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Abstract—We consider decentralized detection through dis-
tributed sensors that perform level-triggered sampling and com-
municate with a fusion center via noisy channels. Each sensor
computes its local log-likelihood ratio (LLR), samples it using the
level-triggered sampling, and upon sampling transmits a single
bit to the FC. Upon receiving a bit from a sensor, the FC updates
the global LLR and performs a sequential probability ratio test
(SPRT) step. We derive the fusion rules under various types
of channels. We further provide non-asymptotic and asymptotic
analyses on the average detection delay for the proposed channel-
aware scheme, and show that the asymptotic detection delay is
characterized by a KL information number. The delay analysis
facilitates the choice of appropriate signaling schemes under
different channel types for sending the 1-bit information from
sensors to the FC.

I. INTRODUCTION

In this paper, we consider the decentralized detection prob-
lem in which a number of sensors communicate to a fusion
center (FC) under bandwith constraints. The FC is responsible
for making the final decision based on the limited information
it receives from the sensors. [1] and [2], which are among
the early works treating the problem, showed the optimality
of likelihood ratio test as a local decision rule at sensors
and a global decision rule at the FC, respectively. Most of
the works on decentralized detection, including the above
mentioned, followed the fixed sample size approach where the
FC makes the global decision at a fixed time. On the other
hand, some works, e.g., [3]–[5], considered the sequential
approach where the decision time of the FC is random. It has
been observed that sequential methods require, on average,
approximately four times [6, Page 109] less samples (for
Gaussian signals) to reach a decision than their fixed sample
size counterparts, for the same level of confidence. Relaxing
the strict bandwith constraint, it is known that data fusion
(multi-bit messaging) is a much more powerful technique than
decision fusion (one-bit messaging), albeit it consumes higher
bandwith [7]. Moreover, the level-triggered sampling-based
sequential detection schemes, recently proposed in [4] and [5],
are as powerful as data fusion techniques, and at the same time
they are as simple and bandwith-efficient as decision fusion
techniques.

In practice, there are two sources of uncertainty in a decen-
tralized system, namely the noise in listening channels, cor-

rupting the sensor observations, and the noise in transmission
channels, corrupting the messages received by the FC. The
conventional approach to decentralized detection considers the
former, but ignores the latter, e.g., [1]–[5]. In other words, the
conventional approach assumes ideal transmission channels
while applying a fusion rule to the messages received by the
FC. Following the conventional approach, before applying a
fusion rule, a communication block can be independently ap-
plied to recover the information bits transmitted from sensors.
However, this two-step solution causes performance loss due
to the data processing inequality [8]. For an optimal solution,
the fusion rule should be channel-aware, i.e., should use the
the knowledge on noisy channels [9], [10].

In this paper, we design and analyze channel-aware sequen-
tial decentralized detection schemes based on level-triggered
sampling, under different types of discrete and continuous
noisy channels. In particular, we first derive channel-aware
sequential detection schemes based on level-triggered sam-
pling. We then present an information theoretic framework
to analyze the decision delay performance of the proposed
schemes based on which we provide both non-asymptotic
and asymptotic analyses on the decision delays under various
types of channels. Based on the expressions of the asymp-
totic decision delays, we also consider appropriate signaling
schemes under different continuous channels to minimize the
asymptotic delays.

The remainder of the paper is organized as follows. In
Section II, we describe the general structure of the decen-
tralized detection approach based on level-triggered sampling
with noisy channels between sensors and the FC. In Section
III, we derive channel-aware fusion rules at the FC for various
types of channels. Next, we provide analyses on the decision
delay performance for ideal channel and noisy channels in
Section IV and Section V, respectively. Finally, the paper is
concluded in Section VI.

II. SYSTEM DESCRIPTIONS

Consider a wireless sensor network consisting of K sensors
each of which observes a Nyquist-rate sampled discrete-time
signal {ykt : t ∈ N}, k = 1, . . . ,K. Each sensor k computes
the log-likelihood ratios (LLR) {Lk

t }t of the signal it observes,
samples the LLR sequence using the level-triggered sampling,



b
b
b

FC

S1

S2

SK

ch1

ch2

chK

δT

y1
t

y2
t

yK
t

b1
n

b2
n

bK
n

z1
n

z2
n

zK
n

I1
i
(t) Î1
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Fig. 1. A wireless sensor network with K sensors, and an FC. Sensors pro-
cess their observations {ykt }, and transmits information bits {bkn}. Then, the
FC, receiving {zkn} through wireless channels, makes a detection decision δT̃ .
Iki (t), Îki (t), Ĩki (t) are the observed, transmitted and received information
entities respectively, which will be defined in Section IV.

and then sends the LLR samples to the fusion center (FC).
The FC then combines the local LLR information from all
sensors, and decides between two hypotheses, H0 and H1, in
a sequential manner.

Observations collected at the same sensor, {ykt }t, are as-
sumed to be i.i.d., and in addition observations collected
at different sensors, {ykt }k, are assumed to be independent.
Hence, the local LLR at the k-th sensor, Lk

t , and the global
LLR, Lt, are computed as

Lk
t , log

fk
1 (y

k
1 , . . . , y

k
t )

fk
0 (y

k
1 , . . . , y

k
t )

= Lk
t−1 + lkt =

t∑
n=1

lkn, (1)

and Lt =
∑K

k=1 L
k
t , respectively, where lkt , log

fk
1 (yk

t )

fk
0 (yk

t )
is

the LLR of the sample ykt received at the k-th sensor at time
t; fk

i , i = 0, 1, is the probability density function (pdf) of
the received signal by the k-th sensor under Hi. The k-th
sensor samples Lk

t via level-triggered sampling at a sequence
of random sampling times {tkn}n that are dictated by Lk

t itself.
Specifically, the n-th sample is taken from Lk

t whenever the
accumulated LLR Lk

t − Lk
tkn−1

, since the last sampling time

tkn−1 exceeds a constant ∆ in absolute value, i.e.,

tkn , min
{
t > tkn−1 : Lk

t − Lk
tkn−1

̸∈ (−∆,∆)
}
, (2)

where tk0 = 0, Lk
0 = 0. Let λk

n denote the accumulated LLR
during the n-th inter-sampling interval, (tkn−1, t

k
n], i.e.,

λk
n ,

tkn∑
t=tkn−1+1

lkt = Lk
tkn

− Lk
tkn−1

. (3)

Immediately after sampling at tkn, as shown in Fig. 1, an
information bit bkn indicating the threshold crossed by λk

n is
transmitted to the FC, i.e.,

bkn , sign(λk
n). (4)

Note that each sensor, in fact, performs the Wald’s well
known sequential probability ratio test (SPRT) with thresholds
∆ and −∆. SPRT is the optimum sequential test in the i.i.d.
case in terms of minimizing the average decision delay [11].

