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�e tracking initiation problem is examined in the context of autonomous bearings-only-tracking (BOT) of a single appear-
ing/disappearing target in the presence of clutter measurements. In general, this problem su
ers from a combinatorial explosion in
the number of potential tracks resulted from the uncertainty in the linkage between the target and the measurement (a.k.a the data
association problem). In addition, the nonlinear measurements lead to a non-Gaussian posterior probability density function (pdf)
in the optimal Bayesian sequential estimation framework. �e consequence of this nonlinear/non-Gaussian context is the absence
of a closed-form solution. �is paper models the linkage uncertainty and the nonlinear/non-Gaussian estimation problem jointly
with solid Bayesian formalism. A particle �ltering (PF) algorithm is derived for estimating the model’s parameters in a sequential
manner. Numerical results show that the proposed solution provides a signi�cant bene�t over the most commonly used methods,
IPDA and IMMPDA.�e posterior Cramér-Rao bounds are also involved for performance evaluation.

1. Introduction

�eproblem of angle/bearings-only tracking (BOT) has been
studied over many years due to its tremendous importance
in a variety of practical communication and signal pro-
cessing applications, such as localization in wireless sensor
networks [1], submarine tracking using passive sonar [2],
aircra� surveillance using radars [3], and sonar-based robotic
navigation [4, 5]. �is paper is concerned with radar and
sonar tracking. Speci�cally, the focus of this paper lies in
a fundamental problem in many sonar and radar tracking
tasks, called track initiation.�is problem consists in linking
sets of point observations from di
erent time steps to �t a
desiredmodel without any a priori track estimates. In general,
track initiation approaches can be categorized into two
schemes: sequential and batch schemes [6–8].�e sequential
scheme processes a sequence of measurements received
during consecutive radar/sonar scans sequentially one at a
time. �e sequential methods are widely used in radar and
sonar tracking problems. For the batch technique approach,� past scans of measurements are treated simultaneously to
determine feasible target trajectories (see Figure 2).�e batch

techniques su
er from a heavy computational load and a slow
process, while they �nd applications in image processing and
tracking in heavy clutter background [6]. �is paper only
concerns sequential techniques.

In the context of radar and sonar applications, the target
signal, if present, is o�en corrupted by additive noise and
comes with other measurements unrelated to the target,
which originate from thermal noise and various forms of
clutter such as terrain and clouds [9]. So the issue of
measurement origin uncertainty has to be addressed before
tracking. �is is called the data association problem and has
been addressed in the context of multitarget tracking (MTT)
in clutter [10, 11].

�e tracking initiation problem considered here has its
own challenges not only due to the measurement origin
uncertainty, but also the uncertainty in the target pres-
ence. In fact, for tracking initiation, it is prerequisite to
determine whether the target is present before dealing with
data association and state �ltering. Moreover, in BOT the
measurement function is highly nonlinear, which results
in a non-Gaussian posterior probability density function
(pdf) in the optimal estimate of the target. �e consequence



2 �e Scienti�c World Journal

of this nonlinear/non-Gaussian context is the absence of
a closed-form solution [12–14]. As BOT initiation involves
such interactive problems, that is, the measurement ori-
gin uncertainty, the target presence uncertainty, and the
nonlinear/non-Gaussian posteriors in optimal estimation,
it is therefore much more di�cult than any individual-
related tasks such as state �ltering, target detection, and data
association. It is noted that, besides the simulated annealing
[15, 16] and the Ants algorithm [17], there are few reports on
such BOT initiation problem, not tomention sequential BOT
initiation.

�is paper proposes an algorithm for sequential BOT
initiation. �e measurement origin uncertainty, target pres-
ence uncertainty, and the nonlinear non-Gaussian factors
are handled jointly within a Bayesian sequential estimation
framework. Based on such Bayesian formalism, a sequential
Monte Carlo (SMC), a.k.a particle �ltering (PF), algorithm is
derived. Performance of the proposed approach is evaluated
via numerical simulations and related methods are involved
for performance comparison.

�e remainder of this paper is organized as follows.
Section 2 formulates the sequential BOT initiation prob-
lem. Section 3 presents the Bayesian sequential estimation
framework for the problem under consideration. Section 4
derives the PF algorithm under the framework developed
above. In Section 5, simulations are performed to evaluate
the performance of the proposed algorithm. Finally, Section 6
concludes the paper.

