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1 Introduction and results

The fascinating phenomenon of infrared dualities seems ubiquitous in strongly coupled
gauge theories living in d ≤ 4 dimensions. In the special subset of supersymmetric theo-
ries with 4 supercharges, many examples of such dualities have been discovered, starting
from [1]. Impressive checks of the dualities are possible: matching of the infrared global
symmetry, of the chiral ring and of various supersymmetric partition functions.

In the case of 3d N = 2 gauge theories [2–5], the simplest and paradigmatic examples
are the Aharony dualities [5], which relate a pair of theories with a single gauge group.
Usp(2N) with 2f flavors is dual to Usp(2f − 2N − 2) with 2f flavors, while U(N) with
(F, F ) flavors is dual to U(F − N) with (F, F ) flavors. All chiral ring generators, both
mesons and monopoles, of the electric theory are mapped into gauge singlet fields in the
magnetic theory.

In this paper we consider 3d N = 2 gauge theories with matter content consisting of
an arbitrary number of fundamental flavors and a single field in a rank-2 representation.
A rank-2 field can sometimes be deconfined, as shown in the early days of Seiberg dualities
in 4d N = 1 models [6–8]. In 3d N = 2 the story is similar, with the difference that in
3d monopole operators play a crucial role. Examples studied in 3d N = 2 include [9–11].
In particular, the approach of Pasquetti-Sacchi is particularly interesting, since it allows
to find the dual of U(N) with one adjoint field and one flavour [10] and the one for U(N)
with one adjoint field and k + 1 flavours [11] starting from free field correlators in 2d
Liouville CFT. These results have also been uplifted to four dimensions and are related to
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the compactification of rank-Q E-string theory on a torus with flux [12], and subsequently
lead to the discovery of an analogue of 3d mirror symmetry for 4d N = 1 theories [13].

We use a process of “sequential deconfinement” in order to find a quiver dual of a 3d
N = 2 gauge theory with gauge group G and a single rank-2 matter field. See [10, 11, 14–
22] for recent works in 3d N = 2 quivers. Let us also mention that a similar technique
has been recently exploited in the context of 2d (0, 2) supersymmetric field theories to find
duals of Usp(2N) gauge theory with one antisymmetric chiral, four fundamental chirals
and N Fermi singlets [23]. The iterative (or sequential) application of Seiberg dualities in
quiver gauge theories played a crucial role in various recent works concerning 3d N = 2
QFT’s, see for instance [10, 11, 18, 19, 21].

In this paper we deconfine using Aharony duality [5] or its variants with monopole
superpotential [24] or Chern-Simons interactions [14, 25].

The main complication in the process is given by the supersymmetric monopole oper-
ators [26, 27]. Monopole operators appear in the superpotential, both linearly and through
flipping-type interactions. Moreover it is important at each step to keep track of the map-
ping of the monopoles across the dualities. Hence we need to control the monopoles in 3d
N = 2 quivers, for we which we use the results of [10, 11, 28].

Results. In this paper we focus on two examples: Usp(2N) with an antisymmetric and
U(N) with an adjoint. Let us state the final results.

For unitary-symplectic gauge group, we find in section 2 that Usp(2N) = Sp(N) gauge
theory with antisymmetric, 2f flavors and zero superpotential, is dual to a quiver theory
with N nodes:

Sp(N(f − 2)) Sp((N − 1)(f − 2)) . . . Sp(f − 2)

2f
W =

∑N−1
i=1 γiM

0,•N−i,0i−1 +
∑N
i=1 σiM

•N−i+1,0i−1+

+
∑N
i=1Mi tr(pbN−1 . . . bibi . . . bN−1p)+

+
∑N−1
i=1 (tr(Aibibi) + tr(Aibi−1bi−1) + ai tr(bibi))

Mi

. . .

AN−1 A1

bN−2bN−1 b1

p (1.1)

Similarly, for unitary gauge group, we find in section 3 that U(N) with an adjoint, F
fundamentals, F antifundamentals, W = 0, is dual to the following quiver

U(N(F − 1)) U((N − 1)(F − 1)) · · · U(F − 1)

F

ΦN−1 Φ1

bN−1, b̃N−1 bN−2, b̃N−2 b1, b̃1

· · · Mi W =
∑N−1
i=1 M0N−i,−,0i−1+

+
∑N−1
i=1 γiM

0,+N−i,0i−1 +
∑N
i=1 σ

±
i M

±N−i+1,0i−1+
+
∑N
i=1Mi tr(p̃b̃N−1 . . . b̃ibi . . . bN−1p)+

+
∑N−1
i=1 (tr(Φib̃ibi) + tr(Φib̃i−1bi−1) + φi tr(b̃ibi)) (1.2)

– 2 –



J
H
E
P
0
7
(
2
0
2
1
)
1
9
1

In the main text we explain the notation and derive these dualities, together with the
mapping of the chiral ring generators.

The dualities (1.1) and (1.2) are valid for vanishing superpotential in the electric single-
node theory, so it is possible to turn on any superpotential and obtain new duals. Similarly,
turning on real masses it is possible to obtain duals of theories with non zero Chern-Simons
level. We explore various such deformed dualities in the main text.

One noteworthy feature of the dualities (1.1) and (1.2) is that all chiral ring generators,
both mesons and monopoles, of the electric theory are mapped into gauge singlet fields in
the magnetic theory. So in this sense they are a natural generalization of Aharony dualities
to the case with a single rank-2 matter field.

Further directions. A similar sequential deconfinement procedure can be worked out
for theories involving orthogonal gauge groups and/or rank-2 matter in a symmetric repre-
sentation. We study such a process in [29]. The deconfined quivers alternate a symplectic
and an orthogonal group. Moreover, it turns out that the quivers display a saw structure.

3d N = 2 gauge theories with a single gauge group, rank-2 matter Φ, fundamentals
and superpotential W = Tr(Φk+1) are known to admit a single node dual of Kutasov-
Schwimmer type, that is the dual has a single node, a tower of gauge singlets and a
superpotential term W = Tr(Φ̃k+1) [30–35]. Such dualities appear different from the
dualities discussed in this paper, which have W = 0 on the l.h.s. and a linear quiver on
the r.h.s. It would be interesting to investigate a possible relation between the Kutasov-
Schwimmer type dualities and our sequential deconfinement procedure.

Another possible direction, which was one of the main motivation for this study, is to
extend these results to 3d theories with N = 1 supersymmetry and rank-2 matter (see [36–
47] for recent results in 3d N = 1 gauge theories). Very little is known on the dynamics of
rank-2 matter for N = 1 theories. We hope that a story similar to the one in the present
paper is valid in the 3d N = 1 realm, which might be at midway between the N = 2 and the
non-supersymmetric case [48–50]. In particular, the IR dynamics of non-supersymmetric
theories with two real adjoint fields, unveiled in [50], displays an intricate duality chain
reminiscent of the N = 2 sequential deconfinement.

2 A sequence of duals for Usp(2N) with an antisymmetric

In this section we find dual descriptions of Usp(2N) = Sp(N) (Sp(1) = SU(2)) with a
field A in the traceless antisymmetric representation of Sp(N) and 2f complex flavors Qi,
W = 0. Usp(2N) theories have been recently studied in [33, 51, 52]. We consider f ≥ 3. If
f = 1, the theory does not have a supersymmetric vacuum. If f = 2, the fully deconfined
dual is a Wess-Zumino model, see [33, 51].