Detailed information on SPRT can be found in [12]. At sensor
k the n-th local SPRT starts at time tkn−1 and ends at time tkn
when the local test statistic λk

n exceeds either ∆ or −∆. This
local hypothesis test produces a local decision represented by
the information bit bkn, and induces local error probabilities αk

and βk which are given by

αk , P0(b
k
n = 1), and βk , P1(b

k
n = −1), (5)

respectively, where Pi(·), i = 0, 1, denotes the probability
under Hi.

Denote the received signal at the FC corresponding to bkn
as zkn [cf. Fig. 1]. The FC then computes the LLR λ̃k

n of each
received signal and approximates the global LLR Lt as

L̃t ,
K∑

k=1

Nk
t∑

n=1

λ̃k
n with λ̃k

n , log
pk1(z

k
n)

pk0(z
k
n)

, (6)

where Nk
t is the total number of LLR messages the k-th sensor

has transmitted up to time t, and pki (·), i = 0, 1, is the pdf of
zkn under Hi. In particular, suppose that the m-th LLR message
λ̃m from any sensor is received at time tm. Then at tm, the
FC first updates the global LLR as

L̃tm = L̃tm−1 + λ̃m. (7)

It then performs an SPRT step by comparing L̃tm with two
thresholds Ã and −B̃, and applying the following decision
rule

δtm ,

 H1, if L̃tm ≥ Ã,

H0, if L̃tm ≤ −B̃,
−, otherwise.

(8)

In other words, it continues to receive LLR messages if L̃tm ∈
(−B̃, Ã). The thresholds (Ã, B̃ > 0) are selected to satisfy the
error probability constraints P0(δT̃ = H1) ≤ α and P1(δT̃ =
H0) ≤ β with equalities, where α, β are target error probability
bounds, and

T̃ , min{t > 0 : L̃t ̸∈ (−B̃, Ã)} (9)

is the detection delay.
With ideal channels between sensors and the FC, we have

zkn = bkn, so from (5) we can write the local LLR λ̃k
n = λ̂k

n,
where

λ̂k
n ,

 log
P1(b

k
n=1)

P0(bkn=1)
= log 1−βk

αk
, if bkn = 1,

log
P1(b

k
n=−1)

P0(bkn=−1)
= log βk

1−αk
, if bkn = −1.

(10)

In this paper, we will assume, as in [4], that the local error
probabilities {αk, βk}k are available at the FC in order to
compute the LLR λ̃k

n of the received signals. For the case of
ideal channels, we use the A and −B to denote the thresholds
in (8), i.e., Ã = A, B̃ = B, and use T to denote the decision
delay in (9), i.e., T̃ = T .

In the case of noisy channels, the received signal zkn is not
always identical to the transmitted bit bkn, and thus the LLR
λ̃k
n of zkn can be different from λ̂k

n of bkn given in (10). In the
next section, we consider some popular channel models and
give the corresponding expressions for λ̃k

n.



III. CHANNEL-AWARE FUSION RULES

In computing the LLR λ̃k
n of the received signal zkn, we

will make use of the local sensor error probabilities αk, βk,
and the channel parameters that characterize the statistical
property of the channel. In this paper, we assume sampling
(communication) times are reliably detected at the FC under
continuous channels by using high enough signaling levels at
the sensors. The unreliable detection of sampling times under
continuous channels is analyzed in [13, Section VI].

A. Binary Erasure Channels (BEC)

Consider binary erasure channels between sensors and the
FC with erasure probabilities {ϵk}k. Under BEC, a transmitted
bit bkn is lost with probability ϵk, and correctly received at the
FC, i.e., zkn = bkn, with probability 1 − ϵk. Then the LLR of
zkn is given by

λ̃k
n =

 log
P1(z

k
n=1)

P0(zk
n=1)

= log 1−βk

αk
, if zkn = 1,

log
P1(z

k
n=−1)

P0(zk
n=−1)

= log βk

1−αk
, if zkn = −1.

(11)

Note that under BEC the channel parameter ϵk is not needed
when computing the LLR λ̃k

n. Note also that in this case, a
received bit bears the same amount of LLR information as
in the ideal channel case, although a transmitted bit is not
always received. Hence, the channel-aware approach coincides
with the conventional approach which relies solely on the
received signal. Although the LLR updates in (10) and (11)
are identical, the fusion rules under BEC and ideal channels
are not since the thresholds Ã and −B̃ of BEC, due to the
information loss, are in general different from the thresholds
A and −B of the ideal channel case.

B. Binary Symmetric Channels (BSC)

Next, we consider binary symmetric channels with crossover
probabilities {ϵk}k between sensors and the FC. Under BSC,
the transmitted bit bkn is flipped, i.e., zkn = −bkn, with
probability ϵk, and it is correctly received, i.e., zkn = bkn, with
probability 1− ϵk. The LLR of zkn can be computed as

λ̃k
n(z

k
n = 1) = log

P1
1(z

k
n = 1)P1

1 + P−1
1 (zkn = 1)P−1

1

P1
0(z

k
n = 1)P1

0 + P−1
0 (zkn = 1)P−1

0

= log
(1− ϵk)(1− βk) + ϵkβk

(1− ϵk)αk + ϵk(1− αk)

= log
1−

β̂k︷ ︸︸ ︷
[(1− 2ϵk)βk + ϵk]

(1− 2ϵk)αk + ϵk︸ ︷︷ ︸
α̂k

(12)

where Pj
i , i = 0, 1, j = −1, 1, is the probability under Hi given

bkn = j ,and {α̂k, β̂k} are the effective local error probabilities
at the FC under BSC. Similarly we can write

λ̃k
n(z

k
n = −1) = log

β̂k

1− α̂k
. (13)

Note that α̂k > αk, β̂k > βk if αk < 0.5, βk < 0.5, ∀k,
which we assume true for ∆ > 0. Thus, we have |λ̃k

n,BSC | <

|λ̃k
n,BEC | from which we expect the performance loss under

BSC will be higher than that under BEC. The numerical results
provided in Section V-B will illustrate this. Finally, note also
that, unlike the BEC case, under BSC the FC needs to know
the channel parameters {ϵk} to operate in a channel-aware
manner.

