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Abstract

A new test for structural changes in functional data is investigated. It is
based on Hilbert space theory and critical values are deduced from bootstrap
iterations. Thus a new functional central limit theorem for the block bootstrap
in a Hilbert space is required. The test can also be used to detect changes in
the marginal distribution of random vectors, which is supplemented by a sim-
ulation study. Our methods are applied to hydrological data from Germany.

Keywords: near epoch dependence, Hilbert space, block bootstrap, functional
data, change-point test

1 Introduction

Statistical methods for functional data have received great attention during the last
decade and environmental observations, see Hörmann and Kokoszka [16], are one of
many areas where such data appear. Due to a strong seasonal effect, for example
in temperature or hydrological data, such time series are non-stationary and thus
change point analysis is a complex topic. A possible solution is looking at annual
curves instead of the whole time series and therefore observations become functions.
Functional principal components was used by Kokoszka et.al. [19] in testing for
independence in the functional linear model and by Benko, Härdle and Kneip [2] in
two sample tests for L2[0, 1]-valued random variables, a method that was extended to
change point analysis by Berkes et.al. [3]. Another approach is due to Fraiman et.al.
[14] who use record functions to detect trends in functional data. In contrast to all
former approaches our method takes the fully functional observation into account.
Whereas the statistic of Berkes et.al. [2] is Rd-valued, our statistic depends directly
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on the functional or more generally Hilbert space-valued random variables. This
gets clear when considering the analogue of the Cusum statistic, which takes the
maximum of the norm of

k
∑

i=1

Xi −
k

n

k
∑

i=1

Xi for k = 1, . . . , n− 1, (1)

where Xi takes values in a Hilbert space H.
Another change point problem are changes in the marginal distribution of random
variables, now taking values in R

d. The Kolmogorov Smirnov-type change point test
was used for example by Inoue [17] and its statistic reads as follow

max
1≤m≤n−1

sup
t∈[0,1]

|Fm(t)− Fm+1;n(t), | (2)

where Fm and Fm+1;n are empirical distribution functions, based on X1, . . . , Xm and
Xm+1, . . . Xn, respectively. Define Yi by Yi(t) := 1{Xi≤t} then (2) equals

max
1≤m≤n−1

‖Ȳm − Ȳm+1;n‖∞.

The Yi are no longer real valued random variables, they take values in a function
space. Often one uses the space D[0, 1] of cadlag functions but functional central
limit theorems in D[0, 1] are difficult to obtain. Therefore in this paper we want to
consider the Hilbert space L2. Using the norm ‖·‖, induced by the inner product of
the Hilbert space instead of the supremums norm, we get the statistic

max
1≤m≤n−1

‖Ȳm − Ȳm+1;n‖L2
.

Critical values for change point test are often deduced from asymptotics. (1) can be
expressed as a functional of the partial sum process

⌊nt⌋
∑

i=1

Xi for t ∈ [0, 1], (3)

whose asymptotic behavior for H-valued data was investigated by Chen and White
[8] for mixingales and near epoch dependent processes. For statistical inference one
needs control over the asymptotic distribution but due to dependence and the in-
finite dimension of the {Xi}i≥1 this depends on an unknown infinite dimensional
parameter - the covariance operator. Our solution is the bootstrap which has been
successfully applied to many statistics in the case of real or R

d-valued data. For
Hilbert spaces only Politis and Romano [23] and recently Dehling, Sharipov and
Wendler [12] showed the asymptotic validity of the bootstrap. The results of Politis
and Romano [23] can only handle bounded random variables. Thus indicator func-
tions and statistics of type (2) can be bootstrapped by their method, but general
functional data can not.
We extend the non overlapping block bootstrap of Dehling, Sharipov and Wendler

2



[12] by a sequential component which is inevitable for change point statistics.
The paper is organized as follows: Sections 2.1 and 2.2 contain the main results, an
invariance principle for H-valued processes and the functional central limit theorem
for bootstrapped data. Section 3 describes the statistics and the bootstrap method-
ology for different change point tests including converging alternatives. In a small
simulation study the finite sample behavior of our test both under stationarity and
under structural changes in mean or skewness is investigated and compared to the
performance of the classical cusum test. Moreover real life data are analyzed and
finally proofs are provided in the appendix.

2 Main results

2.1 Functional Central Limit Theorem for Hilbert space-

valued functionals of mixing processes

Let H be a separable Hilbert space with inner product 〈·, ·〉 and norm ‖·‖ =
√

〈·, ·〉.
Further let (ξi)i∈Z be a stationary sequence of random variables, taking values in an
arbitrary separable measurable space. A sequence (Xn)n∈Z of H-valued random vari-
ables is called Lp-near epoch dependent ( NED(p) ) on (ξ)i∈Z, if there is a sequence
(ak)k∈N with ak → 0 as k → ∞ and

E‖X0 − E[X0|Fk
−k]‖p ≤ ak.

Here Fk
−k denotes the σ-field generated by ξ−k, . . . , ξk. For the definition of condi-

tional expectation in Hilbert spaces see Ledoux and Talagrand [20].
Concerning the sequence (ξi)i∈Z, we will assume the following notion of mixing. De-
fine the coefficients

β(k) =

∣

∣

∣

∣

∣

E sup
A∈F∞

k

[P (A|F0
−∞)− P (A)]

∣

∣

∣

∣

∣

.

(ξ)i∈Z is called absolutely regular if β(k) → 0 as k → ∞.

It is our aim to prove functional central limit theorems for H valued variables. There-
fore we will use the space DH [0, 1], the set of all cadlag functions mapping from [0, 1]
to H. An H-valued function on [0, 1] is said to be cadlag, if it is right-continuous
and the left limit exists for all x ∈ [0, 1]. Analogously to the real valued case we
define the Skorohod metric

d(f, g) = inf
λ∈Λ

{

sup
t∈[0,1]

‖f(t)− g ◦ λ(t)‖+ ‖id− λ‖∞
}

f, g ∈ DH [0, 1],

where Λ is defined as usual, ‖·‖ is the Hilbert space norm and ‖·‖∞ the uniform
norm.
Most properties from the well known space D[0, 1] carry over to this space, so
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equipped with the Skorohod metric DH [0, 1] becomes a separable Banach space.

