
 Open access Journal Article DOI:10.1109/18.481775

Sequential codes, lossless compression of individual sequences, and Kolmogorov
complexity — Source link

John C. Kieffer, En-hui Yang

Institutions: University of Minnesota, Nankai University

Published on: 01 Jan 1996 - IEEE Transactions on Information Theory (IEEE)

Topics: Kolmogorov structure function, Sequential decoding, Kolmogorov complexity, Lossless compression and
Data compression

Related papers:

 An Introduction to Kolmogorov Complexity and Its Applications

 Compression of individual sequences via variable-rate coding

 Elements of information theory

 On the Complexity of Finite Sequences

 Identifying hierarchical structure in sequences: a linear-time algorithm

Share this paper:

View more about this paper here: https://typeset.io/papers/sequential-codes-lossless-compression-of-individual-
2vxdh6yfka

https://typeset.io/
https://www.doi.org/10.1109/18.481775
https://typeset.io/papers/sequential-codes-lossless-compression-of-individual-2vxdh6yfka
https://typeset.io/authors/john-c-kieffer-2hycdlikzy
https://typeset.io/authors/en-hui-yang-52l2bapdwj
https://typeset.io/institutions/university-of-minnesota-2bv8nbl3
https://typeset.io/institutions/nankai-university-34nitgw1
https://typeset.io/journals/ieee-transactions-on-information-theory-2ramdyt3
https://typeset.io/topics/kolmogorov-structure-function-1wevtu15
https://typeset.io/topics/sequential-decoding-1yjlnxd3
https://typeset.io/topics/kolmogorov-complexity-o5osbt2a
https://typeset.io/topics/lossless-compression-9pt4hqmw
https://typeset.io/topics/data-compression-3fp83o4g
https://typeset.io/papers/an-introduction-to-kolmogorov-complexity-and-its-1j2zfy0a3w
https://typeset.io/papers/compression-of-individual-sequences-via-variable-rate-coding-19h4euy0aa
https://typeset.io/papers/elements-of-information-theory-313j4lx3uu
https://typeset.io/papers/on-the-complexity-of-finite-sequences-29i0yx271v
https://typeset.io/papers/identifying-hierarchical-structure-in-sequences-a-linear-3xuzu9ndmi
https://www.facebook.com/sharer/sharer.php?u=https://typeset.io/papers/sequential-codes-lossless-compression-of-individual-2vxdh6yfka
https://twitter.com/intent/tweet?text=Sequential%20codes,%20lossless%20compression%20of%20individual%20sequences,%20and%20Kolmogorov%20complexity&url=https://typeset.io/papers/sequential-codes-lossless-compression-of-individual-2vxdh6yfka
https://www.linkedin.com/sharing/share-offsite/?url=https://typeset.io/papers/sequential-codes-lossless-compression-of-individual-2vxdh6yfka
mailto:?subject=I%20wanted%20you%20to%20see%20this%20site&body=Check%20out%20this%20site%20https://typeset.io/papers/sequential-codes-lossless-compression-of-individual-2vxdh6yfka
https://typeset.io/papers/sequential-codes-lossless-compression-of-individual-2vxdh6yfka

IEEE TRANSACTIONS ON INFORMATION THEORY, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAVOL. 42, NO. 1, JANUARY 1996 29

Sequential Codes, Lossless Compression of
Individual Sequences, and Kolmogorov Complexity

John C. Kieffer, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAFellow, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAIEEE, and En-hui Yang

Abstract-A general class of sequential codes for lossless com-
pression of individual sequences on a finite alphabet is defined,
including many types of codes that one would want to implement.
The principal requirement for membership in the class is that the
encoding and decoding operations be performable on a computer.
The OPTA function for the class of codes is then considered,
which is the function that assigns to each individual sequence the
infimum of the rates at which the sequence can be compressed
over this class of sequential codes. Two results about the OPTA
function are obtained: 1) it is shown that any sequential code in
the class compresses some individual sequence at a rate strictly
greater than the rate for that sequence given by the OPTA
function; and 2) it is shown that the OPTA function takes a
value strictly greater than that of the Kolmogorov complexity
rate function for some individual sequences.

Zndex Terms- Lossless compression, individual sequences, se-
quential codes, Kolmogorov complexity, Lempel-Ziv algorithm.

I. INTRODUCTION

HROUGHOUT the paper, we fix a finite set A containing T at least two symbols; the set A shall serve as the alphabet
for all information sources that are considered. We let a denote
the number of symbols in A; we refer to the symbols in A as
a-ary symbols. In this paper, we shall call an infinite sequence
5 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= (2 1 , 2 2 , . . .) of symbols from A an individual sequence,
following the usage in [13] and subsequent papers. Suppose
an information source generates some individual sequence. We
shall be concerned with how well we can losslessly compress
this individual sequence via sequential codes. We give here
an informal description of the class of sequential codes that
shall be allowed. We require that the first step in sequential
encoding of an individual sequence be a parsing step in which
the individual sequence is parsed into variable-length strings,
each parsed string coming from a certain prefix set. Each
variable-length string in the parsing is then replaced by a
binary codeword from a prefix set-oncatenation of these
codewords yields the encoder output sequence in response to
the individual sequence. Conceptually, decoding is done in
much the same way as encoding; the encoded sequence is

Manuscript received February 11, 1994; revised March 7, 1995. This work
was supported in part by the National Science Foundation under Grants NCR-
9003106 and NCR-9304984. The material in this paper was presented in part
at the IEEE International Symposium on Information Theory, Trondheim,

J. C. Kieffer is with the Department of Electrical Engineering, University

E. Yang is with the Department of Mathematics, Nankai University, Tianjin

Publisher Item Identifier S 001 8-9448(96)00564-0.

Norway, 1994.

of Minnesota, Minneapolis, MN 55455 USA.

300071, P. R. China.

parsed, and each parsed string is replaced by the corresponding
string of the individual sequence that was encoded. The
encoder input and encoder output sequences of prefix sets that
are employed evolve dynamically with time in a prescribed
manner. Also, the encoding and decoding operations are
required to be performable on a computer, that is, they
are expressible as recursive functions. The resulting class of
sequential codes shall be denoted C-this class of codes shall
be formally laid out in Section I1 of the paper. The class C
includes many types of codes of practical interest; for example,
all finite-state codes [13] and the Lempel-Ziv code [7], [12]
belong to this class.

When zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAan individual sequence zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAx is encoded by a sequential
code (T E C, the resulting asymptotic compression rate zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAp(zla)
in code bits per a-ary symbol tells us how well the sequential
code has performed. (Encode the first n a-ary symbols, count
the number of code bits, divide by n, and take the limit
superior as 'p1 --f 00.) The gtimum performance theoretically
attainable in lossless compression of-: via sequential codes is
then the number p(x), the infimum of p(zla) over sequential
codes (T E C. Accordingly, we call the real-valued function
x -+ p(x) the OPTA function.

The purpose of this paper is to resolve the following two
questions concerning the OPTA function:

Question 1: Is there a universal sequential code? (A uni-
versal sequential code is a sequential code a E C such that
p(z) = p(zla) for every individual sequence 2.)

