Czechoslovak Mathematical Journal

Ján Jakubík

Sequential convergences on $M V$-algebras

Czechoslovak Mathematical Journal, Vol. 45 (1995), No. 4, 709-726

Persistent URL: http://dml.cz/dmlcz/128552

Terms of use:

© Institute of Mathematics AS CR, 1995

Institute of Mathematics of the Czech Academy of Sciences provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This document has been digitized, optimized for electronic delivery and stamped with digital signature within the project DML-CZ: The Czech Digital Mathematics Library http://dml.cz

SEQUENTIAL CONVERGENCES ON $M V$-ALGEBRAS

Ján Jakubík, Košice

(Received March 22, 1994)

The notion of an $M V$-algebra was introduced by Chang [2]. Various systems of axioms and various notation for $M V$-algebras have been applied; we shall use those from [4]; cf. also [13].

We investigate sequential convergences on $M V$-algebras. The definition is analogous to that studied for lattice ordered groups (cf. [6], [8]), Boolean algebras [9], [11] or lattices [12].

Let \mathscr{A} be an $M V$-algebra and let G be a lattice ordered group. We denote by $\operatorname{Conv} \mathscr{A}$ and $\operatorname{Conv} G$ the set of all sequential convergences on \mathscr{A} or on G, respectively. Next, let Conv ${ }^{\text {b }} G$ be the set of all bounded sequential convergences on G; this notion has been dealt with in [10]. All the sets Conv $\mathscr{A}, \operatorname{Conv} G$ and Conv $^{b} G$ are partially ordered by inclusion.

Mundici [14] proved that for each $M V$-algebra \mathscr{A} there exists an abelian lattice ordered group G with a strong unit u such that \mathscr{A} can be constructed by means of G. In this construction, the underlying set A of \mathscr{A} is the interval $[0, u]$ of G.
We shall prove that the partially ordered set Conv \mathscr{A} is isomorphic to Conv ${ }^{\text {b }} G$. From this we deduce that each interval of Conv \mathscr{A} is a complete Bouwerian lattice. The lattice Conv \mathscr{A} has a greatest element if and only if $\operatorname{Conv} G$ has a greatest element.

It will be shown that if $[0, u]$ is a Boolean algebra, then the relation Conv $\mathscr{A}=$ Conv \mathscr{B} is valid (where \mathscr{B} is the Boolean algebra under consideration, and Conv \mathscr{G} is as in [9]).

[^0]
1. Preliminaries

The following definition of an $M V$-algebra is recalled from [4].
1.1. Definition. An $M V$-algebra is a system $\mathscr{A}=\langle A ; \oplus, *, \neg, 0,1\rangle$ (where \oplus,* are binary operations, \neg is a unary operation and 0,1 are nulary operations) such that the following identities are satisfied:

$$
\begin{aligned}
& \left(\mathrm{m}_{1}\right) x \oplus(y \oplus z)=(x \oplus y) \oplus z ; \\
& \left(\mathrm{m}_{2}\right) x \oplus 0=x \\
& \left(\mathrm{~m}_{3}\right) x \oplus y=y \oplus x ; \\
& \left(\mathrm{m}_{4}\right) x \oplus 1=1 \\
& \left(\mathrm{~m}_{5}\right) \neg \neg x=x \\
& \left(\mathrm{~m}_{6}\right) \neg 0=1 ; \\
& \left(\mathrm{m}_{7}\right) x \oplus \neg x=1 \\
& \left(\mathrm{~m}_{8}\right) \neg(\neg x \oplus y) \oplus y=\neg(x \oplus \neg y) \oplus x \\
& \left(\mathrm{~m}_{9}\right) x * y=\neg(\neg x \oplus \neg y) .
\end{aligned}
$$

Let \mathbb{N} be the set of all positive integers and for each $n \in \mathbb{N}$ let $A_{n}=A$. The direct product of sets $A_{n}(n \in \mathbb{N})$ will be denoted by $A^{\mathbb{N}}$. The elements of $A^{\mathbb{N}}$ are denoted by $\left(a_{n}\right)_{n \in \mathbb{N}}$ or simply by $\left(a_{n}\right)$; they will be called sequences in \mathscr{A}. The notion of a subsequence of a sequence in \mathscr{A} has the usual meaning. If $\left(x_{n}\right) \in A^{\mathbb{N}}$ and $x \in A$ such that $x_{n}=x$ for each $n \in \mathbb{N}$, then we write $\left(x_{n}\right)=\operatorname{const} x$.

If $K \subseteq A^{\mathbb{N}} \times A$, then a relation of the form $\left(\left(x_{n}\right), x\right) \in K$ will be denoted also by writing $x_{n} \longrightarrow_{K} x$.

For each $x \in A$ and $y \in A$ we put

$$
\begin{aligned}
& x \vee y=(x * \neg y) \oplus y, \\
& x \wedge y=\neg(\neg x \vee \neg y)
\end{aligned}
$$

Let us consider the structure $\mathscr{L}(\mathscr{A})=\langle A ; \vee, \wedge\rangle$. Then we have
1.2. Proposition. (Cf., e.g., [4].) $\mathscr{L}(\mathscr{A})$ is a distributive lattice with the least element 0 and the greatest element 1.

The partial order induced on A by means of the lattice $\mathscr{L}(\mathscr{A})$ will be denoted by \leqslant. When considering a partial order on the set A we always mean the partial order \leqslant.
1.3. Definition. A subset K of $A^{\mathbb{N}} \times A$ will be said to be a sequential convergence in \mathscr{A} if the following conditions are satisfied:
(i) If $x_{n} \longrightarrow_{K} x$ and $\left(y_{n}\right)$ is a subsequence of $\left(x_{n}\right)$, then $y_{n} \longrightarrow_{K} x$.
(ii) If $\left(x_{n}\right) \in A^{\mathbb{N}}, x \in A$ and if for each subsequence $\left(y_{n}\right)$ of $\left(x_{n}\right)$ there is a subsequence $\left(z_{n}\right)$ of $\left(y_{n}\right)$ such that $z_{n} \longrightarrow_{K} x$, then $x_{n} \longrightarrow_{K} x$.
(iii) If $\left(x_{n}\right) \in A^{n}, x \in A,\left(x_{n}\right)=$ const x, then $x_{n} \longrightarrow_{K} x$.
(iv) If $x_{n} \longrightarrow_{K} x$ and $x_{n} \longrightarrow_{K} y$, then $x=y$.
(v) If $x_{n} \longrightarrow_{K} x$ and $y_{n} \longrightarrow_{K} y$, then $x_{n} \oplus y_{n} \longrightarrow_{K} x \oplus y, x_{n} * y_{n} \longrightarrow_{K} x * y$ and $\neg x_{n} \rightarrow_{K} \neg x$.
(vi) If $x_{n} \leqslant y_{n} \leqslant z_{n}$ is valid for each $n \in \mathbb{N}$ and if $x_{n} \rightarrow_{K} x, z_{n} \rightarrow_{K} x$, then $y_{n} \longrightarrow_{K} x$.

In what follows we shall say "convergence" instead of "sequential convergence". We denote by Conv \mathscr{A} the set of all convergences in \mathscr{A}. The set Conv \mathscr{A} is partially ordered by inclusion.

Let $K(0)$ be the set consisting of all elements $\left(\left(x_{n}\right), x\right)$ of $A^{\mathbb{N}} \times A$ such that there is $m \in \mathbb{N}$ with $x_{n}=x$ for each $n \geqslant m$. Then we obviously have
1.4. Lemma. $K(0)$ is the least element of Conv \mathscr{A}.

