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Abstract|Test generation using deterministic fault-

oriented algorithms is highly complex and time-con-

suming. New approaches are needed to augment the

existing techniques, both to reduce execution time and

to improve fault coverage. In this work, we describe a

genetic algorithm (GA) framework for sequential cir-

cuit test generation. The GA evolves candidate test

vectors and sequences, using a fault simulator to com-

pute the �tness of each candidate test. Various GA pa-

rameters are studied, including alphabet size, �tness

function, generation gap, population size, and muta-

tion rate, as well as selection and crossover schemes.

High fault coverages were obtained for most of the IS-

CAS89 sequential benchmark circuits, and execution

times were signi�cantly lower than in a deterministic

test generator in most cases.

I Introduction

Simulation-based test generation has been used to avoid the
long execution times of deterministic algorithms and to re-
duce the complexity of the test generator. In particular, in
a simulation-based approach, processing occurs in the forward
direction only; i.e., no backtracing is required. Therefore, com-
plex component types are more easily handled. As a result, the
development time is greatly reduced.
Seshu and Freeman [1] �rst proposed simulation-based test

generation, and several simulation-based test generators have
since been developed [2, 3, 4, 5, 6, 7]. Breuer [2] used a fault
simulator to evaluate sets of random vectors and to select the
best vector to apply in each time frame. Weighted random pat-
tern generators were interfaced with fault simulators in [3, 4, 5],
and high fault coverages were obtained for combinational cir-
cuits. The test generators in [6, 7] were also built around fault
simulators, but only candidate vectors of Hamming distance
one from the previous vector were considered. Speci�c faults
were targeted in [6], with a backtrace step used to select the
bit to be ipped. Cost functions calculated during concurrent
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fault simulation were used to evaluate candidate vectors in
[7]. While development of these random and mutation-based
test generators was simpli�ed and test generation time was re-
duced, the test sets generated were typically much longer than
those generated by deterministic test generators.
Genetic algorithms (GAs) were �rst used as a framework for

simulation-based test generation in [8, 9], but only combina-
tional circuits were handled in [9]. The CRIS test generator
[8] used a logic simulator to evaluate candidate test sequences;
consequently the test sets generated often had lower fault cov-
erages than those generated by a deterministic test generator.
Furthermore, a heuristic crossover scheme was used to exploit
problem-speci�c knowledge, making it di�cult to separate the
e�ects of the GA from the application-speci�c heuristics used.
The simple GA described by Goldberg [10] was applied to the
generation of individual test vectors for combinational and se-
quential circuits in [11]. Compact test sets with high fault
coverages were obtained for most combinational circuits and
many of the sequential circuits. However, fault coverages were
lower for highly sequential circuits.
In this work we extend the GA-based test generator to

evolve test sequences in addition to individual test vectors.
The GA generates candidate test vectors and sequences, and
the �tness of each candidate test is computed by a sequential
circuit fault simulator. One issue in evolving test sequences is
the alphabet size, i.e., whether a binary or nonbinary coding
should be used. In a binary coding, the individual vectors in a
sequence are packed into a single string, and the GA operates
on that string. In a nonbinary coding, each possible vector
is a separate character in the alphabet, and the GA operates
on the test sequence as a string of characters in the alphabet,
with special operators developed for the nonbinary alphabet.
Another concern is to achieve compact test sets in a reason-
able execution time. We have chosen to use fault simulation of
candidate tests rather than the less accurate logic simulation
used in CRIS [8] to provide a better quality test set. We use
a small sample of faults in the �tness computation to speed
up the execution. Another technique to reduce execution time
is to use overlapping populations in the GA in which only a
fraction of candidate tests are replaced in each generation.
We begin with a brief description of GAs. An overview

of test generation in a GA framework is given next, and al-
phabet size, �tness functions, overlapping populations, and
GA parameters are discussed. Modi�cations made to the fault
simulator are then described, and results for the ISCAS89 se-
quential benchmark circuits [12] are presented.



