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ABSTRACT. Cascade catalytic processes perform multi-step chemical 

transformations without isolating the intermediates. Here, we demonstrate a 

sequential cascade pathway to convert CO2 to C2+ hydrocarbons and 

oxygenates in a two-step electrocatalytic process using CO as the 

intermediate. CO2 to CO conversion is performed by using Ag and further 

conversion of CO to C-C coupled products is performed with Cu. Temporal 

separation between the two reaction steps is accomplished by situating the 

Ag electrode upstream of the Cu electrode in a continuous flow reactor. 

Convection-diffusion simulations and experimental evaluation of the 

electrodes individually were performed to identify optimal conditions. With 

the upstream Ag electrode poised at -1 V vs RHE in a flow of CO2-saturated 

water in aqueous carbonate buffer, over 80% of the CO can be converted on 

the downstream Cu electrode. When the Ag electrode is on, a 

supersaturation of CO is achieved near the Cu electrode, which leads to a 

relative increase in the formation rate of C2 and C3 oxygenates as compared 

to ethylene.  

TOC GRAPHIC

3



INTRODUCTION

In cascade catalysis two or more catalyzed reactions are coupled together in

a  single  pot,  without  isolation  of  the  reaction  intermediates.1,2 Natural

photosynthesis provides a prototypical example of an enzymatic cascade,3

and there has been intense interest in the prospects of coupling enzymes

with synthetic homogeneous and heterogeneous catalysts to increase the

reactivity,  selectivity,  and sustainability  of  chemical  syntheses.4–6 Cascade

approaches using immobilized enzymes have also been used to increase the

efficiency of methanol biofuel cells.7 

In this context,  developing approaches to convert CO2 to chemicals and

fuels using renewable power sources provides a grand challenge.8,9 Indeed,

multi-step conversion of CO2 to methanol has been demonstrated using a

sequence of metalorganic homogeneous catalysts under high temperature

and pressure and by using a enzymes confined in micelles with NADH as the

electron donor.10,11 Recently, Somorjai,  Yang and co-workers demonstrated

thermal conversion of CO to C2-C4 hydrocarbons in a two-step cascade using

CO as the reaction intermediate,12 and Li and coworkers achieved selective

production of aromatics using CHxO species as intermediates.13 

Electrochemical CO2 reduction (CO2R), which can be performed under mild

conditions  of  ambient  pressure  and  room  temperature,  is  an  excellent

platform  for  exploring  cascade  approaches  for  selective  chemical

synthesis.6,14 Following  pioneering  work  by  Hori  and  co-workers  in  the

4



1980s,15 CO2R has been the subject of intense recent interest, leading to an

improved understanding of the possible products and the mechanisms for

their formation.16–25 Notably, catalysts (e.g. Ag, Au) which produce CO and

which  convert  CO  to  C-C  coupled  products  (e.g.  Cu  produced  by

oxidation/reduction cycling) have been identified.26–33 Recently, a tandem CO2

cascade was demonstrated using interdigitated Au and Cu electrodes; CO

produced on the Au is able to diffuse over distances of 10’s of microns where

it undergoes further reaction on the Cu.34 Interestingly, simulations of this

system predict that the concentration of CO at the Cu electrode is well above

its ca. 1 mM solubility limit; consistent with this prediction is the observation

of  a  C2 product  distribution  with  a  greatly  increased ratio  of  oxygenates

(ethanol,  acetaldehyde, 1-propanol)  compared to hydrocarbons (ethylene),

with a similar trend being reported for CO reduction at elevated pressure.27 It

has also been predicted that a two-step CO2 reduction cascade can lead to

improved overall energetic conversion efficiencies.35 

We hypothesized here that a related cascade process could be achieved

using convection, as opposed to diffusion, to transport the intermediate. This

approach (Scheme 1) represents a sequential tandem cascade in continuous

flow,5,36 with the temporal separation between the catalyst “compartments”

being produced by directional flow of the electrolyte. In our prior work, with

diffusional  transport  of  the  intermediate,  the  conversion  efficiency  is

determined  by  the  distance  between  the  electrodes.  With  convective

transport, the flow rate as well as the geometry controls the conversion rate,
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which may allow for greater flexibility in design. It may also be possible to

extend the approach by adding additional electrodes.