C. Additive White Gaussian Noise (AWGN) Channels

Now, assume that the channel between each sensor and the
FC is an AWGN channel. The received signal at the FC is
given by

zkn = hk
nx

k
n + wk

n (14)

where hk
n = hk, ∀k, n, is a known constant complex channel

gain; wk
n ∼ Nc(0, σ

2
k); x

k
n is the transmitted signal at sampling

time tkn given by

xk
n =

{
a, if λk

n ≥ ∆,
b, if λk

n ≤ −∆.
(15)

where the transmission levels a and b are complex in general.
The distribution of the received signal is then zkn ∼

Nc(hkx
k
n, σ

2
k). The LLR of zkn is given by

λ̃k
n = log

pak(z
k
n)P

a
1 + pbk(zn)P

b
1

pak(z
k
n)P

a
0 + pbk(z

k
n)P

b
0

= log
(1− βk) exp(−ckn) + βk exp(−dkn)

αk exp(−ckn) + (1− αk) exp(−dkn)
, (16)

where the superscript a (resp. b) denotes the conditioning on
xk
n = a (resp. xk

n = b), ckn , |zk
n−hka|2

σ2
k

and dkn , |zk
n−hkb|2

σ2
k

.

D. Rayleigh Fading Channels

If a Rayleigh fading channel is assumed between each
sensor and the FC, the received signal model is also given
by (14)-(15), but with hk

n ∼ Nc(0, σ
2
h,k). We then have

zkn ∼ Nc(0, |xk
n|2σ2

h,k + σ2
k); and accordingly, similar to (16),

λ̃k
n is written as

λ̃k
n = log

1−βk

σ2
a,k

exp(−ckn) +
βk

σ2
b,k

exp(−dkn)

αk

σ2
a,k

exp(−ckn) +
1−αk

σ2
b,k

exp(−dkn)
(17)

where σ2
a,k , |a|2σ2

h,k + σ2
k, σ2

b,k , |b|2σ2
h,k + σ2

k, ckn , |zk
n|

2

σ2
a,k

and dkn , |zk
n|

2

σ2
b,k

.

E. Rician Fading Channels

For Rician fading channels, we have hk
n ∼ Nc(µk, σ

2
h,k) in

(14), and hence zkn ∼ Nc(µkx
k
n, |xk

n|2σ2
h,k + σ2

k). Using σ2
a,k

and σ2
b,k as defined in the Rayleigh fading case, and defining

ckn , |zk
n−µka|2
σ2
a,k

, dkn , |zk
n−µkb|2
σ2
b,k

we can write λ̃k
n as in (17).

IV. PERFORMANCE ANALYSIS FOR IDEAL CHANNELS

In this section, we derive the exact non-asymptotic ex-
pression for the average detection delay Ei[T ], and provide
an asymptotic analysis on it as the error probability bounds
α, β → 0. Before proceeding to the analysis, let us define
some information entities which will be used throughout this
and next sections.



A. Information Entities

Note that the expectation of an LLR corresponds to a
Kullback-Leibler (KL) information entity. For instance,

Ik1 (t) , E1

[
log

fk
1 (y

k
1 , . . . , y

k
t )

fk
0 (y

k
1 , . . . , y

k
t )

]
= E1[L

k
t ],

and Ik0 (t) , E0

[
log

fk
0 (y

k
1 , . . . , y

k
t )

fk
1 (y

k
1 , . . . , y

k
t )

]
= −E0[L

k
t ] (18)

are the KL divergences of the local LLR sequence {Lk
t }t under

H1 and H0, respectively. Similarly

Îk1 (t) , E1

[
log

pk1(b
k
1 , . . . , b

k
Nk

t
)

pk0(b
k
1 , . . . , b

k
Nk

t
)

]
= E1[L̂

k
t ], Î

k
0 (t) , −E0[L̂

k
t ]

Ĩk1 (t) , E1

[
log

pk1(z
k
1 , . . . , z

k
Nk

t
)

pk0(z
k
1 , . . . , z

k
Nk

t
)

]
= E1[L̃

k
t ], Ĩ

k
0 (t) , −E0[L̃

k
t ]

(19)

are the KL divergences of the local LLR sequences {L̂k
t }t

and {L̃k
t }t respectively. Define also Ii(t) ,

∑K
k=1 I

k
i (t),

Îi(t) ,
∑K

k=1 Î
k
i (t), and Ĩi(t) ,

∑K
k=1 Ĩ

k
i (t) as the KL

divergences of the global LLR sequences {Lt}, {L̂t}, and
{L̃t} respectively.

In particular, we have Ik1 (1) = E1

[
log

fk
1 (yk

1 )

fk
0 (yk

1 )

]
= E1[l

k
t ]

and Ik0 (1) = E0

[
log

fk
0 (yk

1 )

fk
1 (yk

1 )

]
= −E0[l

k
t ] as the KL infor-

mation numbers of the LLR sequence {lkt }; and Ii(1) ,∑K
k=1 I

k
i (1), i = 0, 1 are those of the global LLR se-

quence {lt}. Moreover, Ik1 (t
k
1) = E1

[
log

fk
1 (yk

1 ,...,y
k

tk1
)

fk
0 (yk

1 ,...,y
k

tk1

)

]
=

E1[λ
k
n], Îk1 (t

k
1) = E1

[
log

pk
1 (b

k
1 )

pk
0 (b

k
1 )

]
= E1[λ̂

k
n], and Ĩk1 (t

k
1) =

E1

[
log

pk
1 (z

k
1 )

pk
0 (z

k
1 )

]
= E1[λ̃

k
n], are the KL information numbers of

the local LLR sequences {λk
n}, {λ̂k

n}, and {λ̃k
n}, respectively,

under H1. Likewise, we have Ik0 (t
k
1) = −E0[λ

k
n], Îk1 (t

k
1) =

−E0[λ̂
k
n], and Ĩk1 (t

k
1) = −E0[λ̃

k
n] under H0. To summarize,

Iki (t), Î
k
i (t), and Ĩki (t) are respectively the observed (at sensor

k), transmitted (by sensor k), and received (by the FC) KL
information entities as illustrated in Fig. 1.

Next we define the following information ratios, η̂ki ,
Îk
i (t

k
1 )

Ik
i (t

k
1 )

and η̃ki , Ĩk
i (t

k
1 )

Ik
i (t

k
1 )

, which represent how efficiently
information is transmitted from sensor k and received by
the FC, respectively. Due to the data processing inequality,
we have 0 ≤ η̂ki , η̃

k
i ≤ 1,∀i, k. We further define Îi(1) ,∑K

k=1 η̂
k
i I

k
i (1) =

∑K
k=1 Î

k
i (1), and Ĩi(1) ,

∑K
k=1 η̃

k
i I

k
i (1) =∑K

k=1 Ĩ
k
i (1), as the effective transmitted and received values

corresponding to the KL information Ii(1), respectively. Note
that Îi(1) and Ĩi(1) are not real KL information numbers,
but projections of Ii(1) onto the filtrations generated by
the transmitted, (i.e., {bkn}), and received, (i.e., {zkn}), sig-
nal sequences, respectively. This is because sensors do not
transmit and the FC does not receive the LLR of a single
observation, but instead they transmit and it receives the LLR
messages of several observations. Hence, we cannot have the
KL information for single observations at the two ends of the

communication channel, but we can define hypothetical KL
information to serve analysis purposes.

