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A sequential confidence interval (CI) for a real
parameter γ of the form [L,

00
) is proposed, based on a

consistent and asymptotically normal sequence
T p T

2
, . . .of real valued statistics. This CI is

required to satisfy the coverage probability

P { L < γ } > l - c t for every γ, and to provide beta

protection at φ(γ): P {L < φ(γ)} < 3 for every γ,

where α, $, and the function φ(γ) < γ are given. It is

shown that this can be achieved (under certain

regularity assumptions) with a stopping time of the form

2 2
N = least integer n > r + c τ ( T ) and a terminal

decision L = p(T._), in which the functions τ and p
N
 2

depend on φ and the asymptotic variance σ . Asymptotic

values are derived for P {L > γ} and P {L < φ(γ)} as γ

varies over values for which τ(γ) •*• °°

1. Introduction.

Let Ίγ, T2,... be a sequence of real valued random variables whose

joint distribution P depends on a parameter γ with values in an interval

Γ. Suppose a one-sided confidence interval (CI) for γ is desired of the

form [L,»], in which L » L(Tj,T
2
,...), that satisfies the two conditions
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( 1 . 1 ) P γ ί L < γ} > 1 - α, γ € Γ,

( 1 . 2 ) P γ {L < φ ( γ ) } < 3, Ύ € Γ,

in which α, 8, and φ(γ) < γ are chosen by the experimenter. Here (1.1) is the

usual coverage requirement, and (1.2) is a precision requirement that takes the

place of the more customary prescribed width of a fixed width sequential CI.

Motivation of this approach appears in Wijsman (1981). We shall describe (1.2)

as beta protection at φ(γ) . In Wijsman (1981, 1982) an example is worked out

when γ is a normal mean; in Wijsman (1983) γ = μ/σ in a normal population; in

Juhlin (1985) γ is the mean in a scale parameter exponential distribution. In

the present paper a few general results will be proved for a family of models

that includes the above mentioned examples as well as many others .

The sequence {T } will be assumed consistent for γ and the function

φ in (1.2) will be assumed to be such that there is no fixed sample size CI that

satisfies both (1.1) and (1.2). A sequential procedure will be defined by first

choosing a stopping time N on heuristic grounds, in the spirit of Chow and

Robbins (1965). Whatever the choice of N, a terminal decision rule will be

defined with help of a function p on Γ such that φ(γ) < p(γ) < γ, and then

putting L(T
1
,T2

>
.. ) = p(T ) The resulting procedure will be denoted (N,p).

The requirements (1.1) and (1.2) can then be written as

(1.3) P {ρ(T
M
) < γ} > 1 - α, γ € Γ,

γ N

(1.4) P ίp(T
N
) < Φ(γ)} < 3, γ € Γ.

Since the search for a stopping time N is guided primarily by

considering values of γ for which large average sample sizes are needed, it is

to be expected that the distribution of T
n
 for large n is important. We shall

assume n (T - γ) to be asymptotically N(0,σ (γ)). Let δ(γ) - γ - φ(γ) be the
n

precision gap and temporarily put τ(γ) = σ(γ)/δ(γ). Also, temporarily take
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p(
γ
) = γ - ζδ(γ), with 0 < ζ < 1 still to be chosen. Then heuristics as in

Wijsman (1983) suggest the following type of stopping time:

2 2
(1.5) N = least integer n > r + c τ ( T ) ,

in which c > 0 and integer r > 0 still have to be chosen.

The temporary definitions of τ and p in the previous paragraph are not

entirely satisfactory since the resulting procedure is not necessarily preserved

under nonlinear transformations. Yet, for any f: Γ -• Γ that is one-to-one and

differentiable in both directions, with bounded derivatives, the problem in

terms of γ = f(γ) and the sequence T = f(T ) is the same as the original

n n

problem. It would be desirable if the procedure (N,p) in the new problem would

have the property N = N, p = f(p) - (equivariant interval estimator). This can

indeed be achieved by the following definitions of τ and p (where

τ (γ) means l/τ(γ), and similarly σ (γ)):

-i
 Ύ

 i

(1.6) τ ^ γ ) = / σ (x)dx, γ € Γ,

Φ(Ύ)