The notion of convergence in a lattice was defined in [12]. It is defined as follows (we apply analogous notation as above).
1.5. Definition. Let $\mathscr{L}=(L ; \wedge, \vee)$ be a lattice. A subset K of $L^{\mathbb{N}} \times L$ is a convergence in \mathscr{L} if the conditions (i)-(iv), (vi) from 1.3 are satisfied and if, moreover, the following condition holds:
$(\mathrm{v}(1))$ If $x_{n} \rightarrow_{K} x$ and $y_{n} \rightarrow_{K} y$, then $x_{n} \wedge y_{n} \rightarrow_{K} x \wedge y$ and $x_{n} \vee y_{n} \rightarrow_{K} x \vee y$.
From the definition of the lattice $\mathscr{L}(\mathscr{A})$ and from 1.3 we immediately obtain
1.6. Lemma. Let $K \in \operatorname{Conv} \mathscr{A}$. Then K is a convergence on the lattice $\mathscr{L}(\mathscr{A})$. If $\left\{K_{i}\right\}_{i \in I}$ is a nonempty system of elements in Conv \mathscr{A}, then 1.3 yields that $\bigcap_{i \in I} K$. also belongs to Conv \mathscr{A}. Hence we have
1.7. Lemma. The partially ordered set Conv \mathscr{A} is a \wedge-semilattice. If $K \in$ Conv \mathscr{A}, then the interval $\left[K(0), I^{r}\right]$ is a complete lattice. Hence if Conv \mathscr{A} has a greatest element, then Conv \mathscr{A} is a complete lattice.

For lattice ordered groups we apply the same notation as in [1]. The following theorems 1.8 and 1.9 are due to Mundici [14] (for the case of linearly ordered $M V$ algebras cf. Chang [11]).
1.8. Theorem. Let G be an abelian lattice ordered group with a strong unit u. Let A be the interval $[0, u]$ of G. For each a and b in A we put

$$
a \oplus b=(a+b) \wedge u, \quad \neg a=u-a, \quad 1=u
$$

Next, let the binary operation $*$ on A be defined by $\left(m_{9}\right)$. Then $\mathscr{A}=\langle A ; \oplus, *, \neg, 0,1\rangle$ is an $M V$-algebra.

If G and \mathscr{A} are as in 1.8 then we put $\mathscr{A}=\mathscr{A}(G, u)$.
1.9. Theorem. Let \mathscr{A} be an $M V$-algebra. Then there exists an abelian lattice ordered group G with a strong unit u such that $\mathscr{A}=\mathscr{A}_{0}(G, u)$.
1.10. Lemma. Let \mathscr{A} and G be as in 1.9. Let $x, y \in A, x \leqslant y$. Then

$$
y-x=\neg(x \oplus \neg y) .
$$

Proof. According to 1.8 we have

$$
x \oplus \neg y=(x+(u-y)) \wedge u=(u-(y-x)) \wedge u=u-(y-x)
$$

hence

$$
\neg(x \oplus \neg y)=u-(u-(y-x))=y-x .
$$

1.11. Lemma. Let \mathscr{A} be an $M V$-algebra, $x, y, z \in A, x \leqslant y \leqslant z$. Then

$$
\neg(x \oplus \neg z)=\neg(x \oplus \neg y) \oplus \neg(y \oplus \neg z) .
$$

Proof. According to 1.10 and 1.8 we have

$$
\begin{aligned}
\neg(x \oplus \neg z) & =z-x=(x-y)+(y-x)=(z-y) \oplus(y-x) \\
& =\neg(y \oplus \neg z) \oplus(x \oplus \neg y) .
\end{aligned}
$$

1.12. Lemma. Let \mathscr{A} be an $M V$-algebra, $x, y \in A, x \leqslant y$. Then

$$
x=\neg(\neg y \oplus \neg(x \oplus \neg y)) .
$$

Proof. In view of 1.10 we have

$$
\begin{aligned}
\neg(\neg y \oplus \neg(x \oplus \neg y)) & =\neg(\neg y \oplus(y-x))=\neg((u-y) \oplus(y-x)) \\
& =\neg(((u-y)+(y-x)) \wedge u)=\neg((u-x) \wedge u) \\
& =\neg(u-x)=\neg \neg x=x .
\end{aligned}
$$

2. The systems $\mathrm{Conv}_{0} G$ and $\mathrm{Conv}_{0} \mathscr{A}$

All lattice ordered groups considered in the present paper are assumed to be abelian. If G is a lattice ordered group then its underlying set will be also denoted by the same symbol G.
2.1. Definition. Let G be a lattice ordered group and let K be a subset of $G^{\mathbb{N}} \times G$. The set K is said to be a convergence in G if the conditions (i) $-(\mathrm{iv}),(\mathrm{v}(1))$, (vi) above are satisfied and if, moreover, the following condition holds:
$(\mathrm{v}(2))$ If $x_{n} \rightarrow_{K} x$ and $y_{n} \rightarrow_{K} y$ then $x_{n}+y_{n} \rightarrow_{K} x+y$ and $-x_{n} \longrightarrow_{K}-y$.
We denote by Conv G the set of all convergences in G; this set is partially ordered by inclusion.

For each K in Conv G we put

$$
\begin{aligned}
& K^{0}=\left\{\left(x_{n}\right) \in G^{\mathbb{N}}: x_{n} \longrightarrow_{K} 0 \text { and } x_{n} \geqslant 0 \text { for each } n \in \mathbb{N}\right\} \\
& \text { Conv }_{0} G=\left\{K^{0}: K \in \operatorname{Conv} G\right\} .
\end{aligned}
$$

We can regard $G^{\mathbb{N}}$ as the direct product $\prod_{n \in \mathbb{N}} G_{n}$, where $G_{n}=G$ for $n \in \mathbb{N}$. Hence $G^{\mathbb{N}}$ is a lattice ordered group. For each lattice ordered group H the symbol H^{+} denotes the positive cone of H; thus H^{+}is a lattice ordered semigroup.
2.2. Lemma. (Cf. [6], 1.2 and 1.3.) Let K^{1} be a subset of $G^{\mathbb{N}}$. Then K^{1} belongs to Conv $_{0} G$ if and only if K^{1} is a convex subsemigroup of the semigroup $\left(G^{\mathbb{N}}\right)^{+}$such that the following conditions are satisfied:
(I) If $\left(g_{n}\right) \in K^{1}$ then each subsequence of $\left(g_{n}\right)$ belongs to K^{1}.
(II) Let, $\left(g_{n}\right) \in\left(G^{\mathbb{N}}\right)^{+}$. If each subsequence of $\left(g_{n}\right)$ has a subsequence belonging to K^{1}, then $\left(g_{n}\right) \in K^{1}$.
(III) Let $g \in G$. Then const g belongs to K^{1} if and only if $g=0$.

The set $\mathrm{Conv}_{0} G$ is partially ordered by inclusion. The following lemma is easy to verify. (Cf. also [6].)
2.3. Lemma. (i) For each K in $\operatorname{Conv} G$ put $\varphi_{1}(K)=K^{0}$. Then φ_{1} is an isomorphism of Conv G onto $\mathrm{Conv}_{0} G$.
(ii) Let $K^{1} \in \operatorname{Conv}_{0} G$. Put $K=\left\{\left(\left(x_{n}\right), x\right) \in G^{\mathbb{N}} \times G:\left|x_{n}-x\right| \in K^{1}\right\}$. Then $K \in \operatorname{Conv} G$ and $\varphi_{1}(K)=K_{1}$.

Direct products of $M V$-algebras have been investigated in [2] and [13].
Let \mathscr{A} be an $M V$-algebra. Similarly as in the case of lattice ordered groups above we denote by $A^{\mathbb{N}}$ the direct product $\prod_{n \in \mathbb{N}} A_{n}$, where $A_{n}=A$ for each $n \in \mathbb{N}$.

