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SUMMARY

The object of the present investigation is to consider a robust procedure
for the problem of providing a bounded-length confidence interval for the
regression coefficient (in a simple regression model) based on Kendall's (1955)
tau. The problem of estimating the difference in the location parameters in the
two-sample case may be viewed as a special case of our problem. It is shown that
the estimate of the regression coefficient based on Kendall's tau [cf. Sen (1968)],
as extended here in the sequential case, possesses certain desirable properties.
Comparison with the procedure based on the least squares estimator [considered

by Gleser (1965) and Albert (1966)] is also made.

1. INTRODUCTION
Consider a sequence {Xl,Xz,....} of independent (real valued) random
variables with (absolutely) continuous cumulative distribution functions (cdf)

Fl(x),FZ(x),..., where
Fi(x) = F(x-a-Bti), i=1,2,...; (1.1)

the t; are known regression constants, B is the regression coefficient and a

is a nuisance parameter. It is desired to determine a confidence interval

* Work supported by the National Institutes of Health, Grant GM-12868.



I, = {B: gL,n <B f-éU,n} such that (i) P{gel } = 1-o, the desired confidence

coefficient and (ii) 0 f-éU 0 @L , < 2d, (d predetermined). Since the form
b

>
F( ) is not known, we are not in a position to prescribe any fixed-sample size
procedure valid for all F.

Sequential procedures for such a problem, based on the classical least
squares estimators of a and B, are due to Gleser (1965) and Albert (1966).
These procedures, like ours (to follow), are based on the method suggested by
Anscombe (1952) and Chow and Robbins (1965). However, being based on the least
squares estimates, these procedures are vulnerable to gross errors or outliers,
and may be quite inefficient for distributions with heavy tails (e.g., the Cauchy,
logistic or the double exponential distribution). For this reason, we consider
here an alternative robust procedure based on the nonparametric estimate of B8,
considered in Sen (1968). The procedure is explained in Section 2. Section 3
deals with the main results of the paper. Section 4 is devoted to the study of
the asymptotic relative efficiency (A.R.E.) of the different procedures. In
Section 5, we consider the two-sample location problem, which is a particular
case of (1.1) when the t, can be either 0 or 1. The appendix is devoted to the

asymptotic linearity of a stochastic process involving Kendall's tau; this result

is used repeatedly in Section 3.

2. THE PROPOSED SEQUENTIAL PROCEDURE

For every real b(-o<b<x), define Zi(b) = Xi—bti, i=1,2,..., and let

ROERS t.-t.)c(Z: (b)-Z. (b)), 2.1
G 7 O Ll 02 o) 2.1

where c(u) is equal to 1, 0 or -1 according as u>, = or <0. Note that by defini-

tion,Un(B) is distribution-free and its distribution (symmetric about zero) is



tabulated (for small values of n) by Kendall (1955) and Smid (1956). If we let

a
v, o= (1/18){n(n—1)(2n+5kzj21unj(unj—l)(2unj+5)}, (2.2)

[where among (tl,...,tn) there are an(zZ) distinct values with frequencies unj’
1
j=1,...,an], then for large n, (g)un(s)/vg has approximately a normal distribu-

tion with mean 0 and variance 1 [cf. Hoeffding (1948) and Kendall (1955)]. As

such, for each n and ty = (tl,...,tn), we can find an U;’Ln such that
1% *® = -
P{ Un:'En < Un(s) i”n,zn"” l-o_, (2.3)
1
" N 5, N .
where o >0 aS M. [For large n, Un ‘ Ta/ZV;/(Z), where Ty2 18 the upper

’~n
100a/2% point of the standard normal distribution.] As in Sen (1968), we use

(2.3) to derive the following (fixed-sample) confidence interval for B. Let
Yij = (Xj-xi)/(tj-ti)’ (i,j)esn, (2.4)

where S, = {(1,3): ti#tj, 1<i<j<n}. We denote by n* the number of elements of
S, (i.e., the number of distinct pairs (ti,tj) in gn), and denote the n* ordered

values in (2.4) by

Yn(l)fyn(z)f,..fyn(n*), n>2, (2.5)
Also, let
2
Mél) _ %[n*_(g)ug’gn], Mﬁ ) _ %[n*+(g)Ui,En]. (2.6)
Then, as in Sen (1968), we have
<B<Y |8} = 1-a, - (2.7)

pP{Y
ntt) n{?)+1)



Now, in order to obtain a confidence interval for B of length < 2d, we define a
stopping variable N=N(d) to be the first integer >ng (the initial sample size,

may be 2 or more), for which Y 2d. Then, our proposed

=Y <
noe{?+1) neelt)

(sequential) confidence interval for B8 is

I = {B: Y < B <Y (2.8)
N(d 1 2
@ N(@ 04§l N(@) 04§52, a’
In principle, our procedure is similar to that of Anscombe (1952) and of Chow and
Robbins (1965). However, they used the sample mean square due to error to set
up an appropriate confidence interval, whereas we use Kendall's tau to derive such

an interval. The main results are stated in the next section.