The approach is conceptually similar to the dual working electrode report of

Kenkel  and  Bard,  although  in  that  case  the  electrodes  were  oppositely

polarized,  with  one  performing  a  reduction  reaction  and  the  other

oxidation.37 Recently, Spurgeon and co-workers have reported on a related,

compartmentalized,  approach  for  CO2R,  using  Ag  and  Cu  in  separate

chambers  to,  respectively,  produce  CO  and  to  convert  CO  to  ethanol.38

However, well less than 10% of the intermediate CO was converted in the

upstream  chamber  due  to  mixing  during  the  transport  between  the

chambers. In contrast, we will show that closer positioning of the electrodes

reduces  diffusion  losses  of  the  intermediate  such  that  much  higher

conversion rates can be attained.  

Scheme 1.  Tandem cascade catalysis for reduction of CO2 to C2+ products in

a flow cell geometry.  CO produced selectively by the upstream Ag electrode

is further converted to C2 products by the downstream Cu electrode. The

potential on the two electrodes, as well as the flow rate through the reactor,

can be independently tuned to maximize the conversion of the intermediate

species.  
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RESULTS AND DISCUSSION

The overall cell design employed was based on our prior work showing that

separation  of  product-containing  catholyte  and  anolyte  streams  can  be

achieved by co-laminar flow.39 The computational modeling approach of that

study was extended to find conditions under which convectional transport of

the CO intermediate to the downstream electrode could be efficient, in order

to  maximize  its  conversion,  without  encountering  diffusion  limitations

associated with the supply of CO2 to both electrodes. Independent control of

the  potential  allowed for  control  of  the  supply  of  CO to  the  downstream

electrode.  Under  optimized  conditions,  conversion  efficiencies  for  the

intermediates in the range of 40-80% are achieved. Operation in cascade

mode,  as  compared  to  control  experiments  performed  with  only  the  Cu

electrode activated, leads to an increase in the oxygenate to hydrocarbon

ratio with the C-C coupled products. 

Simulations.  Simulations  were  performed  to  find  operating  conditions

which would maximize the conversion of the intermediate while supplying

sufficient amounts of reactants to both electrodes. A detailed description of

the  multiphysics  modeling  approach  is  in  the  SI;  initial  modeling  with  a

similar  flow system has  been  reported  by  Perone.40 The  model  uses  the

equilibrium constants in the CO2-bicarbonate-carbonate system to calculate

the pH at  the  reactor  entrance and uses  the  rate  constants  to  calculate

species concentrations in the reactor. Figure 1a shows the two dimensional

simulation domain over which the corresponding transport and conservation

7



equations were solved so as to determine the velocity of the electrolyte, and

the concentrations of CO, CO2, HCO3
-, CO3

2-, and OH- (pH) while considering

the  homogeneous  bicarbonate  and  carbonate  buffer  chemistry.41,42 A

constant molar flux corresponding to a current density  JAg was assumed at

the Ag electrode; setting the CO concentration boundary condition to zero at

the Cu cathode allows the diffusion limited conversion case to be considered.

Volumetric flow rates Q between 1 and 20 cm3 min-1 were evaluated; under

these conditions calculated Reynolds numbers are far below typical values

for turbulent flow (see SI). Entrance length effects were also evaluated but

found to be minor.40  

Figure 1. (a) Simulation domain with a flow Q of electrolyte in the cathode

chamber.  The  right  boundary  of  the  domain  is  the  anion  conducting

membrane used to separate the cathode chamber from the anode chamber.
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The total length L of the chamber is 21 mm with a width W of 5 mm (height

of  chamber,  not  depicted,  is  5  mm).  The  lengths  L of  the  Ag  and  Cu

electrodes  are 10 mm with  a  1  mm gap in  between.  (b)  Calculated CO2

concentration for Q = 2 cm3 min-1 and JAg = 3 mA cm-2. Note that for (b) only

40% of the full 5 mm width of the chamber is depicted.  