We find a total of 2N dual theories, that are quivers with a number of nodes ranging
from 1 to N , the most natural one being the fully deconfined dual, with N nodes.

In each model we describe the chiral ring, giving the list of the chiral ring generators
and their global symmetry quantum numbers. As usual in 3d gauge theories, we need to
pay special attention to the monopole operators.
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We first consider the case of vanishing Chern-Simons interactions, with this result,
it will be easy to turn on a real mass deformation and hence a Chern-Simons term in
section 2.7.

We start with theory T1, that is Sp(N) with a traceless antisymmetric field A and 2f
complex flavors Qi. We take the superpotential to be vanishing. Using the standard quiver
notation for theories with four supercharges, T1 reads

T1 : Sp(N) 2f W = 0

A

Qi
(2.1)

The chiral ring is generated by the (dressed) mesons tr(QiAlQj), l = 0, . . . , N − 1,
the powers of the antisymmetric traceless field tr(Aj), j = 2, . . . , N , and the (dressed)
monopoles {MAk}, k = 0, 1, . . . , N − 1. In terms of the R-charges of the elementary fields
Qi and A, which we denote rF and rA, the R-charge of the basic, undressed, monopole
M is

R[M]T1 = 2f(1− rF ) + (2N − 2)(1− rA)− 2N = 2f(1− rF )− (2N − 2)rA − 2 . (2.2)

2.1 Deconfine and dualize: first step

We now use the confining duality1

Sp(N − 1)w/ 2N chiral flavors qi
W = γM

⇐⇒
N(2N − 1) free chiralsAij
antisymmetric of SU(2N) .

(2.3)

In this duality the chiral ring generators map as tr(qiqj)↔ Aij (the monopole M and the
singlet γ are zero in the chiral ring).

Starting from theory T1, we deconfine the antisymmetric field into a two-node quiver
theory. That is we consider theory T1′ :

T1′ :

Sp(N − 1) Sp(N)

2f

W = γM•,0 + β tr(b̃b̃)

b̃

Q (2.4)

Applying the duality (2.3) to the left node of T1′ , the node Sp(N − 1) confines and one
readily obtains T1. So T1 and T1′ are dual. We introduced the gauge singlet field β field

1This is a variation of a duality introduced by Aharony in [5]:

Sp(N − 1)w/ 2N chiral flavors
W = 0

⇐⇒
Wess-Zumino w/ 2N × 2N antisymmetric
matrix of chiral fields A, and a singlet σ
W = σPfaff(A) .

In this duality the monopole is mapped to σ (M↔ σ), so if we flip the monopole in the l.h.s. with a gauge
singlet γ, on the r.h.s. we obtain a superpotential term σγ, so σ and γ become massive, integrating them
out the superpotential becomes zero and we obtain the duality (2.3).
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so that A in T1 is traceless. The mapping of the R-charges between T1 and T1′ is simply
rQ = rF , rA = 2rb̃.

In linear quivers made of Sp gauge groups, we denote by M0,•,0,0,... monopoles with
non-zero minimal flux in the nodes with • and zero flux in nodes with o.

In theory T1′ , M•,0, γ, β are zero in the chiral ring: M•,0 is set to zero by the F-terms of
γ. γ and β cannot take a vev because of quantum generated superpotentials, so we expect
them to be zero in the chiral ring.2 The monopoles M0,• and M•,• are instead non-zero
the chiral ring, their R-charges are

R[M0,•]T1′ =2f(1− rQ) + (2N − 2)(1− rb̃)− 2N (2.5)
R[M•,•]T1′ =2f(1− rQ) + (2N − 2 + 2N − 2)(1− rb̃)− 2(N − 1)− 2N=2f(1− rQ)− 4(N − 1)rb̃− 2

(2.6)

and (using that rQ = rF , rA = 2rb̃) are equal to R[{MAN−1}]T1 and R[M]T1 , respectively.
The basic monopole M in T1 maps to the ‘extended’ monopole M•,• in T1′ . We will

give the full map of the chiral ring generators in (2.16). As explained in [28], the monopole
M•,• in T1′ can be dressed with the square of bifundamental field, that is b̃b̃, in same way
that M in T1 can be dressed with the antisymmetric field A.

The next step is to dualize the right node Sp(N) in T1′ . We use the Aharony duality [5]

Sp(N) w/ 2F flavors,
W = 0

⇐⇒
Sp(F −N − 1) w/ 2F flavors pi,
W = Aij tr(pipj) + σM

(2.7)

in the quiver T1′ and obtain T2:

T2 :

Sp(N − 1) Sp(f − 2)

2f
W = γM•,• + σM0,•+
+ tr(bφb) + tr(bqp) +M tr(qq)

φ

M

b

p q
(2.8)

We decomposed the dual mesons into the two fields φ and p. Because of the F-terms of
the singlet β, that we integrated out, the antisymmetric field φ is traceless. Notice that
the monopole M•,0 in T1′ maps to M•,• in T2, (2.8); here we are applying the rules of [28]
for the mapping of monopole operators under dualities in quivers made of Sp nodes.

The mapping between the R-charges of theories T1 and T2 is

rq = 1− rF , rp = rA/2 + rF , rφ = rA , rb = 1− rA/2 . (2.9)
2This argument leaves the logical possibility that they are nilpotent operators, but we do not expect

this possibility to be realized.
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The R-charges of the monopoles and of the flipping fields for the monopoles are

R[M•,0]T2 = (2f − 4)(1− rb) + 2f(1− rp) + (2N − 4)(1− rφ)− 2N + 2 (2.10)
R[σ]T2 = 2−R[M0,•]T2 = 2− ((2N − 2)(1− rb) + 2f(1− rq)− (2f − 4)) (2.11)
R[γ]T2 = 2− ((2N + 2f − 8)(1− rb) + (2N − 4)(1− rφ) + 2f(2− rq − rp)− (2N + 2f − 6))

(2.12)

which, using (2.16), in terms of the R-charges of T1, become

R[M•,0]T2 = 2f(rq)− (2N − 2)rφ − 2 = R[M]T1 (2.13)
R[σ]T2 = 2f(rq)− (N − 1)rφ − 2 = R[M]T1 + (N − 1)rφ = R[MAN−1 ]T1 (2.14)
R[γ]T2 = NrA . (2.15)

The mapping of the chiral ring generators of the three theories constructed so far, T1,
T1′ and T2 is

T1

tr(QiQj)
tr(QiAJQj)
tr(AJ)
tr(AN )
{MAJ}
{MAN−1}

⇐⇒

T1′

tr(QiQj)
tr(Qi(b̃b̃)JQj)
tr((b̃b̃)J)
tr((b̃b̃)N )
{M•,•(b̃b̃)J}

M0,•

⇐⇒

T2

Mij

tr(piφJ−1pj)
tr(φJ)
γ

{M•,0
φJ }

σ

J = 1, . . . , N − 1
J = 2, . . . , N − 1
J = 0, 1, . . . , N − 2 .