The KL information Iki (1) of a sensor whose information
ratio, η̃ki , is high and close to 1 is well projected to the
FC. Conversely, Iki (1) of a sensor which undergoes high
information loss is poorly projected to the FC. Note that there
are two sources of information loss for sensors, namely, the
overshoot effect due to having discrete-time observations and
noisy transmission channels. The latter appears only in η̃ki ,
whereas the former appears in both η̂ki and η̃ki . In general with
discrete-time observations at sensors we have Îi(1) ̸= Ii(1)
and Ĩi(1) ̸= Ii(1). Lastly, note that under ideal channels, since
zkn = bkn, ∀k, n, we have Ĩi(1) = Îi(1).

B. Analysis on Detection Delay

Let {τkn : τkn = tkn−tkn−1}n denote the inter-arrival times of
the LLR messages transmitted from the k-th sensor. Note that
τkn depends on the observations yk

tkn−1+1
, . . . , yktkn

, and since

{ykt }t are i.i.d., {τkn}n are also i.i.d. random variables. Hence,
the counting process {Nk

t }t is a renewal process. Similarly
the LLRs {λ̂k

n}n of the received signals at the FC are also
i.i.d. random variables, and form a renewal-reward process.
Note from (9) that the SPRT can stop in between two arrival
times of sensor k, e.g., tkn ≤ T < tkn+1. The event Nk

T = n
occurs if and only if tkn = τk1 + . . . + τkn ≤ T and tkn+1 =
τk1 + . . .+ τkn+1 > T , so it depends on the first (n+ 1) LLR
messages. From the definition of stopping time [14, pp. 104]
we conclude that Nk

T is not a stopping time for the processes
{τkn}n and {λ̂k

n}n since it depends on the (n+1)-th message.
However, Nk

T + 1 is a stopping time for {τkn}n and {λ̂k
n}n

since we have Nk
T +1 = n ⇐⇒ Nk

T = n−1 which depends
only on the first n LLR messages. Hence, from Wald’s identity
[14, pp. 105] we can directly write the following equalities

Ei

Nk
T +1∑
n=1

τkn

 = Ei[τ
k
1 ](Ei[N

k
T ] + 1), (20)

and Ei

Nk
T +1∑
n=1

λ̂k
n

 = Ei[λ̂
k
1 ](Ei[N

k
T ] + 1). (21)

We have the following theorem on the average detection
delay under ideal channels.

Theorem 1. Consider the decentralized detection scheme
given in Section II, with ideal channels between sensors and
the FC. Its average detection delay under Hi is given by

Ei[T ] =
Îi(T )

Îi(1)
+

∑K
k=1 Î

k
i (t

k
Nk

T +1
)− Ei[Yk]Î

k
i (1)

Îi(1)
(22)

where Yk is a random variable representing the time interval
between the stopping time and the arrival of the first bit from
the k-th sensor after the stopping time, i.e., Yk , tk

Nk
T +1

−T .



Proof: From (20) and (21) we obtain

Ei

Nk
T +1∑
n=1

τkn

 = Ei[τ
k
1 ]

Ei

[∑Nk
T +1

n=1 λ̂k
n

]
Ei[λ̂k

1 ]

where the left-hand side equals to Ei[T ] + Ei[Yk]. Note that
Ei[τ

k
1 ] is the expected stopping time of the local SPRT at the k-

th sensor and by Wald’s identity it is given by Ei[τ
k
1 ] =

Ei[λ
k
1 ]

Ei[lk1 ]
,

provided that Ei[l
k
1 ] ̸= 0. Hence, we have

Ei[T ] =
Ei[λ

k
1 ]

Ei[λ̂k
1 ]

Ei

[∑Nk
T +1

n=1 λ̂k
n

]
Ei[lk1 ]

− Ei[Yk]

=
Iki (t

k
1)

Îki (t
k
1)

Îki (T ) + Îki (t
k
Nk

T +1
)

Iki (1)
− Ei[Yk]

where we used the fact that E1

[∑Nk
T +1

n=1 λ̂k
n

]
=

E1[L̂
k
T ] + Ẽ1[λ̂

k
Nk

T +1
] = Îk1 (T ) + Îk1 (t

k
Nk

T +1
) and similarly

E0

[∑Nk
T +1

n=1 λ̂k
n

]
= −Îk0 (T ) − Îk0 (t

k
Nk

T +1
). Note that Ẽi[·] is

the expectation with respect to λ̂k
Nk

T +1
and Nk

T under Hi.
By rearranging the terms and then summing over k on both
sides, we obtain

Ei[T ]
K∑

k=1

Iki (1)
Îki (t

k
1)

Iki (t
k
1)︸ ︷︷ ︸

Îi(1)

=

Îi(T ) +

K∑
k=1

Îki (t
k
Nk

T +1)− Ei[Yk] I
k
i (1)

Îki (t
k
1)

Iki (t
k
1)︸ ︷︷ ︸

Îk
i (1)

which is equivalent to (22).
The result in (22) is in fact very intuitive. Recall that

Îi(T ) is the KL information at the detection time at the
FC. It naturally lacks some local information that has been
accumulated at sensors, but has not been transmitted to the
FC, i.e., the information gathered at sensors after their last
sampling times. The numerator of the second term on the
right hand side of (22) replaces such missing information
by using the hypothetical KL information. Note that in (22)
Îki (t

k
Nk

T +1
) ̸= Îki (t

k
1), i.e., Ẽi[λ̂

k
Nk

T +1
] ̸= Ei[λ̂

k
1 ], since Nk

T and

λ̂k
Nk

T +1
are not independent.

The next result gives the asymptotic detection delay perfor-
mance under ideal channels.

Theorem 2. As α, β → 0, the average detection delay under
ideal channels given by (22) satisfies

E1[T ] =
| logα|
Î1(1)

+O(1), and E0[T ] =
| log β|
Î0(1)

+O(1), (23)

where O(1) represents a constant term.

Proof: We will prove the first equality in (23), and the
proof of the second one follows similarly. Let us first prove
the following lemma.