First, simulations were performed to find operating conditions for the Ag

electrode  which  would  not  completely  deplete  the  CO2 available  to  the

downstream Cu electrode. Figure 1b shows the calculated CO2 concentration

for  Q = 2 cm3 min-1 and  JAg = 3 mA cm-2 at the Ag electrode and for an

inactive  Cu  electrode.  Under  these  conditions,  the  minimum  CO2

concentration, 10 mM, is found at the downstream end of the Ag electrode

(see  SI  for  line  graphs).  The  predicted  maximum  CO  current  density,

achieved by completely depleting the CO2 at the end of the Ag electrode, is

3.6  mA cm-2.  This  limiting  value  can be increased,  albeit  sub-linearly,  by

increasing the flow rate. For example, a limiting Ag current density of 8.1 mA

cm-2 is predicted for a flow rate of 20 cm3 min-1.  

The  maximum  predicted  conversion  efficiency  for  the  CO  intermediate

produced by the Ag electrode was evaluated by setting the CO concentration

to zero at the Cu electrode. Figure 2 shows CO concentration contours and

fluxes for inactive Cu (a and b) and with diffusion-limited conversion of CO at

the Cu electrode (c and d). Comparison of the flux of CO leaving the reactor

for the two cases allows the conversion efficiency to be predicted, which is

38%  for  this  case  (JAg =  3  mA  cm-2,  Q =  2  cm3 min-1).  The  predicted
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conversion efficiency decreases, again sub-linearly with increasing Q, with a

value  of  28%  predicted  for  Q =  20  cm3 min-1.  Notably,  the  predicted

concentration of CO is very large, 22 mM at the end of the Ag electrode for

the case considered in Figure 2. While these concentrations greatly exceed

the equilibrium solubility of CO, ca. 1 mM, if bubbles do not nucleate, the

simulation  predicts  that  the  CO  activity  near  the  Cu  electrode  can  be

increased  far  beyond  what  is  possible  with  CO-saturated  water  as  the

electrolyte. Our prior work with interdigitated electrodes reached a similar

conclusion.34 As a result, we expect that the C2 product distribution produced

by  the  Cu  under  these  CO-enhanced  conditions  will  contain  more

oxygenates. On the other hand, the predicted pH near the Cu electrode is

above 12 as shown in Figure S4. Recent work with gas diffusion electrode

has  shown  that  high  pH  favors  ethylene  production  from  CO  and  CO2

reduction on Cu.43,44 
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Figure 2. Contour plot of CO concentrations with a flow rate of 2 ml/min for

a)  an  inactive  Cu  electrode  and  c)  for  cascade  operation  with  diffusion-

limited conversion at the Cu electrode. b) and d) Contour plots of CO flux

(concentration * flow velocity) with Q = 2 cm3 min-1, current density for CO

formation of 3 mA cm-2 at the Ag electrode for b) an inactive Cu electrode
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and  d)  for  cascade  operation  with  diffusion-limited  conversion  at  the  Cu

electrode.  

Experimental electrolysis cell. Figure 3 depicts the flow cell used in the

experimental work. 0.1 M CsHCO3 electrolyte saturated with CO2 (ca. 33 mM)

was used as the electrolyte in both the cathode and anode chambers and

was circulated by peristaltic pumps. A nanostructured IrO2 anode was used

to drive the oxygen evolution reaction in the anode chamber.45 We found it

beneficial  for  sustained  operation  to  employ  an  ion  exchange  resin

(Chelex®) to getter metals from the anode which would otherwise deposit on

the cathodes and increase the rate of  the competing hydrogen evolution

reaction.46 An  anion  exchange  membrane  (SELEMION™)  was  used  to

separate  the  cathode  and  anode  chambers.  We  performed  initial

experiments  without  the  anion  exchange  membrane  but  encountered

difficulties  with  cross-contamination  of  metals  from  the  anode  and  also

oxidation  of  the  products.  The  Ag  and  Cu  cathodes  were  operated

independently in bipotenstiostatic mode with respect to a common reference

electrode in the cathode chamber (see Method section in SI for details). Gas

products were evaluated by sampling the gas exiting the saturation volume

on the cathode side. Liquid products were evaluated by HPLC at the end of a

run (see SI for details). In cascade operation, the sum of currents from the

electrodes is used in the calculation of the faradaic efficiencies (FEs) of the

gaseous products, and the total charge passing into the cell through both
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electrodes is used to calculate the FE of liquid products. A detailed discussion

of FE calculation of gaseous and liquid products is in the SI.

