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Sequential Codes, Lossless Compression of 
Individual Sequences, and Kolmogorov Complexity 

John C. Kieffer, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAFellow, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAIEEE, and En-hui Yang 

Abstract-A general class of sequential codes for lossless com- 
pression of individual sequences on a finite alphabet is defined, 
including many types of codes that one would want to implement. 
The principal requirement for membership in the class is that the 
encoding and decoding operations be performable on a computer. 
The OPTA function for the class of codes is then considered, 
which is the function that assigns to each individual sequence the 
infimum of the rates at which the sequence can be compressed 
over this class of sequential codes. Two results about the OPTA 
function are obtained: 1) it is shown that any sequential code in 
the class compresses some individual sequence at a rate strictly 
greater than the rate for that sequence given by the OPTA 
function; and 2) it is shown that the OPTA function takes a 
value strictly greater than that of the Kolmogorov complexity 
rate function for some individual sequences. 

Zndex Terms- Lossless compression, individual sequences, se- 
quential codes, Kolmogorov complexity, Lempel-Ziv algorithm. 

I. INTRODUCTION 

HROUGHOUT the paper, we fix a finite set A containing T at least two symbols; the set A shall serve as the alphabet 
for all information sources that are considered. We let a denote 
the number of symbols in A; we refer to the symbols in A as 
a-ary symbols. In this paper, we shall call an infinite sequence 
5 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= ( 2 1 ,  2 2 ,  . . .) of symbols from A an individual sequence, 
following the usage in [13] and subsequent papers. Suppose 
an information source generates some individual sequence. We 
shall be concerned with how well we can losslessly compress 
this individual sequence via sequential codes. We give here 
an informal description of the class of sequential codes that 
shall be allowed. We require that the first step in sequential 
encoding of an individual sequence be a parsing step in which 
the individual sequence is parsed into variable-length strings, 
each parsed string coming from a certain prefix set. Each 
variable-length string in the parsing is then replaced by a 
binary codeword from a prefix set-oncatenation of these 
codewords yields the encoder output sequence in response to 
the individual sequence. Conceptually, decoding is done in 
much the same way as encoding; the encoded sequence is 
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parsed, and each parsed string is replaced by the corresponding 
string of the individual sequence that was encoded. The 
encoder input and encoder output sequences of prefix sets that 
are employed evolve dynamically with time in a prescribed 
manner. Also, the encoding and decoding operations are 
required to be performable on a computer, that is, they 
are expressible as recursive functions. The resulting class of 
sequential codes shall be denoted C-this class of codes shall 
be formally laid out in Section I1 of the paper. The class C 
includes many types of codes of practical interest; for example, 
all finite-state codes [13] and the Lempel-Ziv code [7], [12] 
belong to this class. 

When zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAan individual sequence zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAx is encoded by a sequential 
code (T E C, the resulting asymptotic compression rate zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAp(zla) 
in code bits per a-ary symbol tells us how well the sequential 
code has performed. (Encode the first n a-ary symbols, count 
the number of code bits, divide by n, and take the limit 
superior as 'p1 --f 00.) The gtimum performance theoretically 
attainable in lossless compression of-: via sequential codes is 
then the number p(x),  the infimum of p(zla) over sequential 
codes (T E C. Accordingly, we call the real-valued function 
x -+ p(x) the OPTA function. 

The purpose of this paper is to resolve the following two 
questions concerning the OPTA function: 

Question 1: Is there a universal sequential code? (A uni- 
versal sequential code is a sequential code a E C such that 
p(z )  = p(zla) for every individual sequence 2.) 

Question 2: Does the OPTA function coincide with the 
Kolmogorov complexity rate function? 

Discussion zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAof Question 1: Define a probability measure on 
the set of,individual sequences to be stationary if it is pre- 
served by the one-sided shift transformation ( 5 1 ,  22, . . .) ---f 

( 2 2 ,  2 3 ,  + .  .). Then, the Lempel-Ziv code (TLZ is "almost 
universal" with respect to the stationary probability measures, 
as the following fact (which is easily deduced from known 
results-see Appendix I) makes clear: 

Fact 1.1: Let Ql be the set of all individual sequences 
x such that p ( z ( o ~ z )  = p(z). Then p(R1) = 1 for every 
stationary probability measure zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAp on the set of individual 
sequences. 

However, the Lempel-Ziv code is not universal in the sense 
of this paper, i.e., providing the optimum compression per- 
formance for every individual sequence. To see this, suppose 
we take A = (0, 1) for simplicity. Let z* be the individual 

sequence obtained by concatenating together all binary strings 
of finite length, starting with the strings of length one, then 
those of length two, etc. Then :* = 0100011011000001~~~ . 
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Those readers familiar with the Lempel-Ziv algorithm can eas- 
ily see that zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAIC* is not compressed by zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa ~ z ;  that is, p(z* (OLZ) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= 
1. Since there is an algorithm for generating zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAx*, one can 
construct a sequential code o* for which p(z*la*) = 0, and 
which compresses every other individual sequence at least 
as well as OLZ does; the existence of the code o* implies 
that OLZ is not universal. We shall later resolve Question 
1 in the negative by duplicating the preceding argument 
for any sequential code in E. Any such code possesses a 
program which tells how it operates. This program proves to 
be the basis for the code's undoing in the sense that one is 
able to construct from its program another program which 
generates a sequence that is not compressed by the given 
code. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Discussion of Question 2: For each individual sequence 
ic = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(21, 2 2 ,  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAe . . ) ,  define K(z)  to be the limit superior as 
n -+ 00 of K(z1, 5 2 ,  . . . , zn)/n, where K(z1, 2 2 ,  . . . , 2,) 

is the Kolmogorov complexity of the string (21, 2 2 ,  . . . , 2,). 
The function z 4 K ( z )  is called the Kolmogorov complexity 
rate function. It is easy to show (and we prove this later; see 
Theorem 2, Section IV) that the Kolmogorov complexity rate 
function lower-bounds the OPTA function. It is natural then 
to investigate to what extent the Kolmogorov complexity rate 
function and the OPTA function coincide. The following fact 
(also easily deducible from known results-see Appendix I) 
gives us the manner in which these two functions "almost" 
coincide. 

Fact 1.2: Let 0 2  be the set of all individual sequences x 
such that p(x)  = E(%). Then 4 0 2 )  = 1 for every stationary 
probability measure zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAp on the set of individual sequences. 