3. PROPERTIES OF THE CONFIDENCE INTERVAL IN(d)

In the remainder of the paper, we shall stick to the following notations and

assumptions. Let

T; = Eizl(ti-fn)z, where En =nt izlti’ (3.1)
o = (G2 (45 G - BT (3.2)
a,
Aﬁ = (1/12){n(n%-1) - ZJ -1 nJ(u .-1)}. (3.3)
Then, concerning {En}, we assume that

(i) 1<1<nIt tnl/Tn+0 as Ipeo, (3.4)

(i1) " plrees N2 - o), (3.5)
(iii) 1" mf[z (n-u,;)/?1>0, (3.6)

j=1"nj



(iv) 1Mo =, where |o|>0, (3.7)

T>co

) T; = Q(n) is a strictly increasing function of n, such that for

every a>0
lim _ lim =
[0 Q(ann)/Q(n) = s(a) whenever o 8 = 3 (3.8)

where s(a) is strictly monotonically increasing and continuous
in a, and s(1)=1.
Note that our (ii) and (v) are less restrictive than similar conditions of

lim n-l

Gleser (1965), who requires that oo

T; = ¢>0, If ti=i, i=1,2,..., (1)-)

hold, but Gleser's does not. Note that by (3.3) and (3.6), we have
n A% = o). (3.9)

Concerning F(x) in (1.1), we assume that f(x) = F'(x) exists (a.e.), and is

continuous in x (a.e.); also assume that
[£2(x)dx = B(F)<e. (3.10)
Our main theorem of the paper is the following.

Theorem 1. Under the assumptions made above, N(=N(d)) is a non-increasing function

of d(>0), N(d) is finite almost surely (a.s.), E[N(d)]<= for all d>0, lim N(d)==

d-0
a.s., and lim E[N(d)]=~. Further,
d-»0
lim N@)/Q (v@) =1 a.s., (3.11)
d->0
lim P{BeIN(d)} = 1-00 for all F, (3.12)

d-0

Lin EIN@I/Q I v@) =1, (3.13)



where

V(@) = T, [120%d%B (F)] -1 (3.14)

Proof. The proof of the theorem is completed in several steps. First, we let

B =Y and R =Y
Lo ™ ) Bu,n a1
Then we have the following.

, which are defined as in (2.6) and (2.7).

Letma 3.1. For every 6>0 there exists an no(d), such that for nzpo(é),

Py, > 8+(og W)/ (1)) < 0”9, (3.15)

p{@L,n < B-(log n)/(p T )} <1 (1+6) (3.16)

We shall only prove (3.15) as (3.16) follows on the same line. By defini-

. ~ ~ _Tik
tion of BU,n’ Un(BU,n) > Un,En' Hence,

P{Esu,n > g+(log )/ (p T )} = PU (B+(log n)/pT ) > -Up .}
= P{U_ (8+(log n)/p,T,) - E[U,(8+(log n)/p T )]

2 US ¢ B0, (8+Clog m)/p,T)1)- (3.17)

Using the fact that for large n, U* S V%/(n) = O(n—%) and
sing the 0 ge n, n,t To/2'0 (2 s
-1 -1
E[U, (B+(log )/p, T,)] = - 4A (log m) () [B(F)+o(1)] = O(n ™" log n), we may

1 R -
write Un,En E[Un(6+(1og n)/pnTn)] as

4A_(log n)(g)-lB(F)[1+o(l)+O(1og n)‘l]. (3.18)

Now, we make use of a result by Hoeffding (1963; (5.7)) on the deviation of a



U-statistic and obtain from (3.17) and (3.18) that for n adequately large

P{B; , > B+(log n)/p T} < exp[-[71t}/4]
< exp[-(n-2)t2/8], (3.19)

_1
]

where t, = 4An(1og n)(g)_lB(F) = 0(n ° log n). Thus, (n-Z)t;/B can be made

greater than (1+8)log n, for any >0, when n is made greater than no(é). Hence,

for nzpo(s), the right hand side of (3.19) can be made less than

-(1+8)

exp[-(1+8)log n] = n Q.E.D.