(2.16)

It is possible to check the mapping of the dressed mesons using

R[tr(Qi(b̃b̃)JQj)]T1′ = 2rQ + 2Jrb̃ = 2− 2rq + rφ + (J − 1)rφ =
2(2− rq − rb) + (J − 1)rφ = 2rp + (J − 1)rφ = R[tr(piφJ−1pj)]T2 .

(2.17)

2.2 Deconfine and dualize: second step

We now repeat the same procedure. First we deconfine the antisymmetric traceless in
T2 (2.8) into a bifundamental b̃ connected to a Sp(N − 2) node, introducing a flipping field
γ2 for the Sp(N − 2)-monopole. The superpotential term tr(bφb) becomes tr(bb̃b̃b) and we
get T2′ :

T2′ :

Sp(N − 2) Sp(N − 1) Sp(f − 2)

2f
W = γ1M

•,•,•+ γ2M
•,0,0 +σ1M

0,0,•+

+g2 tr(b̃b̃) + tr(bb̃b̃b) + tr(bqp) + tr(qM1q)

M1

bb̃

p q

(2.18)

– 6 –
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Notice that the monopole M•,• in T2 is extended to M•,•,• in T2′ , while M0,• in T2 is
becomes M0,0,• in T2′ . This is agreement with the rules of [28], since dualizing the leftmost
node in T2′ (and forgetting that the rank of the leftmost group becomes zero), the rule says
that M•,•,• →M0,•,• and M0,0,• →M0,0,•.

Dualizing the central Sp(N −1) node, which has a total of 2(N −2+f −2+f) flavors,
and thus becomes a Sp(N + 2f − 4− (N − 1)− 1 = 2f − 4) with 3 sets of flavors p′, b′1, b′2,
we produce 6 sets of Seiberg mesons Â1, φ̂,M2, N13, N1F , N3F . The quiver becomes

Sp(N − 2) Sp(2f − 4) Sp(f − 2)

2f
W = γ1M

•,•,•+ γ2M
•,•,0 +σ1M

0,•,•+σ2M
0,•,0+

+g2 tr(φ̂) + tr(N13N13) + tr(N1F q) + tr(qqM1)+
φ̂b′2b

′
2 + Â1b

′
1b
′
1 +M2p

′p′+N13b
′
1b
′
2 +N1F p

′b′1 +N3F p
′b′2

b′1

b′2

q
N1Fp′N3F

N13

M1,M2

φ A1

(2.19)
We put the Seiberg flipping terms in the last row. Notice that the monopoles change

as follows: M•,0,0 →M•,•,0 and M0,0,• →M0,•,•.
The quartic term tr(b1b2b2b1) became a quadratic term for the Sp(N − 2)–Sp(k −

2) bifundamentals N13, which are thus massive and can be integrated out, generating a
new quartic term tr(b′1b′2b′2b′1). Â1 is an antisymmetric for Sp(f − 2), which we split into
an antisymmetric traceless A1 and a trace part a1. Same for φ, antisymmetric traceless
for Sp(N − 2).

Integrating out the massive fields and removing the ′’s for notational simplicity, we get
theory 3:

Sp(N − 2) Sp(2f − 4) Sp(f − 2)

2f W = γ1M
•,•,• + γ2M

•,•,0 + σ1M
0,•,• + σ2M

0,•,0+
+M1 tr(pb1b1p) +M2 tr(pp)+

+ tr(b1bbb1) + tr(rpb)+
+ tr(φbb) + tr(A1b1b1) + a1 tr(b1b1)

M1,M2

φ A1

b1b

pr

T3 :

(2.20)
where M1,2, a1, γ1,2, σ1,2 are gauge singlets, r are fundamentals of Sp(N − 2), p are funda-
mentals of Sp(2(f − 2)).

We can express the R-charges of the elementary fields in theory 3 as a function of the
R-charges in theory 1 rF and rA:

rb1 = 1− (rb)T2 = rA/2
rb = 1− (rφc)T2/2 = 1− rA/2

– 7 –
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rA1 = ra1 = 2− 2rb1 = 2− rA
rφ = 2− 2rb = rA

rr = (rp)T2 + rA/2 = rF + rA

rp = 1− (rp)T2 = 1− (rA/2 + rF ) = 1− rA/2− rF
rM2 = 2− 2rp = 2rF + rA

rM1 = 2− 2rb1 − 2rp = 2rF .
(2.21)

The mapping of the chiral ring generators of the three theories T1, T2 and T3 is

T1

tr(QiQj)
tr(QiAQj)
tr(QiAJQj)
tr(AJ)
tr(AN−1)
tr(AN )
{MAJ}
{MAN−2}
{MAN−1}

⇐⇒

T2

Mij

tr(pipj)
tr(piφJ−1pj)
tr(φJ)
tr(φN−1)
γ

{M•,0
φJ }

{M•,0
φN−2}

σ

⇐⇒

T3

(M1)ij
(M2)ij
tr(riφJ−2rj)
tr(φJ)
γ2

γ1

{M•,0,0
φJ }

σ2

σ1

J = 2, . . . , N − 1
J = 2, . . . , N − 2
J = 0, 1, . . . , N − 3 .

(2.22)

2.3 After k steps

After k steps of deconfining and dualizing, we arrive to a quiver with k + 1 nodes:

Sp(N − k) Sp(k(f − 2)) Sp((k − 1)(f − 2)) . . . Sp(f − 2)

2f
W =

∑k
i=1 γiM

•k−i+2,0i−1 +
∑k
i=1 σiM

0,•k−i+1,0i−1+

+
∑k−1
i=1 Mi tr(pbk−1 . . . bibi . . . bk−1p) +Mk tr(pp)+

+ tr(bk−1bbbk−1) + tr(rpb) + tr(φbb)+

+
∑k−1
i=1 (tr(Aibibi) + tr(Aibi−1bi−1) + ai tr(bibi))

Mi

. . .

φ Ak−1 A1

bk−1b bk−2 b1

r p

Tk+1 :

(2.23)
We can express the R-charges of the elementary fields in theory k + 1 as a function of

the two independent R-charges in theory 1, rF and rA:

rbi
= rA/2 i = 1, . . . , k − 1

rb = 1− rA/2
rAi = rai = 2− rA i = 1, . . . , k − 1

– 8 –
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rφ = rA

rr = rF + k rA/2
rp = 1− (k − 1)rA/2− rF
rMi = 2rF + (i− 1)rA i = 1, . . . , k .

(2.24)

The mapping of the chiral ring generators with the starting theory T1 is

T1

tr(QiAJQj)
tr(QiAJQj)
tr(AJ)
tr(AJ)
{MAJ}
{MAJ}

⇐⇒

Tk+1

(MJ+1)ij
tr(riφJ−krj)
tr(φJ)
γN−J+1

{M•,0,0,...,0
φJ }

σN−J

J = 0, . . . , k − 1
J = k, . . . , N − 1
J = 2, . . . , N − k
J = N − k + 1, . . . , N
J = 0, 1, . . . , N − k − 1
J = N − k, . . . , N − 1 .

(2.25)

2.4 Fully deconfined tail

After N − 1 steps, the leftmost group is Sp(1) so there is no antisymmetric traceless to
deconfine, and we just dualize the Sp(1) using Aharony duality.