Figure  3.  Schematic  of  flow  reactor  used  for  cascade  electrocatalytic

reduction of CO2.  

Optimization of the CO intermediate production.  The Ag electrode

was operated by itself to find conditions which would provide a well-defined

supply of the cascade intermediate to the Cu electrode, the second step in

the cascade. As suggested by the modeling, a flow rate of 2 cm3 min-1 was

used for these experiments and for all subsequent experiments discussed

here. Results of varying the potential on the Ag between -0.6 and -1.2 vs.

RHE with the Cu electrode deactivated are shown in Figure 4a. The only two

products observed are CO and H2 and the sum of their faradaic efficiencies
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(FEs)  is  100%  within  experimental  error,  which  provides  an  internal

validation of our analytical methods. The maximum FE to CO, the desired

intermediate product, is ca. 90% at a potential of -1.0 V vs RHE. The total

current density for this electrode at that potential is 6.4 mA cm-2. At larger

overpotentials,  the  FE  for  H2 increases,  which  is  likely  due  to  the  mass

transfer limit for the CO2 supply predicted by the simulations. We note that

the current density for CO production at -1.0 and -1.2 vs RHE exceeds by

about a factor of two the diffusion limit predicted by our simulations. We do

not know the reason for this effect but do note that there are reports in the

literature of CO2 reduction current densities in stirred reactors (e.g. 40 mA

cm-2 for C2+ product production from nanostructured Cu from Jiang  et al.47)

which exceed the predictions of 1D modeling by a similar factor.41 
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Figure 4. Faradaic efficiency as a function of potential applied to a) the Ag

cathode (Cu inactive), and b) the Cu cathode (Ag inactive), both performed in

a recirculating flow (2 ml/min) of 0.1 M CsHCO3 electrolyte saturated with

CO2. Error bars are standard deviations from repeat experiments, minimum

3. 

Optimization of the second step of cascade.  The Cu electrode was

operated by itself to assess its activity for the CO2 reduction, which will occur

concurrently  with  reduction  of  CO provided by the  Ag cathode when the
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reactor is operated in cascade mode. Results of varying the potential on the

Cu between -0.6 and -1.2 vs.  RHE with the Ag electrode deactivated are

shown in  Figure  4b.  Major  products  observed  are  H2,  CO,  C2H4,  formate,

ethanol,  and  other  C2+ oxygenates  such  as  1-propanol,  allyl  alcohol,

acetaldehyde and propionaldehyde (see SI for full product analysis details).

The FE for H2 decreases with increasing overpotential as does the FE for CO.

As  with  the  Ag  optimization  experiments,  the  FEs  sum  to  100%  within

experimental error. The FEs are very similar to what we have reported before

for similarly synthesized Cu evaluated in a more typical sandwich cell under

the same electrolyte conditions.48  

Operation  in  cascade  catalysis  mode.  Sequential  cascade

electrocatalysis is accomplished by fixing the Ag electrode at its maximum

CO selectivity (-1.0 V vs RHE) and varying the potential of the Cu electrode.

In  principle,  it  would  be  possible  to  operate  the  Ag  electrode  at  more

negative potentials to further increase the CO flux. However, this would lead

to an decrease in the CO2 reduction selectivity as the additional H2 would not

be converted on the Cu electrode. Figure 5a shows the current density at the

Cu electrode as a function of potential for Cu-only and cascade modes. At

lower overpotentials, the current density is higher in cascade mode. This is

an  expected  result,  as  CO  reduction  has  a  lower  overpotential  on  Cu

compared to CO2 reduction.27 Although there is some overlap in error bars, a

possible trend can be seen in the current density on the Cu in cascade vs Cu-

only mode as the overpotential on the Cu electrode is increased. The current
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density  of  Cu  electrode  in  cascade  mode  is  slightly  higher  at  lower

overpotentials,  -0.6  V and -0.8  V vs  RHE,  but  crosses over and becomes

lower  at  larger  potentials.  This  observation  could  be  rationalized  by

considering  the  number  of  electrons  needed  to  make  COR  and  CO2R

products. Specifically, CO reduction requires two fewer electrons compared

to CO2 on a per carbon basis for a given product. Thus, the crossover in the

Cu current density reflects the increasing contribution of CO2 reduction as

the driving force is increased.