Lemma 3.2. There exists two positive numbers 61 and 62 and an n, say no(dl,az),

such that for all n z'no(dl,ﬁz),

$ -6

PLIYS B(Po, T, (By By /7,57 2 O Log m)} <om 2 ). (3.20)

The proof of the lemma directly follows from lemma 3.1 and the following

theorem whose proof is sketched in the Appendix.

Theorem 3.3. There exists two positive 61,62 and an n0(61,62) such that for

n.z_no(al,dz),

P{|a|§$gg nl(g){Un(B+a/pnTn) - Uy (B} ¢ 4aB(F)An|/Vﬁ
) -1-6

1log n)} < O(n 2

> 0(n ). (3.21)

Lemma 3.4. For every real X(-o<Xx<w)

1jm ~ -1 X __]/tZ
e PUVIZ B(F)pnTn(BU;n-B)-Ta/zgx} = (2m) ? fe *" dt. (3.22)

=00



The proof is given in Sen (1968). For the asymptotic normality of
pNTN(gU N-B), we require, as in Anscombe (1952), the "uniform continuity in
b
probability" of {EU n} with respect to pyT,+ For this, we have the following
’

lemma.

Lemma 3.5. For every positive e and n there exists a §(>0), such that as m=

Su ~n P
T S NCRE ST 5.2

and a similar statement holds for {éL o
b

Proof. By virtue of lemma 3.1 and theorem 3.3, and the definition of @U 0’
s

pnTn(éu,nréu,n) = pye T (éU,n.-e) (pnTn/pn.Tn.)-pnTn(éU,n-s)

(CYWVIBEVEHULB 0 -Uy (®)+0 W Ho T /on T
- {(/VIZ BEWIHU, By )-U, (8) +0(1))
= {Ta/z/m B(F)}{(pnTn)/(pann')‘l} +

VIZB(F)] M [ (o, T )/ (o, T 31 (5 )/VE UL, (8)- GV U_(8)}+o(1)

VIZBR)] Mo, T, (5 ) /e T VE1- IV, (8)

+ [CIVAU, (8)-U (8] + o(1). (3.24)

Since Un(B) is a U-statistic in the independent and identically distributed

random variables Zi(B), 1<i<n, it follows from Berk (1966) that {Un(B)} forms

a reverse martingale sequence. Hence, if we write n_=ng, and let M% = Ui _j(B) -
0
Un+no-j+l(6)’ 1§j52n0, W6 = Un+n0(s), it follows that {WO,Wl,...,WZHO} possesses

the properties of amartingale difference sequence. Hence, by using the well-known



Kolmogorov inequality [cf. Loeve (1963, p. 386)], we have

-2
P{lﬂmﬂ’z‘n [Wpte Wt b < S By )2 (3.25)
-0 0]
But, Wi+ +h5 = n*n J(B) U (B) 1_J<2n , and the right hand side of (3.25)
is equal to t {V{U (B)]-V[Un+n ®)1} = (4/9)(2n t /(n -nz))(1+0(n ))
Y o
Hence, letting t = nn 2 we have
1 -1
P{lg‘f‘g’z‘nonﬂ nen -3 () Unap (B)>n} < (88/9n%) (140(n™)) (3.26)

This immediately leads to (by proper choice of §)

P{n- ﬁ?T«Sn HIMGRINGIED SIS (3.27)

for n sufficiently large. Also, by (5.7) of Hoeffding (1963),
P{ |Un(8) |>K€,.}_<_€" , where K_,<>. (3.28)

Now, we write [o.T, (5)/enT oy VE, - GV as (o T /o Ty -1 (5I/VE +

[C 2)'(2)]/V§, + (2)[V 2-V ] Note that for |n'-n|<én, pnTn/pn,Tn, + s(n'/n) €
[s(1-6), s(1+8)], and hence, differs from 1 by an arbitrarily small quantity, as

noeo (by (i) and V)), n(I/V_ = 9/2 + 0n™Y) by (1iD)), | (5)- (|8 (2+e)n?,

VoV AUVEAEVRE Y = 0m ™) |V, -V, | = O ™) [(2/9) (n® (1+36+0(6%)-

and |V 3-V_%|

n3} + 0(s)n3] = 0(§), where the last order follows by using (iii) on the second
term of the right hand side of (2.2). Thus, (3.23) follows from (3.24), (3.27),
(3.28) and the above discussion. Hence the lemma.