Next, for each $K \in$ Conv \mathscr{A} we denote

$$
\begin{aligned}
K^{0} & =\left\{\left(x_{n}\right) \in A^{\mathbb{N}}: x_{n} \longrightarrow_{K} 0\right\}, \\
\operatorname{Conv}_{0} \mathscr{A} & =\left\{K^{-0}: K \in \mathrm{Conv} \mathscr{A}\right\} .
\end{aligned}
$$

In view of the definition of $\mathrm{Conv}_{0} \mathscr{A}$ and according to 1.3 we have
2.4. Lemma. Let $K^{1} \in \operatorname{Conv}_{0} \mathscr{A}$. Then
(i) K^{1} satisfies the conditions (I), (II) and (III) from 2.2;
(ii) K^{1} is a convex subset of the lattice $\left(A^{\mathbb{N}} ; \vee, \wedge\right)$;
(iii) K^{1} is closed with respect to the operation \oplus.

The following two lemmas 2.5 and 2.6 will show that the set Conv \mathscr{A} can be reconstructed from $\mathrm{Conv}_{0} \mathscr{A}$.

Let $K(1)$ be a nonempty subset of $A^{\mathbb{N}}$. For $\left(\left(x_{n}\right), x\right) \in A^{\mathbb{N}} \times A$ we consider the following condition:
(*) There exist $\left(u_{n}\right),\left(v_{n}\right) \in A^{\mathbb{N}}$ such that
(i) $u_{n} \leqslant x, u_{n} \leqslant x_{n}$ for each $n \in \mathbb{N}$ and $\left(\neg\left(u_{n} \oplus \neg x\right)\right) \in K(1)$;
(ii) $v_{n} \geqslant x, v_{n} \geqslant x_{n}$ for each $n \in \mathbb{N}$ and $\left(\neg\left(x \oplus \neg v_{n}\right)\right) \in K(1)$.

We denote by $K(2)$ the set of all $\left(\left(x_{n}\right), x\right) \in A^{\mathbb{N}} \times A$ such that the condition $(*)$ is valid. If $\left(\left(x_{n}\right), x\right)$ belongs to $K(2)$ then we write $x_{n} \longrightarrow_{K^{\prime}(2)} x$.
2.5. Lemma. Let $K^{\prime}(1)$ be a nonempty subset of $A^{\mathbb{N}}$ satisfying the conditions (i), (ii) and (iii) from 2.4. Let $K(2)$ be defined as above. Then $K(2) \in$ Conv \mathscr{A}.

Proof. We shall verify that $K(2)$ satisfies the conditions (i)-(vi) from 1.3.
(i): The validity of (i) is obvious.
(ii): Let G be as in 1.9. In view of the assumption (cf. 2.4 (i)) $K(1)$ satisfies the conditions (I), (II) and (III) from 2.2. Thus 2.2 yields that $K(1)$ belongs to Conv ${ }_{0} G$.

Let $\left(x_{n}\right) \in A^{\mathbb{N}}, x \in A$. Suppose that the assumptions of the condition (ii) of 1.3 hold, where K is replaced by $K(2)$.

Then for a sequence $\left(z_{n}\right)$ as in (ii) of 1.3 we have $z_{n} \longrightarrow_{K(2)} x$. Thus there are $\left(u_{n}\right),\left(v_{n}\right) \in A^{\mathbb{N}}$ such that the conditions (i) and (ii) from (*) are valid, where x_{n} is replaced by z_{n}.

According to 1.10 we have

$$
\begin{aligned}
& \neg\left(u_{n} \oplus \neg x\right)=x-u_{n}, \\
& \neg\left(x \oplus \neg v_{n}\right)=v_{n}-x,
\end{aligned}
$$

hence $\left(x-u_{n}\right) \in K(1)$ and $\left(v_{n}-x\right) \in K(1)$. Since $K(1) \in \operatorname{Conv}_{0} G$ and $u_{n} \leqslant z_{n} \leqslant v_{n}$ for each $n \in \mathbb{N}$, by applying 2.3 we obtain that in the lattice ordered group G we have $\left(\left|z_{n}-x\right|\right) \in K(1)$ and thus (cf. 2.1) we get $\left(\left|x_{n}-x\right|\right) \in K(1)$. This implies that

$$
\left(x-\left(x_{n} \wedge x\right)\right) \in K(1), \quad\left(\left(x_{n} \vee x\right)-x\right) \in K(1)
$$

whence $\left(x_{n}, x\right) \in K(2)$. Therefore the condition (ii) from 1.3 is valid for $K(2)$.
(iii): Under the assumptions as in (iii) it suffices to put $u_{n}=v_{n}=x$ for each $n \in \mathbb{N}$ and then according to the definition of $K(2)$ the relation $x_{n} \longrightarrow_{K(2)} x$ holds.
(iv): Since (iv) is a consequence of (v) it suffices to deal with (v).
(v): Let $x_{n} \longrightarrow_{K(2)} x$. Hence there are $\left(u_{n}\right)$ and $\left(v_{n}\right)$ in $A^{\mathbb{N}}$ such that $(*)$ is valid. Thus for each $n \in \mathbb{N}$ we have

$$
\neg u_{n} \geqslant \neg x, \quad \neg u_{n} \geqslant \neg x_{n}, \quad \neg u_{n} \leqslant \neg x, \quad \neg v_{n} \leqslant \neg x_{n} .
$$

We have also

$$
\begin{aligned}
& \neg\left(\neg v_{n} \oplus \neg \neg x\right)=\neg\left(x \oplus \neg v_{n}\right) \in K(1), \\
& \neg\left(\neg x \oplus \neg \neg u_{n}\right)=\neg\left(u_{n} \oplus \neg x\right) \in K(1),
\end{aligned}
$$

whence $\neg x_{n} \longrightarrow_{K(2)} \neg x$.
Next, let $x_{n} \longrightarrow_{K(2)} x$ and $x_{n}^{\prime} \longrightarrow_{K(2)} x^{\prime}$. Let $\left(u_{n}\right)$ and $\left(v_{n}\right)$ be as in (*); further let $\left(u_{n}^{\prime}\right)$ and $\left(v_{n}^{\prime}\right)$ have analogous meanings (with respect to x_{n}^{\prime} and x^{\prime}). Denote $x^{\prime \prime}=x \oplus x^{\prime}, u_{n}^{\prime \prime}=u_{n} \oplus u_{n}^{\prime}, v_{n}^{\prime \prime}=v_{n} \oplus v_{n}^{\prime}$. Hence $u_{n}^{\prime \prime} \leqslant x^{\prime \prime}, u_{n}^{\prime \prime} \leqslant x_{n}^{\prime \prime}, v_{n}^{\prime \prime} \geqslant x^{\prime \prime}$ and $v_{n}^{\prime \prime} \geqslant x_{n}^{\prime \prime}$.