Ύ , ,
(1.7) / σ (x)dx = ζτ ( γ ) , γ ζ Γ ,

P(Ύ)

for any choice of 0 < ζ < 1. (Note that the asymptotic variance transforms as

^2 #» * o ? —1
σ (γ) = f (γ)σ (γ); this causes |σ (x)dx| to be invariant and, as a result,

τ(γ) - τ(γ) )

2. Assumptions.

Throughout, Γ is an interval of the real line R. If Γ does not

contain both endpoints (e.g., if Γ = R, or if Γ = (O,
00
)) let Γ be its

compactification in the usual topology. For instance, if Γ » R, then f is R

with ±» added. One of the important tools needed is Anscombe
f
s (1952)

theorem. This uses the notion of uniform continuity in probability (u.c.i.p.);

see also Woodroofe (1982), Section 1.3. We shall require these concepts in a
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version that is uniform in γ 6 Γ. The phrase "uniformly in γ € Γ" will occur

often and will be abbreviated "u.i.γ."

ASSUMPTION A.

(i) There is a fixed probability space (Ω,A,P) and a family

{T^ : n = 1,2,..., γ £ Γ} of random variables defined on Ω, such that the

distribution of (T
1
,T

2
,.. ) under P is the same as that of (T ,T ,...) under

P; furthermore, P{T £ Γ} = 1, n « 1,2,..., γ € Γ;

(ii) for every γ € Γ, T -•
 #
γ as n •> »;

(iii) there is a function σ on Γ such that

σ""
1
(γ)n

1/2
(T

nγ
 - γ) i N(0,l) as n -• » u.i.γ.;

—1 1/2
(iv) the sequence {σ (γ)n (T - γ): n = 1,2,...} is u.c.i.p.,

u.i.γ.;

(v) the function σ is positive on the interior of Γ; both σ and

φ (defined in Section 1) are continuously differentiable, with derivatives

bounded in absolute value;

*
(vi) define τ on Γ by (1.6) and let γ stand for any endpoint of Γ at

* *

which τ(γ) + « a s γ - > - γ ; there is at least one such γ

(vii) there is b > 0 such that τ(γ) > b, γ £ Γ;

(viii) T
 a

+
e
'γ* as γ M uniformly in n=l,2,...;

(ix) for every γ
Q
 € ?, τ(T )/τ(γ)

 a
+

e
*l aβ n -• », γ +• γ

Q
.

Assumption A(i) is made for convenience and seems to be satisfied in

all examples studied. Assumption A(vi) guarantees that no fixed sample size CI

is able to achieve both (1.3) and (1.4). A(vii) simplifies statements and

proofs of certain results and is not an essential restriction. A(ix) is

automatically true for any γ
Q
 € Γ, by A(ii) and the continuity of τ.

Verification of A(ix) is therefore only needed for any γ
Q
 that is an endpoint

of Γ but is not in Γ.

The stopping time of N of (1.5) will be considered depending on c

(whereas r will stay fixed throughout). In terms of the T (1.5) can be

written as
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(2. 1) N = N least integer n > r + c
2
τ

2
(T

n
 ),

The dependence of N on c and γ will usually be suppressed in the notation,. it

is clear that N is finite with probability one for each c > 0 and γ € Γ. For

by Assumption A(ii) and the continuity of τ (using the continuity of φ and

(1.6)) the sequence on the right hand side of the inequality in (2.1) is bounded

a e. as n •* ».

3. The main theorems.

Let φ(γ) < γ be given; choose 0 < ζ < 1 and define τ(γ) and p(γ) by

(1.6) and (1.7). Furthermore, let c and r in (1.5) be chosen. Then let (N,p)

be the procedure that takes N observations, defined by (1.5), and estimates γ

by the CI [p(T ),«>). For probability computations we may define N by (2.1).

Then the error probabilities of (N,ρ) = (N ,p) as functions of c > 0 and γ€ Γ

are

(3.1) α(c,γ) Ξ P
γ
{ρ(T

N
) > γ} =

(3.2) 3(c,γ) = P
γ
{p(T

N
) < φ(γ)} = P{p(T

N γ
) < φ(γ)} .

THEOREM 3.1. Under Assumption A, for any given 0 < ζ < 1, α, β > 0, and

integer r > 0, there exists c > 0 such that c > c implies

α(c,γ) < α, β(c,γ) < B for every γ 6 Γ.