The first result states convergence of the partial sum process. Such a result was
given by Walk [26] for martingale difference sequences and by Chen and White [8] in
the near epoch dependent case. They assume strong mixing, which is more general
than absolute regularity. Then again we require L1-near epoch dependence, while
they use L2-near epoch dependence, which implies our conditions.

Theorem 2.1. Let (Xn)n∈Z be L1-near epoch dependent on a stationary, absolutely
regular sequence (ξn)n∈Z with EX1 = µ and assume that the following conditions
hold for some δ > 0

1. E‖X1‖4+δ < ∞,

2.
∑∞

m=1 m
2(am)

δ/(δ+3) < ∞,

3.
∑∞

m=1 m
2(β(m))δ/(δ+4) < ∞.

Then




1√
n

⌊nt⌋
∑

i=1

(Xi − µ)





t∈[0,1]

⇒ (Wt)t∈[0,1] (4)

where (Wt)t∈[0,1] is a Brownian motion in H and W1 has the covariance operator
S ∈ S(H), defined by

〈Sx, y〉 =
∞
∑

i=−∞
E[〈X0 − µ, x〉〈Xi − µ, y〉], for x, y ∈ H. (5)

Furthermore the series in (5) converges absolutely.

2.2 Sequential Bootstrap for H-valued random variables.

When using the result of the previous section in applications, for example change
point test (see section 3), one is confronted with the problem, that the limiting distri-
bution may be unknown, or even if it is known it depends on an infinite dimensional
parameter, in our case the covariance operator S.
To circumvent this problem, we will use the non overlapping block bootstrap of Carl-
stein [7] to establish a process with the same limiting distribution as 1√

n

∑⌊nt⌋
i=1 (Xi−µ).

For a block length p(n) consider the k = ⌊n/p⌋ blocks I1, . . . , Ik, defined by

Ij = (X(j−1)p+1, . . . , Xjp).

Then we choose randomly and independently k blocks, so that the bootstrap sample
X∗

1 , . . . , X
∗
kp satisfies

P
(

(X∗
(j−1)p+1, . . . , X

∗
jp) = Ii

)

=
1

k
for i, j = 1, . . . , k,
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Now we can define a bootstrapped version of the partial sum process, which is given
by

W ∗
n,p(t) =

1√
kp

⌊kpt⌋
∑

i=1

(X∗
i − E∗X∗

i ). (6)

As usual E∗ and P ∗ denote conditional expectation and probability, respectively,
given σ(X1, . . . , Xn). Further ⇒∗ denotes weak convergence with respect to P ∗. The
next Theorem establishes the asymptotic distribution of (6).

Theorem 2.2. Let (Xn)n∈Z be L1-near epoch dependent on a stationary, absolutely
regular sequence (ξn)n∈Z with EX1 = µ and assume that the following conditions
hold for some δ > 0

1. E‖X1‖4+δ < ∞,

2.
∑∞

m=1 m
2(am)

δ/(δ+3) < ∞,

3.
∑∞

m=1 m
2(β(m))δ/(δ+4) < ∞.

Further let the block length be nondecreasing, p = O(n1−ǫ) for some ǫ and pn = p2l
for n = 2l−1 + 1, · · · , 2l. Then

(

W ∗
n,p(t)

)

t∈[0,1] ⇒∗ (Wt)t∈[0,1] a.s. (7)

where (Wt)t∈[0,1] is a Brownian motion in H and W1 has the covariance operator
S ∈ S(H), defined in Theorem 2.1

3 Application to change point tests

3.1 Change in the mean of H-valued data

Let us consider the following change point problem. Given X1, . . . , Xn, we want to
test the Hypothesis

H : EX1 = · · · = EXn

against the Alternative

A : EX1 = · · · = EXk 6= EXk+1 = · · · = EXn,

for some k ∈ {1, . . . , n}.
For real-valued variables, asymptotics of cusum-type tests have been intensively stud-
ied by Csörgő and Horvath [9]. They investigated test for i.i.d data, weakly depen-
dent data and for long range dependent processes. The third case was extended by
Dehling, Rooch and Taqqu [10].
For functional data, Berkes et.al. [3] have developed estimators and tests for a change
point in the mean, which is extended by Hörmann and Kokoszka [16] and Aston and
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Kirch [1] to weakly dependent data. They use functional principal components, while
- motivated by Theorems 2.1 and 2.2 - we bootstrap the complete functional data.
Consider the test statistic

Tn = max
1≤m≤n−1

1√
n

∥

∥

∥

∥

∥

m
∑

i=1

Xi −
m

n

n
∑

i=1

Xi

∥

∥

∥

∥

∥

and its bootstrap analogue

T ∗
n = max

1≤m≤kp−1

1√
kp

∥

∥

∥

∥

∥

m
∑

i=1

X∗
i −

m

kp

kp
∑

i=1

X∗
i

∥

∥

∥

∥

∥

.

The next result states that Tn and T ∗
n have the same limiting distribution, which is a

direct consequence of Theorem 2.1 and Theorem 2.2 and the continuity of both the
maximum function and the Hilbert space norm.