II Genetic Algorithms

GAs are composed of populations of strings, or chromo-

somes, and three evolutionary operators: selection, crossover,
and mutation [10]. The chromosomes may be binary-coded or
they may contain characters from a larger alphabet [13, 14].
The initial population is typically generated randomly, but it
may also be supplied by the user. A highly �t population is
evolved through several generations by selecting two individ-
uals, crossing the two individuals, and mutating characters
in the resulting individuals with a given mutation probabil-
ity. In a simple GA, distinct generations are evolved, and the
processes of selection, crossover, and mutation are repeated
until all entries in a new generation are �lled. Then the old
generation is discarded. In a GA having overlapping genera-
tions, only a fraction of the individuals are replaced in each
generation [15, 16]. The �tness of each individual depends on
the application, and selection is biased towards more highly
�t individuals. Hence the �tness of the overall population is
expected to increase in successive generations.
Various selection schemes have been used, but we will focus

on roulette wheel selection, stochastic universal selection, and
binary tournament selection with and without replacement
[17, 18]. Roulette wheel selection is a proportionate selection
scheme in which the slots of a roulette wheel are sized accord-
ing to the �tness of each individual in the population, and an
individual is selected by spinning the roulette wheel. Stochas-
tic universal selection is a less noisy version of roulette wheel
selection in which N equidistant markers are placed around
the roulette wheel, where N is the number of individuals in
the population. N individuals are selected in a single spin
of the roulette wheel, and the number of copies of each indi-
vidual selected is equal to the number of markers inside the
corresponding slot. In binary tournament selection, two in-
dividuals are taken at random, and the better individual is
selected from the two. The two parents may or may not be
replaced into the original population for the next selection.
Once two chromosomes are selected, the crossover opera-

tor is used to generate two o�spring. In one- and two-point

crossover, one or two chromosome positions are randomly se-
lected between 1 and (L - 1), where L is the chromosome
length, and the two parents are crossed at those points. For ex-
ample, in one-point crossover, the �rst child is identical to the
�rst parent up to the crossing point and identical to the sec-
ond parent after the crossing point. In uniform crossover, each
chromosome position is crossed with some probability, typi-
cally 1/2. As the new individuals are generated, each charac-
ter is mutated with a given probability. In a binary-coded GA,
mutation is done by ipping a bit, while in a nonbinary-coded
GA, mutation involves randomly generating a new character
in a speci�ed position.

III Test Generation in a GA Framework

Genetic algorithms can be used to generate populations of
candidate test vectors and sequences and to select the best test
to apply in a given time frame. This process is illustrated in
Figure 1. The test generator begins by generating individual
test vectors. Then test sequences are generated until no more
progress is made, at which point test generation terminates. A
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Figure 1: GA-Based Sequential Circuit Test Generation

GA having a random initial population is used to generate each
test vector or sequence, and a sequential circuit fault simulator
is used to evaluate the �tness of each candidate test. The best
test evolved in any generation is selected and added to the test
set. Then the fault simulator is used to update the state of
the circuit and to drop detected faults.
Generation of individual test vectors is repeated until a

given number of vectors are successively generated which do
not improve the fault coverage. Several vectors may be re-
quired to change the state of a sequential circuit so that addi-
tional faults may be detected. On the other hand, the circuit is
not guaranteed to go into a desirable state, and a large vector
limit may increase the execution time and test set size. In our
test generator, we use a small multiple of the sequential depth
as the test vector progress limit.
Even when test sequences are being generated, a sequence

may not be found to improve the fault coverage if the initial
population does not contain the right combination of vectors.
Therefore, the GA is reinitialized with a new random popu-
lation for each attempt at generating a useful test sequence.
Test generation for a given sequence length is terminated if
four consecutive attempts fail to improve the fault coverage.
In addition, various sequence lengths are used in an attempt to
achieve a high fault coverage in a reasonable time. In this work
we use one, two, and four times the sequential depth for most
circuits, beginning with the smallest sequence length. Many
of the faults are detected by the individual test vectors and
shorter sequences, and only the most di�cult faults remain
for the longest sequences. Execution time is thus reduced.

A Alphabet Size

During generation of individual test vectors, each character
of a chromosome in the population is mapped to a primary
input. A binary coding is used, so the chromosome represents
a test vector. In contrast, either a binary or nonbinary coding
can be used during test sequence generation, and the genetic
operators used depend on the alphabet size. If a binary cod-
ing is used, the individual vectors in a sequence are placed
in adjacent positions on a single chromosome. Then the GA
processes that chromosome using the same selection, bitwise
crossover, and bitwise mutation operators that are used in gen-
erating individual test vectors. In a nonbinary coding, all 2L

possible vectors are separate characters in the alphabet, where



L is the vector length, and the individual characters of a chro-
mosome represent separate test vectors in a sequence. In our
implementation, the characters are mapped to their binary
equivalents to enable simulation of candidate tests, but test
vector boundaries are maintained to separate characters. The
increased alphabet size has no e�ect on the selection operator,
but the crossover and mutation operators must be modi�ed.
Crossover can occur at test vector boundaries only, and mu-
tation involves replacing a given vector in a sequence with a
randomly-generated vector.