Question 2: Does the OPTA function coincide with the
Kolmogorov complexity rate function?

Discussion zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAof Question 1: Define a probability measure on
the set of,individual sequences to be stationary if it is pre-
served by the one-sided shift transformation (5 1 , 22, . . .) ---f

(2 2 , 2 3 , + . .). Then, the Lempel-Ziv code (TLZ is "almost
universal" with respect to the stationary probability measures,
as the following fact (which is easily deduced from known
results-see Appendix I) makes clear:

Fact 1.1: Let Ql be the set of all individual sequences
x such that p (z (o ~ z) = p(z). Then p(R1) = 1 for every
stationary probability measure zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAp on the set of individual
sequences.

However, the Lempel-Ziv code is not universal in the sense
of this paper, i.e., providing the optimum compression per-
formance for every individual sequence. To see this, suppose
we take A = (0, 1) for simplicity. Let z* be the individual

sequence obtained by concatenating together all binary strings
of finite length, starting with the strings of length one, then
those of length two, etc. Then :* = 0100011011000001~~~ .

0018-9448/96$05.00 0 1996 IEEE

30 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAIEEE TRANSACTIONS ON INFORMATION THEORY, VOL 42, NO. 1, JANUARY 1996

Those readers familiar with the Lempel-Ziv algorithm can eas-
ily see that zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAIC* is not compressed by zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa ~ z ; that is, p(z* (OLZ) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA=
1. Since there is an algorithm for generating zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAx*, one can
construct a sequential code o* for which p(z*la*) = 0, and
which compresses every other individual sequence at least
as well as OLZ does; the existence of the code o* implies
that OLZ is not universal. We shall later resolve Question
1 in the negative by duplicating the preceding argument
for any sequential code in E. Any such code possesses a
program which tells how it operates. This program proves to
be the basis for the code's undoing in the sense that one is
able to construct from its program another program which
generates a sequence that is not compressed by the given
code. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Discussion of Question 2: For each individual sequence
ic = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(21, 2 2 , zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAe . .) , define K(z) to be the limit superior as
n -+ 00 of K(z1, 5 2 , . . . , zn)/n, where K(z1, 2 2 , . . . , 2,)

is the Kolmogorov complexity of the string (21, 2 2 , . . . , 2,).
The function z 4 K (z) is called the Kolmogorov complexity
rate function. It is easy to show (and we prove this later; see
Theorem 2, Section IV) that the Kolmogorov complexity rate
function lower-bounds the OPTA function. It is natural then
to investigate to what extent the Kolmogorov complexity rate
function and the OPTA function coincide. The following fact
(also easily deducible from known results-see Appendix I)
gives us the manner in which these two functions "almost"
coincide.

Fact 1.2: Let 0 2 be the set of all individual sequences x
such that p(x) = E(%). Then 4 0 2) = 1 for every stationary
probability measure zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAp on the set of individual sequences.

We describe another result of this type. Let the terminology
A-string denote any finite sequence of symbols from A. Let N
denote the set of natural numbers { 1, 2, 3, . + .}. We say that
a probability measure ,u on the set of individual sequences is
computable if there is a Turing machine for which both of the
following are true:

1) The machine accepts as input any pair (y, n) in which
y is an A-string and n E N .

2) For each input (y, n) the machine generates an output
(T , s) E N x N such that the p-probability of the set
of individual sequences that start with y lies strictly
between r / s - n-' and r / s + n-l.

Then, we have the following result, whose proof is sketched
in Appendix I.

Fact 1.3: The set 0 2 has measure one with respect to
every computable probability measure on the set of individual
sequences.

In view of Facts 1.2 and 1.3, Question 2 is natural. Theorem
3 of Section IV (the main result of this paper) provides an
emphatic "No" to Question 2 in the sense that there exist
individual sequences x for which K(z) = 0 while p(x) =
log, ai.

11. A CLASS OF SEQUENTIAL CODES

In this section, we make clear the notion of sequential code
and, in particular, what it means for a sequential code to be
a member of the class C.

A. Notation and Terminology

If S is a set and n E N , then S" denotes the set
{ (5-1, . . . , sn) : s, E S, 1 5 z 5 n} consisting of all strings
of length n from S. The notation S* shall denote the set of all
strings of finite length that can be formed from the symbols
in S. It is convenient to include in S* the empty string (the
string containing no symbols), which shall be denoted by As.
Thus S* = (A,} U S U S2 U If y E S*, then IyI denotes
the length of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAy; note that = 0. We let S" denote the set
of all infinite sequences (SI, sa, . . .) whose entries are chosen
from S.

If ul, u2, . . . , U , is a finite sequence of strings in S*, then
u1 * u2 * * U , shall denote the string in S* formed by
writing down the symbols in u1, followed by the symbols in
u2, etc.; the string u1* u2 * . . * U , is called the concatenation
of the strings UI, u2, ." , U,.

If s = (SI, . ' . , s,) E S" and n 5 m, then S" denotes
the string (SI, . . . , s ~) . Similarly, if s = (SI, s2, . . .) E S",
then sn denotes the string (SI, . . . , s,).

Given two strings y l , yz E S*, we say y1 is a pre@ of y2
if there is a siring U E S* such that yz = y1 * U, and we
say that y1 is a proper prejiix of y2 if y1 is a prefix of y2 and
y1 # y2. Also, we say that y1 is a sufJix of y2 if there is a
string U such that y2 = U * y1. We say that y E S* is a prefix
of an infinite sequence s of symbols from S if y = AS or if
y = S" for some n E N . If u1, U:, , . . . is an infinite sequence
of strings from S*, then the notation U = u1 * u2 * . . . shall
denote that U E S" is the sequence for which u1* u2 *
is a prefix for every m E N .

A subset P of S* is said to be a prejix set if y1 = y2
whenever y1, y2 are members of P in which y1 is a prefix
of y2, and is said to be complete if each sequence in S" has
a prefix in P. (For example, (0, 10, ll} is a complete prefix
subset of (0, 1}*.)

The notation f:S1 -+ S2 shall denote that f is a function
which takes its values in the set S2 and whose domain is a
subset of SI. This is a departure from the usual convention in
which the notation f : SI -+ 5'2 implies that 5'1 is the domain
of f ; we have departed from conventional usage in order for
us to accomodate recursive functions (see below).

Let S, be the set N , the set S*, or a finite Cartesian
product of sets of these two types, i = I, 2. A function
f :S1 + S2 is said to be recursive if there exists a Turing
machine [3, ch. 31 such that for every y E S1 in the domain
of f , the machine halts and prints f(y) in response to input
y, and for every y E S1 not in the domain of j , the
machine does not halt in response to input y. A recursive
function f : S1 + S2 is said to be total recursive if its
domain is all of SI. The class of recursive functions has a
useful property which, for the purposes of this paper, shall be
called the closure property. The closure property states that
a function built up from performing finitely many operations
on recursive functions is itself recursive, provided that each
of the operations used is one of three basic operations called
composition, primitive recursion, and minimization [3, ch. 141.
We shall sometimes use the closure property to conclude that
a given function is recursive without having to show the

KIEFFER AND YANG: SEQUENTIAL CODES, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBACOMPRESSION OF INDIVIDUAL SEQUENCES, AND KOLMOGOROV COMPLEXITY 31

existence of a Turing machine that computes the values of
the function.