Corollary 3.1. (i) Under the conditions of Theorem 2.1

Tn ⇒ max
t∈[0,1]

‖W (t)− tW (1)‖, (8)

where (W (t))t∈[0,1] is the Brownian motion defined in Theorem 2.1.
(ii) Under the conditions of Theorem 2.2

T ∗
n ⇒∗ max

t∈[0,1]
‖W (t)− tW (1)‖ a.s. (9)

Next we want to work out the asymptotic distribution of the (bootstrapped)
change-point statistic under a sequence of converging alternatives. Therefore define
the triangular array of H-valued random variables

Yn,i =

{

Xi if i ≤ ⌊nτ⌋
Xi +∆n if i > ⌊nτ⌋

for n ∈ N and i ≤ n. Here ⌊nτ⌋ is the unknown change-point for some τ ∈ (0, 1)
and (∆n)n is an H-valued deterministic sequence with

‖
√
n∆n −∆‖ → 0,

for n → ∞ and some ∆ ∈ H.
Now we want to test the Hypothesis ∆n = 0 against the sequence of Alternatives
where ∆,∆n∈N ∈ H \ {0}.
Note that a bootstrap sample (Y ∗

n,i)i≤kp,n≥1 can be created analogously to (X∗
i )i≤kp.

Then we can define the statistics Tn and T ∗
n , now based on Yn,i and Y ∗

n,i, respectively.

Corollary 3.2. (i) Consider an array (Yn,i)n∈N,i≤n. If the conditions of Theorem
2.1 hold for (Xi)i≥1, then under the sequence of local alternatives

Tn ⇒ max
t∈[0,1]

‖W (t)− tW (1) + φτ (t)∆‖, (10)
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where (W (t))t∈[0,1] is the Brownian Motion defined in Theorem 2.1 and the function
φτ : [0, 1] → R is defined by

φτ (t) =

{

t(1− τ) if t ≤ τ

(1− t)τ if t > τ.

(ii) If the conditions of Theorem 2.2 are satisfied, then under the sequence of local
alternatives

T ∗
n ⇒∗ max

t∈[0,1]
‖W (t)− tW (1)‖ a.s. (11)

The Corollaries motivate the following test procedure, which is typically for boot-
strap tests:

(i) Compute Tn.

(ii) Simulate T ∗
j,n for j = 1, . . . , J .

(iii) Based on the independent (conditional onX1, . . . , Xn) random variables T ∗
n,1, . . . , T

∗
n,J ,

compute the empirical (1− α)- quantile qn,J(α).

(iv) If Tn > qn,J(α) reject the Hypothesis.

By Corollary 3.1 and the Glivenko-Cantelli Theorem the proposed test has asymptot-
ically significance level α, whereas by Corollary 3.2 it has asymptotically nontrivial
power.

3.2 Change in the marginal distribution

We will now apply the results to random variables, whose realizations are not truly
functional. Consider for example real valued random variables X1, . . . , Xn and the
test problem of no change in the underlying distribution, in detail

H : P (X1 ≤ t) = · · · = P (Xn ≤ t) ∀t ∈ R

against

A : P (X1 ≤ t) = · · · = P (Xk ≤ t) 6= P (Xk+1 ≤ t) = · · · = P (Xn ≤ t),

for some k ∈ {1, . . . , n} and t ∈ R.
Asymptotic tests have been investigated by Csörgő and Horvath [9] and Szyszkowicz
[25] in the independent case, by Inoue [17] for strong mixing data and by Giraitis,
Leipus and Surgailis [15] for long-memory linear processes. Common test statistics
depend on the empirical distribution function and therefore the indicators

1{Xi≤t}, t ∈ R. (12)
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Those can be interpreted as random functions and therefore random elements of the
Hilbert space of functions f : R → R, equipped with the inner product

〈f, g〉 =
∫

R

f(t)g(t)w(t) dt

for some positive, bounded weight function with
∫

w(t) dt < ∞.
By Fubini’s Theorem we have

E

[∫

R

1{Xi≤t}h(t)w(t) dt

]

=

∫

R

F (t)h(t)w(t) dt ∀h ∈ H,

so by the definition it follows that the mean of (12) is just the distribution function
of X. So the change in the mean-problem (in H) becomes a change in distribution-
problem (in R).
Furthermore the arithmetic mean becomes the empirical distribution function. Note,
that this still holds, when we consider Rd-valued data which leads to the following
test statistic

Tn,w = max
1≤m≤n−1

1

n

∫

Rd

(

m
∑

i=1

1{Xi≤t} −
m

n

n
∑

i=1

1{Xi≤t}

)2

w(t) dt, (13)

which can be described as Cramér-von Mises change-point statistic. In the Rd-valued
case the weight function becomes a positive function w : Rd → R with

∫

Rd

w(t) dt < ∞.

The empirical process has been bootstrapped by Bülmann [6] and Naik-Nimabalkar
and Rajarshi [22] and recently by Doukhan et.al. [13] using the wild bootstrap and
by Kojadinovic and Yan [18] using weighted bootstrap.
Our bootstrapped version of (13) reads as follows

T ∗
n,w = max

1≤m≤kp−1

1

kp

∫

Rd

(

m
∑

i=1

1{X∗
i ≤t} −

m

kp

kp
∑

i=1

1{X∗
i ≤t}

)2

w(t) dt, (14)

where the sample X∗
1 , . . . , X

∗
kp is produced by the non overlapping block boot-

strap.
We will now state conditions, for which the bootstrap holds in this scenario.

Corollary 3.3. Let (Xn)n∈N be R
d valued random variables, L1- near epoch depen-

dent on a stationary, absolutely regular sequence (ξn)n∈Z such that for some δ > 0

1. E‖X1‖ < ∞

2.
∑∞

m=1 m
2(am)

δ/(1+4δ) < ∞,

3.
∑∞

m=1 m
2(βm)

δ/(δ+3) < ∞.
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Let the block lenght p be nondecreasing with p(n) = O(n1−ǫ) and p(n) = p(2l) for
n = 2l−1 + 1, . . . , 2l.
Then T ∗

n has almost surely the same limiting distribution as Tn .

Note, that producing a bootstrap sample X∗
1 , . . . , X

∗
kp first, and then treating the

indicators

1{X∗
1
≤·}, . . . , 1{X∗

kp
≤·},

is the same as if we first look upon the indicators as H-valued random variables
Y1, . . . , Yn and then generate Y ∗

1 , . . . , Y
∗
kp.