Returning now to the proof of theorem 1, we note that by lemma 3.2 and the

definition of N(d), for all d>0, N(d) is finite a.s., and it is non-increasing

in d. To show that E[N(d)]<« for every d>0, we write
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E[N(d)] = InP{N(d)=n} = Zn>OP{N(d)>n}. (3.29)

Hence, it suffices to show that for every d>0, Zn>OP{N(d)>n} converges; a

sufficient condition for this is to show that as o,

P{N()>n} < 0(n 1Y), where y>0. (3.30)

Now, by definition

P{N(d)>n} = P{ (@U B 1)>2d, ¥ ken}
< P{ (éu,n-éL’and} = P{V/3 B(F)pnTn(éu’n-éL’npzdﬂ B(F)p, I}
-1-5,
< 0(n ), 8,0, (3.31)
~ A _61 _1"'62
as by (3.20), /3'B(F)pnTn(BU’n-BL’n)-l = 0(n log n) with probability > 1-O(n ),

and by (ii) and (iv) pnTn+m as mo, Thus, E[N(d)]<», for every d>0. Using the

fact that EU -8, >0 (a.s.) for each n, we have 1lim N(d) = ». Now, from the
,n "L,n d-0
Monotone Convergence Theorem, 1lim E[N(d)]=c.
d»0

(3.11) is a direct consequence of (3.20), the definition of v(d) in (3.14),
(iv) in (3.7) and (v) after (3.7). (3.12) follows readily from theorem 1 of
Anscombe (1952) along with our lemma 3.2, lemma 3.4 and lemma 3.5. To prove

(3.13), we write
EN@I/Q @] = (@ v@ 13 3y#5,00; nPN@=n), (3.32)

where the summation 1 extends over all n<n1(d), L, over all nl(d)gpfpz(d) and

I, over all n>n2(d), and where

3

Qm; (@) = v@{1+(-De + @+(-nh/2}, i=1,2. (3.33)
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Since 1im v(d) = « and 1im N(d)/Q *(v(d)) = 1 a.s., and Q( ) is , for every
d+0 d»0
e>0, there exists a value of d, say d€(>0), such that for all 0<d§d€,

P{nl(d) < N(d) g_nz(d)} z_P{|N(d)/Q_1(v(d))-1|<e} > 1-n, where n is arbitrarily

small. Hence, for dide,
Q" v@1 e rPIN@) =} < (1-e)PIN@)<n (@)} < n(l-e). (3.34)
Also, proceeding along the same line as in (3.31), we have
-1 -1 _ -1 -1
{Q "[v@)]} "zmP{N(d)=n} = {Q "(v(d))} "n,(d)P{N(d)=n,(d)}
-1 -1
+ {Q @)} T EgPIN@)>N}
< QM @) [ZPIN@>n} + 0y [PN@)>n, (@) -1}]

8 -1-6

2+ 0, @)0(m,@]

Q@D om, @) )]

-5
= 0[(n,(d)) 21 > 0 as &0, (3.35)

since Q_l[\)(d)]-*°° as d>0 and hence, n,(d)»» as d»0. Finally, elementary computa-
tions yield that
-1 -1 .
[{Q [v(@)1} " £ PN@)=n}-1]|

S_EZZP{N(d)=n}+n < e*n. (3.36)

Hence, (3.13) follows from (3.34), (3.35) and (3.36). Q.E.D.

4, ASYMPTOTIC RELATIVE EFFICIENCY
For two procedures A and B for determining (sequentially) bounded-length

confidence intervals for g (with the same bound 2d), we define the A.R.E. of

A with respect to B as
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= lim {(EN;(d))/(EN,(d))}, (4.1)

e
AB 450

where NA(d) and NB(d) stand for the respective stopping variables.