All logarithms in this paper shall be to base two. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
B. Concept zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAof Parsing Rule

A parsing rule n is defined to be a sequence of pairs n zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
{(W,, P,):n E N } such that the following two properties
are valid:

3) Each W, is a finite complete prefix subset of A*, where
A is the alphabet mentioned in Section I.

4) Each 9, is a mapping from W, into N .
Let n = { (W,, Q?,): n E N } be a parsing rule and let x be

any individual sequence. If one applies the parsing rule n to
2, one obtains the sequence of A-strings u1, U Z , + . zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAe and the
sequence of positive integers zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAi l , iZ , . . such that

5) The string u1 is the member of W1 such that z starts
with ul; il = 1.

6) For t >_ 2, it = X P , t - l (~ t - l) and ut is the member of
W,, such that zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAu1 * uz * . . ' * ut is a prefix of x.

The sequence of strings {u l , uz, . . .} shall be called the
n-parsing or parsing of x. The individual strings U , in the
parsing shall be called phrases.

A parsing rule shall be employed as the basis for a sequential
code, as follows. One first employs a device, called a parser,
for accomplishing the task of parsing an individual sequence
into the phrases according to a given parsing rule. Then, the
phrases in the parsing are encoded into binary codewords one-
by-one, and these codewords are then concatenated to form the
encoded sequence which is the output of the sequential code in
response to the given individual sequence. The precise manner
in which codewords are assigned to the phrases in a parsing
shall be described later in this section.

We now give some parsing rules commonly used as building
blocks for sequential codes. I

Example 1: The k-block parsing rule is the one in which
each individual sequence is parsed into phrases all of which
have length k . To illustrate, the 3-block parsing of x =
010010111001~ . . starts with the phrases 010, 010, 111, 001.

Example 2: The Lempel-Ziv parsing of this same x starts
with the phrases 0, 1, 00, 10, 11, 100. Each phrase in the
parsing is a new phrase (a phrase that has not been previously
listed).

it shall be convenient for us to introduce also the con-
cept of the parsing of a string of finite length. Let T =
{(Wn, 9,):n E N } be a parsing rule. Let y E A* and
let n E N . informally, the (n, n)-parsing of y is the finite
sequence of A-strings that results when y is fed into the parser
with the parser in initial state n. Formally, this concept is
defined as follows:

7) if y starts with no member of W,, then the (T, n)-
parsing of y is taken to be {AA} .

8) If y starts with a member of W,, generate A-
strings {u l , U Z , . . . , ut} (where t > 1) and integers
i l , i z , .+ . , it+l according to the rules
i) i l = n; i k = @ Z k - - l (~ k - l) , 2 5 k 5 t + 1.

ii) Uk E W,, (1 5 k 5 t) .

iii) y starts with u1 * uz * . . * ut.
iv) There is no U E W,,,, such that y starts with

U1 * U2 * * . . *ut * U .

Then {ul , U Z . . , ut} is the (n, n)-parsing of y, and the
final parsing state is defined to be &+I; the strings appearing
in the (T, n)-parsing are termed the phrases of the parsing.
We say that the (n, n)-parsing (u1, . . . , ut} of y is complete
if y = u1 * uz * - - . * ut. Finally, we take the n-parsing of y
to be the (n, n)-parsing of y with n = 1.

C. Parsing Delay

Suppose the successive symbols in an individual sequence
x are generated at times t = 1, 2, e . . , respectively. A given
parsing rule n is applied to this stream of symbols. Suppose
the symbol of z generated at time t = n occurs as the initial
symbol in a phrase of the n-parsing of x, and suppose this
phrase is of length k , . Then, one has to wait until the symbols
at times t = n + 1, n + 2, . . . , n + k , - 1 are generated in
order to determine the termination point of the phrase; if one
encodes the individual sequence phrase by phrase, a delay of
k, - 1 time units has thus been introduced from time t = n
until encoded information about the t = n symbol can be
transmitted to the decoder. To control this parsing delay, a
reasonable requirement to make is that k, /n converge to zero
as n -+ 00.

We now formalize the requirement on parsing delay alluded
to at the end of the preceding paragraph. We do this using the
concept of the delay modulus of a parsing rule. If n is a parsing
rule, then its delay modulus is the function w,:N -+ [0, 001

defined for each Q E N by

where {u,(z): i E N } denotes the n-parsing of the individual
sequence x.

In defining sequential codes, we shall want to employ
parsing rules 7r in which the parsing delay is controlled by
requiriqg that w,(Q) -+ 0 as Q -+ 00.

Example 1: For the k-block parsing rule T, it is easy to
see that

and hence, the requirement wn(Q) -+ 0 as Q -+ cc is satisfied.
Example 2: For the Lempel-Ziv parsing rule n, one can

check that

for some constant /3, 0 < /? < 00. The requirement wT(Q) ---f
0 as Q --t cc is satisfied.

D. Sequential Code Concepi

We define a sequential code to be a sequence of triples
= { (Wn, Qn, Gn): n E N } such that the following two

9) {(INn, Qn):n E N } is a parsing rule.

properties are satisfied:

32 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 42, NO. 1, JANUARY 1996

10) For each zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAn E N , zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0, is a one to one mapping of W,

The parsing rule given by Property 9) shall be called the
parsing rule underlying a; it shall be denoted by zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAT ~ . We
describe how a sequential code U zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= {(W,, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA9,, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa,): n E zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAN }
is used to encode an individual sequence x into a sequence
y E (0, l}”. First, the 7r,-parsing {ut: t E N } of z is
generated. Let {it: t E N } be the resulting sequence of parser
states defined by

onto a prefix subset of (0, 1}*.

Then

If U is a sequential code and y E A*, then L(a, y)
shall denote the total of the lengths of the binary codewords
assigned by a to the phrases in the parsing of y according
to the parsing rule underlying a. The rate at which the
sequential code U compresses the individual sequence x is
the nonnegative extended real number p(zla) defined by zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

a L(U, 2,) p(x1a) = limsup ~

n-m n

We now define C to be the class of codes consisting of every
sequential code a = { (W,, Q,, a,): n E N } for which the
following four properties are satisfied:

Property 2.1: The delay modulus wTm (Q) --f 0 as Q 4 CO.

Property 2.2: There is a total recursive function F : N x
A* i N such that

F(n , Y) = 1, Y E w n

F (n , y) = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2 , otherwise.

Property 2.3: There is a recursive function G: N x A* ---f N
such that

G(n, y) = Qn(y), for everyn, y in which y E W,.

Property 2.4 There is a recursive function H : N x A* +
(0, 1}* such that

H (n , y) = @,(y), for everyn, yin which y E W,.

The OPTA function p alluded to in Section I can now be
formally defined as the function p: A- ---f [0, 001 in which

p(z) = inf {p(xla): a E E}, x E A”.