We also have

$$
u_{n}^{\prime \prime}=u_{n} \oplus u_{n}^{\prime} \leqslant x \oplus u_{n}^{\prime} \leqslant x \oplus x^{\prime}=x^{\prime \prime}
$$

In view of 1.9 there are $p_{n}, q_{n} \in A^{\mathbb{N}}$ such that for each $n \in \mathbb{N}$

$$
u_{n}^{\prime \prime}+p_{n}=u_{n}^{\prime \prime} \oplus p_{n}=x \oplus u_{n}^{\prime}, \quad\left(x \oplus u_{n}^{\prime}\right)+q_{n}=x \oplus u_{n}^{\prime} \oplus q_{n}=x^{\prime \prime} .
$$

Then

$$
\begin{aligned}
0 \leqslant p_{n} & =\left(x \oplus u_{n}^{\prime}\right)-\left(u_{n} \oplus u_{n}^{\prime}\right)= \\
& =\left(\left(x+u_{n}^{\prime}\right) \wedge u\right)-\left(\left(u_{n}+u_{n}^{\prime}\right) \wedge u\right)
\end{aligned}
$$

Whenever a, b and c are elements of a lattice ordered group with $a \leqslant b$, then it is easy to verify that

$$
(b \wedge u)-(a \wedge u) \leqslant b-a .
$$

Hence

$$
0 \leqslant p_{n} \leqslant\left(x+u_{n}^{\prime}\right)-\left(u_{n}+u_{n}^{\prime}\right)=x-u_{n} .
$$

Since $\left(x-u_{n}\right) \in K(1)$ we obtain that $\left(p_{n}\right)$ belongs to $K(1)$. Similarly we prove that $\left(q_{n}\right)$ belongs to $K(1)$ as well. Therefore $\left(x^{\prime \prime}-u_{n}^{\prime \prime}\right) \in K(1)$ (cf. also 1.11). In another notation

$$
\left(\neg\left(u_{n}^{\prime \prime} \oplus \neg x^{\prime \prime}\right)\right) \in K(1) .
$$

By analogous steps we can verify that

$$
\left(\neg\left(x^{\prime \prime} \oplus \neg v_{n}^{\prime \prime}\right)\right) \in K(1) .
$$

Hence according to the definition of $K(2)$ we obtain

$$
x_{n} \oplus x_{n}^{\prime} \longrightarrow_{K(2)} x \oplus y .
$$

(vi): Let the assumptions from (vi) be fulfilled. Then there are $\left(u_{n}\right),\left(v_{n}\right) \in A^{\mathbb{N}}$ such that $x_{n} \leqslant x \leqslant v_{n}, u_{n} \leqslant x_{n}, z_{n} \leqslant v_{n}$ for each $n \in \mathbb{N}$ and

$$
\neg\left(u_{n} \oplus \neg x\right) \in K(1), \quad \neg\left(x \oplus \neg v_{n}\right) \in K(1)
$$

Then $u_{n} \leqslant y_{n} \leqslant v_{n}$ for each $n \in \mathbb{N}$. Hence $y_{n} \longrightarrow_{K(2)} x$.
The relation $x_{n} * y_{n} \longrightarrow_{K(2)} x * y$ is a consequence of the above results and of (m_{9}).
2.6. Lemma. Let $K(1)$ and $K(2)$ be as above. Then $(K(2))^{0}=K(1)$.

Proof. Let $\left(x_{n}\right) \in(K(2))^{0}, x_{n} \longrightarrow_{K(2)} 0$. in view of the definition of $K(2)$ there is $\left(v_{n}\right) \in A^{\mathbb{N}}$ such that $v_{n} \geqslant x_{n}$ for each $n \in \mathbb{N}$ and

$$
\left(\neg\left(0 \oplus \neg v_{n}\right)\right) \in K(1) .
$$

Thus $\left(v_{n}\right) \in K(1)$. Put $u_{n}=0$ for each $n \in \mathbb{N}$. In view of the convexity of $K(1)$ we obtain that $\left(x_{n}\right)$ belongs to $K(1)$. Hence $(K(2))^{0} \subseteq K(1)$.

Conversely, let $\left(x_{n}\right) \in K(1)$. If we put $u_{n}=v_{n}=x_{n}$ for each $n \in \mathbb{N}$, then in view of the definition of $K(2)$ we get $x_{n} \longrightarrow_{K(2)} 0$, whence $\left(x_{n}\right) \in(K(2))^{0}$.
2.7. Corollary. Conv $0 \mathscr{A}$ is the system of all subsets of $A^{\mathbb{N}}$ which satisfy the conditions (i), (ii) and (iii) from 2.4.

If $K \in \operatorname{Conv} \mathscr{A}$, then we put $f_{1}(K)=K^{0}$. Next, for $K(1) \in \operatorname{Conv}_{0} \mathscr{A}$ we set $f_{2}(K(1))=K(2)$ (under the notation as above).

Whenever K and K^{\prime} belong to Conv \mathscr{A} and $K \subseteq K^{\prime}$, then $f_{1}(K) \subseteq f_{1}\left(K^{\prime}\right)$. Similarly, if K_{1} and K_{2} are elements of $\operatorname{Conv}_{0} \mathscr{A}$ with $K_{1} \subseteq K_{2}$, then $f_{2}\left(K_{1}\right) \subseteq$ $f_{2}\left(K_{2}\right)$.
2.8. Lemma. Let $K \in \operatorname{Conv} A$. Then $f_{2}\left(K^{0}\right)=K$.

Proof. Put $f_{2}\left(K^{0}\right)=K(2)$. Let $\left(\left(x_{n}\right), x\right) \in K(2)$. Hence there exist $\left(u_{n}\right),\left(v_{n}\right) \in A^{\mathbb{N}}$ such that $(*)$ holds, where $K(1)=K^{0}$. Thus

$$
\left(\neg\left(x \oplus \neg v_{n}\right)\right) \in K^{0}
$$

According to $1.10\left(v_{n}-x\right) \in K^{0}$, hence $\left(\left(v_{n}-x\right), 0\right) \in K$, i.e., $v_{n}-x \rightarrow_{K} 0$. Then $\left(v_{n}-x\right) \oplus x \longrightarrow_{K} x$. Clearly $\left(v_{n}-x\right) \oplus x=\left(v_{n}-x\right)+x=v_{n}$, hence $v_{n} \longrightarrow_{K} x$.

Next, $\left(\neg\left(u_{n} \oplus \neg x\right)\right) \in K^{0}$, whence in view of $1.10,\left(x-u_{n}\right) \in K^{0}$, i.e., $x-u_{n} \longrightarrow_{K} 0$. According to 1.12,

$$
u_{n}=\neg\left(\neg x \oplus \neg\left(u_{n} \oplus \neg x\right)\right) .
$$

Thus by applying $1.10 u_{n}=\neg\left(\neg x \oplus\left(x-u_{n}\right)\right)$ and hence

$$
u_{n} \rightarrow_{K} \neg(\neg x \oplus 0)=x
$$

Then by 1.3 (vi) we obtain that $x_{n} \rightarrow_{K} x$. Therefore $K(2) \subseteq K$.
Conversely, let $\left(\left(x_{n}\right), x\right) \in K$. Put $u_{n}=x_{n} \wedge x$ and $v_{n}=x_{n} \vee x$ for each $n \in \mathbb{N}$. Then $u_{n} \longrightarrow_{K} x$ and $v_{n} \longrightarrow_{K} x$, hence

$$
\begin{aligned}
& \neg\left(u_{n} \oplus \neg x\right) \longrightarrow_{K} \neg(x \oplus \neg x)=\neg u=0, \\
& \neg\left(x \oplus \neg v_{n}\right) \longrightarrow_{K} \neg(x \oplus \neg x)=0 .
\end{aligned}
$$

Consequently,

$$
\left(\neg\left(u_{n} \oplus \neg x\right)\right) \in K^{0}, \quad\left(\neg\left(x \oplus \neg v_{n}\right)\right) \in K^{0}
$$

Therefore $\left(\left(x_{n}\right), x\right) \in K(2)$. Summarizing, we conclude $K(2)=K$.
2.9. Theorem. f_{2} is an isomorphism of the partially ordered set $\operatorname{Conv}_{0} \mathscr{A}$ onto Conv \mathscr{A} and $f_{1}=f_{2}^{-1}$.

Proof. This is a consequence of $2.6,2.7,2.8$ and of the fact that both f_{1} and f_{2} are monotone.

