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Sequential dependencies and regression
in psychophysical judgments*
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A tendency for judgments of stimulus magnitude to be biased in the direction of the value of the immediately
preceding stimulus is found in magnitude estimations of loudness. This produces a bias in the empirical psychophysical
function that results in underestimation of the exponent of the unbiased function presumed to relate number and
stimulus intensity, N = aS™. The biased judgment can be represented as a power product of focal and preceding stimulus
intensity, Ny = asp S}’. A bias-free estimate of the correct exponent, n, can be obtained from the relationn=m+b.

Recently, Stevens and Greenbaum (1966) called
attention to the possible nonequivalence of magnitude
estimation and production functions. In cross-modality
matching experiments in general, different power
function relationships are usually obtained, depending
on which variable the S controls. Ss appear to shorten
the range of their adjustments on whichever variable is
under their control, thereby producing two regression
lines (in log-log coordinates) and two exponents for the
power function presumed to relate the two variables.
This has been called a ““regression effect™ because of its
similarity to the fact that two regression lines are
‘obtained in bivariate distributions whenever the
correlation between two variables is less than perfect,
and also because of its similarity to the problem of
estimating regression parameters when measurements on
both variables are in error; two regression lines are
typically obtained in the latter case, depending on
whether the vertical or horizontal error sum of squares is
minimized in fitting the best line, and both lines are
biased (Wald, 1940).

Neither the bivariate model, with statistical regression
toward the mean, nor the errors in both variables linear
regression model, with a least squares estimator that
underestimates the true regression parameter, seem to be
appropriate models for this apparently ubiquitous effect
in cross-modality matching experiments. The
independent variables in such experiments are not
allowed to vary freely. They are under the E’s control
and are presented at predetermined levels. Even when
presented with error, levels of the independent variable
can be legitimately considered as fixed in the ensuing
analysis. The regression model appropriate in these
instances is one proposed by Berkson (1950). Not two,
but one regression line is obtained by the method of
least squares, and it is an unbiased estimate of the true
line.

Consequently, the so-called “regression effect” in
psychophysical judgments arises not from the imperfect
dependence of one variable on another; nor does it arise
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from errors in measuring stimulus levels, presented or
produced, or from the inevitable noisiness of the
matching judgments themselves. Such effects, when they
exist, must be due to the occurrence of systematic biases
in human judgments.

Hollingworth (1910) called attention to one such bias,
a *‘centering tendency,” the tendency for judgments to
gravitate toward a mean magnitude, thereby shortening
the range of the dependent variable. Garner (1953)
reported findings suggesting that this centering tendency
is traceable to sequential dependencies in judgments. Ss
required to categorize up to 20 loudness levels showed a
tendency to give a higher rating to a stimulus when the
preceding stimulus was higher than that judged, and a
lower rating when the preceding stimulus was lower than
that judged. This tendency toward ‘‘assimilation”
produces an overall ““centering effect” because of the
unavoidable fact that, in a given stimulus series, higher
stimuli must, on the average, be preceded by lower
stimuli, and lower stimuli by higher stimuli.

Assimilative tendencies in absolute judgments and in
category judgments have been demonstrated by Holland
and Lockhead (1968), Ward and Lockhead (1970,
1971), and by Ward (1972). In addition, Ward (1973)
showed that these tendencies are not peculiar to
absolute category judgments, but that they can also
occur in magnitude estimation data.

The present study shows that assimilative sequential
dependencies in magnitude judgments can contribute to
the regression effect through a systematic bias in
judgment that results in underestimation of the true
power law exponent.