2. Problem Formulation

2.1. Dynamic Model of the Target. Consider a discrete-time
dynamic model

x�+1 = f� (x�, k�) , (1)

which is used to describe the target movement in a two-
dimensional (2D) �-� plane. � denotes the discrete time
index, k� the process noise, and x� the target state vector.
�e target state consists of 2D position and velocity elements,
which is de�ned as below:

x� = [�� �̇� �� ̇��]�, (2)

where (�, �) and (�̇, ̇�) denote the 2D position and velocity,
respectively. �e superscript � denotes matrix transposition.
If the movement pattern of the target is a priori known, then
f will have a speci�c form. For example, if the target moves
with a near constant velocity, then f can be modeled to be

f� (x�, k�) = Fx�−1 + k�, (3)

where F = [ Fs 00 Fs
], Fs = [ 1 T0 1 ], and T denotes the sampling

period of the measurements. For more details on dynamic
models for tracking problems, see [18].

2.2. Markov Chain Model for Uncertainty of Target Existence.
In tracking initiation problem, the target presence is not a
de�nitive issue either before the track under consideration

is con�rmed or a�er it is terminated. To take into account
the uncertainty of the target presence, we introduce binary
valued variable �� ∈ {0, 1} and let �� = 1 represent the target
being present in the surveillance region at time �, and �� = 0
denotes the opposite. Evolution of � during the surveillance
time is modeled by aMarkov chain, which is characterized by
the following transition probabilities:

�� ≜ � {�� = 1 | ��−1 = 0} , (4)

�� ≜ � {�� = 0 | ��−1 = 1} , (5)

and the initial probability of target existence, that is, �(�1).�� and ��, have speci�c physical meanings. �� is actually the
probability of a new target’s birth or appearing at a time step
and �� is the probability of the target’s death or disappeance.
�e transitional probability matrix is given by

Π = [1 − �� ���� 1 − ��] , (6)

where 1−�� and 1−�� are equivalent to probabilities of target
staying alive and remaining absent, respectively. ��, ��, and�(�1) are assumed a priori known.

2.3. Measurement Model. Let Z� ≜ (z1, z2, . . . , z�) denote the
measurements received up to and including the time step �.
Here, z� represents the measurement received at time �. It is
composed of only clutters (if the target is absent currently)
or clutters along with the target originated measurement
element (if the target is present at this time step). Speci�cally,

z� ≜ {{{
(��, �1,�, �2,�, . . . , ��� ,�) , if �� = 1
(�1,�, �2,�, . . . , ��� ,�) , if �� = 0, (7)

where �� denotes the target originated measurement,�1,�, �2,�, . . . , ��� ,�measurement elements due to clutters, and�� the number of clutters. Note that elements in z� are
not ordinal. For BOT, the relationship between �� and x� is
speci�ed to be

�� = arctan(�� − ��,��� − ��,�) + w�, (8)

where w� is the measurement noise with known pdf and is
independent of k� in (1) and (��,�, ��,�) the sensor’s position.

�e measurement elements due to clutters are assumed
to be uniformly distributed over the surveillance region,
so the pdf ��(⋅) = 1/#, where # denotes volume of the
surveillance region. �e number of clutters per scan, ��, is
Poisson distributed with density parameter$�; that is,�� ∼
Poission($�).
2.4. �e BOT Initiation Problem. �e information on target
presence along with the target’s dynamic state (if target
presence has been con�rmed) is of interest here, while the
only probe to get the desired information is the received
measurements.
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Figure 1: Received BOT measurements versus discrete time index. �e le� plot indicates target originated measurements by crossing them
by a line, while the right plot does not give any indication on the source of each measurement.
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Figure 2: �e observer trajectory and the target trajectory in the
simulation.

In Figure 1, we give an example showing the measure-
ments generated in a BOT initiation case, where the target
exists from the 8th second to the 32nd second. In the
upper plot, the target-originated measurements are linked
by a series of line segments, while the other points denote
measurements generated due to clutters. �e bottom plot
represents the true scenario encountered in practice where
there is no indication on the source of the measurements.

