
the figure at a particular point shows the posterior probability
distribution of the distance to the most recent changepoint at
that point. The changepoint at x = 0.5 is clearly seen in the
posterior distribution.

6. RESULTS

6.1. Nile data

We first consider a canonical changepoint data set, the minimum
water levels of the Nile river during the period AD 622–1284
[23]. Several authors have found evidence supporting a change
in input scale for this data around the year AD 722 [8]. The
conjectured reason for this changepoint is the construction in
AD 715 of a new device (a ‘nilometer’) on the island of Roda,
which affected the nature and accuracy of the measurements.

We performed one-step lookahead prediction on this data set
using the input scale changepoint covariance KD (19), and a
moving window of size 150. Eleven samples each were used
for the hyperparameters σ1 and σ2, the input scales before and
after a putative changepoint, respectively, and 150 samples were
used for the location of the changepoint xc.

The results can be seen in Fig. 4. The upper plot shows
our predictions for the data set, including the mean and ±1
standard deviation error bars. The lower plot shows the posterior
distribution of the number of years since the last changepoint.
A changepoint around AD 720–722 is clearly visible and agrees
with previous results.
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FIGURE 4. Prediction for the Nile data set using input scale
changepoint covariance KD , and the corresponding posterior
distribution for time since changepoint.

6.2. Well-log data

Also commonly considered in the context of changepoint detec-
tion is the well-log data set, comprising 4050 measurements of
nuclear magnetic response made during the drilling of a well
[24]. The changes here correspond to the transitions between
different strata of rock.

We performed prediction on this data set using a simple
diagonal covariance that assumed that all measurements
were independent and identically distributed (IID). The noise
variance for this covariance (alternatively put, its output scale)
was determined by maximum likelihood; it was assumed known
a priori. We then took a mean function that was constant
for each rock stratum; that is, the mean undergoes changes
at changepoints (and only at changepoints). Given the length
of the data set, and that regions of data before and after a
changepoint are independent, we performed predictions for a
point by considering a window of data centred on that point.
Essentially, we performed sequential prediction for predictants
midway through the window. In each window (comprising 50
observations), we allowed for a single changepoint. Hence, our
model was required to marginalize over three hyperparameters,
the mean before the changepoint, the mean after the changepoint
and the location of that changepoint. For these hyperparameters,
we took 13, 13 and 40 samples, respectively.

We compared our results against those produced by a
variational Bayesian hidden Markov model with a mixture of
Gaussian’s emission probability [25, 26]. This model gave a log
marginal likelihood of log p(zd |I ) 
 −1.51 × 105, whereas
our GP model gave log p(zd |I ) 
 −1.02 × 104. The resulting
predictions for both methods are depicted in Fig. 5. According
to our metric, our GP model’s performance was an order of
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magnitude better than this alternative method, largely due to
the predictions made in the regions just prior to x = 1600 and
just after x = 2400.

6.3. 1972–1975 Dow–Jones industrial average

A final canonical changepoint data set is the series of daily
returns of the Dow-Jones industrial average between the 3 July
1972 and the 30 June 1975 [6]. This period included a number
of newsworthy events that had significant macroeconomic
influence, as reflected in the Dow–Jones returns.

We performed sequential prediction on this data using a
GP with a diagonal covariance that assumed all measurements

were IID. However, the variance of these observations was
assumed to undergo changes, and as such we used a covariance
KD that incorporated such changes in the output scale. The
window used was 350 observations long, and was assumed to
contain no more than a single changepoint. As such, we had
three hyperparameters to marginalize: the variance before the
changepoint, the variance after the changepoint and, finally, the
location of that changepoint. For these hyperparameters, we
took 50, 17 and 17 samples, respectively.

Our results are plotted in Fig. 6. Our model clearly identifies
the important changepoints that likely correspond to the
commencement of the OPEC embargo on the 19 October 1973,
and the resignation of Richard Nixon as President of the USA
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FIGURE 5. Retrospective predictions for the well-log data using (a) hidden Markov model and (b) a GP with drastic change covariance function KA.
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FIGURE 6. Online predictions and posterior for the location of changepoint for the Dow-Jones industrial average data using covariance KD .
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FIGURE 7. Retrospective predictions and posterior for the location of changepoint for the EEG data with epileptic event. The covariance KB was
employed within our GP framework.

on the 9 August 1974. A weaker changepoint is identified early
in 1973, which [6] speculate is due to the beginning of the
Watergate scandal.