3. The relations between Conv $_{0} \mathscr{A}$ and Conv G

Again, let \mathscr{A} be an $M V$-algebra. Next, let G be as in 1.9.
First we shall investigate the relations between the partially ordered sets Convo \mathscr{d} and $\mathrm{Conv}_{0} G$.

For each $K \in \operatorname{Conv}_{0} G$ we put

$$
g_{1}(K)=A^{\mathbb{N}} \cap K
$$

3.1. Lemma. If $K \in \operatorname{Conv}_{0} G$, then $g_{1}(K) \in \operatorname{Conv}_{0} \mathscr{A}$.

Proof. Let $K_{1} \in \operatorname{Conv}_{0} G$. Then there is $I_{i} \in \operatorname{Conv} G$ such that $K_{1}=K_{0}$. Hence if $\left(x_{n}\right),\left(y_{n}\right) \in K_{1}$, then $\left(x_{n} \vee y_{n}\right),\left(x_{n} \wedge y_{n}\right)$ and $\left(x_{n}+y_{n}\right)$ belong to K_{1}. Thus in view of 2.2 and 2.7 we obtain that $g_{1}\left(K_{1}\right) \in \operatorname{Conv}_{0} \mathscr{A}$.

As an immediate consequence of the definition of g_{1} we get
3.2. Lemma. Let $K_{1}, K_{2} \in \operatorname{Conv} G, K_{1} \subseteq K_{2}$. Then $g_{1}\left(K_{1}\right) \subseteq g_{1}\left(K_{2}\right)$.
3.3. Lemma. Let $a_{1}, a_{2}, \ldots, a_{n} \in A, n \geqslant 2$. Then $a_{1} \oplus a_{2} \oplus \ldots \oplus a_{n}=\left(a_{1}+\right.$ $\left.a_{2}+\ldots+a_{n}\right) \wedge u$.

Proof. By obvious induction.
A nonempty subset X of $\left(G^{\vee}\right)^{+}$is said to be regular if there exists $K \in$ Conv $_{0} G$ such that $X \subseteq K$.
3.4. Lemma. Let X be a nonempty subset of $\left(G^{\mathbb{N}}\right)^{+}$. Then the following conditions are equivalent:
(i) X is not regular.
(ii) There exist $\left(x_{n}^{1}\right),\left(x_{n}^{2}\right), \ldots,\left(x_{n}^{m}\right) \in X$, subsequences $\left(y_{n}^{k}\right)$ of $\left(x_{n}^{k}\right)(k=$ $1,2, \ldots, m$) and an element $0<g \in G$ such that $g \leqslant y_{n}^{1}+y_{n}^{2}+\ldots+y_{n}^{m}$ is valid for each $n \in{ }^{n}$.

Proof. This is a consequence of Lemma 2.5 in [10].
3.5. Lemma. Let $X \in$ Convo $_{0} \mathscr{A}$. Then the set X is regular.

Proof. By way of contradiction, assume that X is not regular. Hence the condition (ii) from 3.4 holds. Then
(1) $0 \leqslant \wedge u=\left(y_{n}^{1}+y_{n}^{2}+\ldots+y_{n}^{m}\right) \wedge u=y_{n}^{1} \oplus y_{n}^{2} \oplus \ldots \oplus y_{n}^{m}$.

According to the definition of $\operatorname{Conv}_{0} \mathscr{A}$ there exists $K \in \operatorname{Conv} \mathscr{A}$ such that $X=K^{0}$. Hence $x_{n}^{k} \longrightarrow_{K} 0$ and thus $y_{n}^{k} \longrightarrow_{K} 0$ for each $k \in\{1,2, \ldots, m\}$. Therefore

$$
y_{n}^{1} \oplus y_{n}^{2} \oplus \ldots \oplus y_{n}^{m} \longrightarrow_{K} 0
$$

in view of (1) we have arrived at a contradiction.
According to 3.5 for each $X \in$ Conv $_{0}, \mathscr{A}$ there exists a uniquely determined element Y of $\operatorname{Conv}_{0} G$ such that (i) $X \subseteq Y$, and (ii) whenever $Y_{1} \in \operatorname{Conv}_{0} G$ and $X \subseteq Y_{1}$, then $Y \subseteq Y_{1}$. We denote $Y=g_{2}(X)$ and $F=g_{2}\left(\right.$ Conv $\left._{0} \mathscr{A}\right)$.
3.6. Lemma. Let $X_{1}, X_{2} \in \operatorname{Conv}_{0} \mathscr{A}, X_{1} \subseteq X_{2}$. Then $g_{2}\left(X_{1}\right) \subseteq g_{2}\left(X_{2}\right)$.

Proof. This is an immediate consequence of the definition of g_{2}.
The set $g_{2}(X)$ can be constructively defined as follows.
Let δX be the system of all subsequences of sequences belonging to X. The convex closure (in $G^{\mathbb{N}}$) of the system $\{$ const 0$\} \cup X$ will be denoted by [$\left.X\right]$. Next, let $\langle X\rangle$ be the subgroup of $\left(G^{\mathbb{N}}\right)^{+}$generated by the set X. The symbol X^{*} will denote the set of all sequences in G^{+}each subsequence of which has a subsequence belonging to X.

Then we have
3.7. Lemma. (Cf. [5] or [10], 2.2.) Let $\emptyset \neq X \subseteq \operatorname{Conv}_{0} \mathscr{A}$. Then $g_{2}(X)=$ $[\langle\delta X\rangle]^{*}$.
3.8. Lemma. Let $X_{1}, X_{2} \in \operatorname{Conv}_{0} \mathscr{A}, X_{1} \nsubseteq X_{2}$. Then $g_{2}\left(X_{1}\right) \nsubseteq g_{2}\left(X_{2}\right)$.

Proof. There exists $\left(x_{n}\right) \in X_{1} \backslash X_{2}$. By way of contradiction, suppose tha $g_{2}\left(X_{1}\right) \subseteq g_{2}\left(X_{2}\right)$. Since $X_{1} \subseteq g_{2}\left(X_{1}\right)$, we obtain that $\left(x_{n}\right) \in g_{2}\left(X_{2}\right)$. Thus in view of 3.7, $\left(x_{n}\right) \in\left[\left\langle\delta X_{2}\right\rangle\right]^{*}$. Since $X_{2} \in$ Convo $_{0} \mathscr{A}, \delta X_{2}=X_{2}$. Also, $\left(A^{\mathbb{N}}\right)^{*} \supseteq A^{\mathbb{N}}$ and $\left(x_{n}\right) \in A^{\mathbb{N}}$, thus $\left(x_{n}\right) \in\left[\left\langle\delta X_{2}\right\rangle\right]^{*} \cap\left(A^{\mathbb{N}}\right)^{*}=\left(\left[\left\langle\delta X_{2}\right\rangle\right] \cap A^{\mathbb{N}}\right)^{*}=\left(\left[\left\langle X_{2}\right\rangle\right] \cap A^{\mathbb{N}}\right)^{*}$.