Now we can apply Corollary 3.1 and therefore we have to verify the conditions of
Theorems 2.1 and 2.2, respectively.
The moment condition is automatically satisfied, due to the definition of w(t) and
the dependence conditions are satisfied because of Lemma 2.2 in Dehling, Sharipov
and Wendler [12] and the Lipschitz-continuity of the mapping x 7→ 1{x≤·}.

Remark 3.4. Instead of the inner product we have defined one can use

〈f, g〉id =
∫

f(t)g(t) dt or 〈f, g〉F =

∫

f(t)g(t) dF (t),

which lead to well known change point statistics. Note, that in the first case the
norm of the indicator 1{X1≤·} is infinite, but we can consider 1{X1≤·} − F (·). Further
we have to make additional moment assumptions on the Xi to make Corollary 3.3
still hold.

3.3 Data Examples

1910 1935 1960 1985 2010

0

5

10

15

20

Figure 1: Process 1√
n
‖X̄k − k/nX̄n‖ (black line) computed from 103 annual

flow curves of the river Chemnitz and 0.95 level of significance (dashed line)
computed from 999 Bootstrap iterations.
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Nov Jan Mar May Jul Sep Nov

Figure 2: Average annual flow curves of the time period 1910 - 1964 (grey
line) and the time period 1965 - 2012 (black line).

To illustrate our methods we apply the tests, described in the previous subsections
to hydrological observations.
The first data set contains average daily flows of the river Chemnitz for the time
period 1910 - 2012. Thus one gets 103 annual flow curves which can be interpreted
as realizations of R365-valued random variables. Alternatively one could smoothen
the curves and hence get functional data. Let Xi be the ith annual curve, than
Figure 1 shows the process

1√
n

∥

∥

∥

∥

∥

k
∑

i=1

Xi −
k

n

n
∑

i=1

Xi

∥

∥

∥

∥

∥

k = 1, . . . n− 1.

The valued of the test statistic is the maximum of this process, which is attained
1964. Because it is larger than the bootstrapped 5% level of significance, the test
indicates that there has been a change in structure of the annual flow curves.
Figure 2 illustrates the character of this change by comparing the average flow curves
based on the data before and after 1964.

As a second example, we look at annual maximum flows of the river Elbe for the
time period 1850 - 2012. We apply the test for distributional change to this R-valued
observations and therefore compute (13) and 999 iterations of (14). Figure 3 shows
the process

1

n

∫

(

k
∑

i=1

1{Xi≤x} −
k

n

n
∑

i=1

1{Xi≤x}

)2

φ(x)dx k = 1, . . . , n− 1

where we have used the probability density of the N(2000, 20002) distribution as
weight function φ(x). The value of the test statistic equals the maximum of this
process, which is larger than the bootstrapped level of significance and therefore a
change is detected.
Finally Figure 4 compares the empirical distribution functions based on the data
before and after 1900, which is where the maximum is attained.
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0.00
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0.04

0.06

0.08

0.10

0.12

1850 1900 1950 2000

Figure 3: Process 1
n

∫

(Fk(x) − k/nFn(x)
2φ(x)dx (black line) computed from

163 annual maximum flows of the river Elbe and 0.95 level of significance
(dashed line) computed from 999 Bootstrap iterations.

0 1000 2000 3000 4000 5000

0.0

0.2

0.4

0.6

0.8

1.0

Figure 4: Empirical distribution functions of the first 50 observations (black
line) and the last 113 observations (grey line).

3.4 Simulation Study

Corollary 3.3 give a wide range of block lengths and dependency conditions, that
enables us to derive asymptotic properties of the change-in-distribution-test.
In a small simulation study we investigate the finite sample performance considering
different block lengths and three kinds of dependencies. The data generating process
is an AR(1)-process, in detail

Xt = a1Xt−1 + ǫt,

with a1 ∈ {0.2, 0.5, 0.8} and ǫt ∼ N(0, 1 − a21), independent of each other. In all
situations we have calculated critical values by J = 999 bootstrap-iterations and

11



Table 1: Empirical size (No change)

a1 = 0.2 a1 = 0.5 a1 = 0.8

l = 4 0.05 0.127 0.23
n = 50 l = 5 0.044 0.085 0.212

l = 7 0.046 0.076 0.155

l = 6 0.035 0.082 0.254
n = 100 l = 8 0.056 0.059 0.171

l = 10 0.047 0.072 0.131
l = 12 0.122

l = 8 0.061 0.091 0.201
n = 200 l = 10 0.04 0.064 0.149

l = 12 0.055 0.067 0.137
l = 15 0.042 0.066 0.1

Table 2: Empirical size (µ = 0.5, change at 1/2 of length)

a1 = 0.2 a1 = 0.5 a1 = 0.8

l = 4 l = 7 l = 7
n = 50 0.23 0.161 0.207

l = 10 l = 8 l = 12
n = 100 0.302 0.28 0.206

l = 12 l = 12 l = 15
n = 200 0.669 0.456 0.258

Table 3: Empirical size of Cusum-test(µ = 1, change at 1/2 of length)

a1 = 0.2 a1 = 0.5 a1 = 0.8

l = 4 l = 7 l = 7
n = 50 0.678 0.431 0.335

l = 10 l = 8 l = 12
n = 100 0.851 0.708 0.373

l = 12 l = 12 l = 15
n = 200 0.998 0.945 0.630

Table 4: Empirical size (µ = 1, change at 1/2 of length)

a1 = 0.2 a1 = 0.5 a1 = 0.8

l = 4 l = 7 l = 7
n = 50 0.686 0.313 0.351

l = 10 l = 8 l = 12
n = 100 0.847 0.695 0.419

l = 12 l = 12 l = 15
n = 200 0.995 0.937 0.64
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Table 5: Empirical size (change in skewness at 1/2 of length)