17



Figure 5. (a) Average current density of Cu only (green circles) and under

cascade operation (orange triangles) as a function of the potential applied to
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the Cu, -0.6 V vs RHE to -1.2 V vs RHE. (b) Molar flow to CO of only the Ag

electrode  (black  squares),  only  the  Cu  electrode  (blue  bar)  and  under

cascade operation (red bar),  as a function of  potential  applied to the Cu

electrode.  The  arrow  shows  the  reduction  in  overall  CO  flux  in  cascade

operation as compared to Ag only mode. (c) Range for conversion efficiency

of the CO intermediate on the Cu electrode in cascade mode as a function of

potential (see text). The Ag electrode was held at -1.0 V vs RHE in cascade

operation.

The molar flow of CO in Ag only, Cu only and cascade mode was derived

from -0.6 V to -1.2 V vs RHE by dividing the partial currents to CO by the

Faraday  constant  (Figure  5b).  The  two  electrodes  are  not  completely

independent, and a slight increase in the current of the Ag electrode was

observed  as  the  overpotential  on  the  Cu  electrode  was  increased.  To

compute the molar flux of CO from the Ag in cascade mode, black squares in

Figure 5b, it was assumed that the FE remains at 90%. The arrows in Figure

5b show clearly the suppression of CO molar flow in cascade operation at all

voltages, which means a large fraction of CO generated by the Ag electrode

is consumed by copper. 

In order to evaluate the CO conversion efficiency, we determined the upper

and lower limits as follows (detailed discussion is presented in Supplemental

Materials). We assume that the molar CO flow from the Ag is the same in

cascade mode as it is in Ag-only mode. To determine the upper limit of the

conversion efficiency, we assume that the CO molar flow from Cu is the same
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in  cascade  mode as  it  is  in  only  Cu  mode.  In  this  case,  the  conversion

efficiency is determined by taking the sum of the CO molar flows in Ag-only

and Cu-only modes, subtracting the CO molar flow in cascade mode, and

dividing  by the  sum of  the  CO fluxes  in  Ag-only  and  Cu-only  modes.  To

determine  the  lower  limit,  we  consider  that  CO  production  from  CO2

reduction on Cu could be shut off in cascade mode. This could happen if

direct  adsorption  of  CO  from  the  upstream  electrode  outcompetes  CO2

reduction for active sites on the Cu. In this case, the conversion efficiency is

simply determined subtracting the CO molar flow in cascade mode from the

Ag-only molar flow and dividing by the Ag-only molar flow. As the actual

situation  may  fall  between  these  two  cases,  we  show  the  conversion

efficiency as a range in Figure 5c. The CO conversion efficiency is high (over

50% and as high as 84%) at lower voltages (i.e., -0.6 and -0.8 V vs RHE on

the  Cu).  We  attribute  the  high  conversion  efficiency  to  the  lower

overpotential required for COR vs CO2R on Cu. At higher potentials on the Cu,

the conversion efficiency drops (but still is higher than 37%) as direct CO2

reduction on Cu starts to outcompete diffusion-limited CO reduction. 