6.4. Electroencephalography data with epileptic event

We now consider electroencephalography (EEG) data from an
epileptic subject [27]. Prediction here is performed with the aim
of ultimately building models for EEG activity strong enough
to forecast seizure events [28]. The particular data set plotted
in Fig. 7 depicts a single EEG channel recorded at 64 Hz with
12-bit resolution. It depicts a single epileptic event of the classic
‘spike and wave’ type.

We used the covariance KB (17) to model our data,
accommodating the smooth transition of the data between
drastically different regimes. We took K1 as a simple squared
exponential (14) and K2 as a periodic covariance (15) multiplied
by another squared exponential. K2 is intended to model EEG
data during the course of seizure, K1, data from other regions.
We assume that we have sufficient exemplars of EEG data
unaffected by seizure to set the hyperparameters for K1 using
maximum likelihood. We further assumed that the input scale of
the non-periodic squared exponential within K2 was identical
to that for K1, representing a constant long-term smoothness for
both seizure and non-seizure periods. The hyperparameters we
were required to marginalize, then, were the period σ , amplitude
λ and smoothness ω of (15) for K2, along with the location of
the changepoint and its type (either periodic to non-periodic or
non-periodic to periodic). For these hyperparameters, we took,
respectively, 7, 7, 5, 50 and 2 samples.

This model was used to perform effective retrospective
prediction over the data set, as depicted in Fig. 7.As can be seen,

our posterior distribution for the location of the changepoint
correctly locates the onset of seizure.

6.5. Stuck sensor

To illustrate our approach to sensor fault detection, we also
tested on a network of weather sensors located on the south
coast of England.2 We considered the readings from the
Sotonmet sensor, which makes measurements of a number of
environmental variables (including wind speed and direction,
air temperature, sea temperature and tide height) and makes up-
to-date sensor measurements available through separate web
pages (see http://www.sotonmet.co.uk). This sensor is subject
to network outages and other faults that suggest the use of the
models described in Section 4.5.

In particular, we performed on-line prediction over tide
height data in which readings from the sensor became stuck
at an incorrect value. As such, we used the change in the
observation model taken from Section 4.5.2. The covariance
for the underlying plant process was taken to be the sum of a
periodic and a non-periodic component, as described in [21], the
hyperparameters for which can be determined off-line. As such,
we need to marginalize only the hyperparameter corresponding
to the location of a changepoint in the window, and over the
type of that change point (i.e. either not-stuck to stuck or stuck
to not-stuck). Clearly, our belief about the stuck value can be
heuristically determined for any appropriate region — it is a
delta distribution at the constant observed value. We employed
a window size of 350 data points, and, correspondingly, 350

2The network is maintained by the Bramblemet/Chimet Support Group
and funded by organizations including the Royal National Lifeboat Institution,
Solent Cruising and Racing Association and Associated British Ports.
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samples for the location of the changepoint. Results are plotted
in Fig. 8. Our model correctly identified the beginning and end
of the fault. Then by performing fault removal via (24), the
model is able to perform effective prediction for the plant (tide)
process throughout the faulty region.

6.6. EEG data with saccade event

To illustrate our approach to sensor fault recovery, we also tested
on a Brain-Computer Interface (BCI) application. BCI can be
used for assisting sensory-motor functions as well as monitoring
sleep patterns. EEG is a highly effective non-invasive interface.
However, the EEG signal can often be corrupted by electro-
oculogram (EOG) artefacts that may be the result of a saccade;
it is necessary to remove the artefact from the EEG signal. This
problem was treated as a blind source separation problem in [29]
and an ICA solution was proposed which identified the separate
artefact-free EEG signal (which we refer to as EEG*) and the

EOG signal. Figure 9 shows typical EOG activity during a
saccade. In BCI applications, however, a measured EOG signal
is rarely available and we must rely on the artifact removal
algorithms to offer an accurate assessment of the pure EEG*
signal.

We demonstrate an alternative approach to EOG artefact
removal that we first proposed in [19]. Our approach allows
the user to encode any available information about the shape
of the component signals including signal smoothness, signal
continuity at change points and even the shape of the signal
if sufficient training data is available. In our approach, both
the EEG* and EOG signals are modelled using GPs and these
signals are determined from the EEG signal data using the
fault recovery approach outlined in Section 4.5. Although the
application of GPs to artefact detection in EEG signals is not
new [28], as far as we can see, the use of GPs to actively remove
the artefact and thus recover the underlying pure EEG signal
is novel.
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FIGURE 8. Online predictions and posterior for the location of changepoint for the tide height data. The fault was modelled as a change in
observation likelihood of the form described in Section 4.5.2.
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The EEG* signal is modelled as a smooth function generated
from a squared exponential covariance function. The EOG
signal is a function that undergoes a temporary excursion from
an otherwise constant value of zero and, as such, is modelled
using the ‘drift’ model, (18). We shall, however, consider two
variations of the drift model when modelling the EOG artefact.
These variations differ only in the prior mean that is assigned
to the EOG artefact model. The first variation assumes that no
further information about the shape of the EOG signal is known
and, in this case, the EOG artefact prior mean is zero throughout.
For the second variation of the drift model, a prior mean is
learnt from samples of EOG signals, giving the shape depicted
in Fig. 9. In this case, the EOG covariance function models the
residual between the prior EOG mean and the current signal.