THEOREM 3.2. Under Assumption A, for any given 0 < ζ < 1, c > 0, and integer

r > 0, if N - N then α(c,γ) + 1 - Φ(ζc) and 3(c,γ) + 1 - Φ((l - ζ)c) as

γ -• γ , where γ is defined in A(vi) and Φ is the standard normal distribution

function

Theorem 3.1 shows that the proposed type of procedure (N ,p) is

capable of satisfying both (1.3) and (1.4) provided c is large enough. Theorem

3.2 deals with the values of the error probabilities for γ near γ where N tends
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*
to be large. The theorem shows that if we would want α(c,γ) + α and 3(c,γ) •• β

as γ -• γ , then we should choose ζc = Z
Q
, (l-ζ)c = z

g
, where z is the upper

α-point of N(0,l). Taking ζ = z /(z + z
D
) is reasonable, but the value

Ot CX p

c = z + z_ can be expected to be too small to guarantee

α(c,γ) < α, p*(c,γ) < β for all γ.

The proofs of the theorems will be preceded by several lemmas.

LEMMA. 3 1. N + °°a.e. as c + °°u.i.γ.

Proof. By (2.1) and A(vii), N > c\
2
 if T

R
 ξ Γ, n=l,2,... .

LEMMA 3.2. If c > 0, then N
 a
+

e
' « as γ -• γ uniformly in c > c ,

Proof. Let X\Q be an arbitrary positive integer and c > c. . Then

(3.3) [N < n
Q
] c u° [n > r + c ^ τ

2
^ ) ] .

By A(vi) and A(viii), τ(T )
 a
^

e #
~ as γ -• γ , n=l,2,... . Thus, except for a

set of P-probability 0, the right-hand side of (3.3) converges to the empty set

as γ •> γ .

LEMMA 3.3. τ(T )/τ(γ)
 a
>

e
' 1 as c > ~ u.i.γ. or as γ -• γ for any c > 0.

Nγ

Proof. To prove the second assertion use Lemma 3.2 and A(ix), observing that

γ C Γ. To prove the first assertion take any γ € f, then by Lemma 3.1 and

A(ix) we have τ(T
XT
 )/τ(γ) £ " 1 as c -• °°, γ + γ

n
. The compactness of Γ and a

standard compactness argument finishes the proof

LEMMA 3.4. Lemma 3.3 is valid with N replaced by N - 1,

Proof . The proof of Lemma 3.3 is unchanged when replacing N by N - 1:
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N + °° so does N - 1.

LEMMA 3.5. N/c
2
τ

2
(γ)

 a
+

e
 Ί as c + « u.i.γ. or as γ M for any c > 0.

Proof. From (2.1) we have the double inequality

(3.4) r + c
2
τ

2
(T

Nγ
) < N < 1 + r + C V C Γ ^

 > γ
) .

2 2
Divide both sides of (3.4) by c τ (γ). Then use A(vii) and Lemmas 3.3 and 3.4.

-1 1/2 d *

LEMMA 3.6. σ (γ)N ' (T
N
 - γ) " N(0,l) as c +• « u.i.γ. or as γ M for any

c > 0.

Proof. Use A(iii), A(iv), Lemma 3.5, and a uniform (in γ) version of Anscombe's

(1952) theorem.

— I P *
LEMMA 3.7. σ (γ)(T._ - γ) -• 0 as c + » u.i.γ. or as γ -• γ for any c > 0.

Nγ

Proof. This follows immediately from Lemma 3.6 and Lemmas 3.1 and 3.2.

LEMMA 3.8. σ(T )/σ(γ) -• 1 as c -• » u.i.γ. or as γ ^ γ for any c > 0.

Proof. Write σ(T )/σ(γ) - 1 = σ (t)σ (γ)(T -γ) with t between T and γ.

t

Since |σ (t)| is bounded by A(v), the result follows from Lemma 3.7.