B Fitness Function

An accurate �tness function is needed to achieve a high
quality test set. Several factors may be important in gener-
ating a test vector or sequence, depending on the phase of
test generation. In the initial phase of test vector generation,
test vectors are generated to initialize the ip-ops. Therefore
the �tness of a candidate vector is a measure of the number
of ip-ops set to a known (0 or 1) state. To di�erentiate
vectors which cause the same number of ip-ops to be set,
we also include the fraction of ip-ops changing values since
the previous time frame. Only a good circuit simulation is
required to obtain the ip-op state information. When all
ip-ops are set, the test generator switches to phase 2 in
which test vectors are generated to maximize the number of
faults detected. In this phase, the �tness of a candidate vector
indicates the number of faults it detects. To di�erentiate vec-
tors which detect the same number of faults, we include the
number of fault e�ects propagated to ip-ops in the �tness
function, since fault e�ects at the ip-ops may be propagated
to the primary outputs in the next time frame. However, the
number of fault e�ects propagated is o�set by the number of
faults simulated and the number of ip-ops to ensure that the
number of faults detected is the dominant factor in the �tness
function. When a test vector is generated which detects no
additional faults, the test generator enters phase 3 and begins
counting the number of noncontributing test vectors. In order
to encourage the evolution of useful vectors, we add the good
and faulty circuit activity levels to the other two measures used
in phase 2. Vectors which activate more faults and propagate
more fault e�ects will then have higher �tness values, and the
GA will be more likely to evolve a vector which can propagate
the e�ects of some fault to a primary output. If a test vector is
found which detects any faults before the number of noncon-
tributing vectors generated reaches the progress limit, the test
generator switches back to phase 2 and the noncontributing
vector count is reset to zero. The procedure for generation of
individual test vectors is summarized in Figure 2.
When the number of successive noncontributing vectors gen-

erated exceeds the progress limit, the test generator proceeds
with test sequence generation. In this phase, the �tness func-
tion used is the same as that for the second phase of test
vector generation except that the test sequence length is in-
cluded in the metric for the number of fault e�ects propagated
to ip-ops. In summary, the �tness of a candidate vector is
calculated as follows:

Phase 1: fitness = total flip flops set +
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Figure 2: Generation of Individual Test Vectors

Phase 2: fitness = # faults detected +

# faults propagated to flip flops

(# faults)(# flip flops)

Phase 3: fitness = # faults detected +

# faults propagated to flip flops

(# faults)(# flip flops)
+

2(# good and faulty circuit events)

(# circuit nodes)(# faults)

Phase 4 (Test Sequence Generation) :
fitness = # faults detected +

# faults propagated to flip flops

(# faults)(# flip flops)(sequence length)

While an accurate �tness function is essential in achieving
a good solution, the high computational cost of fault simula-
tion may be prohibitive, especially for large circuits. To avoid
excessive computations, we can approximate the �tness of a
candidate test by using a small sample of faults. In particu-
lar, we can use a small fraction of the remaining faults chosen
at random, e.g., 1%{10%, or a set sample size, e.g., 100{300
faults.

C Overlapping Populations

Since computation of the �tness function is very expensive
in this application, overlapping populations may be e�ective
in speeding up execution by reducing the number of �tness
computations. With this approach, only a fraction of candi-
date tests are replaced in each generation. Let the population
size be N . In evolving the next generation, the GA generates
only g o�spring, where 1 � g � N . G = g=N is referred to
as the generation gap. The g worst individuals in the previous
generation are replaced by the new individuals. In this way,
(N�g) fewer �tness computations are required per generation.
However, a larger population size may be needed to provide
diversity, and more generations may be required.