We describe another result of this type. Let the terminology 
A-string denote any finite sequence of symbols from A. Let N 
denote the set of natural numbers { 1, 2, 3,  . + .}. We say that 
a probability measure ,u on the set of individual sequences is 
computable if there is a Turing machine for which both of the 
following are true: 

1) The machine accepts as input any pair (y, n) in which 
y is an A-string and n E N .  

2) For each input (y, n) the machine generates an output 
( T ,  s )  E N x N such that the p-probability of the set 
of individual sequences that start with y lies strictly 
between r / s  - n-' and r / s  + n-l. 

Then, we have the following result, whose proof is sketched 
in Appendix I. 

Fact 1.3: The set 0 2  has measure one with respect to 
every computable probability measure on the set of individual 
sequences. 

In view of Facts 1.2 and 1.3, Question 2 is natural. Theorem 
3 of Section IV (the main result of this paper) provides an 
emphatic "No" to Question 2 in the sense that there exist 
individual sequences x for which K(z )  = 0 while p(x)  = 
log, ai. 

11. A CLASS OF SEQUENTIAL CODES 

In this section, we make clear the notion of sequential code 
and, in particular, what it means for a sequential code to be 
a member of the class C. 

A. Notation and Terminology 

If S is a set and n E N ,  then S" denotes the set 
{ (5-1, . . . , sn) : s, E S, 1 5 z 5 n}  consisting of all strings 
of length n from S. The notation S* shall denote the set of all 
strings of finite length that can be formed from the symbols 
in S. It is convenient to include in S* the empty string (the 
string containing no symbols), which shall be denoted by As. 
Thus S* = (A,} U S U S2 U . . .. If y E S*, then IyI denotes 
the length of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAy; note that = 0. We let S" denote the set 
of all infinite sequences (SI, sa, . . .) whose entries are chosen 
from S. 

If ul,  u2, . . . , U ,  is a finite sequence of strings in S*, then 
u1 * u2 * * U ,  shall denote the string in S* formed by 
writing down the symbols in u1, followed by the symbols in 
u2, etc.; the string u1* u2 * . . * U ,  is called the concatenation 
of the strings UI, u2, ." ,  U,. 

If s = (SI, . ' .  , s,) E S" and n 5 m, then S" denotes 
the string (SI, . . . , s ~ ) .  Similarly, if s = (SI, s2, . . .) E S", 
then sn denotes the string (SI, . . . ,  s,). 

Given two strings y l ,  yz E S*, we say y1 is a pre@ of y2 
if there is a siring U E S* such that yz = y1 * U, and we 
say that y1 is a proper prejiix of y2 if y1 is a prefix of y2 and 
y1 # y2. Also, we say that y1 is a sufJix of y2 if there is a 
string U such that y2 = U * y1. We say that y E S* is a prefix 
of an infinite sequence s of symbols from S if y = AS or if 
y = S" for some n E N .  If u1, U:, , . . . is an infinite sequence 
of strings from S*, then the notation U = u1 * u2 * . . . shall 
denote that U E S" is the sequence for which u1* u2 * 
is a prefix for every m E N .  

A subset P of S* is said to be a prejix set if y1 = y2 
whenever y1, y2 are members of P in which y1 is a prefix 
of y2, and is said to be complete if each sequence in S" has 
a prefix in P. (For example, (0, 10, ll} is a complete prefix 
subset of (0, 1}*.) 

The notation f:S1 -+ S2 shall denote that f is a function 
which takes its values in the set S2 and whose domain is a 
subset of SI. This is a departure from the usual convention in 
which the notation f :  SI -+ 5'2 implies that 5'1 is the domain 
of f ;  we have departed from conventional usage in order for 
us to accomodate recursive functions (see below). 

Let S, be the set N ,  the set S*, or a finite Cartesian 
product of sets of these two types, i = I, 2. A function 
f :S1 + S2 is said to be recursive if there exists a Turing 
machine [3, ch. 31 such that for every y E S1 in the domain 
of f ,  the machine halts and prints f(y) in response to input 
y, and for every y E S1 not in the domain of j ,  the 
machine does not halt in response to input y. A recursive 
function f :  S1 + S2 is said to be total recursive if its 
domain is all of SI. The class of recursive functions has a 
useful property which, for the purposes of this paper, shall be 
called the closure property. The closure property states that 
a function built up from performing finitely many operations 
on recursive functions is itself recursive, provided that each 
of the operations used is one of three basic operations called 
composition, primitive recursion, and minimization [3, ch. 141. 
We shall sometimes use the closure property to conclude that 
a given function is recursive without having to show the 
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existence of a Turing machine that computes the values of 
the function. 

All logarithms in this paper shall be to base two. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
B. Concept zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAof Parsing Rule 

A parsing rule n is defined to be a sequence of pairs n zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
{(W,, P,):n E N }  such that the following two properties 
are valid: 

3) Each W, is a finite complete prefix subset of A*, where 
A is the alphabet mentioned in Section I. 

4) Each 9, is a mapping from W, into N .  
Let n = { (W,, Q?,): n E N }  be a parsing rule and let x be 

any individual sequence. If one applies the parsing rule n to 
2, one obtains the sequence of A-strings u1, U Z ,  + . zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAe and the 
sequence of positive integers zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAi l  , iZ ,  . . such that 

5) The string u1 is the member of W1 such that z starts 
with ul; il = 1. 

6 )  For t >_ 2, it = X P , t - l ( ~ t - l )  and ut is the member of 
W,, such that zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAu1 * uz * . . ' * ut is a prefix of x. 

The sequence of strings {u l ,  uz,  . . .} shall be called the 
n-parsing or parsing of x. The individual strings U ,  in the 
parsing shall be called phrases. 

A parsing rule shall be employed as the basis for a sequential 
code, as follows. One first employs a device, called a parser, 
for accomplishing the task of parsing an individual sequence 
into the phrases according to a given parsing rule. Then, the 
phrases in the parsing are encoded into binary codewords one- 
by-one, and these codewords are then concatenated to form the 
encoded sequence which is the output of the sequential code in 
response to the given individual sequence. The precise manner 
in which codewords are assigned to the phrases in a parsing 
shall be described later in this section. 

We now give some parsing rules commonly used as building 
blocks for sequential codes. I 

Example 1: The k-block parsing rule is the one in which 
each individual sequence is parsed into phrases all of which 
have length k .  To illustrate, the 3-block parsing of x = 
010010111001~ . . starts with the phrases 010, 010, 111, 001. 