Lemma 1. As α, β → 0 we have the following KL information
at the FC

Î1(T ) = | logα|+O(1), and Î0(T ) = | log β|+O(1). (24)

Proof: We will show the first equality and the second one
follows similarly. We have

Î1(T ) = P1(L̂T ≥ A)E1[L̂T |L̂T ≥ A]+

P1(L̂T ≤ −B)E1[L̂T |L̂T ≤ −B]

= (1− β)(A+ E1[θA])− β(B + E1[θB]), (25)

where θA, θB are overshoot and undershoot respectively given
by θA , L̂T −A if L̂T ≥ A and θB , −L̂T −B if L̂T ≤ −B.
From [4, Theorem 2], we have A ≤ | logα| and B ≤ | log β|,
so as α, β → 0 (25) becomes Î1(T ) = A + E1[θA] + o(1).
Assuming 0 < ∆ < ∞ and |lkt | < ∞, ∀k, t, we have
0 < αk, βk < 1, hence from (10) we have |λ̂k

n| < ∞, and
accordingly Îki (t

k
1) = Ei[λ̂

k
1 ] < ∞. Since the overshoot cannot

exceed the last received LLR value, we have θA, θB ≤ Θ =
maxk,n |λ̂k

n| < ∞. Similar to Eq. (73) in [4] we can write
β ≥ e−B−Θ and α ≥ e−A−Θ where Θ = O(1) by the
above argument, or equivalently, B ≥ | log β| − O(1) and
A ≥ | logα|−O(1). Hence, we have A = | logα|+O(1) and
B = | log β|+O(1).

From the assumption of |lkt | < ∞, ∀k, t, we also have
Îi(1) ≤ Ii(1) < ∞. Moreover, we have Ei[Yk] ≤ Ei[τ

k
1 ] < ∞

since Ei[l
k
1 ] ̸= 0. Note that all of the terms on the right-hand

side of (22) except Îi(T ) do not depend on the global error
probabilities α, β, so they are O(1) as α, β → 0. Finally,
substituting (24) into (22) we get (23).

It is seen from (23) that the hypothetical KL information
number, Îi(1), plays a key role in the asymptotic detection
delay expression. We can asymptotically minimize Ei[T ] by
maximizing Îi(1). Recalling its definition

Îi(1) =
K∑

k=1

Îki (t
k
1)

Iki (t
k
1)

Iki (1)

we see that three information numbers are required to compute
it. Note that Iki (1) = Ei[l

k
1 ] and Iki (t

k
1) = Ei[λ

k
1 ], which is

given in (26) below, are computed based on local observations
at sensors, thus do not depend on the channels between sensors
and the FC. Specifically, we have

Ik1 (t
k
1) = (1− βk)(∆ + E1[θ̄

k
n])− βk(∆ + E1[θ

k
n]),

and Ik0 (t
k
1) = αk(∆ + E0[θ̄

k
n])− (1− αk)(∆ + E0[θ

k
n])

(26)

where θ̄kn and θkn are local over(under)shoots given by θ̄kn ,
λk
n −∆ if λk

n ≥ ∆ and θkn , −λk
n −∆ if λk

n ≤ −∆. Due to
having |lkt | < ∞, ∀k, t we have θ̄kn, θ

k
n < ∞, ∀k, n.

On the other hand, Îki (t
k
1) represents the information re-

ceived in an LLR message by the FC, so it heavily depends
on the channel type. In the ideal channel case, from (10) it is



given by

Îk1 (t
k
1) = (1− βk) log

1− βk

αk
+ βk log

βk

1− αk
,

and Îk0 (t
k
1) = αk log

1− βk

αk
+ (1− αk) log

βk

1− αk
.

(27)

Since Îki (t
k
1) is the only channel-dependent term in the asymp-

totic detection delay expression, in the next section we will
obtain its expression for each noisy channel type considered
in Section III.

V. PERFORMANCE ANALYSIS FOR NOISY CHANNELS

In all noisy channel types that we consider in this paper,
we assume that channel parameters are either constants or
i.i.d. random variables across time. In other words, ϵk, hk

are constant for all k (see Section III-A, III-B, III-C), and
{hk

n}n, {wk
n}n are i.i.d. for all k (see Section III-C, III-D,

III-E). Thus, in all noisy channel cases discussed in Section
III the inter-arrival times of the LLR messages {τ̃kn}n, and the
LLRs of the received signals {λ̃k

n}n are i.i.d. across time as
in the ideal channel case. Accordingly the average detection
delay in these noisy channels has the same expression as
in (22), as given by the following proposition. The proof is
similar to that of Theorem 1.

Proposition 1. Under each type of noisy channel discussed
in Section III, the average detection delay is given by

Ei[T̃ ] =
Ĩi(T̃ )

Ĩi(1)
+

∑K
k=1 Ĩ

k
i (t

k
Nk

T +1
)− Ei[Ỹk]Ĩ

k
i (1)

Ĩi(1)
(28)

where Ỹk , tk
Nk

T̃
+1

− T̃ .

The asymptotic performances under noisy channels can also
be analyzed analogously to the ideal channel case.

Proposition 2. As α, β → 0, the average detection delay
under noisy channels given by (28) satisfies

E1[T̃ ] =
| logα|
Ĩ1(1)

+O(1), and E0[T̃ ] =
| log β|
Ĩ0(1)

+O(1). (29)

Proof: Note that in the noisy channel cases the FC, as
discussed in Section III, computes the LLR, λ̃k

n, of the signal
it receives, and then performs SPRT using the LLR sum L̃t.
Hence, analogous to Lemma 1 we can show that Ĩ1(T̃ ) =
| logα| + O(1) and Ĩ0(T̃ ) = | log β| + O(1) as α, β → 0.
Note also that due to channel uncertainties |λ̃k

n| ≤ |λ̂k
n|, so

we have Ĩki (t
k
1) ≤ Îki (t

k
1) < ∞ and Ĩi(1) ≤ Îi(1) < ∞. We

also have Ei[Ỹk] ≤ Ei[τ̃
k
1 ] < ∞ as in the ideal channel case.

Substituting these asymptotic values in (28) we get (29).
Recall that Ĩi(1) =

∑K
k=1

Ĩk
i (t

k
1 )

Ik
i (t

k
1 )
Iki (1) in (29) where Iki (1)

and Iki (t
k
1) are independent of the channel type, i.e., they

are same as in the ideal channel case. In the subsequent
subsections, we will compute Ĩki (t

k
1) for each noisy channel

type. We will also consider the choices of the signaling levels
a and b in (15) that maximize Ĩki (t

k
1), i.e., asymptotically

minimize Ei[T̃ ].

Ĩ
k 1
(t

k 1
)

ǫk αk = βk

Fig. 2. The KL information, Ĩk1 (t
k
1), under BEC and BSC, as a function of

the local error probabilities αk = βk and the channel error probability ϵk .