D GA Parameters

Several GA parameters are important in achieving good re-
sults. A su�cient population size is needed to ensure adequate
diversity. All characters in the alphabet should be present at
every chromosome position, and a su�cient population size
is needed to provide good combinations of characters. At
the same time, a reasonable limit on the population size is
needed to reduce computations. A second key parameter is
the number of generations. A su�cient number of generations
is needed to allow useful combinations of characters from sev-
eral chromosomes to mix. In this work we limit the number of
generations to 8 to reduce the run time.
The remaining parameters of interest are the crossover and

mutation probabilities. We use a crossover probability of 1;
i.e., two individuals are always crossed in generating two new
individuals. Mutation is used to prevent the loss of key charac-
ters at the various chromosome positions. However, mutation
also destroys good combinations of characters, so a balance
must be found. The population sizes and mutation probabili-
ties used in this work are shown in Table 1 for the generation
of individual test vectors. During test sequence generation, a
population size of 32 and a mutation rate of 1/64 are used for
all circuits.

Table 1: GA Parameter Values

Vector Population Mutation

Length (L) Size Probability

< 4 8 1/8
4{16 16 1/16
> 16 16 1/L

IV Modi�cations to the Fault Simulator

The sequential circuit fault simulator PROOFS [19] is used
to evaluate the �tness of each candidate test. During fault
simulation, the good and faulty circuit states are updated after
each test vector is simulated. In addition, the status of each
detected fault is changed, and detected faults are removed from
the fault list. To accommodate the simulation of candidate
tests, the fault simulator must be modi�ed to store and restore
the good and faulty circuit states and the fault detection status
before and after each test is applied. Also, the faulty circuit
event count must be kept, as well as a count of the number of
faults whose e�ects propagate to ip-ops.

V Results

The GA-based test generator was implemented around the
PROOFS sequential circuit fault simulator [19] in 3000 addi-
tional lines of C++ code. Tests were generated for the IS-
CAS89 sequential benchmark circuits [12] using the GA-based
test generator on a SUN SPARCstation II with 64 MB mem-
ory. Circuit descriptions and test generation results are shown
in Table 2.
The structural sequential depth is taken from [20] and is the

minimum number of ip-ops in a path between the primary
inputs and the furthest gate. The numbers of faults detected,
the numbers of test vectors generated, and the execution times

are shown for tournament selection without replacement and
uniform crossover. A binary coding was used. The progress
limit for test vector generation was equal to the sequential
depth for s5378 and s35932 and four times the sequential depth
for all other circuits. Test sequence lengths were 1/4, 1/2, and
1 times the sequential depth for s5378 and s35932 and 1, 2,
and 4 times the sequential depth for all other circuits. Each
result is the average from ten runs (except for circuit s35932
which is averaged over eight runs), and a new random seed was
used for each run; standard deviations are given in parenthe-
ses. The numbers of faults detected, the numbers of vectors
generated, and the execution times on a Sun SPARCstation
SLC are shown for the HITEC deterministic, fault-oriented
test generator [20] for comparison. The number of faults de-
tected was greater than or equal to that of HITEC for seven
of the 17 circuits for which fault coverages were available. The
fault detection count was within 10 faults for another 3 cir-
cuits and within 20 faults for an additional 3 circuits. Fault
coverages were higher than those reported for CRIS [8] for 17
of 18 circuits, although the execution time was between 6 and
40 times as long, depending on the circuit. Test set length was
one-third that of CRIS and 42% that of HITEC on average.

In most cases, test generation time for the GA-based test
generator is a small fraction of the time required by HITEC.
Thus, the GA-based test generator can be used as a �rst pass
in test generation to screen out many of the faults before apply-
ing a deterministic test generator. Note that untestable faults
cannot be identi�ed by a simulation-based test generator, so
the deterministic fault-oriented test generator is still needed
for this purpose. Results for various selection and crossover
schemes are shown in Table 3. Again results are shown aver-
aged over ten runs. Circuits s344, s349, s382, s400, s444, s641,
and s713 are omitted from the table since these circuits had
about the same fault coverages for all selection and crossover
schemes. Signi�cant di�erences in fault coverage were found
for many of the larger circuits. The best selection scheme was
tournament selection without replacement; both tournament
selection schemes gave better results than either of the propor-
tionate selection schemes. Uniform crossover gave consistently
better results than 1-point or 2-point crossover.

The e�ects of mutation rate on fault coverage were also in-
vestigated. Results are shown in Table 4 averaged over ten
runs for various mutation rates used during test sequence gen-
eration; mutation rates given in Table 1 were used while in-
dividual test vectors were being generated. Tournament se-
lection without replacement and uniform crossover were used.
Circuits having about the same fault coverage for all muta-
tion rates are not included. The mutation rate had a much
smaller e�ect on fault coverage than the selection and crossover
schemes. Signi�cant di�erences in fault coverage were obtained
for only 2 of the larger circuits, s1423 and s5378, but for those
circuits, the lowest mutation rates (1/128 and 1/256) tended
to give the highest fault coverage.