�e task of track initiation just consists in taking sets
of point observations from di
erent time steps and link-
ing together those observations that �t a desired model
without any previous track estimates. As shown in Figure 1,
we may draw many di
erent lines to link many di
erent
sets of measurements, while there is only one true answer
underlying these measurements. In general, such track

initiation problem su
ers from a combinatorial explosion in
the number of potential tracks that must be evaluated.

As indicated by Figure 1, it is reasonable to input the
measurements to the tracker algorithm in a batch mode, as
latter observations can be used to bene�t making decisions
at previous time steps. �at is why so many batch mode
techniques are developed for track initiation, for example, the
Hough-transform-based approach [6, 8, 19–21], the multiple-
kd tree algorithm [22], and so on.

However, the problem of interest here is di
erent. �e
focus is how to do BOT initiation in a sequential manner.
We formulate this problem as follows. Given �(x�, �� | Z�),
once z�+1 is observed, how to calculate �(x�+1, ��+1 | Z�+1)
immediately, � = 1, 2, . . .. Actually, �(x�, �� | Z�) covers all
the information about (x�, ��) that we are able to get based
on Z�. It is noted that, provided that su�cient statistics of�(x�, �� | Z�) can be obtained, there is no need to reload
and process Z� for calculating �(x�+1, ��+1 | Z�+1) upon the
arrival of z�+1.

3. Sequential Bayesian Estimation
Framework for BOT Initiation

Here, the distribution of interest is the posterior �(x�, �� |
Z�). We present a Bayesian estimation framework for com-
puting this posterior distribution sequentially in a recursive
manner. �e recursion starts from an initial distribution(x0, �0) ∼ �(x0, �0) | Z0, where Z0 is empty, since at the
very beginning, there is no measurement element received.
�e successive posteriors are computed as follows:

� (x�, �� | Z�−1)
= ∫� (x�, �� | x�−1, ��−1) � (x�−1, ��−1 | Z�−1)

× ' (x�−1, ��−1)� (x�, �� | Z�) ∝ � (z� | x�, ��) � (x�, �� | Z�−1) .
(9)
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Now let us examine individual parts that constitute the above
integrals. First, consider the state transition part:

� (x�, �� | x�−1, ��−1) = � (x� | x�−1, ��−1, ��) � (�� | ��−1) .
(10)

Note that �(�� | ��−1) is just determined by the birth/death
Markov model (6). If �� = 0, the target is absent, so x� is
unde�ned; otherwise, the pdf of x� conditional on x�−1 and��−1 is given by

� (x� | x�−1, ��−1, �� = 1) = {� (x� | x�−1) for ��−1 = 1,�	 (x�) for ��−1 = 0,
(11)

where �	(⋅) denotes the initial pdf of the target on its appear-
ance.

Now, we consider the calculation of the measurement
likelihood. To begin with, introduce variable 3� to denote
the number of measurement elements in z�. If the target is
absent, that is, �� = 0, then 3� just equals the number of
measurements due to clutters, that is, ��; otherwise, 3� =�� +1. Now, we introduce the association variable 4�. We use4� = 5, 5 ∈ {1, . . . , 3�}, to denote the event that the 5th element
in z� is target-originated, and the others are generated due
to clutters. Additionally, 4� = 0 denotes that no elements in
z� are target-originated. Now, the measurement likelihood is
speci�ed to be

� (z� | x�, ��) = 
�∑
�=0
� (z� | x�, ��, 4� = 5) � (4� = 5 | x�, ��) ,

(12)

where

� (z� | x�, ��, 4� = 5)
= {{{{{

� (��,� | x�) ⋅ (�� (⋅))�� , if �� = 1, 5 ̸= 0,(�� (⋅))
� , if �� = 0, 5 = 0,0, otherwise,
� (4� = 5 | x�, ��)
= {{{{{{{

13� , if �� = 1, 5 = 1, . . . , 3�,1, if �� = 0, 5 = 0,0, otherwise.

(13)

4. Sequential Monte Carlo Implementation

In this section, SMC techniques are developed to approxi-
mately implement the Bayesian estimation framework pre-
sented in Section 3. �e idea is to use the Monte Carlo
samplingmethodology to approximate the involved distribu-
tions by a set of weighted random samples. It is noted that
convergence of SMCmethods in dealing with nonlinear non-
Gaussian Bayesian tracking problem has been proved [23–
25].