The presence of abundant uncorrupted EEG signal data
allowed the length and height scale hyperparameters for the
EEG* model to be learnt using maximum likelihood. We
modelled the dynamics of the EOG excursion itself using a
squared exponential covariance function, and assumed that its
input scale was the same as for the EEG data. As such, we
were required to marginalize three hyperparameters: the output
scale λ of the EOG covariance, and the artefact start time and
duration. For the zero mean fault model we took 13, 13 and 150

samples, respectively, for those hyperparameters. For the non-
zero mean model we took 5, 7 and 75 samples, respectively. The
non-zero mean model also requires a vertical scaling factor for
the prior mean shape (Fig. 9) and, for this hyperparameter, we
took nine samples.

For the artefact start time hyperparameter, we took a uniform
prior over the extent of the dataset. As usual, if no artefact
was detected, the posterior mass for the start time would be
concentrated at the end at the data set. We cannot be very certain
a priori as to the duration of a saccade, which will be dependent
upon many factors (notably, the size of the saccade). However,
a reasonable prior [30] might place upon the logarithm of the
saccade duration a Gaussian with a mean of log(110 ms) and a
standard deviation of 0.6 (meaning that saccade durations of 60
and 200 ms are both a single SD from the mean). This was the
prior taken for the artefact duration hyperparameter.

Figures 10 and 11 show the result of performing retrospective
prediction over our EEG data. Figure 10 shows the 1 standard
error confidence interval for the artefact-free EEG* signal and
the EOG artefact obtained using our algorithm with a zero
prior mean EOG model. The figure also shows the retrospective
posterior distribution over the artefact start time. Although our
approach is able to determine when an artefact occurs, its start
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FIGURE 10. Retrospective predictions and posterior for the location of changepoint for the EEG data with saccade. Predictions are made both
for the plant process (the underlying EEG signal) using (24), as well as for the fault contribution due to saccade, using (25). The GP assumes a zero
prior mean during the saccade.
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time is hard to determine as, at the artefact onset, the EEG signal
length scale is similar to the pure EEG* signal. However, the
approach successfully removes the EOG artefact from the EEG
signal. We can also use (10) to produce the full posterior for
the EEG signal over the saccade event, as plotted in Fig. 12a.
Note that we can distinguish two models: the model that simply

follows the EEG signal; and the model that assumes that a
saccade artefact may have occurred. The former is characterized
by a tight distribution around the observations, the latter being
much more uncertain due to its assumption of a fault. Note that
the first model gradually loses probability mass to the second
until the first becomes completely implausible.
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FIGURE 11. Retrospective predictions and posterior for the location of changepoint for the EEG data with saccade. Predictions are made both for
the plant process (the underlying EEG signal) using (24), as well as for the fault contribution due to saccade, using (25). The GP assumes a prior
mean during the saccade of the common form for EOG activity during such an event.
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Figure 11 shows the recovered signals obtained using the non-
zero mean EOG artefact model. In this case, our approach more
accurately identifies the start and finish times of the artefact
and also accurately separates the pure EEG* and EOG signals.
It is interesting to note that this approach results in a bimodal
distribution over the artefact start time. The most likely start
times are identified by our algorithm to occur at the kinks in the
data at t = 115 ms and t = 120 ms. This results in a bimodal
estimate of the EEG* and EOG signals. These bimodal signal
estimates and the distribution over the artefact start times are
shown in Fig. 12b.

7. CONCLUSION

We introduce a new sequential algorithm for performing
Bayesian time-series prediction in the presence of changepoints
or faults. After developing a variety of suitable covariance
functions, we incorporate the covariance functions into a
Gaussian process framework. We use Bayesian Monte Carlo
numerical integration to estimate the marginal predictive
distribution as well as the posterior distribution of associated
hyperparameters. By treating the location of a changepoint
as a hyperparameter, we may therefore compute the posterior
distribution over putative changepoint location as a natural
byproduct of our prediction algorithm. Tests on real data sets
demonstrate the efficacy of our algorithm.
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