LEMMA 3.9. There is a constant 0 < B < » such that

(3.5) σ"
1
(γ)τ(γ)[γ - p(γ)] > ζB

 l
, γ€ Γ,

(3.6) σ"
1
(γ)τ(γ)[p(γ) - φ(γ)] > (1 - ζ)B

 λ
, γ € Γ.
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Proof. We shall first show that there is 0 < B < » such that

(3.7) σ(γ)(x
2
 - x ^ "

1
 /

χ

2
σ""

1
(x)ds < B if φ(γ) <

 X;L
 < x

2
 < γ, γ £ Γ.

By A(v) there is 0 < d < « such that σ
f
(γ) < d, γ € Γ. Take φ(γ) < x < x < γ

arbitrary, then

x x

log(σ(x
2
)/σ(x

1
)) - /

χ

2
σ'(x)dx < d /

χ

2
 σ"

1
(x)dx

< dτ"
X
(γ) (by (1.6)) < db""

1
 by A(vii) .

Thus, σ(x )/σ(x ) < exp(db ) - B, say. In particular, take x
2
 = Ύ and x^ any x

for which φ(γ) < x < γ, then σ(γ)/σ(x) < B and (3.7) follows. Next (3.5)

follows from (3.7) by taking x = ρ(γ), x
2

 s
 γ, by using (1.7), and inverting

the resulting inequality. Similarly, (3.6) follows from (3.7) by taking

x
χ
 = φ(γ), x

2
= p(γ), and using (1.6) and (1.7).

LEMMA 3.10. As γ +• γ ,

(3.8) σ
 1
(γ)τ(γ)[γ - φ(γ)] -> 1,

(3.9) σ
 1
(γ)τ(γ)[γ - p(γ)] -• ζ.

Proof We shall show first that as γ + γ ,

uniformly in x , x , if φ(γ) < x < x < γ. By A(v) there exists 0 < d < °° such

that |σ'(γ)| < d, γ 6 Γ. Take ε > 0 arbitrary. Since by

A(vi) τ
- 1
(γ) + 0

 a s
 γ -• γ* there is a neighborhood V of * such that for

all γ € V, τ~l
(y) < εd~

l
. Then for γ € V and φ(γ) < x

χ
 < x

2
 < γ,
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|lo
g
(σ(x

2
)/σ(

Xl
))| = I /

χ

2
σ
 1
(x)σ'(x)dx| < άτ'

l
(y) < ε.

Thus, σ(γ)/σ(x) appearing in (3.10) is bounded between e and e , and the same

must be true for the left-hand side of (3.10). Then (3.8) follows from (3.10)

by taking in (3.10) x - φ(γ), x = γ, and inverting. Similarly, (3.9)

follows by taking in (3.10) x = ρ(γ), x
2
 = γ, and using (1.7).

Proof of Theorem 3.1. We shall keep 0 < ζ < 1 and integer r > 0 fixed and shall

prove that α(c,γ) and 3(c,γ) converge to 0 uniformly in γ as c -• °°. Write (3.1)

in the form

(3.11) α(c,γ) = P{T*
N γ
 - A(N,γ) > 0},

in which

(3.12) T*
γ
 = σ

 1
(γ)N

1 / 2
(T

N γ
 - γ)

and

-
(3.13) A(N,γ) = σ

By (2.1), A(N,γ) > cσ~
1
(γ)τ(T

Nγ
)[T

Nγ
 - P(

τ

N γ
)l

 s i n c e b
y

 L e m m a 3 8
>

-1 P
σ (γ)σ(T ) —>• 1 as c —• ~ u.i.γ., and by (3.5)

(using T € Γ a.e. by A(i)) we
P
 *

have A(N,γ) —• » as c —»• °° u.i.γ. Furthermore, T is bounded in probability

as c — > « u.i.γ by Lemma 3.6. It follows

* P
that T

 xτ
 - A(N,γ) —• - « as c —• «> u.i.γ so
Nγ
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that α(c,γ) —* 0 as c —> °° u.i.γ.

Similarly, we write (3.2) in the form

^
3
"

1 4
^ 3(c,γ) = P{φ (T

N
 ) + B(N,γ) < 0},

in which

(3.15) Φ*(T
XT
J - σ"

1
(γ)N

1 / 2
[φ(T

v
J - φ(γ)]

and

(3.16) B(N,γ) = σ
 1
(γ)N

1 / 2
 [ρ(T ) - Φ<T

N
 >

From (3.15) we obtain φ (T ) = φ
f
(t)T , using (3.12), with t

between T and γ. Since by A(v)|φ'(t)| is bounded above,

and T is bounded in probability, so is φ (T ), as c + °° u.i.γ. The

term B(N,γ) of (3.16) is treated in the same way as A(N,γ) of (3.13), using

(3.6). It follows that

ie p

φ (T ) + B(N,γ) + » so that 3(c,γ) -• 0 as c + » u.i.γ.