a1 = 0.2 a1 = 0.5 a1 = 0.8

l = 4 l = 7 l = 7
n = 50 0.323 0.244 0.196

l = 10 l = 8 l = 12
n = 100 0.546 0.461 0.223

l = 12 l = 12 l = 15
n = 200 0.945 0.846 0.375

Table 6: Empirical size of Cusum-test (change in skewness at 1/2 of length)

a1 = 0.2 a1 = 0.5 a1 = 0.8

l = 4 l = 7 l = 7
n = 50 0.047 0.062 0.08

l = 10 l = 8 l = 12
n = 100 0.033 0.045 0.076

l = 12 l = 12 l = 15
n = 200 0.04 0.045 0.065

empirical size and power by m = 1000 iterations of the test.
For the empirical size under the hypothesis of no change see table 1. For rather
weakly dependent variables (a1 = 0.2) the performance is quite good, even for small
sample sizes like n = 50. Whereas for an AR-coefficient a1 = 0.8 the empirical size
is drastically larger than the nominal one. This is typically for bootstrap tests due
to an underestimation of covariances, see for example Doukhan et. al. [13].
Regarding the power of our test we choose for given sample size and AR-coefficient
the block length, that provides the best empirical power under this circumstances.
We start with the following change-in-mean model.

Yt =

{

Xt for t ≤ t∗

Xt + µ for t > t∗.

Table 2 and table 4 give an overview of the empirical size under this alternative for
µ = 0.5 and µ = 1, respectively. We see that a level shift of height µ = 0.5 in
an AR-process with a1 = 0.8 is to small to be detected. However for larger shifts
(µ = 1) the power of our test is notable good.
There are several tests to detect a mean-shift, such as the Cusum-test or theWilcoxon-
change-point-test. If critical values can deduce from a known asymptotic distribution,
the Cusum test is supposed to have greater power then our test. However if critical
values are investigated by the bootstrap, tables 3 and 4 indicate that both tests have
similar power properties.
To illustrate the power of our test against several alternatives, consider a change in
skewness of a process. Therefore we need a second DGP X ′

t = a1X
′
t−1 + ǫ′t, indepen-
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dent of the first one, and define

Yt =

{

X2
t +X ′2

t for t ≤ t∗

4− (X2
t +X ′2

t ) for t > t∗.

Table 5 shows that against this alternative the power is excellent for n = 200 and
coefficients a1 ≤ 0.5. Table 6 illustrates the power of the Cusum-test, where critical
values are also computed by 999 bootstrap iterations. The study shows that this test
does not see changes in the skewness when the mean is unmodified.
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A Prelimanary Results

Theorem A.1. Let {Wn}n≥1 be a sequence of DH [0, 1]- valued random functions
with Wn(0) = 0. Then {Wn}n≥1 is tight in DH [0, 1] if the following condition is
satisfied:

lim
δ→0

lim sup
n→∞

1

δ
P

(

sup
s≤t≤s+δ

‖Wn(t)‖ > ǫ

)

= 0, (15)

for each positive ǫ and each s ∈ [0, 1].
Furthermore the weak limit of any convergent subsequence of {Wn} is in CH [0, 1],
almost surely.

For real valued random variables this is Theorem 8.3 of Billingsley [4], which
carries over to D[0, 1]. The proof still holds for Hilbert space valued functions.

Lemma A.2. Let (Xn)n≥1 be H-valued, stationary and L1-near epoch dependent on
an absolutely regular process with mixing coefficients (β(m))m≥1 and approximation
constants (am)m≥1. If EX1 = 0 and

1. E‖X1‖4+δ < ∞,

2.
∑∞

m=1 m
2(am)

δ/(δ+3) < ∞,

3.
∑∞

m=1 m
2(β(m))δ/(δ+4) < ∞,

holds for some δ > 0, then

E‖X1 +X2 + · · ·+Xn‖4 ≤ Cn2
(

E‖X1‖4+δ
)

1

1+δ . (16)

The result follows from the proof of Lemma 2.24 of Borovkova, Burton and
Dehling [5], which is also valid for Hilbert spaces.
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Lemma A.3. Let (Xn)n≥1 be a stationary sequence of H-valued random variables
such that EX1 = 0, E‖X1‖4 < ∞ and for some C > 0

E‖X1 +X2 + · · ·+Xn‖4≤ Cn2.

Then

Emax
k≤n

‖X1 +X2 + · · ·+Xk‖4≤ Cn2.

This Lemma is a special case of Theorem 1 of Mórizc [21]. The proof carries over
directly to Hilbert spaces.

B Proofs of the main results

Proof of Theorem 2.1. We start with the special case H = R. Let EX1 = 0, then
by Lemma 2.23 of Borovkova , Burton and Dehling [5] we have

1

n
E

(

n
∑

i=1

Xi

)2

→ σ2, (17)

where σ2 =
∑∞

i=−∞ E(X0Xi) and this series converges absolutely.
Furthermore by Lemma 2.4. of Dehling et. al. [12]we have

1√
n

n
∑

i=1

(Xi − µ) ⇒ N(0, σ2). (18)

Now convergence of finite dimensional distributions follows in the same way as in
the proof of Theorem 21.1 in Billingsley [4], where functionals of φ-mixing sequences
are considered. However concerning the mixing property the crucial line in obtaining
convergence of more than one dimension is (21.29) (in [4] on page 187). But this
converges to 0 even if the sequence is strong mixing and strong mixing is implied by
our condition - absolute regularity.
If we can show, that the set

{

max
s≤t≤s+δ

1

δ
(Wn(t)−Wn(s))

2 | 0 ≤ s ≤ 1, 0 ≤ δ ≤ 1, n ≤ N(s, δ)

}

(19)

is uniformly integrable, then according to Lemma 2.2 in Wooldrige and White [27]
Wn is tight in D[0, 1] equipped with the Skorohod topology and further the weak
limit is almost surely in C[0, 1].
So fix s ∈ [0, 1] and δ ∈ [0, 1]. By the proof of Lemma 2.24 in Borovkova, Burton
and Dehling [5] we obtain