Example 2: The Lempel-Ziv parsing of this same x starts 
with the phrases 0, 1, 00, 10, 11, 100. Each phrase in the 
parsing is a new phrase (a phrase that has not been previously 
listed). 

it shall be convenient for us to introduce also the con- 
cept of the parsing of a string of finite length. Let T = 
{(Wn, 9,):n E N }  be a parsing rule. Let y E A* and 
let n E N .  informally, the (n, n)-parsing of y is the finite 
sequence of A-strings that results when y is fed into the parser 
with the parser in initial state n. Formally, this concept is 
defined as follows: 

7) if y starts with no member of W,, then the (T,  n)- 
parsing of y is taken to be {AA} .  

8) If y starts with a member of W,, generate A- 
strings {u l ,  U Z ,  . . . , ut}  (where t > 1) and integers 
i l ,  i z ,  .+ . ,  it+l according to the rules 
i) i l  = n; i k  = @ Z k - - l ( ~ k - l ) ,  2 5 k 5 t + 1. 

ii) Uk E W,, (1 5 k 5 t ) .  

iii) y starts with u1 * uz * . . * ut. 
iv) There is no U E W,,,, such that y starts with 

U1 * U2 * * . .  *ut  * U .  

Then {ul ,  U Z . .  , ut}  is the (n, n)-parsing of y, and the 
final parsing state is defined to be &+I; the strings appearing 
in the (T, n)-parsing are termed the phrases of the parsing. 
We say that the (n, n)-parsing (u1, . . . , ut}  of y is complete 
if y = u1 * uz * - - . * ut. Finally, we take the n-parsing of y 
to be the (n, n)-parsing of y with n = 1. 

C. Parsing Delay 

Suppose the successive symbols in an individual sequence 
x are generated at times t = 1, 2, e . . , respectively. A given 
parsing rule n is applied to this stream of symbols. Suppose 
the symbol of z generated at time t = n occurs as the initial 
symbol in a phrase of the n-parsing of x, and suppose this 
phrase is of length k ,  . Then, one has to wait until the symbols 
at times t = n + 1, n + 2, . . . , n + k ,  - 1 are generated in 
order to determine the termination point of the phrase; if one 
encodes the individual sequence phrase by phrase, a delay of 
k,  - 1 time units has thus been introduced from time t = n 
until encoded information about the t = n symbol can be 
transmitted to the decoder. To control this parsing delay, a 
reasonable requirement to make is that k, /n  converge to zero 
as n -+ 00. 

We now formalize the requirement on parsing delay alluded 
to at the end of the preceding paragraph. We do this using the 
concept of the delay modulus of a parsing rule. If n is a parsing 
rule, then its delay modulus is the function w,:N -+ [0, 001 

defined for each Q E N by 

where {u,(z): i E N }  denotes the n-parsing of the individual 
sequence x. 

In defining sequential codes, we shall want to employ 
parsing rules 7r in which the parsing delay is controlled by 
requiriqg that w,(Q) -+ 0 as Q -+ 00. 

Example 1: For the k-block parsing rule T, it is easy to 
see that 

and hence, the requirement wn(Q)  -+ 0 as Q -+ cc is satisfied. 
Example 2: For the Lempel-Ziv parsing rule n, one can 

check that 

for some constant /3, 0 < /? < 00. The requirement wT(Q) ---f 
0 as Q --t cc is satisfied. 

D. Sequential Code Concepi 

We define a sequential code to be a sequence of triples 
= { (Wn, Qn, Gn):  n E N }  such that the following two 

9) {(INn, Qn):n E N }  is a parsing rule. 

properties are satisfied: 
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10) For each zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAn E N ,  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0, is a one to one mapping of W, 

The parsing rule given by Property 9) shall be called the 
parsing rule underlying a; it shall be denoted by zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAT ~ .  We 
describe how a sequential code U zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= {(W,, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA9,, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa,): n E zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAN }  
is used to encode an individual sequence x into a sequence 
y E (0, l}”. First, the 7r,-parsing {ut: t  E N }  of z is 
generated. Let {it: t E N }  be the resulting sequence of parser 
states defined by 

onto a prefix subset of (0, 1}*. 

Then 

If U is a sequential code and y E A*, then L(a, y) 
shall denote the total of the lengths of the binary codewords 
assigned by a to the phrases in the parsing of y according 
to the parsing rule underlying a. The rate at which the 
sequential code U compresses the individual sequence x is 
the nonnegative extended real number p(zla) defined by zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

a L(U, 2,) p(x1a) = limsup ~ 

n-m n 

We now define C to be the class of codes consisting of every 
sequential code a = { (W,, Q,, a,): n E N }  for which the 
following four properties are satisfied: 

Property 2.1: The delay modulus wTm (Q) --f 0 as Q 4 CO. 

Property 2.2: There is a total recursive function F :  N x 
A* i N such that 

F(n ,  Y) = 1, Y E w n  

F ( n ,  y) = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2 ,  otherwise. 

Property 2.3: There is a recursive function G: N x A* ---f N 
such that 

G(n, y) = Qn(y), for everyn, y in which y E W,. 

Property 2.4 There is a recursive function H :  N x A* + 
(0, 1}* such that 

H ( n ,  y) = @,(y), for everyn, yin which y E W,. 

The OPTA function p alluded to in Section I can now be 
formally defined as the function p: A- ---f [0, 001 in which 

p(z) = inf {p(xla): a E E}, x E A”. 

The following are some examples of sequential codes in C. 
Example 1: A sequential code a = {(Wn, Q,, @,): n E 

N }  is caljed a block code if, for some k ,  m E N, W, = Ak,  
and 43, = @ k , m  for all n, where ak,, is a mapping from Ak 
into (0, l}“. Any block code is a member of E. Furthermore, 
it is easy to construct a sequence of block codes {a,} such 
that p(zIa,) + log a for any individual sequence z. Thus the 
OPTA function p takes its values in the interval [0, logo!]. 

Example 2: A sequential code a = { (W,, qn, a,): n E 
N }  is said to be a $finite-state sequential code if there is 
m E N such that, whenever {ut: t E N }  is the parsing of an 
individual sequence according to the parsing rule underlying 
LT, and {zt:t E N }  is the sequence generated according to 
(2.1), then it 5 m for all t. Any finite-state sequential cade 
is a member of E. 

Example 3: The Lempel-Ziv code OLZ is a sequential code 
in C which bears a special relationship to the class of finite- 
state sequential codes. Ziv and Lempel [I31 proved that the 
following statement holds for any individual sequence z: 

p ( z l a ~ z )  5 inf {p(xla): a a finite-state sequential code}. 