To begin with, denote {x
�−1, �
�−1, 9
�−1}�
=1 as a random
measure that approximates the posterior at � − 1; namely,�(x�−1, ��−1 | Z�−1). Here, � is the sample size; 9
�−1 is
the importance weight of the 3th sample (x
�−1, �
�−1). In
the following, an attempt is made to derive an evolution
law for the current random set of particles to get a particle
approximation to �(x�, �� | Z�).

First, evolve the existence variable one time step further
for each particle based on the birth/death Markov model (6).
For example, if �
�−1 = 0, then the probabilities of �
� = 1 and�
� = 0 are �� and 1 − ��, respectively, according to (4) and
(6).

Next, we show how to generate state vector value x� for
each particle according to (10) and (11). Let us focus on
particles that are associated with positive �� values. �ey
are active particles at time step �. �ese particles can be
categorized into two classes:

(i) newborn particles: this set of particles is characterized
by the transition from �
�−1 = 0 to �
� = 1;

(ii) staying alive particles: this is a set of particles that
continues to stay active with �
�−1 = 1 and �
� = 1.

According to (11), we draw state vector sample values x� for
the newborn particles from a given initial pdf �	(⋅) and draw
state vector sample values for the staying alive particles from
the dynamic transition prior density, which are determined
by the target dynamic model (1). For the rest of particles that
are associated with �� = 0, just keep their state vector values
unde�ned, since they are totally useless in the algorithm.

Now we see, for each particle, say the 3th, its associated
state vector value x



� and existence variable value �
� are

obtained, while the importance weight 9
� needs to be
updated when the new measurement z� arrives at time step�. We update the importance weights according to the solid
Bayesian formalism given by (9). Given x



� and �
�, the

(unnormalized) importance weight 9̃
� is just equivalent to
the likelihood of z�. It is calculated according to (12). A
normalization step is processed as follows:

9
� = 9̃
�∑��=1 9̃
� , (14)

to make sure that the summation of the importance weights
equals 1. �en, the posterior probability of target existence,
that is, �(�� = 1 | Z�), is computed as below

�� = �∑

=1
�
�9
� , (15)

which satis�es 0 ≤ �� ≤ 1. �e target is declared to be
present if �� is bigger than a given threshold, 0.6 is used in
our simulation test. If the target is determined to be present,
its state is estimated as follows:

x̂�|� = (∑
∈{1,...,�}:���=1 x
�9
�)(∑
∈{1,...,�}:���=1 9
�) . (16)
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To avoid the problem of degeneracy of SMC algorithm, that
is, avoiding the situation that all but one of the importance
weights are close to zero, a resampling procedure is per-
formed if the e
ective number of particles is less than a
given threshold �thr. An estimate of the e
ective number of
particles is computed as follows [26]:

�̂e
 = 1∑�
=1 (9
�)2 . (17)

�e resampling procedure can be summarized as follows:
draw particles from the current particle set with probabilities
proportional to their weights and then replace the current
particle set with this new one. For more discussions on
resampling methods in context of PF, refer to [23, 27, 28].
�e above SMC algorithm is initialized at � = 1 by drawing
samples �
1, 3 = 1, . . . , � in accordance with the initial
target existence probability B1. �e initialization of the active
particles’ state vector is the same as for the newborn particles
described above.

5. Simulation Study

In this section, the performance of the proposed PF algorithm
for sequential BOT initiation is evaluated via simulations.�e
estimation accuracy of the proposed algorithm is compared
to the Posterior Cramér-Rao lower bounds (CRLB) [29]. Two
generally accepted approaches for sequential track initiation,
namely, integrated probabilistic data association (IPDA) [9]
and integrated multiple model probabilistic data association
(IMMPDA) [30, 31], are also involved for performance
comparison.