E





⌊n(δ+s)⌋
∑

i=⌊ns⌋+1

Xi





4

≤ C(⌊n(δ + s)⌋ − ⌊ns⌋)2
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Next Theorem 1 of Móricz [21] together with the moment inequality stated above
implies

E



 max
s≤t≤s+δ

∣

∣

∣

∣

∣

∣

⌊nt⌋
∑

i=⌊ns⌋+1

Xi

∣

∣

∣

∣

∣

∣





4

≤ C(⌊n(δ + s)⌋ − ⌊ns⌋)2. (20)

Now we will show uniform integrability of 19. Using first Hölder- and Markov in-
equality and then (20) one obtains

E

(

max
s≤t≤s+δ

1

δ
(Wn(t)−Wn(s))

21{max 1

δ
(Wn(t)−Wn(s))2≥K}

)

≤ 1

K

1

δ2
E

(

max
s≤t≤s+δ

|Wn(t)−Wn(s)|
)4

≤ 1

K

1

n2δ2
E



 max
s≤t≤s+δ

∣

∣

∣

∣

∣

∣

⌊nt⌋
∑

i=⌊ns⌋+1

Xi

∣

∣

∣

∣

∣

∣





4

≤ C
1

K

(⌊n(δ + s)⌋ − ⌊ns⌋)2
n2δ2

.

Because the last term tends to 0 as K tends to ∞, (19) is uniformly integrable and
the partial sum process converges in D[0, 1] towards a Brownian Motion W with

W (1) =D N(0, σ2).

Now we are able to treat the general case, where we still assume EX1 = 0. We
will prove the weak convergence by verifying the three conditions of Lemma 4.1 in
Chen and White [8], which carries over from CH [0, 1] to DH [0, 1].
For fixed h ∈ H \ {0} consider the sequence (〈Xi, h〉)i∈N of real valued random
variables.
The mapping x 7→ 〈x, h〉 is Lipschitz-continuous with constant ‖h‖ and therefore
by Lemma 2.2 of Dehling et.al. [12], (〈Xi, h〉)i∈N is L1-near epoch dependent on an
absolute regular process with approximation constants (‖h‖am)m∈N and has further
4 + δ-moments, because

E|〈X1, h〉|4+δ ≤ ‖h‖E‖X1‖4+δ < ∞.

Thus we can apply our sequential central limit theorem in D[0, 1] and get

1√
n

⌊nt⌋
∑

i=1

〈Xi, h〉 ⇒ Wh(t),

where Wh is a Brownian motion with EWh(1)
2 = σ2(h) and

σ2(h) =
∞
∑

i=−∞
E(〈X0, h〉〈Xi, h〉).
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Define the covariance operator S ∈ S(H) as in (5), than 〈Sh, h〉 = σ2(h) holds for
all h ∈ H \ {0}.
By the arguments, used in the proofs of Theorems 4.3 and 4.6 in Chen and White
[8]

(PkWn(t))t∈[0,1] ⇒
(

W k(t)
)

t∈[0,1] in DHk
[0, 1].

Here Hk is the closed linear span of the first k elements of an arbitrary complete
orthonormal basis of H. Pk : H → Hk is the orthonormal projection operator and
Xk is a Brownian motion in CHk

[0, 1], where Xk(1) has the covariance operator
Sk = PkSPk (see Chen and White).
Thus condition (a) of Lemma 4.1 in Chen and White [8] is satisfied. For condition
(b) we need W k ⇒ W in distribution, as k goes to ∞. But this holds, because Sk

converges in the trace norm (see [8]) towards S.
Thus it remains to prove condition (c). We will show

lim
k→∞

lim sup
n→∞

E

(

sup
t∈[0,1]

‖Wn(t)− PkWn(t)‖4
)

= 0. (21)

This is slightly different from the condition of Chen and White (we use fourth mo-
ments, while they consider second moments), but the Lemma remains true.
Define the operator Ak : H → H by Ak = I −Pk, where I is the identity operator on
H, and note that the mapping h 7→ Ak(h) is Lipschitz-continuous with constant 1.
Thus (Ak(Xi))i∈N is a 1-approximating functional with the same constants as (Xi).
From Lemma 2 it follows

E‖Ak(X1) + · · ·+ Ak(Xn)‖4 ≤ Cn2
(

E‖Ak(X1)‖4+δ
)

1

1+δ . (22)

Now consider

E

(

sup
t∈[0,1]

‖Wn(t)− PkWn(t)‖4
)

=
1

n2
E



 max
1≤m≤n

∥

∥

∥

∥

∥

m
∑

i=1

Ak(Xi)

∥

∥

∥

∥

∥

4




and note that the term on the right hand side is bounded by C
(

E‖Ak(X1)‖4+δ
) 1

1+δ ,
due to (22) and Lemma A.3. The constant C does not depend on k so it suffices to
show

E‖Ak(X1)‖4+δ k→∞−−−→ 0. (23)

But because of the Hilbert space property

‖X1 −
k
∑

i=1

〈X1, ei〉ei‖ k→∞−−−→ 0 a.s.

Further ‖Ak(X1)‖4+δ ≤ ‖X1‖4+δ < ∞ almost surly and thus, by dominated conver-
gence, (23) holds. But this implies (21) and therefore finishes the proof.
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Proof of Theorem 2.2. Assume EX1 = 0 and define

S∗
n,i :=

1√
p

ip
∑

j=(i−1)p+1

(X∗
j − E∗X∗

j )

and R∗
n,kp(t) :=

1√
kp

⌊kpt⌋
∑

j=⌊kt⌋p+1

(X∗
j − E∗X∗

j ).

Consider the following decomposition of the process Wn,kp into the partial sum pro-
cess of the independent blocks and the remainder

W ∗
n,kp(t) =

1√
k

⌊kt⌋
∑

i=1

S∗
n,i +R∗

n,kp(t). (24)

We start by proving that R∗
n,kp is negligible, i.e.