A. BEC

Under BEC, from (11) we can write the LLR of the received
bits at the FC as

λ̃k
n =

{
λ̂k
n, with probability 1− ϵk,

0, with probability ϵk.
(30)

Hence, we have

Ĩki (t
k
1) = Ei[λ̃

k
1 ] = (1− ϵk)Î

k
i (t

k
1) (31)

where Îki (t
k
1) is given in (27). As can be seen in (31) the

performance degradation under BEC is only determined by
the channel parameters ϵk. In general, from (23), (29) and
(31) this asymptotic performance loss can be quantified as

1
1−mink ϵk

≤ Ei[T̃ ]
Ei[T ] ≤ 1

1−maxk ϵk
. Specifically, if ϵk = ϵ, ∀k,

then we have Ei[T̃ ]
Ei[T ] =

1
1−ϵ as α, β → 0.

B. BSC

Recall from (12) and (13) that under BSC local error prob-
abilities αk, βk undergo a linear transformation to yield the
effective local error probabilities α̂k, β̂k at the FC. Therefore,
using (12) and (13), similar to (27), Ĩki (t

k
1) is written as follows

Ĩk1 (t
k
1) = (1− β̂k) log

1− β̂k

α̂k
+ β̂k log

β̂k

1− α̂k
,

and Ĩk0 (t
k
1) = α̂k log

1− β̂k

α̂k
+ (1− α̂k) log

β̂k

1− α̂k

(32)

where α̂k = (1 − 2ϵk)αk + ϵk and β̂k = (1 − 2ϵk)βk + ϵk.
Notice that the performance loss in this case also depends only
on the channel parameter ϵk.

In Fig. 2 we plot Ĩk1 (t
k
1) as a function of αk = βk and ϵk,

for both BEC and BSC. It is seen that the KL information of
BEC is higher than that of BSC, implying that the asymptotic
average detection delay is lower for BEC, as anticipated in
Section III-B.



Ĩk1 (t
k
1) =Ē1[λ̃

k
1 ] = (1− βk)E

[
log

(1− βk)e
−u + βke

−va

αke−u + (1− αk)e−va

]
+ βkE

[
log

(1− βk)e
−vb + βke

−u

αke−vb + (1− αk)e−u

]

=(1− βk) log
1− βk

αk
+ βk log

βk

1− αk︸ ︷︷ ︸
Îk
1 (t

k
1 )

+βk

(1− βk

βk

E1︷ ︸︸ ︷
E

[
log

1 + βk

1−βk
eu−va

1 + 1−αk

αk
eu−va

]
+

E2︷ ︸︸ ︷
E

[
log

1 + 1−βk

βk
eu−vb

1 + αk

1−αk
eu−vb

])
︸ ︷︷ ︸

Ck
1

(33)

C. AWGN

In this and the following sections, we will drop the sensor
index k of σ2

h,k and σ2
k for simplicity. In the AWGN case,

it follows from Section III-C that if the transmitted signal is
a, i.e., xk

n = a, then ckn = u, dkn = va; and if xk
n = b, then

ckn = vb, d
k
n = u where u , |wk

n|
2

σ2 , va , |wk
n+(a−b)hk|2

σ2 , vb ,
|wk

n+(b−a)hk|2
σ2 . Accordingly, from (16) we write the KL in-

formation as in (33), where E[·] denotes the expectation with
respect to the channel noise wk

n only, and Ē1[·] denotes the
expectation with respect to both xk

n and wk
n under H1. Since

wk
n is independent of xk

n under both H0 and H1, we used the
identity Ē1[·] = E[E1[·]] in (33).

Note from (33) that we have Ĩk1 (t
k
1) = Îk1 (t

k
1) + βkCk

1

and Ĩk0 (t
k
1) = Îk0 (t

k
1) + αkCk

0 . Similar to Ck
1 we have Ck

0 ,
−E1 − 1−αk

αk
E2. Since we know Ĩki (t

k
1) ≤ Îki (t

k
1), the extra

terms, Ck
1 , Ck

0 ≤ 0 are penalty terms that correspond to the
information loss due to the channel noise. Our focus will be
on this term as we want to optimize the performance under
AWGN channels by choosing the transmission signal levels a
and b that maximize Ck

i .
Let us first consider the random variables ζa , u− va and

ζb , u− vb which are the arguments of the exponential func-
tions in E1 and E2 in (33) . From the definitions of u and va, we
write ζa =

|wk
n|

2

σ2 − |wk
n+(a−b)hk|2

σ2 = − |a−b|2|hk|2
σ2 − 2

σ2 γ where
γ , ℜ{(wk

n)
∗(a− b)hk} and ℜ{·} denotes the real part of a

complex number. Similarly we have ζb = − |a−b|2|hk|2
σ2 + 2

σ2 γ.
Note that γ ∼ N (0, |a−b|2|hk|2σ2

2 ) since wk
n ∼ Nc(0, σ

2). If
we define ν ,

√
2

|a−b||hk|σγ, then we have ν ∼ N (0, 1). Upon

defining s , |a−b||hk|
σ we can then write ζa and ζb as

ζa = −s2 −
√
2 sν and ζb = −s2 +

√
2 sν.

If we define F , 1−αk

αk
and G , 1−βk

βk
, then we have

Ck
0 =E

[
log

1 + F−1eζb

1 +Geζb

]
+ F−1E

[
log

1 + Feζa

1 +G−1eζa

]
Ck
1 =E

[
log

1 +Geζb

1 + F−1eζb

]
+GE

[
log

1 +G−1eζa

1 + Feζa

]
.

(34)

Note from (14) that the received signal, zkn, will have the
same variance, but different means, ahk and bhk, if xk

n = a
and xk

n = b are transmitted respectively. Hence, we expect
that the detection performance under AWGN channels will
improve if the difference between the transmission levels,
|a− b|, increases. Toward that end the following result gives a

β
k

αk

Fig. 3. The region of (αk, βk) specified by Lemma 2.

sufficient condition under which the penalty term Ck
i increases

with s, and hence with |a − b|. The proof is given in [13,
Appendix].

Lemma 2. Ck
i is an increasing function of s, i = 0, 1, if

F 2 ≥ G and G2 ≥ F .

Lemma 2 indicates that for αk, βk values inside the region
shown in Fig. 3, Ck

i is increasing in |a−b|. Note that αk, βk are
local error probabilities which are directly related to the local
threshold ∆. Therefore, even if the hypotheses H0 and H1 are
non-symmetric, we can ensure that we will have αk, βk inside
the region in Fig. 3 by employing different local thresholds,
−∆k and ∆̄k, in (2). In fact, even for αk, βk values outside the
region in Fig. 3 numerical results show that Ck

i is increasing
in s.