The final result is that our starting theory T1

T1 : Sp(N) 2f W = 0

A

Qi
(2.26)

is dual to a fully deconfined quiver with N gauge nodes TDEC

Sp(N(f − 2)) Sp((N − 1)(f − 2)) . . . Sp(f − 2)

2f
W =

∑N−1
i=1 γiM

0,•N−i,0i−1 +
∑N
i=1 σiM

•N−i+1,0i−1+

+
∑N
i=1Mi tr(pbN−1 . . . bibi . . . bN−1p)+

+
∑N−1
i=1 (tr(Aibibi) + tr(Aibi−1bi−1) + ai tr(bibi))

Mi

. . .

AN−1 A1

bN−2bN−1 b1

p

TDEC :

(2.27)
The R-charges of the elementary fields in the fully deconfined theory are given in terms

of the two independent R-charges in theory 1, rF and rA as follows:

rbi
= rA/2 i = 1, . . . , N − 1

rAi = rai = 2− rA i = 1, . . . , N − 1
rp = 1− (N − 1)rA/2− rF
rMi = 2rF + (i− 1)rA i = 1, . . . , N .

(2.28)
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The mapping of the chiral ring generators in the duality T1 ↔ TDEC is

T1

tr(QiAJQj)
tr(AJ)
{MAJ}

⇐⇒

TDEC

(MJ+1)ij
γN−J+1

σN−J

J = 0, . . . , N − 1
J = 2, . . . , N
J = 0, . . . , N − 1 .

(2.29)

Notice that all chiral ring generators of T1 map to gauge singlets in TDEC. This is
similar to Aharony duality for Sp gauge group without rank-2 matter fields. Also, in the
case of Sp(1) gauge group, our duality T1 ↔ TDEC reduces to Aharony duality.

2.5 Superpotential deformation: W = tr(Q2f−1AJQ2f)

In this section and in section 2.6, we discuss complex deformations of the duality between
our original theory with a single node Sp(N) (2.1) T1 and the fully deconfined quiver
TDEC (2.27). As usual in Seiberg like dualities, a complex deformation on the electric side
will induce a Higgsing of the gauge groups on the magnetic side.

In this section we consider a superpotential deformation in T1 of the form
tr(Q2f−1AJQ2f ). This meson, according to (2.29), is mapped in TDEC to (MJ+1)2f−1,f ,
the flipping field for the meson tr(p2f−1 . . . bJ+1bJ+1 . . . p2f ). We take J < N . Turn-
ing on a linear superpotential term in MJ means that this 2f × 2f matrix of long
mesons must take a non-zero vacuum expectation value of minimal non zero rank.
This is achieved by giving a vev to the bifundamentals bJ , bJ+1, . . . , bN−1 and to the
flavors p, such that tr(p2f−1bN−1 . . . bJ+1bJ+1 . . . bN−1p2f ) = 1, while all other mesons
are zero.

Without going too much into the details, the final result is that in (2.27) the N − J
gauge groups on the left

Sp(N(f − 2)), . . . , Sp(h(f − 2)), . . . , Sp((J + 1)(f − 2))

are Higgsed to

Sp(N(f − 2)− (N − J)), . . . , Sp(h(f − 2)− (h− J)), . . . , Sp((J + 1)(f − 2)− (J + 1− J)) ,

while the J remaining gauge groups on the right are not Higgsed. The last flavor p2f−1, p2f
migrates from the left-most node to node Sp(J(f − 2)). More precisely, since the node
Sp((J + 1)(f − 2)) is Higgsed down to Sp((J + 1)(f − 3) + J), the bifundamental field bJ
splits into a new Sp((J + 1)(f − 3) + J)− Sp(J(f − 2)) bifundamental and a flavor for the
node Sp(J(f−2)). The flipping fields for the mesons split into two sets MH , H = 1, . . . , N ,
and (M ′)K , K = 1, . . . , J .

The final result is that

Sp(N) 2f W = tr(Qf−1AJQf )

A

Qi
(2.30)
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is dual to

Sp(N(f − 3) + J) Sp((N − 1)(f − 3) + J) . . . Sp(J(f − 2)) . . . Sp(f − 2)

2f − 2 2

W =
∑N−1
i=1 γiM

0,•N−i,0i−1 +
∑N
i=1 σiM

•N−i+1,0i−1+

+
∑N
i=1Mi tr(pbN−1 . . . bibi . . . bN−1p)+

+
∑J
i=1M

′
i tr(p′bJ−1 . . . bibi . . . bJ−1p

′)

+
∑N−1
i=1 (tr(Aibibi) + tr(Aibi−1bi−1) + ai tr(bibi))+

Mi

. . .

M ′i
. . .

AN−1 AJ A1

bN−1 bN−2 bJ bJ−1 b1

p p′

(2.31)

Complex mass deformation. Let us start from f > 2 and turn on a complex mass for
2 flavors, δW = tr(Q2f−1Q2f ). This is the special case J = 0 of the discussion above. The
flavor p′ and the gauge singlets M ′ are absent for J = 0, and all the gauge groups in TDEC
get partially Higgsed. The final result is precisely (2.27) with f → f − 1. We thus get a
consistency check of the duality T1 ↔ TDEC.

2.6 N = 4-like deformation: W =
∑

j tr(Q2j−1AQ2j)

We now consider adding f cubic terms to T1, obtaining Sp(N) with 2f chiral flavors and
W =

∑f
j=1 tr(Q2j−1AQ2j). Using the results just obtained in (2.31), on the dual side, all

the flavors migrate to the right-most node Sp(f − 2), and out the tower of singlets (MJ)ij ,
only (M1)ij survive. The tail of gauge groups

Sp(N(f − 2)), . . . , Sp(3(f − 2)), Sp(2(f − 2)), Sp(f − 2)

Higgs to
Sp(f − 2N), . . . , Sp(f − 6), Sp(f − 4), Sp(f − 2) .

Notice that the right-most gauge group Sp(f − 2) is not Higgsed.

– 11 –



J
H
E
P
0
7
(
2
0
2
1
)
1
9
1

The final result is that

T1 : Sp(N) 2f W =
∑f
j=1 tr(Q2j−1AQ2j)

A

Qi
(2.32)

is dual to3

Sp(f − 2N) Sp(f − 2N + 2) . . . Sp(f − 2)

2f
W =

∑N−1
i=1 γiM

0,•N−i,0i−1 +
∑N
i=1 σiM

•N−i+1,0i−1+
+M tr(pp)+

+
∑N−1
i=1 (tr(Aibibi) + tr(Aibi−1bi−1) + ai tr(bibi))

M

AN−1 A1

bN−2bN−1 b1

p (2.33)

This result is strictly speaking valid for f > 2N . If f ≤ 2N the dual quiver becomes shorter
and some of the flipping fields γ and σ decouple. This is due to the fact the theory Sp(N)
with W =

∑f
j=1 tr(Q2j−1AQ2j) if f ≤ 2N becomes “bad” in the Gaiotto-Witten sense, so

some Coulomb branch operators (that is tr(Ah) and {MAk}) become free and decouple.