The above examples indicate that the class of sequential 
codes C includes many types of sequential codes of practical 
significance. We therefore feel justified in concentrating on 
the class C in the sequel. 

m. NONEXISTANCE OF UNIVERSAL SEQUENTIAL CODES 

We define an individual sequence to be recursive if 
there exists a total recursive function f : N  4 A* such that 
f (n )  = zn, n E N .  Recursive sequences can be compressed 
well by sequential codes. In fact, it is easy to show that if an 
individual sequence 2’ is recursive, then there is a sequential 
code a’ E C such that p(x’la’) = 0. Given any sequential 
code a E C ,  we shall show how to construct a recursive 
individual sequence x‘ which is not compressed by a in 
the sense that p(z’1a) 2 loga. Since, as discussed above, 
some other sequential code in C will compress x’ well, this 
suggests the possibility that a sequential code in C can be 
constructed which outperforms the given code a in the sense of 
compressing every individual sequence at least as well as does 
a ,  while compressing some individual sequences (including 
2’) better than does a. We combine all of these thoughts in 
the following theorem, which shall be proved in the present 
section. 

Theorem I :  Let a E C be arbitrary. Then there exists a 
recursive individual sequence x‘ and a‘ E C such that 

i> p(z’1a) 2 loga. 
ii) p ( z ’ I d )  = 0. 
iii) p(z10’) 5 p(zla) for any individual sequence x. 

The following result is an immediate corollary of Theorem 1. 
Corollary I :  There exists no universal sequential code in 

the class C. That is, there exists no U E C such that p(zla) = 
p(x) for every individual sequence z. 

Before we go into the details of the proof of Theorem 1, let 
us introduce a useful partial ordering of sequential codes. 

A. A Partial Ordering of Sequential Codes 

We define the concept (useful to us later on) of what it 
means for one sequential code to be subordinate to another 
sequential code. Leta = {(W,, %fn, @,):n E N }  E E. We 
say thata’ = { (WA, XFk, a;): n E N }  E C is subordinate to a 
if there is a total recursive function g: N i N with g( 1) = 1 
such that if n E N and y E WA, the following are true: 

1) The ( T ~ ,  g(n))-parsing of y is complete with final state 

g(QL(y)). 
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2) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA@XY) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= @ i I ( U l )  * zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA@ i 2 ( U z )  * . * .  * @it zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(ut), where 
{ U I ,  + . . ,  ut}  is the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA( T ~ ,  g(n))-parsing of y and 
{ i l ,  . . - , i t }  are the parser states zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

As the preceding definition is somewhat abstract, it is 
helpful to have in mind an informal idea of what it means 
for a’ to be subordinate to a. The phrases in the parsing 
of an individual sequence according to the parsing rule T,,! 

(call these a’-phrases) are related to the phrases in the parsing 
of that same sequence via T,, (call these a-phrases) in the 
following way: The a-phrases are partitioned into groups of 
phrases each consisting of finitely many phrases, and then each 
group of a-phrases gives rise to a a’-phrase via concatenation. 
Each a’-phrase is then encoded into the binary codeword 
obtained by concatenating together the codewords for the 
a-phrases in the group of a-phrases that gave rise to that 
a’-phrase. 

The relation “is subordinate to” is a partial order on C. We 
shall occasionally make use of cofinal subsets with respect to 
this partial order. We say that a subset C’ of C is cojiinal if for 
any a E C, there exists a’ E C’ such that a’ is subordinate 
to a. 

Three facts about the partial order “is subordinate to” shall 
be needed in the sequel. We state these facts here. The first of 
these facts follows easily from the definition given above: 

Fact 3.1: If a’ is subordinate to a, then 

For technical reasons, we occasionally need to make use 
of sequential codes in which the lengths of the phrases in 
the parsing of any individual sequence “blow up” sufficiently 
rapidly. In particular, we shall deal with a particular class of 
such sequential codes-we define C’ to be the subset of C 
consisting of all a’ E C satisfying the following property: 

Property 3.1: The rth phrase in the T,,J-parsing of any 
individual sequence is of length at least fi, r E N .  

Our remaining two facts detail useful attributes of the class 
of sequential codes E’. Fact 3.2 is proved in Appendix 11. Fact 
3.3 is a simple consequence of Facts 3.1 and 3.2, which we 
have stated separately for emphasis. 

Fact 3.2: The class of codes C’ is a cofinal subset of C. 
Fact 3.3: For any individual sequence zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAx, 

p(x) = inf{p(z(a): a E E’}. 

The proof of Theorem 1 shall also hinge upon the following 
lemma. 

Lemma 1: Let W be a complete prefix subset of A*. Let @ 

be a one-to-one map from W onto a prefix subset of (0, 1}*. 
Then there exists U E W such that 

Proof zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAof Lemma 1: Because W is a complete prefix set, 
equality holds in Kraft’s inequality 

(Y-IUI = 1. (3.2) 
ucw 

Applying Kraft’s inequality to the prefix set @(W) then yields 

Since the summation on the left side of (3.3) is upper-bounded 
by the summation on the left side of (3.2), there must exist 
U E W such that 2-l@(U)l 5 a-IUI. This inequality is 
equivalent to inequality (3.1). 

Proof of Theorem 1: In view of Facts 3.1 and 3.2, The- 
orem 1 will automatically hold for all sequential codes in C 
once we prove Theorem 1 for all sequential codes in E’. Thus 
to prove Theorem 1, we fix a = { (W,, 9,, a.,)}, an arbitrary 
code in E’, and show that the conclusions of Theorem 1 follow 
for this code. First, we argue that there is a total recursive 
function Q: N -+ A* such that 

Q(n) E Wn 
and 

I@n(Q(n))I 2 IQ(n)lloga, 12 E N.  (3.4) 

To see this, we shall envision a computer which halts and prints 
out the desired Q(n) in response to input n, for an arbitrary n. 
Let U I ,  u2, U S ,  . . . be the list of all A-strings formed by listing 
the strings of length one, followed by the strings of length two, 
etc., with strings of the same length listed in lexicographical 
order. There is some Turing machine TI such that if we apply 
an input of the form (n, initial segment of U,) ,  TI will halt and 
print either “initial segment of U ,  is in W,” or “initial segment 
of U ,  is not in W.,.” There is a second Turing machine T2 
which will halt and print a., (initial segment of U , )  in response 
to an input of form (n, initial segment of ui), provided the 
initial segment of U ,  is in W,. Run the following program on 
a computer: 

1. Read in a value of n. 
2. Set i = 1. 
3. Set initial segment of U ,  = first symbol of U,. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
4. Run TI with input (n, initial segment of U,). If output 

is “initial segment of U ,  is in Wn,” go to instruction 5; 

otherwise, go to instruction 6. 