* d
Proof of Theorem 3.2. Write α(c,γ) in the form (3.11), then T ->• N(0,l) as

* P *

γ •> γ by Lemma 3.6. Furthermore, A(N,γ) •> ζc as γ •»• γ , using Lemmas 3.3, 3.5,

and 3.8, and using (3.9) after observing that T
 a

4
e
* γ by A(viii).

Therefore, the right-hand side of (3.11) converges to P{N(0,l) > ζc} .

Write 3(c,γ) in the form

(3.17) 3(c,γ) = P{T*
γ
 < A(N,γ) - C(N,γ)},

— 1 1 / 2 P

in which C(N,γ) - σ (γ)N ' (γ - φ(γ)). Here A(N,γ) > ζc as before, and

C(N,γ)
 a
^

e
'c, using (3.8) and Lemma 3.5. Thus, the right-hand side of (3.17)

converges to P{N(0,l) < -(l-ζ)c}.
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4. Applications .

Only a few of these will be indicated.

4 .1 Translation parameter.

Let X,,X
2
,... be i.i.d. with known distribution except for the unknown

mean γ. Suppose the X
i
 have finite variance, which we may assume to be unity.

A possible choice of T
n
 is X = n" ^U^A (

T n i s i s t h e
 appropriate choice in

the normal translation parameter problem since then {T } is a sufficient

sequence.) We may set T - Z + γ in which Z^,Z2» are i i d with known

distribution that has mean 0, variance 1. According to (1.6) and (1.7), and

using σ(γ) Ξ 1, we have τ~ (γ) = γ - φ(γ) = δ(γ), and p(γ) = γ - ζδ(γ). Here

Γ = R, and if δ(γ) + 0 as γ + ±°°, then γ = ±°°. Assumption A(v) requires 6 to

be differentiable, with bounded derivative, and A(ix) puts a further mild

condition on δ; the latter is for instance satisfied if δ(x+y)/δ(x) + 1 as

x •* ±°°, y -»• 0. The uniformity in γ of A(iii) and A(iv) is obvious since

T - γ * Z does not involve γ. The estimation-oriented procedure in Wijsman
nγ n

(1982) is of the form (N,p) defined in Section 3 of the present paper.

4.2. Scale parameter.

Let X = γZ , γ € (O,00), in which Z ,Z2 ... are i.i.d. with known

2
distribution supported on (0,°°) and having mean 1 and variance σ^ Suppose one

chooses T - X , so T - γZ This would for instance be the appropriate

choice if the Z
±
 have density e~

Z
, z > 0, as studied by Juhlin (1985). Here

σ(γ) = γσ
Q
 and the uniformity in A(iii) and (iv) is again obvious since γ drops

out. The functions τ and p defined by (1.6) and (1.7) are

τ(Ύ) = -σ
0
[log(l - Ύ^δίγ))]"

1
 and p(γ) = γ[l - y~

l
6(y)]

ζ
. Here

γ = 0 or » if γ δ(γ) -• 0 as γ -• 0 or ». Assumption A(ix) will be satisfied

for instance if δ(xy)/δ(x) * 1 if y * 1 and x + 0 or «>.

4 .3 Translation-scale parameter.

Let X. = μ + σZ , Z ,Z ,... being i.i.d. with known distribution.
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If γ = μ/σ then one may base inference on the invariant sequence T = X /s ,
n n n

2
where s

n
^ is the sample variance of X p . . . , ^ . This is studied in Wijsman

(1983) for standard normal Z
f
s, in which case {T } is invariantly sufficient.

2 -1
 n

 - 2
We may put T » (γ + Z )/s where now s = (n-1) Σ (Z.-Z ) . Verification

nγ n n n -in

of Assumption A, especially A(iii) and (iv), requires more care and will be

treated in a separate study. Another problem is provided by considering

2 2
γ - σ , in which case we may take T = γs
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