The following are some examples of sequential codes in C.
Example 1: A sequential code a = {(Wn, Q,, @,): n E

N } is caljed a block code if, for some k , m E N, W, = Ak,
and 43, = @ k , m for all n, where ak,, is a mapping from Ak
into (0, l}“. Any block code is a member of E. Furthermore,
it is easy to construct a sequence of block codes {a,} such
that p(zIa,) + log a for any individual sequence z. Thus the
OPTA function p takes its values in the interval [0, logo!].

Example 2: A sequential code a = { (W,, qn, a,): n E
N } is said to be a $finite-state sequential code if there is
m E N such that, whenever {ut: t E N } is the parsing of an
individual sequence according to the parsing rule underlying
LT, and {zt:t E N } is the sequence generated according to
(2.1), then it 5 m for all t. Any finite-state sequential cade
is a member of E.

Example 3: The Lempel-Ziv code OLZ is a sequential code
in C which bears a special relationship to the class of finite-
state sequential codes. Ziv and Lempel [I31 proved that the
following statement holds for any individual sequence z:

p (z l a ~ z) 5 inf {p(xla): a a finite-state sequential code}.

The above examples indicate that the class of sequential
codes C includes many types of sequential codes of practical
significance. We therefore feel justified in concentrating on
the class C in the sequel.

m. NONEXISTANCE OF UNIVERSAL SEQUENTIAL CODES

We define an individual sequence to be recursive if
there exists a total recursive function f : N 4 A* such that
f (n) = zn, n E N . Recursive sequences can be compressed
well by sequential codes. In fact, it is easy to show that if an
individual sequence 2’ is recursive, then there is a sequential
code a’ E C such that p(x’la’) = 0. Given any sequential
code a E C , we shall show how to construct a recursive
individual sequence x‘ which is not compressed by a in
the sense that p(z’1a) 2 loga. Since, as discussed above,
some other sequential code in C will compress x’ well, this
suggests the possibility that a sequential code in C can be
constructed which outperforms the given code a in the sense of
compressing every individual sequence at least as well as does
a , while compressing some individual sequences (including
2’) better than does a. We combine all of these thoughts in
the following theorem, which shall be proved in the present
section.

Theorem I : Let a E C be arbitrary. Then there exists a
recursive individual sequence x‘ and a‘ E C such that

i> p(z’1a) 2 loga.
ii) p (z ’ I d) = 0.
iii) p(z10’) 5 p(zla) for any individual sequence x.

The following result is an immediate corollary of Theorem 1.
Corollary I : There exists no universal sequential code in

the class C. That is, there exists no U E C such that p(zla) =
p(x) for every individual sequence z.

Before we go into the details of the proof of Theorem 1, let
us introduce a useful partial ordering of sequential codes.

A. A Partial Ordering of Sequential Codes

We define the concept (useful to us later on) of what it
means for one sequential code to be subordinate to another
sequential code. Leta = {(W,, %fn, @,):n E N } E E. We
say thata’ = { (WA, XFk, a;): n E N } E C is subordinate to a
if there is a total recursive function g: N i N with g(1) = 1
such that if n E N and y E WA, the following are true:

1) The (T ~ , g(n))-parsing of y is complete with final state

g(QL(y)).

KIEFFER AND YANG: SEQUENTIAL CODES, COMPRESSION OF INDIVIDUAL SEQUENCES, AND KOLMOGOROV COMPLEXITY 33

2) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA@XY) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= @ i I (U l) * zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA@ i 2 (U z) * . * . * @it zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(ut), where
{ U I , + . . , ut} is the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(T ~ , g(n))-parsing of y and
{ i l , . . - , i t } are the parser states zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

As the preceding definition is somewhat abstract, it is
helpful to have in mind an informal idea of what it means
for a’ to be subordinate to a. The phrases in the parsing
of an individual sequence according to the parsing rule T,,!

(call these a’-phrases) are related to the phrases in the parsing
of that same sequence via T,, (call these a-phrases) in the
following way: The a-phrases are partitioned into groups of
phrases each consisting of finitely many phrases, and then each
group of a-phrases gives rise to a a’-phrase via concatenation.
Each a’-phrase is then encoded into the binary codeword
obtained by concatenating together the codewords for the
a-phrases in the group of a-phrases that gave rise to that
a’-phrase.

The relation “is subordinate to” is a partial order on C. We
shall occasionally make use of cofinal subsets with respect to
this partial order. We say that a subset C’ of C is cojiinal if for
any a E C, there exists a’ E C’ such that a’ is subordinate
to a.

Three facts about the partial order “is subordinate to” shall
be needed in the sequel. We state these facts here. The first of
these facts follows easily from the definition given above:

Fact 3.1: If a’ is subordinate to a, then

For technical reasons, we occasionally need to make use
of sequential codes in which the lengths of the phrases in
the parsing of any individual sequence “blow up” sufficiently
rapidly. In particular, we shall deal with a particular class of
such sequential codes-we define C’ to be the subset of C
consisting of all a’ E C satisfying the following property:

Property 3.1: The rth phrase in the T,,J-parsing of any
individual sequence is of length at least fi, r E N .

Our remaining two facts detail useful attributes of the class
of sequential codes E’. Fact 3.2 is proved in Appendix 11. Fact
3.3 is a simple consequence of Facts 3.1 and 3.2, which we
have stated separately for emphasis.

Fact 3.2: The class of codes C’ is a cofinal subset of C.
Fact 3.3: For any individual sequence zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAx,

p(x) = inf{p(z(a): a E E’}.

The proof of Theorem 1 shall also hinge upon the following
lemma.

Lemma 1: Let W be a complete prefix subset of A*. Let @

be a one-to-one map from W onto a prefix subset of (0, 1}*.
Then there exists U E W such that

Proof zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAof Lemma 1: Because W is a complete prefix set,
equality holds in Kraft’s inequality

(Y-IUI = 1. (3.2)
ucw

Applying Kraft’s inequality to the prefix set @(W) then yields

Since the summation on the left side of (3.3) is upper-bounded
by the summation on the left side of (3.2), there must exist
U E W such that 2-l@(U)l 5 a-IUI. This inequality is
equivalent to inequality (3.1).

Proof of Theorem 1: In view of Facts 3.1 and 3.2, The-
orem 1 will automatically hold for all sequential codes in C
once we prove Theorem 1 for all sequential codes in E’. Thus
to prove Theorem 1, we fix a = { (W,, 9,, a.,)}, an arbitrary
code in E’, and show that the conclusions of Theorem 1 follow
for this code. First, we argue that there is a total recursive
function Q: N -+ A* such that

Q(n) E Wn
and

I@n(Q(n))I 2 IQ(n)lloga, 12 E N. (3.4)

To see this, we shall envision a computer which halts and prints
out the desired Q(n) in response to input n, for an arbitrary n.
Let U I , u2, U S , . . . be the list of all A-strings formed by listing
the strings of length one, followed by the strings of length two,
etc., with strings of the same length listed in lexicographical
order. There is some Turing machine TI such that if we apply
an input of the form (n, initial segment of U,) , TI will halt and
print either “initial segment of U , is in W,” or “initial segment
of U , is not in W.,.” There is a second Turing machine T2
which will halt and print a., (initial segment of U ,) in response
to an input of form (n, initial segment of ui), provided the
initial segment of U , is in W,. Run the following program on
a computer:

1. Read in a value of n.
2. Set i = 1.
3. Set initial segment of U , = first symbol of U,. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
4. Run TI with input (n, initial segment of U,). If output

is “initial segment of U , is in Wn,” go to instruction 5;

otherwise, go to instruction 6.