5. Run T2 with input (n, initial segment of U,)  to compute 
@,(initial segment of ut). If [@.,(initial segment of 
U,) I 2 (log a )  I initial segment of U ,  1, go to instruction zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
7 ;  otherwise, go to instruction 6. 

6. If “initial segment of U,” is a proper prefix of U,, 

augment “initial segment of U,’’ by one symbol and go 
to instruction 4; otherwise, increase i by one and go to 
instruction 3. 

7. Set Q(n) = initial segment of U ,  and halt. 

By Lemma 1, the computation will halt for every n; 
appealing to the closure property of the class of recursive 
functions, one concludes that the above program defines a total 
recursive function Q:N -+ A* satisfying (3.4). Again, from 
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the closure property, one obtains the total recursive function 
R: zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAN zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA+ N in which 

R(1) = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1; R(n + 1) = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA@R(,) (Q(X(n))), n L 1. 

x' = Q(n(1)) * Q(R(2))  * Q(R(3))  ... . 

The sequence x' is recursive, and conclusion i) of Theorem 
1 holds. For each zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAn E N and y E W,, let H ( n ,  y) denote 
the binary string 

Let x' be the individual sequence 

If we regard H ( n ,  y) as a function of n, y, it is a recur- 
sive function. Furthermore, for each n € N ,  the function 
!DL:Wn zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAi (0, 1}* defined by 

@L(Y) ~ ( n ,  Y), Y E W n  

is one-to-one, and (ag(W,) is a prefix set. Consequently, 
a' = {(Wn, Q,, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa;)} is a sequential code belonging to the 
class C. Due to Property 3.1, it is a simple matter to verify 
conclusions ii) and iii) of Theorem 1 for the code d. 

Iv. KOLMOGOROV COMPLEXITY AND THE OmA FUNCTION 

Our task in this section is to show that the OPTA function 
does not coincide with the Kolmogorov complexity rate func- 
tion. We start with the definition of Kolmogorov complexity. 
Informally speaking, the Kolmogorov complexity of an A- 
string is the length of the shortest program in bits, which, 
when run on a universal computer, will cause the computer 
to generate the given A-string as output. To formalize this 
notion, we need to fix a recursive function U :  (0, 1}* -+ zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA* 
which has the following property: If f: {0, I}* + A* is any 
recursive function, then there exists p E (0, 1}* such that 

i) U ( p  * y) is defined whenever f (y)  is defined; and 
ii) U ( p  * y) = f (y) ,  for every y in the domain of f .  
It is known that there exist many recursive functions U 

satisfying this property; any such function shall be called a uni- 
versal recursive function. If y is an A-string, the Kolmogorov 
complexity of y 141, [6], 191, [lo], 1141, is the integer Ku(y) 
defined as follows: 

K U ( Y )  2 min ((PI: U(P) = Y I .  

We then define the Kolmogorov complexity rate function to 
be the function K: A" i [O, CO) in which 

- A  K U  (33") K ( x )  = l imsup ~ 

n-+m n 

for any individual sequence x. The Kolmogorov complexity 
rate function does not depend upon the choice of universal 
recursive function U .  This follows from the invariance princi- 
ple [9, ch. 21 which states that for any two universal recursive 
functions U,, U, 

SUP(~KU,(X) - K u , ( x ) ~ : x  E A * }  < CO. 

The following result shows that the Kolmogorov complexity 
rate function provides a lower bound to the OPTA function. 

Th.eorem 2: For any individual sequence x, p(x) 2 K(x).  
Pro08 Fix an arbitrary individual sequence x, and an 

arbitrary sequential code o E E. The theorem is established if 
we can show that p(xla) 2 K(x).  By Lemma 1.1 of Appendix 
I, there exists a sequence {e,} converging to zero as n + CO 

and a one-to-one total recursive function f :A *  + (0, 1}* 
such that 

One can show (Lemma 11.3, Appendix 11) that there is a 
recursive function g: (0, 1}* + A* such that 

Fix p E (0, 1}* such that U ( p  * y) = g(y) whenever g(y) is 

K U ( 2 " )  5 \PI+ L(a, xn) + ne,, n E N .  

Dividing by n and letting n -+ 00, we obtain the desired 
conclusion. 

We are now ready to state the main result of this paper: 
Theorem zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA3: There exists an individual sequence x such that 

K(z )  = 0 and p(x)  = loga. 
Remark: There is an interesting result of Ya. M. Barzdin 

and N. V. Petri (114, Theorem 2.51) that is related to our 
Theorem 3. This result concerns binary individual sequences, 
i.e., individual sequences in which the underlying alphabet is 
A = (0, l}. A binary individual sequence x is said to be 
recursively enumerable if there is a total recursive function 
9: N -+ N such that g ( N )  = {n: IC, ends in 1). Let .F be the 
family of all total recursive functions f :  A* i N such that 
f (y)  2 Ku(y) for every A-string y. Then, the Barzdin-Petri 
result states that there exists a recursively enumerable binary 
individual sequence z such that infnn-l f(zn) > 0 for any 
f E 3. Since any recursively enumerable binary individual 
sequence z satisfies Ku(xn) = O(1ogn) (12, Theorem l]), 
the Barzdin-Petri result guarantees the existence of a binary 
individual sequence z for which K ( x )  = 0 and for which 
p(z1a) > 0 for any a E E. Note that one cannot deduce 
p(z)  > 0 from the fact that p(xla) > 0 for any a E E. We 
will go further and show the existence of an a-ary individual 
sequence z for which 71'(z) = 0 and p(x(a) 2 loga for any 
CT E E. 

Proof of Theorem 3: Choose a sequence of sequential 
codes { G ~ :  i E N} from E' such that every member of C' 
appears infinitely often in {a,}. (Since C is countable, it is 
possible to select such a sequence {aZ}.) For each i ,  let n% 
denote the parsing rule underlying a,. For each i ,  by Lemma 
11.4 of Appendix 11, there exists a total recursive function 
Q,: A* + A* such that all of the following four statements 
are true: 

1) y is a proper prefix of QZ(y),  y E A*. 
2) The n,-parsing of Q,(y) is complete, y E iZ*. 