2.7 Real masses and Chern-Simons terms

Starting from the dualities discussed above, it is easy to turn a Chern-Simon interaction
at level k: we simply start from the theory with 2f + 2k flavors and turn a positive real
mass for 2k flavors. We obtain Sp(N)k with 2f flavors andW = 0. Now f and k are either
integers or half-integers, but f + k is always an integer.

The real mass is in the supermultiplet of the U(2f + 2k) global symmetry current,
so in the fully deconfined dual (2.27) the real mass is mapped to a real mass for some
of the flavors p (the bifundamental fields bi are not charged under the U(2f + 2k) global
symmetry) and some of the gauge singlets M . In the fully deconfined dual (2.27) (with
f → f +k), 2k flavors p’s get a negative real mass, which induces a negative Chern-Simons
level −k for the leftmost node, while the Chern-Simons levels of all the other nodes do not
get any shift.

If k 6= 0, the monopoles {MAJ} are not in the chiral ring of Sp(N)k, accordingly the
singlet fields σi disappear from the deconfined dual of Sp(N)k.

3The result (2.33) can also be obtained deforming the duality T1 ↔ T2 discussed in section 2.1, recalling
that tr(QAQ) ↔ tr(pp): all the fundamentals p in T2 becomes massive. At this point one sequentially
deconfines the antisymmetric, building the tail without carrying around the flavors, which remain attached
to the right-most node Sp(f − 2).
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Summing up, the fully deconfined dual of Sp(N)k with antisymmetric and 2f flavors,
W = 0, is4

Sp(N(f + k − 2))−k Sp((N − 1)(f + k − 2))0 . . . Sp(f + k − 2)0

2f
W =

∑N−1
i=1 γiM

0,•N−i,0i−1+

+
∑N
i=1Mi tr(pbN−1 . . . bibi . . . bN−1p)+

+
∑N−1
i=1 (tr(Aibibi) + tr(Aibi−1bi−1) + ai tr(bibi))

Mi

. . .

AN−1 A1

bN−2bN−1 b1

p (2.34)

The relation among R-charges of the elementary fields is the same as before:

rbi
= rA/2 i = 1, . . . , N − 1

rAi = rai = 2− rA i = 1, . . . , N − 1
rp = 1− (N − 1)rA/2− rF
rMi = 2rF + (i− 1)rA i = 1, . . . , N .

(2.35)

The mapping of the chiral ring generators is

Sp(N)k , W = 0
tr(QiAJQj)
tr(AJ)

⇐⇒
theory (2.34)
(MJ+1)ij
γN−J+1

J = 0, . . . , N − 1
J = 2, . . . , N .

(2.36)

Deconfining with non zero Chern-Simons interactions. It is instructive to see how
to reach the result (2.34) deconfining and dualizing sequentially the Sp(N)k theory, as done
before in the case of vanishing Chern-Simons coefficient. The procedure is pretty much the
same, difference is that with non zero that Chern-Simons the relevant duality is [14, 25]

Sp(N)k w/ 2F flavors,
W = 0

⇐⇒
Sp(F + |k| −N − 1)−k w/ 2F flavors pi,

W = Aij1 tr(pipj) .
(2.37)

It is important that the duality (2.37) generates a Chern-Simons interaction for the
global U(2F ) symmetry, with level +k [14]. In our case the global U(2F ) symmetry is
partially gauged. Such Chern-Simons interaction has the effect that when we dualize a Sp

4If f + |k| = 2, k = 0,±1,±2, all the ranks in the quiver tails vanish. In the case of the fully deconfined
theory, the full gauge group is trivial. This means that the deconfined theory is replaced by a Wess-Zumino,
with a non trivial superpotential constructed out of the gauge singlet fields γi, σi,Mi, as in [33, 51].

If f + |k| = 3, k = 0,±1,±2,±3, the quiver tail is Sp(N)−k − Sp(N − 1)− Sp(N − 2)− . . .− Sp(1), and
this can be sequentially confined. We start from the right-most node, which is a Sp(1)0 with 2 · 2 flavors,
so it confines. Moreover, the antisymmetric for the Sp(2)0 node is removed. We then dualize the Sp(2)0

with 3 · 2 flavors, which also confines. After N − 1 confining steps, we end up with Sp(N)−k, with an
antisymmetric plus 6 − 2|k| flavors, and some flipping fields. The same Sp(N)+k ↔ Sp(N)−k duality can
be achieved in a different way, see [33] and eq. (5.2) in [51].
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node in a quiver, the Chern-Simons level of the nearby nodes in the quiver is shifted by +k.
After h steps of deconfining and dualizing, one reaches the partially deconfined theory:

Sp(N −h)k Sp(h(f + k− 2))−k Sp((h− 1)(f + k− 2))0 . . . Sp(f + k− 2)0

2f
W =

∑h
i=1 γiM

•h−i+2,0i−1+

+
∑h−1
i=1 Mi tr(pbh−1 . . . bibi . . . bh−1p) +Mh tr(pp)+

+ tr(bh−1bbbh−1) + tr(rpb) + tr(φbb)+

+
∑h−1
i=1 (tr(Aibibi) + tr(Aibi−1bi−1) + ai tr(bibi))

Mi

. . .

φ Ah−1 A1

bh−1b bh−2 b1

r p

Th+1 :

(2.38)

3 A sequence of duals for U(N) with an adjoint

In this section we find dual descriptions of U(N) with a field Φ in the adjoint representation
and (F, F ) flavors Qi, Q̃i,W = 0. The adjoint field is a SU(N)-adjoint, that is Φ is traceless.

We consider F ≥ 2: if F = 1, following the same procedure of deconfining and dualiz-
ing, one gets a fully deconfined dual which is a Wess-Zumino model, see [10].

The procedure is very similar to the one described in section 2, so in this section we
give a bit less detail. There are 2N dual theories, that are quivers with a number of nodes
ranging from 1 to N . The fully deconfined dual has N nodes.

The main difference with respect to the case of 2 is that we deconfine the adjoint
using the “one monopole duality” of [24], which introduce superpotential terms in the
quiver which are linear in the monopoles. Such terms break the topological symmetries
and give rise to some complications, for instance the R-charge of the monopoles M...,+,...

is not equal to the R-charge of the monopoles M...,−,.... (In linear quivers made of U
gauge groups, we denote by M0,0,±,±,... monopoles with non-zero minimal flux in the nodes
with ± and zero flux in nodes with 0). In detail, the presence of a linear monopole
superpotential leads to a modification of the usual R-charge monopole formula; in fact,
every time we have a superpotential term W = M...,−,... we need to ensure the marginality
of such monopole. The main idea is to start with a simple ansatz for the additional
corrections to the standard monopole R-charge formula, and fix the additional terms using
the marginality of the monopoles contained in the superpotential and the operator map
across duality to completely fix the coefficients of such terms. Physically, the added terms
corresponds to mixed contact terms between R-symmetry and gauge symmetry, that may
be computed, for instance, using localisation techniques. However, this goes beyond the
aim of the present work.