Binary and nonbinary codings of test sequences are com-
pared in Table 5. Results are averaged over ten runs. Popu-
lation sizes of 16, 32, and 64 were used during test sequence
generation; the population sizes given in Table 1 were used
while individual test vectors were being generated. Circuits
having about the same fault coverage for all experiments are



Table 2: Sequential Circuit Results

Cir- Seq Total HITEC GA

cuit PIs Depth Faults Det Vec Time Det Vec Time

s298 3 8 308 265 306 4.44h 264.7(0.5) 161(28) 6.05m
s344 9 6 342 328 142 1.33h 329.0(0.0) 95(14) 5.85m
s349 9 6 350 335 137 52.2m 335.0(0.0) 95(14) 5.83m
s382 3 11 399 363 4931 12.0h 347.0(1.2) 281(27) 8.91m
s386 7 5 384 314 311 1.03m 295.2(2.2) 154(24) 3.45m
s400 3 11 426 383 4309 12.1h 365.1(2.7) 280(26) 9.45m
s444 3 11 474 414 2240 16.1h 405.7(1.7) 275(21) 10.5m
s526 3 11 555 365 2232 46.8h 416.7(4.8) 281(42) 14.3m
s641 35 6 467 404 216 18.0m 404.0(0.0) 139(31) 8.24m
s713 35 6 581 476 194 1.52m 476.0(0.0) 128(7) 9.41m
s820 18 4 850 813 984 1.61h 516.5(29.2) 146(17) 13.4m
s832 18 4 870 817 981 1.76h 539.0(32.1) 150(17) 12.3m
s1196 14 4 1242 1239 453 1.53m 1232(3) 347(45) 11.6m
s1238 14 4 1355 1283 478 2.20m 1274(3) 383(40) 16.0m
s1423 17 10 1515 - - - 1222(51) 663(103) 2.83h
s1488 8 5 1486 1444 1294 3.60h 1392(32) 243(26) 25.2m
s1494 8 5 1506 1453 1407 1.91h 1416(20) 245(39) 23.2m
s5378 35 36 4603 - - - 3175(53) 511(54) 6.08h
s35932 35 35 39094 34902 240 3.80h 35009(51) 197(43) 105.2h

Table 3: Selection and Crossover Scheme Comparison: Detected Faults

Roulette Wheel Stochastic Universal Tournament Selection

Selection Selection No Replacement Replacement

Circuit 1-pt 2-pt Unif 1-pt 2-pt Unif 1-pt 2-pt Unif 1-pt 2-pt Unif

s298 264.1 264.1 264.0 264.8 264.8 264.1 264.2 264.3 264.7 264.3 264.8 264.9
s386 294.2 293.0 295.5 296.6 296.1 297.8 294.6 296.7 295.2 297.3 296.2 295.9
s526 419.7 419.7 417.8 422.0 414.7 417.9 415.6 417.2 416.7 416.7 418.3 419.5
s820 501.2 478.4 514.3 502.9 497.4 524.1 520.4 519.6 516.5 527.9 527.5 504.5
s832 512.0 503.7 506.6 500.6 515.9 512.5 522.2 516.4 539.0 516.4 502.1 514.7
s1196 1228 1228 1232 1229 1228 1231 1227 1229 1232 1227 1225 1230
s1238 1270 1272 1274 1273 1271 1275 1269 1272 1274 1268 1272 1275
s1423 1243 1229 1257 1210 1243 1223 1242 1219 1222 1250 1227 1212
s1488 1363 1381 1352 1378 1360 1367 1392 1390 1392 1380 1388 1395
s1494 1357 1362 1361 1352 1401 1394 1412 1388 1416 1384 1391 1408
s5378 3169 3160 3216 3124 3183 3167 3175 3165 3175 3168 3150 3180

1-pt: one-point crossover 2-pt: two-point crossover Unif: uniform crossover

not shown. Tournament selection without replacement and
uniform crossover were used. Fault coverages tended to im-
prove with increasing population size, as expected. The best
results were obtained using the largest population size, but
good results were also obtained with population sizes of 16 and
32. Therefore we recommend using a population size of 16 or
32 to reduce the execution time. At the largest population
size, a nonbinary coding gave better results, but signi�cant
di�erences were obtained for two circuits only. At the smaller
population sizes, a binary coding usually gave better results.