, ut} is the .Ir,-parsing of y E A*, then 
there exists U E A* such that (u1, u2, . . . , ut, U }  is the 
r,-parsing of Q,(y). 
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4) If zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA{ w t : t  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAE zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAN }  is a sequence of iterates under Q, Since 
(meaning wt+ l  = Qz(wt), t E N ) ,  then 2 fi zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2 / r  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAf i d x  = $r3 l2 ,  r E N 

liminf t+a, L(o,, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAwt)/lwtl zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2 loga. s=l 0 

For each zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAi, it follows from the fact that Qz is recursive 
(see Lemma 11.2 of Appendix 11) that there must be a positive 
integer D, such that lu~~ 2 fn:’” i E N 

Ku(Qz(? / ) )  L Ku(Y)  + D,, Y E A*. 

Choose an increasing sequence of positive integers {n,:i E 

the following are true: 

we can conclude that 

(4.1) whence 

n, 5 2n,-1/21uzl, i E N .  

N }  and A-strings {w%,j:i E N ,  5 j 5 % }  such that zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAOf It follows from this and (4.2) that 

(4.5) 

Di , D; , 1 < <- 
Let z be the individual sequence such that vi, 1 is a prefix of 2 l%,j-11 - d m - f i 5 T .  
for every i. Because of (4.3), Fact 3.3, and the fact that every 
code in E’ appears in {g;} infinitely many times, we must 
have p(z) = log a. 

Now suppose j > d m .  Then j 2 2 and so j - 1 2 j / 2 .  
Arguing as in the proof of (4.9, we have 

To complete the proof of Theorem 3, we show that x(z) = 
0. Define 

One then deduces that A A 
%,O = %-l ,n%- l ,  i 2 2; u1,O AA. 

5 0 ,  5 < -  jD ,  <50,< 5 0 %  For i E N and 1 5 j 5 n,, define u , , ~  to be v , , ~  with the 
initial segment w,, removed. Define lu,,J-ll - JJ - 1 ~ , , ~ - ~ 1 1 / 4  - nE-1 114 T‘ 

U’, !? U,, 1 * U,, 2 * . ’ * U,, n, , i E N .  We conclude that for i 2 2 

u1 * u2 * . . . * ui. Then, choose j = j ,  to be the positive 
integer such that x m  is a prefix of 

u1 * u2 * .  . . * u2-l * U,J * u,,2 * * ’ .  * = It is easy to see that the right-hand side of the above inequality 
converges to zero as i --f CO. We see now that (4.4) is true, 
completing the proof of Theorem 3. and t 1 , , ~ - 1  is a prefix of zm. By Lemma 11.1 of Appendix 11, 

there exists p E N such that 

Consequently, g(z)  = 0 will follow if we can show that 

(4.4) 

By construction, w,, is obtained from w1,o = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAAA via n1 appli- 
cations of Q I ,  n2 applications of Q 2 , .  . . , n,-l applications of 
Q,-1, and finally, j applications of Q,. Making use of (4.1), 
we then have 

Ku(v,,,) 5 n l D l  +nzD2+...+n,-lD,-l + J D ,  

Kdv,, , )  = 0. lim max 
%--tW 1 1 3 1 %  ~w,,3-l~ 

f K U ( A A )  i 2 2, 1 5 j 5 12,. 

By Property 3.1, 

( u 2 1 > 1 + & + h + . . . + J n z ,   EN. 

The answers to Questions 1 and 2 obtained in this paper 
lead one to the following conclusions. First of all, one should 
not waste time trying to find a “best” sequential code, as 
any sequential code from the class C will have an inherent 
deficiency in that it will poorly compress certain individual 
sequences. Secondly, the Kolmogorov complexity rate func- 
tion is not the right notion of complexity vis-a-vis the OPTA 
function in lossless individual sequence compression in that it 
coincides with the OPTA function only on a proper subset of 
the set of all individual sequences. 

APPENDIX I 

This appendix is devoted to the proof of Facts 1.1-1.3 that 
were stated in Section I. 
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Lemma zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1.1: Let zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0 E C be arbitrary. Then there exists a 

one-to-one total recursive function zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAf from A* onto a prefix 
subset of (0, 1}*, and a sequence zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA{t,:n E N }  converging to 
zero as n i 00 such that 

I f (Y) I  5 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAq g ,  Y) + nfn, Y E A", n E N.  (AI) 

Prooj Let R: N i (0, 1}* be the mapping in which, for 
each k E N ,  the binary string R(k) is formed in the following 
way: First, form the expansion of k to base two; then, furm 
R(k)  by writing every digit in the expansion twice, followed 
by the suffix "01." For example, the base two expansion of 
the integer 9 is 1001. Repeating each digit and appending 
the suffix "01" yields R(9) = 1100001101. For later use, the 
reader can easily check that IR(k)I 5 6 + 2logk, k E N. It 
is easy to define a total recursive function &: A* -+ ( 0 ,  1}* 
in which 

1) IS(71)I = [lwllogal, 71 E A*. 
2) & ( V I )  # Q(712) if zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA711 and 712 have the same length and 

We fix 0 = {(Wn, 9,, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAan)}, an arbitrary sequential code 
from the class E. Let H :  N x A* 4 (0 ,  1}* be a recursive 
function such that 

U1 # 712. 

H ( n ,  Y) = @n(g) ,  7-7, E N ,  Y E wn. 

If g E A*, let t = t(y) denote the number of phrases in the 
r,,-parsing of y, let (u1, u2, . . .  , ut}  denote the x,-parsing 
of y, let 

j = j ( y ) =  lu1l+luzl+...+lutl 
and let 
a-ary symbols in y. Define f : A *  i (0, 1}* by 

denote the suffix of y consisting of the final [yI - j(y) 

R(IYI + 1) * R ( m  + 1) * U Y ) ,  if t (Y)  = 0 

f ( Y )  A R(lyl+ 1) * R(j(g) + 1) * &(y) { * H(zt ,  ut) otherwise 

where { i l ,  22, . . . , it} are the parser states 

i1 = 1, i k  = ~ I z b - - l ( U k - l ) )  2 5 k 5 t. 

Then f is a one-to-one mapping, and f ( A * )  is a prefix set. 
That f is recursive follows from the fact that the functions R, 
Q, and H are recursive, as well as the fact that each of the 
five entities t ,  j ,  6,  (u1, u2, . . . ,  ut}, and { i l l  i z ,  .", it}, 

regarded as a function of y E A*, is a recursive function. 
From the definition of f ,  we have the bound 

I f (v) l  5 1 2  + 4log(lYl + 1) + L(a1 Y) 

+ ~ ( l Y l - ~ ( Y ) ) ~ o g ~ ~ ,  Y E A * .  (A21 

From Property 2.1, we have 

(A3) IYI  - j ( Y )  = 0. lim 
lYl+" IYI  

The relation (AI) is now evident from (A2) and (A3). 