Let us now explain a bit more in detail the procedure we are going to use. As we said,
monopole operators in the superpotential are not symmetric under charge conjugation.
Thus, the modification of the usual R-charge formula should distinguish the different signs

– 14 –
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of the fluxes, so, given a general linear quiver with N gauge nodes, we start from the ansatz:

R[Mm(1),m(2),··· ,m(N) ] = (standard) + α1

N1∑
i1=1

m
(1)
i1

+ · · ·+ αN

Nn∑
in=1

m
(N)
in

, (3.1)

where (standard) refers to the usual R-charge contributions from matter fields and gaugi-
nos, for instance for the following quiver with matter in the (bi-)fundamental and adjoint

U(N1) U(N2) · · · U(Nn) F
B1, B̃1

Φ1

B2, B̃2

Φ2

Bn−1, B̃n−1

Φn

Q, Q̃

(3.2)

it reads

R[Mm(1),m(2),··· ,m(n) ] = (1− rΦ1)
N1∑
i1<i2

|m(1)
i1
−m(1)

i2
|+ · · ·+ (1− rΦn)

Nn∑
i1<i2

|m(n)
i1
−m(n)

i2
|+

+ (1− rB1)
N1∑
i=1

N2∑
j=1
|m(1)

i −m
(2)
j |+ · · ·+ (1− rBn−1)

Nn−1∑
i=1

Nn∑
j=1
|m(n−1)

i −m(n)
j |+

+F (1− rQ)
Nn∑
i=1
|m(n)

i | −
N1∑
i1<i2

|m(1)
i1
−m(1)

i2
| − · · · −

Nn∑
i1<i2

|m(n)
i1
−m(n)

i2
| .

(3.3)
The parameters αi are the ones that will be fixed imposing the marginality of the monopoles
in the superpotential and the use of the duality map. The use of the duality map can be
considered as a weakness of such an effective procedure: given a general quiver theory with
an arbitrary combinations of linear monopole superpotential we are not able to provide
an expression for the monopole R-charge; moreover, in this way we may only find the
parameters αi only in terms of the mixing parameters of the starting theory. Nonetheless,
as we will concretely see later, the procedure we employ works perfectly in order to study
the deconfinement of a traceless U(N) adjoint field.

A first check of the validity of the procedure is that the result for the parameter fixed
via the operator map does not depend on which operator we map. Another strong test
comes from the computation of the supersymmetric index, where the presence of such
contact terms is crucial, since it enters the sum over the gauge magnetic fluxes.

We start from the case of vanishing Chern-Simons interactions, with this result, it will
be easy to turn on a real mass deformation and hence a Chern-Simons term in section 3.5,
where we discuss the duals U(N)k with adjoint and flavors.

We start with theory T1, that is U(N) with a traceless antisymmetric field Φ and F
flavors Qi, Q̃i. We take the superpotential to be vanishing, W = 0. Using the standard
quiver notation for theories with four supercharges, T1 reads

T1 : U(N) F

Q, Q̃

Φ

W = 0
(3.4)
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Throughout most of this section, the square node denotes a SU(F ) × SU(F ) global
symmetry.

The global symmetry is SU(F )2 ×U(1)Q ×U(1)Φ ×U(1)topological.
The chiral ring is generated by the (dressed) mesons tr(Q̃iΦlQj), l = 0, . . . , N − 1,

the powers of the antisymmetric traceless field tr(Φj), j = 2, . . . , N , and the (dressed)
monopoles {MΦk}, k = 0, 1, . . . , N − 1. In terms of the R-charges of the elementary fields
Qi and Φ, which we denote rF and rΦ, the R-charge of the basic, undressed, monopole
M is

R[M±]T1 = F (1− rF ) + (N − 1)(−rΦ) . (3.5)

3.1 Deconfine and dualize with the one-monopole duality

In order to deconfine the adjoint field, we use a variation of the confining one monopole
duality of [24], which reads

U(N − 1)w/ (N,N) flavors qi, q̃i
W = M−

⇐⇒
Wess-Zumino with N2 + 1 chirals Φ, s
W = s det(Φ) .

(3.6)
In this duality q̃q ↔ Φ and M+ ↔ s.

The mapping M+ ↔ s is in agreement with the R-charge computation. On the l.h.s.
the topological symmetry is broken by the superpotential term, so the R-charge of the
monopoles mixes with the topological symmetry:

R[M±] = (N − 1)(1− rq)− (N − 2)± δ . (3.7)

Imposing R[M−] = 2 we get δ = −(N − 1)rq and thus

R[M+] = 2− 2Nrq . (3.8)

On the r.h.s. R[s] = 2−NR[Φ] = 2− 2Nrq.
We will need the following variation of (3.6): we start from (3.6), flip the monopole

M+ in the l.h.s. with a gauge singlet γ, on the r.h.s. a superpotential term sγ arises, s and
γ become massive, integrating them out the superpotential becomes zero and we obtain
the following deconfining duality:

U(N − 1)w/ (N,N) flavors qi, q̃i
W = M− + γM+ ⇐⇒

N2 free chirals M i
j

bifundamental of SU(N)2 .
(3.9)

In this duality the chiral ring generators are only the quadratic mesons, which map as
tr(qiq̃j)↔M i

j .
Starting from theory T1, we use (3.9) to deconfine the adjoint field into a two-node

quiver theory, that is we consider theory T1′ :

T1′ : U(N − 1) U(N) F

b′, b̃′ Q, Q̃

W = M−,0 + γM+,0 + β tr(b′b̃′)

(3.10)
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In T1 the monopoles M0,±, M+,+ and M−− are non trivial elements of the chiral ring,
their R-charges read

R[M0,+]T1′ = F (1− rQ)
R[M0,−]T1′ = F (1− rQ)− 2(N − 1)rb′
R[M+,+]T1′ = F (1− rQ)− 2(N − 1)rb′
R[M−,−]T1′ = F (1− rQ)− 2(N − 2)rb′

(3.11)

Using that rQ = rF , rΦ = 2rb′ and R[M±]T1 = F (1 − rF ) − (N − 1)rΦ, we see that
these monopoles map into T1 as follows

T1′

M0,+

M0,−

M+,+

M−,−

⇐⇒

T1

{M+
ΦN−1}

M−

M+

{M−Φ} .

(3.12)

From the mapping we learn the following rule: deconfining and adjoint with the one
monopole duality (3.9), that has M− in W, the monopole M+ extends to M+,+, while the
monopole M− becomes M0,−. This rule will be useful to fully deconfine the theory. We
will give the full map of the chiral ring generators in (3.18).

The next step is to dualize the right node U(N) in T1′ using Aharony duality [5]

U(N) w/ (F, F ) flavors,
W = 0

⇐⇒
U(F −N) w/ (F, F ) flavors pi, p̃i,
W = M ij tr(pip̃j) + σ±M±

(3.13)

in the quiver T1′ and obtain T2:

T2 :

U(N − 1) U(F − 1)

F

p, p̃ q, q̃

b, b̃φ

M

W = M−,− + γM+,+ + σ±M0,±+
+ tr(b̃φb) + tr(bqp) + tr(b̃q̃p̃) +M tr(qq̃) (3.14)

We decomposed the Seiberg dual mesons into the fields φ, M and p. Because of the
F-terms of the singlet β, that we integrated out, the antisymmetric field φ is traceless.
Notice that the monopoles M±,0 in T1′ became M±(1,1) in T2, here we are applying the
rules of [11, 28] for the mapping of monopole operators under dualities in quivers.