Let $\left(z_{n}\right) \in\left[\left\langle X_{2}\right\rangle\right] \cap A^{\mathbb{N}}$. Thus there is $\left(v_{n}\right) \in\left\langle X_{2}\right\rangle$ such that $\left(z_{n}\right) \leqslant\left(v_{n}\right)$. Hence $z_{n} \leqslant v_{n} \in A$ for each $n \in \mathbb{N}$. There are $\left(t_{n}^{1}\right), \ldots,\left(t_{n}^{m}\right)$ in X_{2} such that $v_{n}=t_{n}^{1}+\ldots+t_{n}^{m}$ for each $n \in \mathbb{N}$. Hence

$$
z_{n} \leqslant\left(t_{n}^{1}+\ldots+t_{n}^{m}\right) \wedge u=t_{n}^{1} \oplus t_{n}^{2} \oplus \ldots \oplus t_{n}^{m}
$$

Because $X_{2} \in \operatorname{Conv}_{0} \mathscr{A}$ we get $\left(t_{n}^{1} \oplus \ldots \oplus t_{n}^{m}\right) \in X_{2}$ and hence $\left(z_{n}\right) \in X_{2}$. Next, X_{2} satisfies Urysohn's condition (cf. the condition (ii) in 1.3); this yields that (x_{n}) $\in X_{2}$, which is a contradiction.
3.9. Lemma. Let $X \in \operatorname{Conv}_{0} \mathscr{A}$ and $Z \subseteq[-m u, m u]^{\mathbb{N}}$ for some $m \in \mathbb{N}$. Then the following conditions are valid:
(i) $\delta X=X$ and $[X]=X$.
(ii) If $\left(z_{n}\right) \in A^{\mathbb{N}}$ and $\left(z_{n}\right) \in\langle X\rangle$, then $\left(z_{n}\right) \in X$.
(iii) If $\left(t_{n}\right) \in Z^{*}$, then there is $k \in \mathbb{N}$ such that $t_{n} \in[-m u, m u]$ for each $n \geqslant k$.

Proof. The conditions (i) and (ii) follow from the definition of $\operatorname{Conv}_{0} \mathscr{A}$ (cf. also 2.4). The validity of (iii) is obvious.

For $K \in \operatorname{Conv}_{0} G$ let K^{b} be the set of all $\left(x_{n}\right) \in K$ such that $\left(x_{n}\right)$ is a bounded sequence in G. We denote by $\operatorname{Conv}_{0}^{b} G$ the system $\left\{K \in \operatorname{Conv}_{0} G: K=K^{b}\right\}$; this system has been investigated in [10]. For each $K \in \operatorname{Conv}_{0} G, K^{b}$ belongs to $\operatorname{Conv}_{0}^{b} G$.

There exist examples for which $K \neq K^{b}$. Clearly $g_{1}(K)=g_{1}\left(K^{b}\right)$ for each $K \in$ Conv $_{0} G$. Hence the mapping g_{1} fails to be a monomorphism.
3.10. Lemma. Let $X \in \operatorname{Conv}_{0} \mathscr{A}$. Then $g_{2}(X)$ is bounded.

Proof. In view of $3.7, g_{2}(X)=[\langle\delta X\rangle]^{*}$. Next, according to 3.9 (i) we have $\delta X=X$. Hence for each $\left(y_{n}\right) \in\langle\delta X\rangle$ with $y_{n} \geqslant 0$ for each $n \in \mathbb{N}$ there exist $m \in \mathbb{N}$ and $\left(z_{n}^{1}\right),\left(z_{n}^{2}\right), \ldots,\left(z_{n}^{m}\right)$ in X such that

$$
y_{n}=z_{n}^{1}+z_{n}^{2}+\ldots+z_{n}^{m} \quad \text { for each } n \in \mathbb{N} .
$$

Thus for each $\left(v_{n}\right) \in[\langle\delta X\rangle]$ there are $m \in \mathbb{N}$ and $\left(a_{n}^{i}\right),\left(b_{n}^{i}\right) \in X(i=1,2, \ldots, m)$ such that

$$
a_{n}^{1}+\ldots+a_{n}^{m} \leqslant v_{n} \leqslant b_{n}^{1}+\ldots+b_{n}^{m}
$$

Therefore $v_{n} \in[-m u, m u]$ for each $n \in \mathbb{N}$. Thus according to 3.9 , (iii), for each $\left(t_{n}\right) \in g_{2}(X)$ there is $k \in \mathbb{N}$ such that $t_{n} \in[-m u, m u]$ for each $n \geqslant k$. This yields that each sequence belonging to $g_{2}(X)$ is bounded.
3.11. Lemma. Let $Y \in \operatorname{Conv}_{0} G$ and assume that Y is bounded. Put $g_{1}(Y)=X$. Then $g_{2}(X)=Y$.

Proof. The relation $g_{1}(Y)=X$ gives that $X \subseteq Y$. Hence

$$
g_{2}(X)=[\langle\delta X\rangle]^{*} \subseteq[\langle\delta Y\rangle]^{*} .
$$

Since $Y \in \operatorname{Conv}_{0} G$ we get $[\langle\delta Y\rangle]^{*}=Y$ and thus $g_{2}(X) \subseteq Y$.
Let $\left(y_{n}\right) \in Y, y_{n} \geqslant 0$ for each $n \in \mathbb{N}$. Since $\left(y_{n}\right)$ is bounded there is $m \in \mathbb{N}$ such that $0 \leqslant y_{n} \leqslant u_{1}+u_{2}+\ldots+u_{m}$, where $u_{i}=u$ for $i=1,2, \ldots, m$. Thus there are elements z_{n}^{i} in $G(n \in \mathbb{N}, i=1,2, \ldots, m)$ with

$$
y_{n}=z_{n}^{1}+\ldots+z_{n}^{m}, \quad 0 \leqslant z_{n}^{i} \leqslant u_{i}
$$

This yields that $z_{n}^{i} \leqslant y_{n}$ for each $n \in \mathbb{N}$ and each $i \in\{1,2, \ldots, m\}$. Thus $\left(z_{n}^{i}\right) \in Y$ and, at the same time, $\left(z_{n}^{i}\right) \in A^{\mathbb{N}}$, hence $\left(z_{n}^{i}\right) \in X$ for $i=1,2, \ldots, k$. Thus $\left(y_{n}\right) \in\langle X\rangle$ and hence $\left(y_{n}\right) \in g_{2}(X)$. From this we easily deduce that $Y \subseteq g_{2}(X)$. Summarizing, we conclude $Y=g_{2}(X)$.
3.12. Corollary. $g_{2}\left(\operatorname{Conv}_{0} \mathscr{A}\right)=\operatorname{Conv}_{0}^{b} G$.
3.13. Theorem. g_{2} is an isomorphism of the partially ordered set $\operatorname{Conv}_{0} \mathscr{A}$ onto Conv $_{0}^{b} G$.

Proof. This is a consequence of $3.2,3.6,3.8$ and 3.12.
An element K of Conv G will be called bounded if, whenever $\left(\left(x_{n}\right), x\right) \in K$, then the sequence $\left(x_{n}\right)$ is bounded in G. We denote by Conv ${ }^{b} G$ the set of all elements of Conv G which are bounded. It is easy to verify that Conv ${ }^{b} G$ is a convex subset of Conv G and contains the least element of Conv G.
3.14. Theorem. The partially ordered set Conv \mathscr{A} is isomorphic to Conv ${ }^{b} G$.

Proof. Let f_{1} be as in 2.9 and let g_{2} be as above. Since f_{1} and g_{2} are isomorphisms, from

$$
\text { Conv } \mathscr{A} \xrightarrow{f_{1}} \operatorname{Conv}_{0} \mathscr{A} \xrightarrow{g_{2}} \operatorname{Conv}_{0}^{b} G
$$

we obtain an isomorphism of Conv \mathscr{A} onto $\operatorname{Conv}_{0}^{b} G$. The isomorphism φ_{1} from 2.3 gives an isomorphism

$$
\operatorname{Conv}_{0} G \xrightarrow{\varphi_{1}^{-1}} \text { Conv } G .
$$

We obviously have

$$
\varphi_{1}^{-1}\left(\operatorname{Conv}_{0}^{b} G\right)=\operatorname{Conv}^{b} G .
$$

Thus there is an isomorphism of Conv \mathscr{A} onto Conv ${ }^{b} G$.
3.15. Theorem. Each interval of the partially ordered set Conv \mathscr{A} is a complete Brouwerian lattice.