Hence, maximizing Ck
i is equivalent to maximizing |a− b|.

If we consider a constraint on the maximum allowed trans-
mission power at sensors, i.e., max(|a|2, |b|2) ≤ P 2, then
the antipodal signaling is optimum, i.e., |a| = |b| = P and
a = −b.

D. Rayleigh Fading

It follows from Section III-D that ckn = ua, dkn =
σ2
a

σ2
b
ua

when xk
n = a; and ckn =

σ2
b

σ2
a
ub, dkn = ub when xk

n = b

where ua , |ahk
n+wk

n|
2

σ2
a

, ub , |bhk
n+wk

n|
2

σ2
b

, and σ2
a = |a|2σ2

h +

σ2, σ2
b = |b|2σ2

h + σ2 as defined in Section III-D. Define



Ĩk1 (t
k
1) =(1− βk)E

log 1−βk

σ2
a

e−ua + βk

σ2
b
e−ρua

αk

σ2
a
e−ua + 1−αk

σ2
b

e−ρua

+ βkE

log 1−βk

σ2
a

e−ρ−1ub + βk

σ2
b
e−ub

αk

σ2
a
e−ρ−1ub + 1−αk

σ2
b

e−ub


=(1− βk) log

1− βk

αk
+ βk log

βk

1− αk︸ ︷︷ ︸
Îk
1 (t

k
1 )

+βk

(
E

[
log

1 +Gρ−1eζb

1 + F−1ρ−1eζb

]
+GE

[
log

1 +G−1ρeζa

1 + Fρeζa

])
︸ ︷︷ ︸

Ck
1

(35)

C
k i

ρ

H1

H0

Rayleigh Fading

Fig. 4. The penalty term Ck
i for Rayleigh fading channels as a function of

ρ.

further ρ , σ2
a

σ2
b

. Hence, using (17) we write the KL information

as in (35), where ζa , ua(1 − ρ) and ζb , ub(1 − ρ−1).
Note that when |a| = |b| which corresponds to the optimal
signaling in the AWGN case, we have ρ = 1, ζa = ζb = 0
and therefore Ĩk1 (t

k
1) = 0 in (35). This result is quite intuitive

since in the Rayleigh fading case the received signals differ
only in their variances. Note that ua and ub are chi-squared
random variables with 2 degrees of freedom, i.e., ua, ub ∼ χ2

2,
thus we can write the penalty term Ck

i as

Ck
0 =

∫ ∞

0

(
log

1 + F−1ρ−1eu(1−ρ−1)

1 +Gρ−1eu(1−ρ−1)
+

F−1 log
1 + Fρeu(1−ρ)

1 +G−1ρeu(1−ρ)

)
e−u

2
du,

and Ck
1 =

∫ ∞

0

(
log

1 +Gρ−1eu(1−ρ−1)

1 + F−1ρ−1eu(1−ρ−1)
+

G log
1 +G−1ρeu(1−ρ)

1 + Fρeu(1−ρ)

)
e−u

2
du.

(36)

Note that given local error probabilities αk, βk the inte-
grals in (36) is a function of ρ only. However, maximizing
Ck
i in (36) with respect to ρ seems analytically intractable.

As can be seen in Section III-D, the received signals at
the FC will have zero mean and the variances σ2

a and σ2
b

when xk
n = a and xk

n = b respectively. Therefore, in this
case intuitively we should increase the difference between
the two variances, i.e.,

∣∣|a|2 − |b|2
∣∣. Consider the following

constraints: max(|a|2, |b|2) ≤ P 2 and min(|a|2, |b|2) ≥ Q2,
where the first one is the peak power constraint as before, and
the second is to ensure reliable detection of an incoming signal
by the FC. We conjecture that the optimum signaling scheme
in this case that maximizes Ck

i corresponds to |a| = P, |b| = Q
or |a| = Q, |b| = P .

To numerically illustrate the behavior of Ck
i as a function

of ρ, we set αk = βk = 0.1, σ2
h = σ2 = 1, P 2 = 10,

Q2 = 1, and plot Ck
i in Fig. 4. It is seen that Ck

i has its
global minimum when ρ = 1, which corresponds to the case
|a| = |b| as expected. Moreover, Ck

i , validating our conjecture,
monotonically grows as ρ tends to its minimum and maximum
values corresponding to the cases |a| = Q, |b| = P and |a| =
P, |b| = Q respectively.

Note that in Fig. 4, the curves for H0 and H1 are mirrored
versions of each other around ρ = 1 since we have αk = βk in
the example. From (36) we can say that the symmetry between
H0 and H1 around ρ = 1 will exist whenever F = G, i.e.,
αk = βk.

E. Rician Fading

In the Rician fading case, upon defining h̃k
n , hk

n −
µk from Section III-E we have ckn =

|ah̃k
n+wk

n|
2

σ2
a

,

dkn =
|ah̃k

n+wk
n+(a−b)µk|2
σ2
b

when xk
n = a; and ckn =

|bh̃k
n+wk

n+(b−a)µk|2
σ2
a

, dkn =
|bh̃k

n+wk
n|

2

σ2
b

when xk
n = b. We will

drop the subscript k in µk for convenience. We further define
z̃a , ah̃k

n+wk
n and z̃b , bh̃k

n+wk
n that are zero-mean Gaussian

variables with variances σ2
a and σ2

b , respectively. Then from
Section III-E similar to (35) we write the KL information as

Ĩk1 (t
k
1) = Îk1 (t

k
1)+

βk

(
E

[
log

1 +Gρ−1eζb

1 + F−1ρ−1eζb

]
+GE

[
log

1 +G−1ρeζa

1 + Fρeζa

])
︸ ︷︷ ︸

Ck
1

(37)

where ζa , −
(

|z̃a+(a−b)µ|2
σ2
b

− |z̃a|2
σ2
a

)
and ζb ,

−
(

|z̃b+(b−a)µ|2
σ2
a

− |z̃b|2
σ2
b

)
. Now we will analyze the exponents

ζa and ζb.



Ck
1 =

∫ ∞

0

log

 1 +Gρ−1e
u(1−ρ−1)+

|b−a|2|µ|2

(|b|2−|a|2)σ2
h

1 + F−1ρ−1e
u(1−ρ−1)+

|b−a|2|µ|2

(|b|2−|a|2)σ2
h

 e−
u+λb

2

2
I0

(√
λbu
)

du

︸ ︷︷ ︸
I1

+

G

∫ ∞

0

log

1 +G−1ρe
u(1−ρ)+

|a−b|2|µ|2

(|a|2−|b|2)σ2
h

1 + Fρe
u(1−ρ)+

|a−b|2|µ|2

(|a|2−|b|2)σ2
h

 e−
u+λa

2

2
I0

(√
λau

)
du

︸ ︷︷ ︸
I2

(38)

|a| 6= |b|

C
k 1

b
a

Fig. 5. The penalty term under H1, i.e., Ck
1 , for Rician channels with |a| ̸=

|b|, as a function of the transmission levels a and b.

|a| 6= |b|

b

a

Fig. 6. The maximum contour of Fig. 5 is shown to exhibit the locus of the
optimum signaling levels. Ck

1 is color coded according to the color bar given
next to the figure.