The mapping between the R-charges of theories T1 and T2 is dictated by the mapping
of the mesonic operators and is

rq = 1− rF , rp = rΦ/2 + rF , rφ = rΦ , rb = 1− rΦ/2 . (3.15)
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The R-charges of the monopoles and of the flipping fields for the monopoles are

R[M+,0]T2 = (N − 2)(1− rφ) + (F − 1)(1− rb) + F (1− rp)− (N − 2) + α1,

R[M−,0]T2 = (N − 2)(1− rφ) + (F − 1)(1− rb) + F (1− rp)− (N − 2)− α1,

R[σ+]T2 = 2− ((N − 1)(1− rb) + F (1− rq)− (F − 2) + α2)
R[σ−]T2 = 2− ((N − 1)(1− rb) + F (1− rq)− (F − 2)− α2)
R[γ]T2 = 2− ((N − 2)(1− rφ) + (N + F − 4)(1− rb)

+ F (1− rq) + F (1− rp)− (N − 2)− (F − 2) + α1 + α2)

(3.16)

where, the procedure to find α1, α2 explained in 3, gives

α1 = −rΦ
2 , α2 = (1−N) rΦ

2 . (3.17)

In T1′ , some monopole operators can be dressed using the meson made by bifunda-
mental fields b, b̃, as discussed in [11, 28]. In T2, some monopole operators can be dressed
with the adjoint φ.

The mapping of the chiral ring generators of the three theories constructed T1, T1′ and
T2 is

T1

tr(Q̃iQj)
tr(Q̃iΦJQj)
tr(ΦJ)
tr(ΦN )
{M+

ΦJ}
{M+

ΦN−1}
M−

{M−ΦJ+1}

⇐⇒

T1′

tr(Q̃iQj)
tr(Q̃i(b′b̃′)JQj)
tr((b′b̃′)J)
tr((b′b̃′)N )
{M+,+

(b′b̃′)J}

M0,+

M0,−

{M−,−(b′b̃′)J}

⇐⇒

T2

Mij

tr(p̃iφJ−1pj)
tr(φJ)
γ

{M+,0
φJ }

σ+

σ−

{M−,0
φJ }

J = 1, . . . , N − 1
J = 2, . . . , N − 1
J = 0, 1, . . . , N − 2
J = 0, 1, . . . , N − 2 .

(3.18)

3.2 Fully deconfined tail

We can proceed in a similar fashion, deconfine an adjoint field and dualize. We do not give
the details since they are very similar to the Sp case discussed in section 2.

AfterN−1 steps, the leftmost group is U(1) so there is no adjoint traceless to deconfine,
and we just dualize the U(1).

The final result is that the starting theory T1

T1 : U(N) F

Q, Q̃

Φ

W = 0
(3.19)
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is dual to a quiver with N gauge nodes TDEC

TDEC :

U(N(F − 1)) U((N − 1)(F − 1)) · · · U(F − 1)

F

ΦN−1 Φ1

bN−1, b̃N−1 bN−2, b̃N−2 b1, b̃1

p, p̃

· · · Mi W =
∑N−1
i=1 M0N−i,−,0i−1+

+
∑N−1
i=1 γiM

0,+N−i,0i−1 +
∑N
i=1 σ

±
i M

±N−i+1,0i−1+
+
∑N
i=1Mi tr(p̃b̃N−1 . . . b̃ibi . . . bN−1p)+

+
∑N−1
i=1 (tr(Φib̃ibi) + tr(Φib̃i−1bi−1) + φi tr(b̃ibi))

(3.20)
The R-charges of the elementary fields in the fully deconfined theory are given in terms

of the two independent R-charges in theory 1, rF and rΦ as follows:

rbi
= rΦ/2 i = 1, . . . , N − 1

rΦi = rφi
= 2− rΦ i = 1, . . . , N − 1

rp = 1− (N − 1)rΦ/2− rF
rMi = 2rF + (i− 1)rΦ i = 1, . . . , N .

(3.21)

The mapping of the chiral ring generators in the duality T1 ↔ TDEC is

T1

tr(Q̃iΦJQj)
tr(ΦJ)
{M+

ΦJ}
{M−ΦJ}

⇐⇒

TDEC

(MJ+1)ij
γN−J+1

σ+
N−J

σ−J+1

J = 0, . . . , N − 1
J = 2, . . . , N
J = 0, . . . , N − 1
J = 0, . . . , N − 1 .

(3.22)

Notice that {M+
ΦJ}monopoles map to singlets σ+

N−J , in the same way of the monopoles
of Sp(N) with an antisymmetric, (2.29). On the other hand {M−ΦJ}monopoles map to σ−J+1.
This is due to the fact that every time we deconfine the rank-2 field, the positive charge
monopoles of U and the monopoles of Sp extend (M+,... becomes M+,+,..., M·,... becomes
M·,·,...), while the negative charge monopoles of U do not extend (M−,... becomes M0,−,...).

The general formula for the monopole R-charge in TDEC reads

R[Mm(1),m(2),··· ,m(N) ] = (standard) + α1

N(F−1)∑
i1=1

m
(1)
i1

+ · · ·+ αN

F−1∑
iN =1

m
(N)
iN

, (3.23)

where
α1 = N − 1

2 rΦ, α2 = · · · = αN = −rΦ. (3.24)

Observe that the superpotential for TDEC contains N − 1 linear monopoles, and their
marginality fixes N − 1 of the αi parameters; the remaining one has to be fixed using the
duality map.

Let us finally comment that, as for Aharony duality for U gauge group without rank-2
matter fields, all the chiral ring generators of T1 map to gauge singlets in TDEC.
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3.3 Superpotential deformation: W = tr(Q̃F ΦJQF )

In this section and in section 3.4, we discuss complex deformations of the duality be-
tween our original theory with a single node U(N) T1 (3.4) and the fully deconfined quiver
TDEC (3.20). As usual in Seiberg-like dualities, a complex deformation on the electric side
will induce a Higgsing of the gauge groups on the magnetic side.

In this section we consider a superpotential deformation in T1 of the form tr(Q̃FΦJQF ).
This meson, according to (3.22), is mapped in TDEC to (MJ+1)F,F , the flipping field for the
meson tr(p̃F . . . b̃J+1bJ+1 . . . pF ). We take J < N . Turning on a linear superpotential term
inMJ means that this F ×F matrix of long mesons must take a non-zero vacuum expecta-
tion value of minimal non zero rank. This is achieved by giving a vev to the bifundamentals
bJ+1, . . . , bN−1 and to the flavors p, such that tr(p̃F b̃N−1 . . . b̃J+1bJ+1 . . . bN−1pF ) = 1, while
all other mesons are zero.

Without going too much into the details, the final result is that in (3.20) the N − J
gauge groups on the left

U(N(F − 1)), . . . ,U(h(F − 1)), . . . ,U((J + 1)(F − 1))

are Higgsed to

U(N(F − 1)− (N − J)), . . . ,U(h(F − 1)− (h− J)), . . . ,U((J + 1)(F − 1)− (J + 1− J)) ,

while the J remaining gauge groups on the right are not Higgsed. The last flavor p̃F , pF
migrates from the left-most node to node U(J(F − 1)). More precisely, since the node
U((J + 1)(F − 1)) is Higgsed down to U((J + 1)(F − 2) + J), the bifundamental field bJ
splits into a new U((J + 1)(F − 2) + J)−U(J(F − 1)) bifundamental and a flavor for the
node U(J(F −1)). The flipping fields for the mesons split into two sets MH , H = 1, . . . , N ,
and (M ′)K , K = 1, . . . , J .