Proof. In view of [6] each interval of Conv G is a complete Brouwerian lattice. Now it suffices to apply 3.14.
3.16. Theorem. The following conditions are equivalent:
(i) Conv \mathscr{A} is a complete lattice.
(ii) $\operatorname{Conv} G$ is a complete lattice.

Proof. This follows from 3.14 and 3.15.

The following example shows that Conv ${ }^{b} G$ need not be equal to Conv G.
Let G be the set of all bounded real functions defined on the set \mathbb{R} of all reals; the operation + and the partial order on G have the usual meaning. Let $u \in G$ be such that $u(t)=1$ for each $t \in \mathbb{R}$. Consider the $M V$-algebra $\mathscr{A}=\mathscr{A}(G, u)$.

For each $n \in \mathbb{N}$ let $x_{n} \in G$ be defined as follows:

$$
x_{n}(n)=n \quad \text { and } \quad x_{n}(t)=0 \quad \text { whenever } \quad t \in \mathbb{R} \backslash\{n\} .
$$

Thus $x_{n(1)} \wedge x_{n(2)}=0$ whenever $n(1)$ and ($n(2)$ are distinct positive integers. There is $K \in \operatorname{Conv}_{0} G$ such that $\left(x_{n}\right) \in K$. It is easy to verify that whenever $K(1) \in$ Convo $_{0} \mathscr{A}$ then $g_{2}(K(1)) \neq K$. Hence $K \notin \operatorname{Conv}_{0}^{b} G$ and thus $\operatorname{Conv}_{0}^{b} G \neq \operatorname{Conv}_{0} G$. Therefore $\operatorname{Conv}^{b} G \neq \operatorname{Conv} G$.

We shall apply the following definition of higher degrees of distributivity (it has been applied for the case of lattice ordered groups in [7]; cf. also [8] and [11]).

Let L be a lattice and let $\alpha>0, \beta>0$ be cardinals. L is called (α, β)-distributive if
(i) whenever T and S are sets with $\operatorname{card} T \leqslant \alpha, \operatorname{card} S \leqslant \beta$, then the relation

$$
\text { (1) } \bigwedge_{t \in T} \bigvee_{s \in S} x_{t, s}=\bigvee_{\varphi \in S^{T}} \bigwedge_{t \in T} x_{t, \varphi(t)}
$$

is valid if all joins and meets standing in (1) do exist in L, and
(ii) the condition dual to (i) is also valid.

Next, L is called α-distributive if it is (α, α)-distributive. L is completely distributive if it is α-distributive for each cardinal α.

It is easy to verify that a lattice ordered group is ($\alpha, \beta)$-distributive if and only if it satisfies one of the conditions (i) or (ii) above.

Again, let G and \mathscr{A} be as alove. In what follows we assume that $\operatorname{card} A>1$.
3.17. Lemma. Let α, β be cardinals. Then the following conditions are equivalent:
(i) G is not (α, β)-distributive.
(ii) There exists $x \in G$ with $0<x$ such that, whenever $y \in G, 0<y \leqslant x$, then the interval $[0, y]$ of G is not (α, β)-distributive.

Proof. It is obvious that $(i i) \Longrightarrow(i)$. Let (i) be valid. Then according to 1.3 and 1.3.1 in [7] there are elements $x_{t, s}$ and x in $G(t \in T, s \in S, \operatorname{card} T \leqslant \alpha, \operatorname{card} S \leqslant \beta)$ such that $x_{t, s} \in[0, x]$ for each $t \in T, s \in S$ and
(a) $\bigwedge_{t \in T} \bigvee_{s \in S} x_{t, s}=x, \bigvee_{\varphi \in S^{T}} \bigwedge_{t \in T} x_{t, \varphi(t)}=0$.

Let $y \in G, 0<y \leqslant x$. Put $x_{t, s}^{\prime}=x_{t, s} \wedge y$ for each $t \in T$ and $s \in S$. Since G is infinitely distributive, from (a) we obtain

$$
y=y \wedge x=\bigwedge_{t \in T} \bigvee_{s \in S} x_{t, s}^{\prime}, \quad 0=0 \wedge y=\bigvee_{\varphi x^{T}} \bigwedge_{t \in T} x_{t, \varphi(t)}^{\prime}
$$

Hence the interval $[0, y]$ is not (α, β)-distributive.
3.18. Lemma. Let α, β be cardinals. Then the following conditions are equivalent:
(i) G is not (α, β)-distributive.
(ii) \mathscr{A} is not (α, β)-distributive.

Proof. Let (i) be valid. Then in view of 3.17 the condition (ii) from 3.17 holds. Put $y=u \wedge x$. Hence the interval $[0, y]$ of G is not (α, β)-distributive. Since $[0, y]$ is, at the same time, an interval in \mathscr{A} we infer that \mathscr{A} is not (α, β)-distributive. Conversely, suppose that \mathscr{A} is not (α, β)-distributive. Since $A=[0, u]$ and A is a closed sublattice of G, we infer that G is not (α, β)-distributive.
3.19. Theorem. Let \mathscr{A} be $\left(\aleph_{0}, 2\right)$-distributive. Then Conv \mathscr{A} possesses a greatest element.

Proof. In view of $3.18, G$ is ($\aleph_{0}, 2$)-distributive. Hence according to [11] Conv G has a greatest element. Therefore 3.16 yields that Conv \mathscr{A} has a greatest element.

4. Convergences on the lattice $[0, u]$

For a lattice L we apply Definition 1.5. Let Conv L be the system of all convergences on L; this system is partially ordered by inclusion.

The symbol Conv $_{c} L$ will denote the set of all $K \in \operatorname{Conv} L$ which satisfy the following condition:
(c) If $\left(x_{n}\right)$ is a sequence in L such that for each $n \in \mathbb{N}$ the element x_{n} possesses a complement x_{n}^{\prime}, then

$$
x_{n} \longrightarrow_{K} 0 \Longleftrightarrow x_{n}^{\prime} \longrightarrow_{K} u .
$$

4.1. Lemma. Let \mathscr{A}, G be as above and let L be the interval $[0, u]$ of G. Let $K \in \operatorname{Conv} \mathscr{A}$. Then $K \in \operatorname{Conv}_{c} L$.

Proof. According to $1.6, K \in \operatorname{Conv} L$. Suppose that $\left(x_{n}\right)$ is a sequence in L such that for each $n \in \mathbb{N}, x_{n}^{\prime}$ is a complement of x_{n} in L. It is easy to verify that for each $n \in \mathbb{N}, x_{n}^{\prime}=\neg x_{n}$. Hence if $x_{n} \rightarrow_{K} 0$, then $\neg x_{n} \rightarrow_{K} \neg 0=u$. Similarly we can verify that if $x_{n}^{\prime} \longrightarrow_{K} u$, then $x_{n} \longrightarrow_{K} 0$. Thus $K \in \operatorname{Conv}_{c} L$.