5. Run T2 with input (n, initial segment of U,) to compute
@,(initial segment of ut). If [@.,(initial segment of
U,) I 2 (log a) I initial segment of U , 1, go to instruction zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
7 ; otherwise, go to instruction 6.

6. If “initial segment of U,” is a proper prefix of U,,

augment “initial segment of U,’’ by one symbol and go
to instruction 4; otherwise, increase i by one and go to
instruction 3.

7. Set Q(n) = initial segment of U , and halt.

By Lemma 1, the computation will halt for every n;
appealing to the closure property of the class of recursive
functions, one concludes that the above program defines a total
recursive function Q:N -+ A* satisfying (3.4). Again, from

34 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAIEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 42, NO. 1, JANUARY 1996

the closure property, one obtains the total recursive function
R: zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAN zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA+ N in which

R(1) = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1; R(n + 1) = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA@R(,) (Q(X(n))), n L 1.

x' = Q(n(1)) * Q(R(2)) * Q(R(3))

The sequence x' is recursive, and conclusion i) of Theorem
1 holds. For each zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAn E N and y E W,, let H (n , y) denote
the binary string

Let x' be the individual sequence

If we regard H (n , y) as a function of n, y, it is a recur-
sive function. Furthermore, for each n € N , the function
!DL:Wn zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAi (0, 1}* defined by

@L(Y) ~ (n , Y), Y E W n

is one-to-one, and (ag(W,) is a prefix set. Consequently,
a' = {(Wn, Q,, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa;)} is a sequential code belonging to the
class C. Due to Property 3.1, it is a simple matter to verify
conclusions ii) and iii) of Theorem 1 for the code d.

Iv. KOLMOGOROV COMPLEXITY AND THE OmA FUNCTION

Our task in this section is to show that the OPTA function
does not coincide with the Kolmogorov complexity rate func-
tion. We start with the definition of Kolmogorov complexity.
Informally speaking, the Kolmogorov complexity of an A-
string is the length of the shortest program in bits, which,
when run on a universal computer, will cause the computer
to generate the given A-string as output. To formalize this
notion, we need to fix a recursive function U : (0, 1}* -+ zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA*
which has the following property: If f: {0, I}* + A* is any
recursive function, then there exists p E (0, 1}* such that

i) U (p * y) is defined whenever f (y) is defined; and
ii) U (p * y) = f (y) , for every y in the domain of f .
It is known that there exist many recursive functions U

satisfying this property; any such function shall be called a uni-
versal recursive function. If y is an A-string, the Kolmogorov
complexity of y 141, [6], 191, [lo], 1141, is the integer Ku(y)
defined as follows:

K U (Y) 2 min ((PI: U(P) = Y I .

We then define the Kolmogorov complexity rate function to
be the function K: A" i [O, CO) in which

- A K U (33") K (x) = l imsup ~

n-+m n

for any individual sequence x. The Kolmogorov complexity
rate function does not depend upon the choice of universal
recursive function U . This follows from the invariance princi-
ple [9, ch. 21 which states that for any two universal recursive
functions U,, U,

SUP(~KU,(X) - K u , (x) ~ : x E A * } < CO.

The following result shows that the Kolmogorov complexity
rate function provides a lower bound to the OPTA function.

Th.eorem 2: For any individual sequence x, p(x) 2 K(x).
Pro08 Fix an arbitrary individual sequence x, and an

arbitrary sequential code o E E. The theorem is established if
we can show that p(xla) 2 K(x). By Lemma 1.1 of Appendix
I, there exists a sequence {e,} converging to zero as n + CO

and a one-to-one total recursive function f :A * + (0, 1}*
such that

One can show (Lemma 11.3, Appendix 11) that there is a
recursive function g: (0, 1}* + A* such that

Fix p E (0, 1}* such that U (p * y) = g(y) whenever g(y) is

K U (2 ") 5 \PI+ L(a, xn) + ne,, n E N .

Dividing by n and letting n -+ 00, we obtain the desired
conclusion.

We are now ready to state the main result of this paper:
Theorem zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA3: There exists an individual sequence x such that

K(z) = 0 and p(x) = loga.
Remark: There is an interesting result of Ya. M. Barzdin

and N. V. Petri (114, Theorem 2.51) that is related to our
Theorem 3. This result concerns binary individual sequences,
i.e., individual sequences in which the underlying alphabet is
A = (0, l}. A binary individual sequence x is said to be
recursively enumerable if there is a total recursive function
9: N -+ N such that g (N) = {n: IC, ends in 1). Let .F be the
family of all total recursive functions f : A* i N such that
f (y) 2 Ku(y) for every A-string y. Then, the Barzdin-Petri
result states that there exists a recursively enumerable binary
individual sequence z such that infnn-l f(zn) > 0 for any
f E 3. Since any recursively enumerable binary individual
sequence z satisfies Ku(xn) = O(1ogn) (12, Theorem l]),
the Barzdin-Petri result guarantees the existence of a binary
individual sequence z for which K (x) = 0 and for which
p(z1a) > 0 for any a E E. Note that one cannot deduce
p(z) > 0 from the fact that p(xla) > 0 for any a E E. We
will go further and show the existence of an a-ary individual
sequence z for which 71'(z) = 0 and p(x(a) 2 loga for any
CT E E.

Proof of Theorem 3: Choose a sequence of sequential
codes { G ~ : i E N} from E' such that every member of C'
appears infinitely often in {a,}. (Since C is countable, it is
possible to select such a sequence {aZ}.) For each i , let n%
denote the parsing rule underlying a,. For each i , by Lemma
11.4 of Appendix 11, there exists a total recursive function
Q,: A* + A* such that all of the following four statements
are true:

1) y is a proper prefix of QZ(y), y E A*.
2) The n,-parsing of Q,(y) is complete, y E iZ*.

, ut} is the .Ir,-parsing of y E A*, then
there exists U E A* such that (u1, u2, . . . , ut, U } is the
r,-parsing of Q,(y).

KIEFFER AND YANG SEQUENTIAL CODES, COMPRESSION OF INDIVIDUAL SEQUENCES, AND KOLMOGOROV COMPLEXITY zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA35

4) If zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA{ w t : t zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAE zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAN } is a sequence of iterates under Q, Since
(meaning wt+ l = Qz(wt), t E N) , then 2 fi zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2 / r zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAf i d x = $r3 l2 , r E N

liminf t+a, L(o,, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAwt)/lwtl zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2 loga. s=l 0

For each zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAi, it follows from the fact that Qz is recursive
(see Lemma 11.2 of Appendix 11) that there must be a positive
integer D, such that lu~~ 2 fn:’” i E N

Ku(Qz(? /)) L Ku(Y) + D,, Y E A*.

Choose an increasing sequence of positive integers {n,:i E

the following are true:

we can conclude that

(4.1) whence

n, 5 2n,-1/21uzl, i E N .