1.1. 
The following result is an immediate corollary of Lemma 

Corollary 1.1: Let 0 E C be arbitrary. Then there is a 

i) The function f n  is a one-to-one map of A" onto a prefix 

ii) For any 3: E A", 

sequence { f n : n  E N }  in which 

subset of (0, l}*, n E N .  

Proof of Fact 1.1: Let /I be a probability measure on 
AM stationary and ergodic with respect to the one-sided shift 
transformation. Let H ( p )  denote the entropy rate of p (in bits 
per a-ary symbol). Let fn:A" 4 (0, 1}* be a one-to-one 
map such that fn(An) is a prefix set, n E N .  It is well known 
[l, Theorem 3.11, [5] that 

x E Am: liminf Ifnol 2. H ( p )  
?I+" n 

Taking the infimum over all sequences ( f n }  then yields, in 
view of the Corollary to Lemma 1.1, 

Combining these last two equalities leads one to the assertion 
that ~ ( 0 , )  = 1. That this equality holds also for p stationary 
but not ergodic is a consequence of the ergodic decomposition 
theorem. 

Proof ofFact 1.2: Let p be as in the proof of Fact 1.1. 
The assertion of Fact 1.2 will follow if we can show that 
,u(fi,) = 1. It is clear from the proof of Lemma 1.1 that we 
may assign to each p E (0, I}* a string s(p)  E (0, 1}* of 
length o(lp1) such that ( s ( p )  * p : p  E (0, 1}*} forms a prefix 
set. For n E N, define fn:An -+ (0, 1}* by 

f n ( y )  2 s (p )  * p ,  for somep E (0, 1}* such thatU(p) 

= yand IpI = Ku(y) ,  y E A". 

Note that f n  is a one-to-one mapping and that fn(An) is a 
prefix set, n E N .  Consequently, (A4) holds. Also note that 

We conclude that 

- 
p { x  E A":K(s) 2 H ( p ) }  = 1. (A@ 

(Alternatively, one can deduce (A8) from the stronger state- 
ment that K(z )  = H ( p )  for p-almost all s, a result which may 
be found in [SI, [14].) Combining (A5) with zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(A6), we have 

Combining (A8), (A9), and Theorem 2, we obtain ~ ( 0 2 )  = 1. 
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Proof of Fact 1.3: Let zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAp be a computable probability 

measure on A". In this proof, if zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAX is a probability measure 
on A" and y E A*, we define 

X(y) = X{x E ACC:xstarts withy}. 

From the proof of Fact 1.2, there exists for each n E N a one- 
to-one mapping f n  from A" onto a prefix subset of (0, 1}* 
such that (A7) holds. Then, applying Kraft's inequality 

('410) 

(Note that the logarithm in (A10) makes sense because p(z E 
A": p(z") > 0 all n}  = 1.) Applying the Borel-Cantelli 
lemma to (AIO), we obtain 

whence, appealing to (A7), we conclude that 

Fix a computable probability measure X on A" such that 
X(y) > 0 for any y E A*. Let p* be the probability measure 
defined by 

* A 1  
P = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA&+f).  

Let m be any positive integer. Since ,LL* is computable, 
there exists (as shown in [ l l ] )  a sequential code cm = 

((Wn, an)} from C in which 

i) The parsing rule rqm is the m-block parsing rule; and 
ii) For any individual sequence z, if (ut : t  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAE N }  is the 

r,_-parsing of z and ( i t : t  E N }  is given by (2.1), 
then 

From i) and ii) it follows that 

from which we conclude that 

Since p*(z") 2 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAp(2") /2 ,  we see that 

= 1. 

This fact, together with (A1 1) and (A12), allows us to conclude 
that 

- 
p{z E A":K(z) 2 p ( z ) }  = 1. 

This relation, coupled with Theorem 2, allows us to conclude 
that p(R2) = 1. 

APPENDIX I1 

The purpose of this appendix is to prove several lemmas 

Lemma 11.1: There exists a constant ,O which depends only 
which are instrumental in the proofs of Theorems 1-3. 

on U such that 

whenever V I ,  IJZ are strings in A* for which v1 is a prefix 
of 212. 

Proofi Let R : N  + (0, 1}* be the total recursive func- 
tion defined in the proof of Lemma 1.1. Since R ( N )  is a prefix 
set, we can define a function T:  (0, 1}* -+ A* in the following 
way: i) the domain of T is equal to 

(w4 * Y: #k E N ,  Y E (0, I}*, lU(Y)I 2 - zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI> 

and ii) 

T ( R ( ~ )  * y) = ~(y ) ' - ' ,  if k E N ,  y E (0, I}*, 
and lU(y)I zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2 IC - 1. 

Since R and U are both recursive functions, it follows that T 
is a recursive function. Let p E (0, 1}* be a string such that 

T(u)  = U ( p  * U ) ,  u E domain of T. 

We verify (A13) with ,fl = (pi + 6. Choose any pair of strings 
q,  wz from A* with 211 a prefix of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA712. Pick y2 E (0, 1}* 
such that lyzl = K u ( ' u ~ )  and U(y2)  = 212. Let T = lull. Then 
U ( p  * R(T + 1) * y2) = 211 and so 

W.1) 5 IP * E(. + 1) * Yzl 

I Ipl + 6 + 210g (1.11 + 1) + Kv(vz). 

Lemma 11.2: Let F :  A* t A* be a total recursive function. 
Then there exists a positive integer D such that 

K U ( W )  5 K d Y )  + D, Y E A*. (A14) 

Proofi Let V:{O, 1}* 4 A* be the mapping whose 
domain is the same as that of U ,  and V ( z )  = F ( U ( z ) )  for 
z in the domain of U. Since V is a recursive function (the 
composition of two recursive functions is a recursive function), 
there must exist p E (0, 1}* such that U ( p  * z )  = V ( z )  
for every z in the domain of V. We show (A14) holds with 
D = Ipl. Fix y E A* and choose z E {0, 1}* such that 
U ( z )  = y and IzI = Ku(y) .  Then U ( p  * z )  = F ( y )  and so 

Ku (m) 5 IP * 4 = IPI + Ku(Y). 

Lemma 11.3: Let f :  A* 4 (0, 1}* be a one-to-one total 
recursive function. Then the function g: (0, 1}* + A* defined 

dz) 4 { the uniquey E A*such thatf(y) = z ,  otherwise 

is recursive. 

by 

undefined, if z$ f (A* )  
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Pro05 We impose a total order zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA< on A* as follows: zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAv1 < 

w2 if lwll < 1 ~ 2 1 ;  and V I  < vz if lwll = I ' u ~ l  and v1 precedes 
v2 in the lexicographical ordering. Let Q: A* x (0, 1}* + N 
be the total recursive function defined by 

1, if z = f (y)  
Q(Y, z )  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2 { zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2 ,  otherwise. 