5.1. Simulation Setting. �e scenario to be investigated
involves BOT of a target from an observer, as shown in
Figure 1. �e observer travels at a �xed speed of 10m/s and
executes 2 maneuvers during the period under surveillance.
�e scanning process lasts 40 seconds in total. During
the �rst 8 seconds, the target does not emit any energy
outward, so there is no target-originated elements in the
received measurements. During the period from the 8th
to the 32nd second, the target moves and emits energies
outward, so the received measurements include the target-
originated elements and the tracker algorithm is expected to
be able to detect the target. A�er the 32nd seconds, generation
of target-originated elements is terminated in the received
measurements. �is setting is used to test whether a tracker
algorithmunder examination can terminate the track in time.
�e target motion is simulated according to (3) subjected
to an amount of process noise with C� = 0.1. �e target’s
2D position and velocity are initialized to be (380, 200) and(12.25, −12.25), respectively. �e other parameters used in
this simulation are listed in Table 1. An example show of
the received measurements versus discrete time index is
presented in Figure 1.

5.2. Performance Comparison on Target Detection. Detection
performance of the involved algorithm is investigated via

Table 1: Parameter setting for simulation.

Symbol Quantity Value� Measurement sampling period 1 sG Standard error of measurement noise 1 degree$� Expected number of clutters per scan 5� Sample size used in SMC 3000
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Figure 3:�e true and the estimated probabilities of target existence
versus time index.

Monte Carlo simulations with 100 independent runs of each
algorithm. �e outputted probabilities of target existence at
each time step are averaged and then plotted in Figure 3. As
is shown, the proposed SMC algorithm beats both IPDA and
IMMPDA remarkably in the rate of convergence.

Quantitative comparison is also conducted via hypothesis
testing. Hypotheses H0 and H1 are de�ned to represent
the events “target being absent” and “target being present,”
respectively. At each time step �, four possible cases may
happen for each algorithm:

(1) H0 is true and the algorithm choosesH0,
(2) H0 is true and the algorithm choosesH1,
(3) H1 is true and the algorithm choosesH0,
(4) H1 is true and the algorithm choosesH1.

We select probability of false alarm, denoted by �FA, and

probability of detection, denoted by ��, as the performance
metrics. LetI� count the number of times of case 5 appearance
in the simulation test, 5 ∈ {1, 2, 3, 4}.�en�FA = I2/(I1+I2)
and �� = I4/(I3 + I4). So a good algorithm is expected to

yield bigger �� and smaller �FA. �� and �FA are calculated
over 100 independent runs of each algorithm and the �nal
result is listed in Table 2. It is demonstrated again that the
proposed SMC algorithm is superior to IPDA and IMMPDA
in detection performance.
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Table 2: Detection performance comparison.

Algorithms �FA ��
�e proposed SMC algorithm 0.67% 96%

IPDA 4% 81.2%

IMMPDA 53.33% 86%
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Figure 4: RMS position error in comparison with the posterior
CRLB.

5.3. Examination on Estimation Accuracy. �e posterior
Cramer-Rao lower bounds (CRLB) [29] are used to indicate
the best estimation accuracy an algorithm can achieve. �e
performance metric, namely, the root-mean square (RMS)
position error is de�ned as follows:

RMS� = √∑��=1 (�̂�� − ��)
2 + (�̂�� − ��)2$ , (18)

where (��, ��) denotes the target’s 2D position at time step� in the simulations, (�̂��, �̂��) the estimation of (��, ��)
outputted in the 5th test of the algorithmunder consideration,
and$ the number of independent tests under consideration.
De�ne L−1�,�, L−1�,� as the 2D position elements of the inverse

information matrix for the problem at hand; the correspond-
ing CRLB for the metric given by (18) is calculated as below:

CRLB (RMS�) = √L−1�,� + L−1�,�. (19)

Here, we only consider the scanning time interval between
the 8th and the 32nd time steps, when the target is truly
present and the proposed algorithm successfully detects it.
Figure 4 shows the RMS position error of the proposed
algorithm in comparison with the calculated CRLB.

6. Conclusions

�is paper addresses the problem of sequential BOT initia-
tion in the context of sonar and radar applications. A sequen-
tial Bayesian estimation framework is developed for this
problem.�is theoretical framework addresses measurement
origin uncertainty and target existence uncertainty jointly via
solid Bayesian formalism. An SMC approximate algorithm
is derived under this framework and its performance is
evaluated via simulations. It is shown that the proposed
algorithm provides a remarkable performance improvement
in target detection, compared with the commonly used PDA
based methods. �e proposed algorithm also gives accurate
estimation of the target’s state, as indicated by a comparison
with the posterior CRLB.
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