N } and A-strings {w%,j:i E N , 5 j 5 % } such that zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAOf It follows from this and (4.2) that

(4.5)

Di , D; , 1 < <-
Let z be the individual sequence such that vi, 1 is a prefix of 2 l%,j-11 - d m - f i 5 T .
for every i. Because of (4.3), Fact 3.3, and the fact that every
code in E’ appears in {g;} infinitely many times, we must
have p(z) = log a.

Now suppose j > d m . Then j 2 2 and so j - 1 2 j / 2 .
Arguing as in the proof of (4.9, we have

To complete the proof of Theorem 3, we show that x(z) =
0. Define

One then deduces that A A
%,O = %-l ,n%- l , i 2 2; u1,O AA.

5 0 , 5 < - jD , <50,< 5 0 % For i E N and 1 5 j 5 n,, define u , , ~ to be v , , ~ with the
initial segment w,, removed. Define lu,,J-ll - JJ - 1 ~ , , ~ - ~ 1 1 / 4 - nE-1 114 T‘

U’, !? U,, 1 * U,, 2 * . ’ * U,, n, , i E N . We conclude that for i 2 2

u1 * u2 * . . . * ui. Then, choose j = j , to be the positive
integer such that x m is a prefix of

u1 * u2 * . . . * u2-l * U,J * u,,2 * * ’ . * = It is easy to see that the right-hand side of the above inequality
converges to zero as i --f CO. We see now that (4.4) is true,
completing the proof of Theorem 3. and t 1 , , ~ - 1 is a prefix of zm. By Lemma 11.1 of Appendix 11,

there exists p E N such that

Consequently, g(z) = 0 will follow if we can show that

(4.4)

By construction, w,, is obtained from w1,o = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAAA via n1 appli-
cations of Q I , n2 applications of Q 2 , . . . , n,-l applications of
Q,-1, and finally, j applications of Q,. Making use of (4.1),
we then have

Ku(v,,,) 5 n l D l +nzD2+...+n,-lD,-l + J D ,

Kdv,, ,) = 0. lim max
%--tW 1 1 3 1 % ~w,,3-l~

f K U (A A) i 2 2, 1 5 j 5 12,.

By Property 3.1,

(u 2 1 > 1 + & + h + . . . + J n z , EN.

The answers to Questions 1 and 2 obtained in this paper
lead one to the following conclusions. First of all, one should
not waste time trying to find a “best” sequential code, as
any sequential code from the class C will have an inherent
deficiency in that it will poorly compress certain individual
sequences. Secondly, the Kolmogorov complexity rate func-
tion is not the right notion of complexity vis-a-vis the OPTA
function in lossless individual sequence compression in that it
coincides with the OPTA function only on a proper subset of
the set of all individual sequences.

APPENDIX I

This appendix is devoted to the proof of Facts 1.1-1.3 that
were stated in Section I.

36 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAIEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 42, NO. 1, JANUARY 1996 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Lemma zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1.1: Let zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0 E C be arbitrary. Then there exists a

one-to-one total recursive function zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAf from A* onto a prefix
subset of (0, 1}*, and a sequence zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA{t,:n E N } converging to
zero as n i 00 such that

I f (Y) I 5 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAq g , Y) + nfn, Y E A", n E N. (AI)

Prooj Let R: N i (0, 1}* be the mapping in which, for
each k E N , the binary string R(k) is formed in the following
way: First, form the expansion of k to base two; then, furm
R(k) by writing every digit in the expansion twice, followed
by the suffix "01." For example, the base two expansion of
the integer 9 is 1001. Repeating each digit and appending
the suffix "01" yields R(9) = 1100001101. For later use, the
reader can easily check that IR(k)I 5 6 + 2logk, k E N. It
is easy to define a total recursive function &: A* -+ (0 , 1}*
in which

1) IS(71)I = [lwllogal, 71 E A*.
2) & (V I) # Q(712) if zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA711 and 712 have the same length and

We fix 0 = {(Wn, 9,, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAan)}, an arbitrary sequential code
from the class E. Let H : N x A* 4 (0 , 1}* be a recursive
function such that

U1 # 712.

H (n , Y) = @n(g) , 7-7, E N , Y E wn.

If g E A*, let t = t(y) denote the number of phrases in the
r,,-parsing of y, let (u1, u2, . . . , ut} denote the x,-parsing
of y, let

j = j (y) = lu1l+luzl+...+lutl
and let
a-ary symbols in y. Define f : A * i (0, 1}* by

denote the suffix of y consisting of the final [yI - j(y)

R(IYI + 1) * R (m + 1) * U Y) , if t (Y) = 0

f (Y) A R(lyl+ 1) * R(j(g) + 1) * &(y) { * H(zt , ut) otherwise

where { i l , 22, . . . , it} are the parser states

i1 = 1, i k = ~ I z b - - l (U k - l)) 2 5 k 5 t.

Then f is a one-to-one mapping, and f (A *) is a prefix set.
That f is recursive follows from the fact that the functions R,
Q, and H are recursive, as well as the fact that each of the
five entities t , j , 6, (u1, u2, . . . , ut}, and { i l l i z , .", it},

regarded as a function of y E A*, is a recursive function.
From the definition of f , we have the bound

I f (v) l 5 1 2 + 4log(lYl + 1) + L(a1 Y)

+ ~ (l Y l - ~ (Y)) ~ o g ~ ~ , Y E A * . (A21

From Property 2.1, we have

(A3) IYI - j (Y) = 0. lim
lYl+" IYI

The relation (AI) is now evident from (A2) and (A3).

1.1.
The following result is an immediate corollary of Lemma

Corollary 1.1: Let 0 E C be arbitrary. Then there is a

i) The function f n is a one-to-one map of A" onto a prefix

ii) For any 3: E A",

sequence { f n : n E N } in which

subset of (0, l}*, n E N .

Proof of Fact 1.1: Let /I be a probability measure on
AM stationary and ergodic with respect to the one-sided shift
transformation. Let H (p) denote the entropy rate of p (in bits
per a-ary symbol). Let fn:A" 4 (0, 1}* be a one-to-one
map such that fn(An) is a prefix set, n E N . It is well known
[l, Theorem 3.11, [5] that

x E Am: liminf Ifnol 2. H (p)
?I+" n

Taking the infimum over all sequences (f n } then yields, in
view of the Corollary to Lemma 1.1,

Combining these last two equalities leads one to the assertion
that ~ (0 ,) = 1. That this equality holds also for p stationary
but not ergodic is a consequence of the ergodic decomposition
theorem.

Proof ofFact 1.2: Let p be as in the proof of Fact 1.1.
The assertion of Fact 1.2 will follow if we can show that
,u(fi,) = 1. It is clear from the proof of Lemma 1.1 that we
may assign to each p E (0, I}* a string s(p) E (0, 1}* of
length o(lp1) such that (s (p) * p : p E (0, 1}*} forms a prefix
set. For n E N, define fn:An -+ (0, 1}* by

f n (y) 2 s (p) * p , for somep E (0, 1}* such thatU(p)

= yand IpI = Ku(y) , y E A".