It may be noted that though Gleser (1965) considered the case where
n_lT;+c>0 as n»~, his results can be easily extended to the case where our (ii)
and (v) of section 3 hold. As such, if NL(d) stands for the stopping variéble
for his procedure (based on the least squares estimators), it follows that our
theorem 1 also holds for NL(d) with the only change that v(d) has to be replaced
by v (d) = OZT;/Z/dZ, where o? is the variance of the distribution F(x) in (1.1).
Hence, using the result in (3.13) for both the cases and writing NK(d) for the

proposed procedure, we have

ex,1, = 1in Q7 oy @)/Q @) (4.2)

Note that, by definition vL(d)/v(d) = 1202p?B%(F) = e, is independent of d, and

let us write e = s(e*), so that e* = s_l(e) is monotonic in e, with e*=1 when

e=l. Also, let ¢ = Qv @)/Q @), My @) = (@ and QT M@) = V().
Note that by (v) of section 3, vf(d) and v¥(d) both tend to «» as d»0. Hence, we
have

s(e*)

e = vL(d)/v(d) = lim.{vL(d)/v(d)}
d»0

éig QO ()/Qv* (@)}

éig Qe (d)v*(d))/Q(v*(d)) 3. (4.3)

Using (3.8) and proving by contradiction, it follows that

lim ¢(d) = e* = s 1 (e). (4.4)
d>0
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Hence, from (4.2) and (4.4), it follows that

e 1, = s-l(e) = 5_1(120202[ [ £2(x)dx]?). (4.5)

[o o]

In Sen (1968), various bounds for e = 120%p%( [ £2(x)dx)? are studied, with

special reference to the bounds for p?. As we shall see in the next section, for

the two-sample problem, p=1, and s(e) = e, so that (4.5) reduces to 12¢%( [ £2(x)dx)?2,

the usual A.R.E. of the Wilcoxon two-sample test with respect to the Student's

oo}

t-test. Since 120%( f f2(x)dx)? > 0.864 for all continuous F, it follows that

inf

%L " s1(p2[0.864]). (4.6)

Consider now the case of equispaced regression line, where ti=i, i=1,2,..., so

that T; = n(n%-1)/12. In this case, we get at once, that p=1 and

1
” 3
e 1 = (1202(_£ £2 (x)dx) ) 4.7)
For the case of normal F, this reduces to (0.95)1/3 = ,985, while the infimum

in (4.6) is given by (0.864)1/3 ~ ,953. This clearly indicates the robustness
and efficiency of the proposed procedure. For many non-normal cdf (e.g.,
double exponential, logistic, Cauchy, etc.) the proposed procedure is more

efficient than the least squares procedure.

5. TWO-SAMPLE LOCATION PROBLEM
Consider the special design, where the t, can either be 1 or 0. Thus, we
have only two different distributions F(x-o) and F(x-a-B8), where B denotes the
difference in the location parameters of the two distributions. If at the n-th

stage, we have m, of the t. equal to 1 and the rest equal to zero, we obtain that
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Tﬁ =m (n-m )/n < n/4, for all n>1. (5.1)

Looking at the definition of T; = Q(n), (3.11) and (3.13), we observe that an
optimum choice of m is [4n], the integral part of %n. Thus, among all designs

for obtaining a bounded-length confidence interval for B, in this problem, an
optimun design (which minimizes the expected value of N(d) for small d) consists

in taking every alternative observations for the two distributions. Here also,
p,=P=1, and n_lT; + 1/4, and hence, by (4.5), the A.R.E. reduces to 120%( sz(x)dx)z,
various bounds for which are well-known. Looking at (2.4)-(2.7), we obse;:e that

n* = mn(n-mn) v %nz, and UE can be computed, for small values of n, from the

t
’~n
extensive tables given in Owen (1963). For large n, note that Vn’ defined by
1 3

(2.2), reduces to (1/18){2[n3—m%—(n—mn)3] + 3[n2-mﬁ—(n-mn)2]} =7 D +0(n?),

can be computed by reference to the usual normal probability
n

*
and hence, Un,g

tables.

6. APPENDIX: PROOF OF THEOREM 3.3
We may assume without any loss of generality that B=0 (as otherwise, we
may set b=g+b' and work with b'). Also, we shall explicitly consider the case
of ac[0, log n] as the case of ac[-log n, 0] follows on the same line. Let
1 i
b v n “(as no=), §,>0, and let Neon = (r/bn)log n, r=1,...,b_ . Since, U (b)+

in b, for ae[n n n], we have
H

r-1,n’''r

Ut /e T) <0 (/e T) <UL (O

r,ml nn /pnTn) (6'1)