R∗
n,kp(·)

P ∗

−→ 0 a.s. (25)

uniformly as n → ∞. Note, that R∗
n,kp(t) is the sum over the first l variables of a

randomly generated block, where l = l(k, p, t) = ⌊kpt⌋ − ⌊kt⌋p. Thus, for fixed t we
have

‖R∗
n,kp(t)‖ ≤ 1√

kp
max
1≤j≤k

∥

∥

∥

∥

∥

∥

j(p−1)+l
∑

i=j(p−1)+1

(Xi − E∗X∗
i )

∥

∥

∥

∥

∥

∥

.

Taking the supremum over t, we get

sup
t∈[0,1]

‖R∗
n,kp(t)‖ ≤ 1√

kp
max
1≤j≤k

max
1≤l≤p

∥

∥

∥

∥

∥

∥

j(p−1)+l
∑

i=j(p−1)+1

(Xi − E∗X∗
i )

∥

∥

∥

∥

∥

∥

=: Yn,kp.

We will show, that Yn,kp converges to 0, almost surely.
For n ∈ {2l−1 + 1, · · · , 2l} observe

Yn ≤ 2√
2l

max
j≤k(2l)

max
1≤m≤p(2l)

∥

∥

∥

∥

∥

∥

j(p−1)+m
∑

i=j(p−1)+1

(Xi − E∗X∗
i )

∥

∥

∥

∥

∥

∥

=: Y ′
l .
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Taking the sum instead of the maximum, we obtain for the fourth moments of Y ′
l

E|Y ′
l |4 ≤

16

22l
E



 max
j≤k(2l)

max
m≤p(2l)

∥

∥

∥

∥

∥

∥

j(p−1)+m
∑

i=j(p−1)+1

(Xi − E∗X∗
i )

∥

∥

∥

∥

∥

∥





4

≤ 16

22l

k(2l)
∑

j=1

E



 max
m≤p(2l)

∥

∥

∥

∥

∥

∥

j(p−1)+m
∑

i=j(p−1)+1

(Xi − E∗X∗
i )

∥

∥

∥

∥

∥

∥





4

.

=
16k(2l)

22l
E

(

max
m≤p(2l)

∥

∥

∥

∥

∥

m
∑

i=1

(Xi − E∗X∗
i )

∥

∥

∥

∥

∥

)4

.

The last line holds since (Xi)i∈N and E∗X∗
i does not depend on the block in which

X∗
i is, but only on the position of X∗

i in this block. We want to make use of Lemma
A.3. For p = p(2l) and k = k(2l) we obtain using the Minkowski inequality

E

∥

∥

∥

∥

∥

p
∑

i=1

(Xi − E∗X∗
i )

∥

∥

∥

∥

∥

4

=E

∥

∥

∥

∥

∥

p
∑

i=1

Xi −
1

k

kp
∑

i=1

Xi

∥

∥

∥

∥

∥

4

≤













E

∥

∥

∥

∥

∥

p
∑

i=1

Xi

∥

∥

∥

∥

∥

4




1/4

+



E

∥

∥

∥

∥

∥

1

k

kp
∑

i=1

Xi

∥

∥

∥

∥

∥

4




1/4










4

=O(p2).

In the last line we have used Lemma A.2 and the fact, that the first summand
dominates.
Next by virtue of Lemma A.3 we obtain

E

(

max
m≤p(2l)

∥

∥

∥

∥

∥

m
∑

i=1

(Xi − E∗X∗
i )

∥

∥

∥

∥

∥

)4

= O(p2)

Thus E|Y ′
l |4 = O(p(2

l)
2l

) = O((2−ǫ)l), because of p(n) = O(n1−ǫ), see the definition of
the block length. Now an application of the Markov inequality and Borel-Cantelli
Lemma implies

Y ′
l

l→∞−−−→ 0 a.s.

Now Yn ≤ Y ′
l for n ∈ {2l−1, · · · , 2l} and thus Yn converges almost surely to 0 as n

tends to infinity. Finally this leads to

E∗( sup
t∈[0,1]

‖R∗
n(t)‖) ≤ E∗Yn = Yn → 0 a.s.

and thus we have proved (25).
So in order to verify convergence of the Bootstrap process in DH [0, 1] it suffices to
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show that

V ∗
n,kp(t) =

1√
k

⌊kt⌋
∑

i=1

S∗
n,i (26)

converges to the desired Gaussian process.

We start with the finite dimensional convergence. For 0 ≤ t1 < · · · < tl ≤ 1
and l ≥ 1 consider the increments

(V ∗
n,kp(t1), V

∗
n,kp(t2)− V ∗

n,kp(t1), · · · , V ∗
n,kp(tl)− V ∗

n,kp(tl−1)). (27)

Note, that the random variables S∗
n,i are independent, conditional on (Xi)i∈Z, so it

is enough to treat V ∗
n,kp(ti) − V ∗

n,kp(ti−1) for some i ≤ l. By the consistency of the
bootstrapped sample mean of H-valued data (see Dehling, Sharipov and Wendler
[12]), there is a subset A ⊂ Ω with P (A) = 1, so that for all ω ∈ A the Central Limit
Theorem holds, that is

1√
k

k
∑

i=1

S∗
n,i ⇒ N, (28)

where N is a Gaussian H-valued random variable with mean 0 and covariance oper-
ator S ∈ S defined by

〈Sx, y〉 =
∞
∑

i=−∞
E[〈X0, x〉〈Xi, y〉], for x, y ∈ H.