If a lattice L is bounded, distributive and complemented (i.e., if it is a Boolean algebra) then we have to distinguish between convergences on L considered as a lattice (cf. Definition 1.5) and convergences on L considered as a Boolean algebra; namely, we can apply the following definition (cf. [9]).
4.2. Definition. Let B be a Boolean algebra; the corresponding lattice (where the unary operation ' of complementation is not taken into account) will be denoted by B_{ℓ}. The system Conv B is defined as the set of all $K \in \operatorname{Conv} B_{\ell}$ such that

$$
x_{n} \longrightarrow_{K} x \Longrightarrow x_{n}^{\prime} \longrightarrow_{K} x^{\prime} .
$$

4.3. Lemma. Let B be a Boolean algebra. Then $\operatorname{Conv} B=\operatorname{Conv}_{c} B_{\ell}$.

Proof. The greatest element of B will be denoted by u. According to the definition of Conv B the relation Conv $B \subseteq \operatorname{Conv}_{c} B_{\ell}$ is valid. Let $K \in \operatorname{Conv}_{c} B_{\ell}$. Assume that $x_{n} \longrightarrow_{K} x$. Then

$$
x_{n} \vee x \longrightarrow_{K} x, \quad x_{n} \wedge x \longrightarrow_{K} x .
$$

From the former of the above relations we obtain

$$
\left(x_{n} \vee x\right) \wedge x^{\prime} \longrightarrow_{K} 0
$$

Then by applying the condition (c)

$$
\left.\left(\left(x_{n}\right) \vee x\right) \wedge x^{\prime}\right)^{\prime} \longrightarrow_{K} u
$$

hence

$$
\begin{gathered}
\left(x_{n} \vee x\right)^{\prime} \vee x \longrightarrow_{K} u, \\
\left(x_{n}^{\prime} \wedge x^{\prime}\right) \vee x \longrightarrow_{K} u, \\
x_{n}^{\prime} \vee x \longrightarrow_{K} u .
\end{gathered}
$$

Therefore $\left(x_{n}^{\prime} \vee x\right) \wedge x^{\prime} \longrightarrow_{K} x^{\prime}$ and so

$$
x_{n}^{\prime} \wedge x^{\prime} \longrightarrow_{K} x^{\prime}
$$

Analogously we obtain that

$$
x_{n}^{\prime} \vee x^{\prime} \longrightarrow_{K} x^{\prime} .
$$

Since $x_{n}^{\prime} \wedge x^{\prime} \leqslant x_{n}^{\prime} \leqslant x_{n}^{\prime} \vee x^{\prime}$ we get $x_{n}^{\prime} \longrightarrow_{K} x^{\prime}$. Thus $K \in \operatorname{Conv} B$ and hence $\operatorname{Conv}_{c} B_{\ell} \subseteq$ Conv B.

Again, let $L=[0, u]$ be as above.
4.4. Lemma. Assume that $L=B_{\ell}$, where B is a Boolean algebra. Then $a \oplus b=a \vee b$ for each $a, b \in L$.

Proof. Put $a \wedge b=v, a-v=a_{1}, b-v=b_{1}$. Then $a_{1} \wedge b_{1}=0$, hence $a_{1}+b_{1}=a_{1} \vee b_{1}$. Thus we have also $a_{1} \oplus b_{1}=a_{1} \vee b_{1}$. Therefore

$$
a \oplus b=\left(v \oplus a_{1}\right) \oplus\left(v \oplus b_{1}\right)=(v \oplus v) \oplus\left(a_{1} \oplus b_{1}\right)
$$

Since $L=B_{\ell}$, according to [2], Theorem 1.17 , we have $v \oplus v=v$ and so

$$
a \oplus b=v \oplus\left(a_{1} \vee b_{1}\right)=\left(v \oplus a_{1}\right) \vee\left(v \oplus b_{1}\right)=a \vee b
$$

4.5. Lemma. Let L be as in 4.4.. Let $K \in \operatorname{Conv} L, x_{n} \rightarrow_{K} x$ and $y_{n} \rightarrow_{K} y$. Then $x_{n} \oplus y_{n} \longrightarrow_{K} x+y$.

Proof. We have $x_{n} \vee y_{n} \rightarrow_{K} x \vee y$ and now it suffices to apply 4.4.
4.6. Theorem. Let \mathscr{A} and L be as above. Assume that $L=B_{\ell}$, where B is a Boolean algebra. Then Conv $\mathscr{A}=\operatorname{Conv}_{c} L$.

Proof. In view of 4.1 , Conv $\mathscr{A} \subseteq \operatorname{Conv}_{c} L$. Next, according to 4.5 and by the definition of $\operatorname{Conv}_{c} L$ we obtain that $\operatorname{Conv}_{c} L \subseteq \operatorname{Conv} \mathscr{A}$.

Let us remark that if Conv $\mathscr{A}=\operatorname{Conv}_{\mathrm{c}} L$, then there need not exist a Boolean algebra B with $B_{\ell}=L$.

Example. Let G be the additive group of all integers with the natural linear order. Put $u=2$ and consider the $M V$-algebra $\mathscr{A}=\mathscr{Q}_{0}(G, u)$. Then card $A=3$, hence $B_{\ell} \neq L=[0, u]$ for each Boolean algebra B. Next, Conv $\mathscr{A}=\operatorname{Conv} L=$ $\operatorname{Conv}_{c} L=\{K(0)\}$, where $\Lambda(0)$ is the least element of Conv \mathscr{A}.
4.7. Definition. Let L be as above and let $K \in \operatorname{Conv} L$. The lattice L is called strongly nondiscrete with respect to K if for each $0<a \in L$ there exists a sequence $\left(x_{n}\right)$ in L such that $0<x_{n}<a$ for each $n \in \mathbb{N}$ and $x_{n} \longrightarrow \kappa 0$.

The following question remains open:
Let \mathscr{A} and L be as above. Assume that
(i) Conv $\mathscr{A}=\operatorname{Conv}_{c} L$;
(ii) if $K \in \operatorname{Conv} \mathscr{A}$ and $K \neq K(0)$, then L is strongly nondiscrete with respect to K.

Does there exist a Boolean algebra B with $L=B_{\ell}$?

References

[1] G. Birkhoff: Lattice theory, Amer. Math. Soc. Colloquium Publ. Vol. 25, Third Edition. Providence, 1967.
[2] C. C. Chang: Algebraic analysis of many-valued logics. Trans. Amer. Math. Soc. 88 (1958), 467-490.
[3] C. C. Chang: A new proof of the completeness of the Lukasiewicz axioms. Trans. Amer. Math. Soc. 83 (1959), 74-80.
[4] D. Gluschankof: Cyclic ordered groups and $M V$-algebras. Czechoslovak Math. J. 43(1993), 249-263.
[5] M. Harminc: The cardinality of the system of all sequential convergences on an abelian lattice ordered group. Czech. Math. J. 37 (1987), 533-546.
[6] M. Harminc: Sequential convergences on lattice ordered groups. Czech. Math. J. 39 (1989), 232-238.
[7] J. Jakubik: Distributivity in lattice ordered groups. Czech. Math. J. 22 (1972), 108-125.
[8] J. Jakubik: Convergences and complete distributivity of lattice ordered groups. Math. Slov. 38 (1988), 269-272.
[9] J. Jakubik: Sequential convergences in Boolean algebras. Czech. Math. J. 38 (1988), 520-530.
[10] J. Jakubik: Lattice ordered groups having a largest convergence. Czech. Math. J. 39 (1989), 717-729.
[11] J. Jakubik: Convergences and higher degrees of distributivity of lattice ordered groups and of Boolean algebras. Czech. Math. J. 40 (1990), 453-458.
[12] J. Jakubik: Sequential convergences in lattices. Math. Bohemica 117 (1992), 239-250.
[13] J. Jakubik: Direct product decompositions of MV-algebras. Czech. Math. J 44 (1994), 725-739.
[14] D. Mundici: Interpretation of $A F C^{*}$-algebras in Lukasiewicz sentential calculus. Journ. Functional. Anal. 65 (1986), 15-63.

Author's address: Matematický ústav SAV, dislokované pracovisko, Grešákova 6, 04001 Košice, Slovakia.

[^0]: Supported by Grant GA SAV 1230/94