Execution times may be reduced by using only a small frac-
tion of the fault list in the �tness evaluation. Results of using
this approach are shown in Table 6 averaged over several runs
for sample sizes of 100, 200, and 300 faults. Tournament se-
lection without replacement, uniform crossover, and a binary
coding were used. If the number of faults remaining in the
fault list dropped below the fault sample size, then all re-

maining faults were simulated. For the smaller circuits, the
di�erences in fault coverage were due to the nondeterminism
of the algorithm used, since the undetected fault list size even-
tually dropped below the fault sample sizes. The highest fault
coverages were typically obtained when the entire fault list
was used. In general, the execution times were lower for the
smaller fault sample sizes, particularly for the larger circuits.
The minimum size of the fault sample needed to obtain good
results tends to increase with increasing circuit size.

Overlapping populations were also investigated as a means
of reducing execution time. Generation gaps of 2/N, 1/4, 1/2,
and 3/4 were tried, where N is the population size. Corre-
sponding population sizes used were 3-, 2-, 1.5-, and 1-times
the population size used for nonoverlapping populations. The
number of generations was also adjusted for generation gaps
of 2/N and 1/4 to provide approximately the same number of
evaluations for all experiments. Since the number of evalua-



Table 4: Mutation Rate Comparison: Detected Faults

Mutation Rate

Circuit 1/16 1/32 1/64 1/128 1/256

s298 264.4 264.8 264.7 264.8 264.3
s386 296.1 296.8 295.2 296.1 295.5
s820 510.7 509.0 516.5 510.4 510.3
s832 533.5 533.6 539.0 533.5 533.1
s1196 1231 1230 1232 1231 1230
s1238 1274 1275 1274 1276 1274
s1423 1216 1226 1222 1244 1258
s1488 1394 1394 1392 1393 1391
s1494 1416 1415 1416 1418 1417
s5378 3204 3159 3175 3175 3192

Table 5: Binary and Nonbinary Coding Comparison: De-

tected Faults

Cir- Pop 16 Pop 32 Pop 64

cuit Bin Non Bin Non Bin Non

s298 264.6 263.6 264.7 264.4 264.8 264.9
s386 294.4 294.0 295.2 294.8 296.5 295.8
s526 416.1 416.1 416.7 416.7 417.4 417.0
s820 507.4 508.3 516.5 508.4 509.0 510.0
s832 533.0 534.6 539.0 533.5 533.4 534.2
s1196 1228 1223 1232 1228 1233 1229
s1238 1273 1262 1274 1267 1277 1273
s1423 1196 1202 1222 1219 1246 1266
s1488 1389 1386 1392 1387 1396 1395
s1494 1416 1413 1416 1416 1417 1415
s5378 3162 3165 3175 3190 3179 3205

Bin: binary coding Non: nonbinary coding

tions was about 81% of the number used for nonoverlapping
populations, execution times were correspondingly smaller.
Results for overlapping populations are given in Table 7 av-
eraged over ten runs. Fault coverages for a generation gap of
3/4 were only 0.4% lower on average than for nonoverlapping
populations. Generation gaps of 1/2, 1/4, and 2/N resulted in
successively lower fault coverages overall.

VI Conclusions

A genetic algorithm framework was developed for use in se-
quential circuit test generation. Populations of candidate tests
are evolved by the GA starting from a random initial popu-
lation, and the best test evolved is added to the test set in a
given time frame. A highly accurate �tness function is used to
evaluate candidate tests in order to achieve good quality test
sets. Results for the ISCAS89 sequential benchmark circuits
indicate that the selection and crossover schemes used have
a signi�cant impact on fault coverage. The best results were
obtained for tournament selection without replacement and
uniform crossover. Variations in mutation rate had a much
smaller e�ect on fault coverage, and binary codings tended to
give higher fault coverages when small population sizes of 16
or 32 were used. Nonoverlapping populations gave the highest
fault coverages, but average speedups of 1.3 were obtained by
using overlapping populations, with only a 0.4% drop in fault

coverage. More signi�cant reductions in execution time were
obtained by using small fault samples in the �tness evalua-
tion. Genetic algorithms are particularly amenable to parallel
implementations, so very good speedups are expected for a
parallel GA-based test generator. In addition, the GA-based
test generator is not limited to the single stuck-at fault model,
and other fault models can easily be accommodated with ap-
propriate �tness functions.
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