The final result is that

U(N) F

Q, Q̃

Φ

W = tr(Q̃FΦJQF )
(3.25)

is dual to

U(N(F − 2) + J) U((N − 1)(F − 2) + J) · · · U(J(F − 1)) · · · U(F − 1)

F − 1 1

ΦN−1 ΦJ Φ1

bN−1 bN−2 bJ bJ−1 b1

· · ·Mi

p p′

· · · M ′i

W =
∑N−1
i=1 M0N−i,−,0i−1 +

∑N−1
i=1 γiM

0,+N−i,0i−1 +
∑N
i=1 σ

±
i M

±N−i+1,0i−1+

+
∑N−1
i=1 (tr(Φib̃ibi) + tr(Φib̃i−1bi−1) +φi tr(b̃ibi))+

+
∑N
i=1Mi tr(p̃b̃N−1 . . . b̃ibi . . . bN−1p)+

+
∑J
i=1M

′
i tr(p̃′b̃J−1 . . . b̃ibi . . . bJ−1p

′)

(3.26)
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Turning on a complex mass for a single flavor is a special case J = 0 of the discussion
above. The flavors p′ and the gauge singlets M ′ are absent for J = 0, and all the gauge
groups in TDEC get partially Higgsed. The final result is precisely (3.20) with F → F − 1.

3.4 Deformation to the N = 4 theory: W =
∑F

j=1 tr(Q̃jΦQj)

We now add f cubic terms to T1, obtaining U(N) with F flavor hypers and W =∑
j=1,...,F tr(Q̃jΦQj), that is the N = 4 theory U(N) with F flavors and flavor symmetry

SU(F )×U(1)top.5

Using the results obtained in section 3.3, on the magnetic side all the flavors migrate to
the right-most node U(F −1), and out of the tower of singlets (MJ)ij , only (M1)ij survive.
The tail of gauge groups

U(N(F − 1)), . . . ,U(3(F − 1)),U(2(F − 1)),U(F − 1)

Higgses to
U(F −N), . . . ,U(F − 3),U(F − 2),U(F − 1) .

The right-most group U(F − 1) is not Higgsed.
The final result is that

T1 : U(N) F

Q, Q̃

Φ

W =
∑F
j=1 tr(Q̃jΦJQj)

(3.27)

is dual to

U(F −N) U(F −N + 1) · · · U(F − 1)

F

ΦN−1 Φ1

bN−1, b̃N−1 bN−2, b̃N−2 b1, b̃1

p, p̃

MiW =
∑N−1
i=1 M0N−i,−,0i−1 +

∑N−1
i=1 γiM

0,+N−i,0i−1+

+
∑N
i=1 σ

±
i M

±N−i+1,0i−1 +M tr(pp̃)+

+
∑N−1
i=1 (tr(Φib̃ibi) + tr(Φib̃i−1bi−1) + φitr(b̃ibi))

(3.28)

This result is strictly speaking valid for F > N . If F ≤ N the dual quiver becomes
shorter and some of the flipping fields γ and σ decouple. This is due to the fact the theory
U(N) with W =

∑
j=1,...,F tr(Q̃jΦQj) if F ≤ N becomes “bad” in the Gaiotto-Witten

sense, so some Coluomb branch operators (that is tr(Φh) and {MΦk}) become free and
decouple.

5The precise value of the coupling constant λ in the superpotential W = λ
∑

j=1,...,F
tr(Q̃jΦQj) is not

crucial for the claim that the RG flow triggered by λ lands on the N = 4 theory. In the 2d space of the
gauge coupling and λ, there is only one fixed point with non-zero gauge coupling and non-zero λ, namely
the N = 4 SCFT.
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3.5 Real masses and Chern-Simons terms

It is immediate to start from the duality between (3.19) and the fully deconfined tail (3.20)
and derive the corresponding duality in the presence of a non-trivial Chern-Simons level.
There are various possibilities to generate a CS level, and our aim in this section is only to
give one example and not to treat the most general case, as for instance it has been done
in [14] in the case without adjoint matter. The example we focus is as follows. We start
from (3.19) with F + k flavours and give a real mass to k of the fundamental chirals Q.
The result on the electric side is

T CS
1 : U(N) k

2

F

F + k

Q

Q̃

Φ

W = 0 (3.29)

The effect of having a CS term is to remove some of the monopoles from the chiral ring. In
general, the fundamental monopole operators M± acquire a gauge charge under the U(1)
part of the gauge group given by

∓
[
kCS ±

1
2(Nf −Na)

]
= ∓

[
k

2 ±
1
2(F − (F + k))

]
=

0 for M+

−k for M−
(3.30)

thus, the monopoles negatively charged under the topological symmetry are removed from
the chiral ring since gauge variant.

The dual is:6

T CS
DEC :

U(N(F + k− 1))− k
2

U((N − 1)(F + k− 1)) · · · U(F + k− 1)

F F + k

ΦN−1 Φ1

bN−1, b̃N−1 bN−2, b̃N−2 b1, b̃1

p̃ p

W =
∑N−1
i=1 M0N−i,−,0i−1+

+
∑N−1
i=1 γiM

0,+N−i,0i−1 +
∑N
i=1 σ

+
i M

+N−i+1,0i−1+
+
∑N
i=1Mi tr(p̃b̃N−1 . . . b̃ibi . . . bN−1p)+

+
∑N−1
i=1 (tr(Φib̃ibi) + tr(Φib̃i−1bi−1) +φi tr(b̃ibi))

(3.31)
6As in footnote 4, it is interesting to consider special case with low F and k. The story is similar.
If F + |k| = 1, all the ranks in the quiver tails vanish. In the case of the fully deconfined theory, the full

gauge group is trivial. This means that the deconfined theory is replaced by a Wess-Zumino, with a non
trivial superpotential constructed out of the gauge singlet fields γi, σi,Mi, as in [33, 51].

If F + |k| = 2, the quiver tail is U(N)−k − U(N − 1) − U(N − 2) − . . . − U(1), and this tail can be
sequentially confined. We start from the right-most node, which is a U(1)0 with (2, 2) flavors, so it confines.
Moreover, the adjoint for the U(2)0 node is removed. We then dualize the U(2)0 with (3, 3) flavors, which
also confines. After N − 1 confining steps, we end up with U(N)−k, with an adjoint plus (2− |k|, 2) flavors,
and possibly some flipping fields. The same U(N)+k ↔ U(N)−k duality can be achieved in a different way,
for instance turning on some real masses in duality 2.34 of [51].
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where observe that, similarly to the electric theory, all the monopoles with flux in the nodes
with CS level are not gauge invariant and disappear from the superpotential, correspond-
ingly, all the σ−i are removed from the chiral ring (recall that for vanishing CS level these
singlets map to the tower of negatively charged dressed monopoles in the electric theory).
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