For ω ∈ A and arbitrary ti > ti−1 it follows

V ∗
n,kp(ti)− V ∗

n,kp(ti−1) =
1√
k

⌊kti⌋
∑

i=⌊kti−1⌋+1

S∗
n,i (29)

=

√

⌊kti⌋ − ⌊kti−1⌋√
k

1

⌊kti⌋ − ⌊kti−1⌋

⌊kti⌋
∑

i=⌊kti−1⌋+1

S∗
n,i (30)

⇒
√

ti − ti−1N, (31)

thus the one dimensional distributions converge almost surely. But because of the
conditional independence this is enough for the finite dimensional convergence.

By Theorem A.1, tightness will follow if we can show

lim
δ→0

lim sup
n→∞

1

δ
P ∗
(

sup
0≤t≤δ

‖V ∗
n,kp(t)‖ > ǫ

)

= 0 a.s. (32)
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for all ǫ > 0.
Using first Chebychev’s inequality and then Rosenthal’s inequality (see Rosenthal
[24] and Ledoux and Talagrand [20] for the validity in Hilbert spaces) we obtain

1

δ
P ∗



 sup
0≤t≤δ

1√
k

∥

∥

∥

∥

∥

∥

⌊kt⌋
∑

i=1

S∗
n,i

∥

∥

∥

∥

∥

∥

> ǫ





≤ 1

δ

1

k2ǫ4
E∗



 max
1≤j≤⌊kδ⌋

∥

∥

∥

∥

∥

j
∑

i=1

S∗
n,i

∥

∥

∥

∥

∥

4




≤ 1

δ

1

k2ǫ4
C
{

⌊kδ⌋E∗‖S∗
n,1‖4 +

(

⌊kδ⌋E∗‖S∗
n,1‖2

)2
}

≤ C
1

δ

kδ

k2ǫ4
E∗‖S∗

n,1‖4 + C
1

δ

k2δ2

k2ǫ4
(E∗‖S∗

n,1‖2)2

= C(I1 + I2).

By the construction of the bootstrap sample we get

I1 =
1

kǫ4
1

k

k
∑

i=1

(

1√
p

∥

∥

∥

∥

∥

∑

j∈Bi

(Xj − X̄n,kp)

∥

∥

∥

∥

∥

)4

=
1

ǫ4
1

k

k
∑

i=1

(

1

k1/4p1/2

∥

∥

∥

∥

∥

∑

j∈Bi

(Xj − X̄n,kp)

∥

∥

∥

∥

∥

)4

.

Now by a strong Law of Large numbers (see Lemma 2.7 in Dehling et.al. [12] )

1

k1/4p1/2

∥

∥

∥

∥

∥

∑

j∈Bi

(Xj − X̄n,kp)

∥

∥

∥

∥

∥

→ 0 a.s.

and thus I1 goes almost surely to 0 as n goes to ∞.
Furthermore in Dehling, Sharipov and Wendler [12] it is shown that E∗‖S∗

n,i‖2 con-
verges almost surely to E∗‖N‖2, where N is Gaussian with the covariance operator
defined above. Therefore E∗‖N‖2 is a.s. bounded and thus we obtain for the second
term

I2 =
δ

ǫ4
(E∗‖S∗

n,1‖2)2
n→∞−−−→ δ

ǫ4
(E∗‖N‖2)2 δ→∞−−−→ 0 a.s.

which implies (32) and therefore finishes the proof.

Proof of Corollary 3.2. Part (i) can be obtained by arguments, similar to the case of
real-valued random variables, see Theorem 2.1 in Dehling, Rooch and Taqqu [11].

To verify part (ii) define random variables U1, . . . Uk, where Ui is the number of
the ith drawn block. Clearly the Ui are all independent and uniformly distributed
on {1, . . . , k}.

23



Note, that the random variables in the blocks B1, . . . , B⌊kτ⌋ are of the form Xi and
the variables of the blocks B⌊kτ⌋+2, . . . , Bk are of the form Xi+∆n. The change point
occurs in the block B⌊kτ⌋+1, so this block contains shifted and non-shifted variables.
This subdivision in different types of blocks leads to the following decomposition of
the process

1√
kp





⌊kpt⌋
∑

i=1

Y ∗
n,i −

⌊kpt⌋
kp

kp
∑

i=1

Y ∗
n,i



 =
1√
kp





⌊kpt⌋
∑

i=1

X∗
i −

⌊kpt⌋
kp

kp
∑

i=1

X∗
i





+
√

kp∆nRn,k,p(t),

where

Rn,k,p(t) =
1

kp
p

⌊kt⌋
∑

i=1

1{Ui>⌊kτ⌋+1} (33)

− 1

kp
p
⌊kpt⌋
kp

k
∑

i=1

1{Ui>⌊kτ⌋+1} (34)

+
1

kp
((⌊kt⌋) + 1)p− ⌊nτ⌋)

⌊kt⌋
∑

i=1

1{Ui=⌊kτ⌋+1} (35)

− 1

kp
((⌊kt⌋) + 1)p− ⌊nτ⌋)⌊kpt⌋

kp

k
∑

i=1

1{Ui=⌊kτ⌋+1} (36)

+ 1{U⌊kt⌋+1>⌊kτ⌋+1}
1

kp
(⌊kpt⌋ − ⌊kt⌋p) (37)

+ 1{U⌊kt⌋+1=⌊kτ⌋+1}
1

kp
max{(⌊kpt⌋ − ⌊nτ⌋p), 0}. (38)

By part (ii) of Corollary 3.1 and
√
kp∆n → ∆ it remains to show

Rn,k,p
P ∗

−→ 0 a.s.

uniformly as n → ∞. But this holds because Rn,k,p is independent of the Xi and
due to the following facts: (33) + (34) and (35) + (36) are oP (1), each. To see this
observe

1

k

⌊kt⌋
∑

i=1

1{Ui>⌊kτ⌋+1}
P−→ t(1− τ),

uniformly in t as k → ∞.
(37) is oP (1) because (⌊kpt⌋ − ⌊kt⌋p)/(kp) → 0 and finally (38) is oP (1) because
P (U⌊kt⌋+1 = ⌊kτ⌋+ 1) = k−1.
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