Let q:  (0, 1}* --+ A* be the function defined by 

undefined, if there is no y 
such that 
Q(y, z )  = 1 
otherwise. min {y E A*: Q(y, z )  = l}, 

q ( x )  5 
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By the closure property of the class of recursive functions, the 
function q is recursive. It is easy to check that the functions 
g and q coincide. 

Lemma 11.4: Let a E C he arbitrary. Then there exists a 
total recursive function Q:A* -+ A* such that all of the 
following are true: 

i) The string y is a proper prefix of Q(y), y zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAE A*. 
ii) The n,-parsing of Q(y) is complete, y E A*. 
iii) If {ul, u2, . . . , ut }  is the no-parsing of y E A*, then 

there exists U E A* such that ( U I ,  u2, ... , ut, U }  is 
the n, -parsing of Q ( y ) . 

iv) If {'ut: t E N )  is a sequence of iterates under Q, then 

l iminfL(a, wt)/lvtl 2 logcr. 
t-cc 

Pro03 Let a = {(W,, Q,, @,)}. Let F, G, H be the 
recursive functions satisfying Properties 2.2-2.4, respectively. 
Suppose y E A*. Let (u1, u2, . . . , ut} denote the ne-parsing 
of y. Define Q = u1 * up * .  . . *ut. If Q = AA, define i (y)  = 1; 
otherwise, define i ( y )  = &+I, where il, i2, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAit, it+l are 
the integers 

(In other words, i (y) is the final parser state in the parsing of 
y,) Define y to be the suffix of y such that y = y * @. Totally 
order A* as in the proof of Lemma 11.3. Define Q: A* --t A* 
by 

Q(Y) 6 5 * 

where U E A* is obtained as follows: 

min{w E A*: F [ i ( y ) ,  U] = 1 

min {w E A*: F [ i ( y ) ,  U ]  = 1 
and IH[i(y), .]I 2 JwJloga}, 

and w starts withy} , 

if Q = y 

otherwise. 

Since the functions F,  G, H are recursive and the functions 
y --t zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAy, y --t g, and y + i ( y )  are total recursive, it follows that 
Q is a total recursive function. Conclusions i)-iv) are easily 

ProofofFuct3.2: Let = {(Wn, Qn, Q,)} E C be 
arbitrary. We shall construct d E C' subordinate to a. Let 
T be the one-sided shift transformation on A". We define a 
transformation R on the set R = A" x N 3  as follows. If 
(x, n, j ,  s )  E R, let R(z, n, j ,  s )  = ( X I ,  n', j ' ,  s'), where 

x' = TIwnl(s), v, = unique prefix of x in W,; 
n' = qn(vn);  
j ' = j + 1; 
s' = s + lwnl, if s + Iv,/ 5 fi; and s' = 1, otherwise. 

Fix an arbitrary pair (n, j )  E N 2 .  We define a mapping 
t,,j:A" + N as follows. Let 2 E A". Let 

be the sequence in R in which 

Then 

Let Wn,j be the finite subset of A* consisting of all strings 
u1 * u2 * . . . * ut, t E N ,  for which there exists some x E A" 
such that tn,3 (x) = t and u1, u2, . . ut are the first t phrases 
in the (no, n)-parsing of x. From the definition of the mapping 
t,,,, one can see that Wn,3 is a complete prefix subset of A*. 
Note that if y E Wn,3, then y can be decomposed as 

(A151 y = U1 *U2 * . . ' * U t  

where {u~, u2, . . .  , ut} is the (T,,, n)-parsing of y. We now 
define the mappings !P, ,3 :  Wn,j  + N 2  and @,,?: W,, + 

A* for which, with y E W,,J decomposed as in (A15) 

@n,3(Y)  + ( Z t + l ,  t + 3 )  

and 
A 

@n, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAj ( ~ )  = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA@zl ( ~ 1 )  * @'a2 (UZ) * . . * (ut) 

where 

'81 = n, zk qtk-l (Uk-l), 2 5 k 5 t + 1. 

Fix any one-to-one map 7 of N onto N2 such that ~ ( 1 )  = 
(1, 1) and both 7 and 7-l are total recursive. Let d = 
{(WA, qL, @L): m E N }  be the sequential code in which 

1) Wk is the complete prefix subset of A* such that 
W' m = where (n, 3 )  = ~ ( m ) .  

2) SA is the mapping from WA to N such that 
~(X€f&(y)) = Qn,3(y) for each y E Wk, where 

3) @k is the mapping from WA to ( 0 ,  I}* such that 
@k(y) = @,,3(y) for each y E Wk, where (n, 3 )  = 

(n,.7) = 7(m). 
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We want to show that zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAU’ belongs to the class E. Properties 
2.2-2.4 are valid for zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAcr‘ because they are valid for U and 
because of the way in which U‘ was defined using U. All 
that remains to be shown is the validlty of Property 2.1 for o’, 
which means we must show that 

where zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA% denotes the parsing rule underlying U’. We shall 
establish the bound 

then conclude that zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
J 

if 4) holds. (‘424) 4 m - 1  w;r(Q) L 

Now suppose 5) holds. Then the quantity on the left in (A18) 

is less than or equal to 

Since zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAt zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAq + 1, the quantity in brackets on the left in (A25) 

is less than or equal to wT,(Q). The quantity in brackets on 
the right in (A25) is less than or equal to the left-most term 
in the following string of inequalities: 

I u l ] + . . ~ + I u s - l l + J i  J z 9  from which (A16) is apparent. Fix an integer Q E N .  Let 
q 2 Q ,  and 1c E A”. Let {ut: i E N }  denote the no-parsing 
of 5 and let {Gz: i E N }  denote the %-parsing of z. We will 
show that Therefore 

I 1 + -  
s - 1  lull + . . . + Ius-1l 

I%+l I 3 w;r (Q) 5 9wT, (Q) if 5) holds. (‘426) 

Combining (A24) and (A26), we obtain (A18). 

subordinate to U and Property 3.1 is valid. Hence, 
and the proof is complete. 

l?-jll + (Gz(  + . . . + (i&l 5 d m -  1 + gw7b(Q) (A18) 

We can now say that U’ E E. By construction, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAU‘ is 
from which the bound (A17) follows. There exist positive 
integers s 5 t such that the following three relations hold: 

E 
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We deduce the relationship 
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