Effect of cascade catalysis on product distribution.  CO2RR product

distribution  in  cascade  operation  is  shown  in  Figure  6a.  The  FE  for  H2

decreases with increasing potential, similar to the Cu-only operation (Figure

4b). The decreasing FE for CO as a function of potential reflects the efficiency

of  the  intermediate  conversion  and  the  relative  increase  of  direct  CO2

conversion on Cu as discussed above. Strikingly, the oxygenate to ethylene
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ratio (Figure 6b) is increased in cascade mode with a maximum of 1.95 at -

0.8 V vs RHE. This observation is similar to the prior report with a diffusional

cascade and to observations of CO reduction at elevated pressure, although

the precise mechanism for this effect is not yet clear.27, 34,49 It is also notable

that the FE for H2 is lower in cascade mode compared to Cu-only and is less

than 20% with the Cu electrode held at -1.2 V vs. RHE. Operation of the Cu

electrode at higher voltage (-1.4 V vs RHE) led to an increased FE for H2,

which we attribute to reaching diffusion limitations for the CO2 (Figure S6b).

Operating the Cu at lower voltage, -0.4 V vs RHE, also led to an increase in

FE for  H2,  reflective of  an overall  decrease in FE for  COR with this  small

driving force (Figure. S6a). 
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Figure 6. (a) Product distribution in cascade operation. The current density

on the Cu is indicated on the solid bars. (b) Oxygenate to ethylene ratio as a

function of voltage in cascade mode. Error bars are standard deviations from

repeat experiments, minimum 3.  
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CO reduction. To provide further evidence of CO supersaturation near the

Cu electrode in cascade mode, as predicted by the simulations (Figure 1b),

control  experiments  were  performed with  a  flow of  CO saturated 0.05  M

Cs2CO3 (pH 11.95) electrolyte for CO reduction in the flow cell with only the

Cu  activated.  At  the  potentials  at  which  we  observed  an  enhanced

oxygenates to ethylene ratio in cascade mode, -0.6 to -1.0 V vs. RHE, the

ratio observed for CO reduction was lower (Figure S7). As it is known that

increased CO concentration favors oxygenate production16,49–51, we take this

as evidence of a supersaturated CO condition in cascade mode.  

Investigation  of  bubble  nucleation.  The  simulations  predict  CO

concentrations near the Ag electrode far in excess of its ca. 1 mM equilibrium

solubility at 1 atm pressure. If bubbles were to nucleate, we would expect

two effects: (1) bubbles could block the surface cites of  the cathode and

reduce the current density and (2) less CO would be available via convective

transfer to the downstream Cu cathode. On the other hand, it is known from

work  with  HER,  which similarly  generates  an insoluble  product,  that  it  is

possible to reach high supersaturations, particularly if the electrode surface

is smooth.52–54 To qualitatively evaluate bubble formation, we replaced the

opaque IrO2 electrode with a Pt wire such that the surfaces of the Cu and Ag

electrodes became visible (supplementary movie).  Next,  we operated this

configuration in cascade mode (Ag at -1.0 V vs RHE and Cu at -1.2 V vs RHE).

The  Pt  wire  efficiently  nucleates  oxygen  bubbles,  and  thus  serves  as  a

qualitative reference of the product formation rate. Compared to the Pt wire,

23



only a very few, small, bubbles were generated from the Ag cathode. We

conclude  that  at  the  current  densities  used  bubble  formation  does  not

significantly affect intermediate transport to the downstream electrode. 

CONCLUSIONS

Sequential  cascade  CO2 reduction  has  been  demonstrated  by

electrocatalysis  using  two  working  electrodes  (Ag  and  Cu).  The  CO

intermediate produced by Ag is transported by convective flow to the Cu for

further conversion. A computational analysis was performed to identify the

ideal operating conditions to confirm the optimum transport of CO from Ag to

Cu  via  convection  and  diffusion.  Experimentally,  we  find  that  the

intermediate  conversion  can  be  over  80%  and  was  over  ~40%  for  the

current and electrolyte flow conditions employed in the study. The upstream

Ag cathode produces a supersaturated CO concentration at the downstream

Cu  electrode,  which  increase  the  production  of  C-C  coupled  oxygenate

products.  A  maximum in  the  oxygenate  to  ethylene  ratio  is  obtained  by

operation the Ag electrode at -1 V vs RHE with the Cu electrode at -0.8 vs

RHE. It is conceptually possible to scale the approach to more electrodes and

different geometries and to, potentially, couple it to enzymatic processes as

proposed by Nam and co-workers.14
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