r-1,n

and similar inequalities involving their expectations. Then, we get after a

few simple steps,
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Sup _
aa[nr'l n’nr n] IUD(O) Un(a/pnTn) * EUn(a/pnTn)|
(6.2)
max
hl j=r—1,r|wn,j| * E[I‘]n(nr-l,n/pnTn) ) Un(nr,n/pnTn)] ’
where Wn,j = Un(O) -Un(nj’n/pnTn) + EUn(nj ,n/pnTn)’ 0_<_j_<_bn, 1_<_r_<_bn (note that
nO,n=0’ EUn(0)=0). Hence,
sup Ny q7
0<a<log nl /YRl IU(0) - Up@/e T + BU, (a/0,T )]
(6.3)
< max N\ /s max n, .4
- Oijf_bn[ (2)/\/1/1] Iwn,j | + 1§j_<_bn[(2)/V/§]E[Un(nj-l,n/pnTn) -Un(nj ,n/DnTn)] .
. ) _ )
Using (3.4), (3.11), nj n nj-l,n log n/bn and An/Vn + 3/4 as n>» [cf. Sen
(1968)], we get,
1
(VB (g y (/o T = U (v /o T )]
1
= (0 ynyop ) AV BB+ ()] (6.4)
-8
= 0(n 1log n), for all j=1,2,...,bn.
Let
Yhij = Xi—(nj’n/pnTn)ti(lgifp, 1§j§bn),
¢(Ynij’Ynkj) = C(tk_ti)[C(Ynkj_Ynij+(nj,n/pnin)(tk_ti))_C(Ynkj_Yﬁij)]’

. . . S PR | ]
l<itken, 1<j<b . Write, W) ; =n " (n-1) 1<§k<n[¢wnij Vi) 7B (5> Yoy 15
1<j<b (W, ,=0). Note that W . is a U-statistic minus its expectation (see

2 »

e.g., Hoeffding (1948)). We can write, Wn,j = Z(an—unj) + an, where,

n-l zizlznij = (n'l)_l zkzl(fi)c(tk—ti) [F(Xi_a)_F(Xi-a_(nj,n/pnTn)(tk—ti))];

Z.
nj

U E an, 1<j<b . Then,

nj
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. -5
PLIW, ST/ > cn  log )

< P[|Z | >t 1, (6.5)

n,j "nj
-%—61
log n = O(n log n),

s
. . s n -1 1
where cl(>0) is not depending on n, tn = clvﬁ(z) n
as m, since, V_ = 0(n®), (as m=), (from (3.9) and the fact that A;/Vn > 3/4
as ). Also, from (3.4), (3.9) and (3.10), it follows after some algebraic
-1
manipulations that unj = 4nj n(An/ [n(n-1)]) BF)+o(1)) = O(n *log n), uniformly
’
in j=1,2,...,bn. Hence, there exists a positive integer ny such that for n>n,,
. o .1 s
0<tﬁ<%unj<1-%unj<l, uniformly in J—l,Z,...,bn(tn—gtn). Also, an is the average
of n independent random variables each assuming the values 0 and 2. Now, using

the inequality (2.1) of Hoeffding (1963), we get, for n>n, ,

PLs| 251y 1>t
n(ul.+t') n(l-u'.-t')
nj n _ v e nj n
< [{“r'lj/(“r'lftr'l)} {Q “ﬁj)/(l “r'lj t)} 1
(6.6)
n(u'.-t') n(l-u'.+t')
1 _41 nj n ! ! 1 nj n
+ [{“ﬁj/ Che t))} {Q unj)/(l unj+tn)} ]
where uﬁj = %unj' It follows after some algebraic simplifications that as noe,
”1'1' ) l-—uI'l.
n[ (UI'IJ i't;l) log (uv"'J_‘_ it'.) + (1-u1'1j+t1'1) log (l'U' .;t')]
nj  n nj n
nt'?
= - 2 _ " n (6.7)
= ntI'l /{Z(UI'IjitI!I) (1 Lllzlj"'t;l)} + O W).
-ci/4
= O(log n ).

Also,
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PLIR ;1>4t ] < BRE)/ Cat]) (6.8)

But,

2 =

4
w1 1<§#£<n E[E{¢(Y nij’ nkJ)|YnlJ} E¢(Y nk )1 (6.9)

2 . -5/2
f.ﬁifﬁjjjz'1<§#£<nv[¢( nij’ nkj)] n(n ) Mnj = O(n log n).

It follows now from (6.5)-(6.9) and the Bonferroni inequality that

b

2/4 n
+ 1 BRL)/Cat))
j=1

-C
max 1
P{lgjfbniwﬁj|>tn} < b O

-c2/4 1 (6.10)
2 Uy o™/ %301 (108 ).

First make a proper choice 61 and subsequently of cl(>0) to make the right hand
-1—6
side of (6.10) less than or equal to [(const)(n )] for any given 62>0. The

result now follows from (6.3), (6.4) and the Borel-Cantelli lemma.
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