Note that f n is a one-to-one mapping and that fn(An) is a
prefix set, n E N . Consequently, (A4) holds. Also note that

We conclude that

-
p { x E A":K(s) 2 H (p) } = 1. (A@

(Alternatively, one can deduce (A8) from the stronger state-
ment that K(z) = H (p) for p-almost all s, a result which may
be found in [SI, [14].) Combining (A5) with zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(A6), we have

Combining (A8), (A9), and Theorem 2, we obtain ~ (0 2) = 1.

KIEFFER AND YANG: SEQUENTIAL CODES, COMPRESSION OF INDIVIDUAL SEQUENCES, AND KOLMOGOROV COMPLEXITY zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA31 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Proof of Fact 1.3: Let zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAp be a computable probability

measure on A". In this proof, if zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAX is a probability measure
on A" and y E A*, we define

X(y) = X{x E ACC:xstarts withy}.

From the proof of Fact 1.2, there exists for each n E N a one-
to-one mapping f n from A" onto a prefix subset of (0, 1}*
such that (A7) holds. Then, applying Kraft's inequality

('410)

(Note that the logarithm in (A10) makes sense because p(z E
A": p(z") > 0 all n} = 1.) Applying the Borel-Cantelli
lemma to (AIO), we obtain

whence, appealing to (A7), we conclude that

Fix a computable probability measure X on A" such that
X(y) > 0 for any y E A*. Let p* be the probability measure
defined by

* A 1
P = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA&+f).

Let m be any positive integer. Since ,LL* is computable,
there exists (as shown in [l l]) a sequential code cm =

((Wn, an)} from C in which

i) The parsing rule rqm is the m-block parsing rule; and
ii) For any individual sequence z, if (ut : t zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAE N } is the

r,_-parsing of z and (i t : t E N } is given by (2.1),
then

From i) and ii) it follows that

from which we conclude that

Since p*(z") 2 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAp(2") /2 , we see that

= 1.

This fact, together with (A1 1) and (A12), allows us to conclude
that

-
p{z E A":K(z) 2 p (z) } = 1.

This relation, coupled with Theorem 2, allows us to conclude
that p(R2) = 1.

APPENDIX I1

The purpose of this appendix is to prove several lemmas

Lemma 11.1: There exists a constant ,O which depends only
which are instrumental in the proofs of Theorems 1-3.

on U such that

whenever V I , IJZ are strings in A* for which v1 is a prefix
of 212.

Proofi Let R : N + (0, 1}* be the total recursive func-
tion defined in the proof of Lemma 1.1. Since R (N) is a prefix
set, we can define a function T: (0, 1}* -+ A* in the following
way: i) the domain of T is equal to

(w4 * Y: #k E N , Y E (0, I}*, lU(Y)I 2 - zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI>

and ii)

T (R (~) * y) = ~(y) ' - ' , if k E N , y E (0, I}*,
and lU(y)I zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2 IC - 1.

Since R and U are both recursive functions, it follows that T
is a recursive function. Let p E (0, 1}* be a string such that

T(u) = U (p * U) , u E domain of T.

We verify (A13) with ,fl = (pi + 6. Choose any pair of strings
q, wz from A* with 211 a prefix of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA712. Pick y2 E (0, 1}*
such that lyzl = K u (' u ~) and U(y2) = 212. Let T = lull. Then
U (p * R(T + 1) * y2) = 211 and so

W.1) 5 IP * E(. + 1) * Yzl

I Ipl + 6 + 210g (1.11 + 1) + Kv(vz).

Lemma 11.2: Let F : A* t A* be a total recursive function.
Then there exists a positive integer D such that

K U (W) 5 K d Y) + D, Y E A*. (A14)

Proofi Let V:{O, 1}* 4 A* be the mapping whose
domain is the same as that of U , and V (z) = F (U (z)) for
z in the domain of U. Since V is a recursive function (the
composition of two recursive functions is a recursive function),
there must exist p E (0, 1}* such that U (p * z) = V (z)
for every z in the domain of V. We show (A14) holds with
D = Ipl. Fix y E A* and choose z E {0, 1}* such that
U (z) = y and IzI = Ku(y) . Then U (p * z) = F (y) and so

Ku (m) 5 IP * 4 = IPI + Ku(Y).

Lemma 11.3: Let f : A* 4 (0, 1}* be a one-to-one total
recursive function. Then the function g: (0, 1}* + A* defined

dz) 4 { the uniquey E A*such thatf(y) = z , otherwise

is recursive.

by

undefined, if z$ f (A*)

38 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Pro05 We impose a total order zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA< on A* as follows: zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAv1 <

w2 if lwll < 1 ~ 2 1 ; and V I < vz if lwll = I ' u ~ l and v1 precedes
v2 in the lexicographical ordering. Let Q: A* x (0, 1}* + N
be the total recursive function defined by

1, if z = f (y)
Q(Y, z) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2 { zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2 , otherwise.

Let q: (0, 1}* --+ A* be the function defined by

undefined, if there is no y
such that
Q(y, z) = 1
otherwise. min {y E A*: Q(y, z) = l},

q (x) 5

IEEE TRANSACTIONS ON INFORMATION THEORY, VOL 42, NO 1, JANUARY 1996

By the closure property of the class of recursive functions, the
function q is recursive. It is easy to check that the functions
g and q coincide.

Lemma 11.4: Let a E C he arbitrary. Then there exists a
total recursive function Q:A* -+ A* such that all of the
following are true:

i) The string y is a proper prefix of Q(y), y zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAE A*.
ii) The n,-parsing of Q(y) is complete, y E A*.
iii) If {ul, u2, . . . , ut } is the no-parsing of y E A*, then

there exists U E A* such that (U I , u2, ... , ut, U } is
the n, -parsing of Q (y) .

iv) If {'ut: t E N) is a sequence of iterates under Q, then

l iminfL(a, wt)/lvtl 2 logcr.
t-cc

Pro03 Let a = {(W,, Q,, @,)}. Let F, G, H be the
recursive functions satisfying Properties 2.2-2.4, respectively.
Suppose y E A*. Let (u1, u2, . . . , ut} denote the ne-parsing
of y. Define Q = u1 * up * . . . *ut. If Q = AA, define i (y) = 1;
otherwise, define i (y) = &+I, where il, i2, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAit, it+l are
the integers

(In other words, i (y) is the final parser state in the parsing of
y,) Define y to be the suffix of y such that y = y * @. Totally
order A* as in the proof of Lemma 11.3. Define Q: A* --t A*
by

Q(Y) 6 5 *

where U E A* is obtained as follows:

min{w E A*: F [i (y) , U] = 1

min {w E A*: F [i (y) , U] = 1
and IH[i(y), .]I 2 JwJloga},

and w starts withy} ,

if Q = y

otherwise.

Since the functions F, G, H are recursive and the functions
y --t zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAy, y --t g, and y + i (y) are total recursive, it follows that
Q is a total recursive function. Conclusions i)-iv) are easily

ProofofFuct3.2: Let = {(Wn, Qn, Q,)} E C be
arbitrary. We shall construct d E C' subordinate to a. Let
T be the one-sided shift transformation on A". We define a
transformation R on the set R = A" x N 3 as follows. If
(x, n, j , s) E R, let R(z, n, j , s) = (X I , n', j ' , s'), where

x' = TIwnl(s), v, = unique prefix of x in W,;
n' = qn(vn);
j ' = j + 1;
s' = s + lwnl, if s + Iv,/ 5 fi; and s' = 1, otherwise.