1) Case 1: |a| ̸= |b|: For κ , 1
σ2
b
− 1

σ2
a
> 0, i.e., |a| > |b|,

we can write ζa as

ζa =−
[
κ|z̃a|2 +

2ℜ{[z̃∗a(a− b)µ]}
σ2
b

+
|a− b|2|µ|2

σ2
b

]
(39)

=−
(
σ2
aκ

∣∣∣∣ z̃aσa
+

(a− b)µ

σ2
bσaκ

∣∣∣∣2︸ ︷︷ ︸
,ua

+
|a− b|2|µ|2

(|b|2 − |a|2)σ2
h

)
(40)

=ua(1− ρ) +
|a− b|2|µ|2

(|a|2 − |b|2)σ2
h

(41)

where we used σ2
bκ − 1 = −ρ−1, σ4

bκ = ρ−1(σ2
a − σ2

b )
while writing (40), and σ2

aκ = ρ − 1 while writing (41).
Note that ua is a noncentral chi-squared random variable
with two degrees of freedom and the noncentrality parameter
λa , |a−b|2|µ|2σ2

a

(|a|2−|b|2)2σ4
h

. Using
√
−κ instead of

√
κ it can be easily

shown that (41) holds for κ < 0. Similarly one can obtain

ζb = ub(1− ρ−1) +
|b− a|2|µ|2

(|b|2 − |a|2)σ2
h

for κ ̸= 0, i.e., |a| ̸= |b|, where ub ,
∣∣∣ z̃bσb

+ (a−b)µ
σ2
aσbκ

∣∣∣2 and

ub ∼ χ2
2(λb) with λb , |a−b|2|µ|2σ2

b

(|a|2−|b|2)2σ4
h

. Accordingly, for the
non-symmetric case where |a| ̸= |b| from (37) we can write
Ck
1 as in (38). Similarly, we have Ck

0 = −I1 − F−1I2.
The expression in (38) resembles the one in (36) for the

Rayleigh fading case. And maximizing (38) analytically with
respect to a and b seems even more intractable. Recall that
in the Rayleigh fading case, the optimum signaling scheme
was an OOK-like non-symmetric constellation, i.e., |a| =
P, |b| = Q or |a| = Q, |b| = P . Considering the same power
constraints we conjecture that the same signaling scheme, that
maximizes the difference between the variances σ2

a and σ2
b , is

optimum in this non-symmetric case.
We provide a numerical example to illustrate the behavior

of Ck
i as a function of a and b. Using the same values for

αk, βk, σ
2
h, σ

2, P 2, Q2 as in the Rayleigh fading case, and
setting µ = 1 + j we plot Ck

1 in Fig. 5. The maximum
contour of the three-dimensional surface in Fig. 5, which
corresponds to the potential optimum signaling level pairs, is
clearly shown in Fig. 6. As seen in the figure Ck

1 is maximized
when |a| = P, |b| = Q or |a| = Q, |b| = P validating our
conjecture.

2) Case 2: |a| = |b|: For κ = 0, we have σ2
a = σ2

b , i.e.,
|a| = |b|. Accordingly, from (39) we write ζa = −s2 − 2

σ2
a
γa,

ζb = −s2− 2
σ2
a
γb where similar to Section V-C we define s ,

|a−b||µ|
σa

, γa , ℜ{z̃∗a(a−b)µ} and γb , ℜ{z̃∗b (b−a)µ}. Defin-
ing standard Gaussian random variables νa ,

√
2

|a−b||µ|σa
γa and

νb ,
√
2

|a−b||µ|σa
γb, analogous to the AWGN case, we have

ζa = −s2 −
√
2sνa and ζb = −s2 −

√
2sνb. Therefore, from

(37) Ck
i is given by (34). Accordingly, Lemma 2 applies here

in the case of |a| = |b| under Rician channels. This case is
analogous to the AWGN case since the received signal zkn



|a| = |b|

C
k 1

σ
2

h |µ|2

Fig. 7. The penalty term Ck
1 in Rician fading channels with |a| = |b|, as a

function of the mean and the variance of the channel gain. a = P = 10 and
b = −P = −10.

C
k 1
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C
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σ
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Fig. 8. Ck
1,|a|̸=|b| − Ck

1,|a|=|b| in Rician fading channels as a function of
|µ|2 and σ2

h, P = 10, Q = 1.

has the same variance, but different means when xk
n = a and

xk
n = b. Consequently, antipodal signaling is optimal. In Fig. 7,

Ck
1 is plotted as a function of the channel gain parameters |µ|2

and σ2
h. It is seen that Ck

1 is increasing in |µ|2 and decreasing
in σ2

h when antipodal signaling is used, which corroborates
Lemma 2 since s is increasing in |µ|2 and decreasing in σ2

h.
In Fig. 8, the difference Ck

1,|a|≠|b| − Ck
1,|a|=|b| is plotted as

a function of |µ|2 and σ2
h. For |a| = |b| antipodal signaling is

employed; and for |a| ̸= |b|, OOK-like signaling is employed.
It is seen that the OOK-like signaling is much better than
antipodal signaling when the mean is low and the variance
is high. Although not visible in Fig. 8, antipodal signaling is
only slightly better than OOK-like signaling when the mean
is high and the variance is low.

VI. CONCLUSIONS

We have developed and analyzed channel-aware distributed
detection schemes based on level-triggered sampling. The
sensors form local log-likelihood ratios (LLRs) based on their

observations and sample their LLRs using the level-triggered
sampling. Upon sampling each sensor sends a single bit to
the fusion center (FC). The FC is equipped with the local
error rates of all sensors and the statistics of the channels
from all sensors. Upon receiving the bits from the sensors,
the FC updates the global LLR and performs an SPRT. The
fusion rules under different channel types are given. We have
further provided non-asymptotic and asymptotic analyses on
the average detection delay for the proposed channel-aware
scheme. We have shown that the asymptotic detection delay is
characterized by a KL information number, whose expressions
under different channel types have been derived. Based on the
delay analysis, we have also identified appropriate signaling
schemes under different channels for the sensors to transmit
the 1-bit information.
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