Fix an arbitrary pair (n, j) E N 2 . We define a mapping
t,,j:A" + N as follows. Let 2 E A". Let

be the sequence in R in which

Then

Let Wn,j be the finite subset of A* consisting of all strings
u1 * u2 * . . . * ut, t E N , for which there exists some x E A"
such that tn,3 (x) = t and u1, u2, . . ut are the first t phrases
in the (no, n)-parsing of x. From the definition of the mapping
t,,,, one can see that Wn,3 is a complete prefix subset of A*.
Note that if y E Wn,3, then y can be decomposed as

(A151 y = U1 *U2 * . . ' * U t

where {u~, u2, . . . , ut} is the (T,,, n)-parsing of y. We now
define the mappings !P, ,3 : Wn,j + N 2 and @,,?: W,, +

A* for which, with y E W,,J decomposed as in (A15)

@n,3(Y) + (Z t + l , t + 3)

and
A

@n, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAj (~) = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA@zl (~ 1) * @'a2 (UZ) * . . * (ut)

where

'81 = n, zk qtk-l (Uk-l), 2 5 k 5 t + 1.

Fix any one-to-one map 7 of N onto N2 such that ~ (1) =
(1, 1) and both 7 and 7-l are total recursive. Let d =
{(WA, qL, @L): m E N } be the sequential code in which

1) Wk is the complete prefix subset of A* such that
W' m = where (n, 3) = ~ (m) .

2) SA is the mapping from WA to N such that
~(X€f&(y)) = Qn,3(y) for each y E Wk, where

3) @k is the mapping from WA to (0 , I}* such that
@k(y) = @,,3(y) for each y E Wk, where (n, 3) =

(n,.7) = 7(m).

KIEFTER AND zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAYANG: SEQUENTIAL CODES, COMPRESSION OF INDIVIDUAL SEQUENCES, AND KOLMOGOROV COMPLEXITY 39

We want to show that zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAU’ belongs to the class E. Properties
2.2-2.4 are valid for zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAcr‘ because they are valid for U and
because of the way in which U‘ was defined using U. All
that remains to be shown is the validlty of Property 2.1 for o’,
which means we must show that

where zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA% denotes the parsing rule underlying U’. We shall
establish the bound

then conclude that zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
J

if 4) holds. (‘424) 4 m - 1 w;r(Q) L

Now suppose 5) holds. Then the quantity on the left in (A18)

is less than or equal to

Since zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAt zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAq + 1, the quantity in brackets on the left in (A25)

is less than or equal to wT,(Q). The quantity in brackets on
the right in (A25) is less than or equal to the left-most term
in the following string of inequalities:

I u l] + . . ~ + I u s - l l + J i J z 9 from which (A16) is apparent. Fix an integer Q E N . Let
q 2 Q , and 1c E A”. Let {ut: i E N } denote the no-parsing
of 5 and let {Gz: i E N } denote the %-parsing of z. We will
show that Therefore

I 1 + -
s - 1 lull + . . . + Ius-1l

I%+l I 3 w;r (Q) 5 9wT, (Q) if 5) holds. (‘426)

Combining (A24) and (A26), we obtain (A18).

subordinate to U and Property 3.1 is valid. Hence,
and the proof is complete.

l?-jll + (Gz(+ . . . + (i&l 5 d m - 1 + gw7b(Q) (A18)

We can now say that U’ E E. By construction, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAU‘ is
from which the bound (A17) follows. There exist positive
integers s 5 t such that the following three relations hold:

E

ACKNOWLEDGMENT

The first author wishes to thank J. Ziv for reminding him
of the individual sequence z* in the discussion of Question
1 in Section I. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAUy+1 = U, * u,+1 * . . . * U t .

lGq+ll > zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAd. (A19)

i f s < t. (A201 1 % + (us+il + . . * + IUt-11 5 m,
We deduce the relationship

REFERENCES

To establish this, one first observes that

(If s < t, this follows from (A20); if s = t , this is trivial.)
Solving the inequality (A22) for t yields (using the quadratic
formula)

Upper bounding the right side of (A23) furnishes us with the
bounds

from which (A21) is evident. From (A19) and (A20), it can
be seen that one of the following two statements must hold:

4) lGq+ll 5 2 h .
5) lGq+lI I 2lutl.
Suppose 4) holds. Then we deduce from (A21) and s 2

q + 1 2 Q + 1 that the quantity on the left side of inequality
(A18) is less than or equal to 2a/ [d - - 11. We can

[I] A. Baron, “Logically smooth density estimation,” Ph.D. dissertation,
Stanford University, Stanford, CA, 1985.

[Z] Ya. M. Barzdin, “Complexity of programs to determine whether natural
numbers not greater than n belong to a recursively enumerable set,”
Sov. Math.- Dokl., vol. 9, pp. 1251-1254, 1968.

[3] G. Boolos and R. Jeffrey, Computability and Logic 3rd ed. Cambridge,
England: Cambridge Univ. Press, 1989.

[4] G. Chaitin, “On the length of programs for computing binary se-
quences,” J. Assoc. Comput. Mach., vol. 13, pp. 547-569, 1966.

[5] J. Kieffer, “Sample converses in source coding theory,” IEEE Trans.
Inform. Theory, vol. 37, pp. 263-268, 1991.

[6] A. Kolmogorov, “Three approaches to the quantitative definition of
information,” Probl. Inform. Transm., vol. 1, pp. 4-7, 1965.

[7] A. Lempel and J. Ziv, “On the complexity of finite sequences,” IEEE
Trans. Inform. Theory, vol. IT-22, pp. 75-81, 1976.

[8] S. Leung-Yan-Cheong and T. Cover, “Some equivalences between
Shannon entropy and Kolmogorov complexity,” IEEE Trans. Inform.
Theory, vol. IT-24, pp. 331-338, 1978.

[9] M. Li and P. Vitanyi, An Introduction to Kolmogorov Complexity and
Its Applications. New York: Springer-Verlag, 1993.

[IO] R. Solomonoff, “A formal theory of inductive inference,” Inform. Contr.,
vol. 7, pp. 1-22 and 224-254, 1964.

[1 I] E. Yang and S. Shen, “Chaitin complexity, Shannon information content
of a single event and infinite random sequences (I),” Sci. in China, ser.
A, vol. 34, pp. 1183-1193, 1991.

[12] J. Ziv and A. Lempel, “A universal algorithm for sequential data
compression,” IEEE Trans. Inform. Theory, vol. IT-23, pp. 337-343,
1977.

[131 ___ , “Compression of individual sequences via variable rate coding,”
IEEE Trans. Inform. Theory, vol. IT-24, pp. 53&536, 1978.

[14] A. Zvonkin and L. Levin, “The complexity of finite objects and the
development of the concepts of information and randomness by means
of the theory of algorithms,” Russ. Math. Surveys, vol. 25, pp. 83-124,
1970.