METHOD

Eighteen unpaid vofunteers, Harvard graduate and
undergraduate students, served as Ss in single sessions lasting
approximately 10 min. All had previous experience in
psvchophysical experiments but were not told the purpose of
this one. Thev were instructed simply to assign numbers
proportional to the apparent loudness of presented noise bursts.
No standard stimulus or modulus was designated. Ss were seated
in an 1.A.C. sound-attenuating chamber. Judgments were given
orally into a boom microphone mounted on S's headset and
were monitored by L.
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Fig. 1. Apparent loudness of standard
noise as a function of immediate stimulus
level, S;, and of the level of the immediately
preceding stimulus, S; See text for
explanation of equations.
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The stimuli were l-sec bursts of standard noise (USASI
spectrum; from a General Radio noise generator, Model 1382)
separated uniformly by 7.5-sec intervals. They were gated with a
15-msec rise-decay time and presented binaurally (Koss ESP-9
earphones) at six intensity levels (45 to 95 dB SPL in 5-dB steps)
in six quasirandomly permuted orders, plus an extra stimulus in
initial position, for a total of 37 stimulus presentations. The
schedules were so designed that each stimulus was preceded
exactly once by every other stimulus, including itself. Following
a Latin square design, each S received a different presentation
schedule, so that second- and higher-order sequential effects
could be counterbalanced and so that every stimulus appeared in
each initial position and in every other position an equal number
of times.

RESULTS
Power Function Fit

It is recommended practice in the analysis of
magnitude estimation data to use geometric means in
fitting the psychophysical function (Stevens, 1971). One
reason for this is that if individual Ss obey power
functions, then this averaging procedure determines a
group function that will be of the same form with an
exponent that is the arithmetic average of the individual
exponents. Also, both the dispersion and skewness of
judgments tend to increase in direct proportion to
average magnitude, a characteristic of log normal
distributions. The geometric mean corresponds to the
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median log normal variate, and its logarithm is a
minimum-variance unbiased estimator of the
distribution’s location parameter. The sample median is
unbiased, but it is less efficient. The arithmetic mean, on
the other hand, is biased.

Geometric means of the 108 magnitude estimations
given at every stimulus level (18 Ss x 6 replications of
each level) are represented in Fig. 1 by open circles. The
straight line drawn through these points was fitted
conventionally by the method of least squares, and it has
a slope equal to 0.585. With a standard error of 0.015,
this estimate of the exponent for the power function
relating loudness to sound pressure is significantly
smaller (p <.005) than the value 0.67 currently
proposed as typical (Stevens, 1972).

Sequential Effects

A more detailed examination of the data reveals the
influence of contextual or preceding stimulus levels on
magnitude estimation of focal stimuli. The small filled
circles in Fig. 1 show judged magnitude as a function of
the preceding stimulus level. Each symbol represents the
geometric mean of 18 independent judgments and
corresponds to Ny, the number (averaged over Ss)
assigned to Loudness Level i, given the immediately
preceding stimulus of Loudness Level j (i,j =45, 55, 65,



75, 85.95 dB SPL). The curves approximated by dashed
lines passing through these points represent how
estimates tend to increase (or decrease) as the preceding
stimulus increases (or decreases). These lines have a
common slope equal to 0.055. A comparison of the fit
obtained when each least squares regression line is
allowed a different slope with that obtained when all are
constrained to have a common slope equal to the average
regression coefficient constitutes a test for parallelism
(Sprent, 1969. p. 100). The results of this test support
the hypothesis that individual slopes are equal, F(5.24) =
0.362. The importarit effect summarized by these lines is
that judgments of stimulus magnitude are assimilated
toward the value of the immediately preceding stimulus.

This effect is small when measured in terms of
variance components. The proportion of variance in log
judgment accounted for by linear regression on log
stimulus intensity is 0.982. When the second variable,
log contextual stimulus intensity, is added to the
regression equation, the proportion of variance in the
dependent variable accounted for by multiple regression
on the two independent variables is increased to 0.991.
This means that taking this second orthogonal variable
into account adds less than 1% to the total proportion of
response variance explained by the best fitting power
function.

However small this order effect, its net result is
underestimation of the theoretically correct power
function exponent. In Fig. 1. for example, each large
open circle represents the average of the corresponding
small circles. These averages are biased for the reasons
mentioned above: The bias is upward for low stimuli and
downward for high stimuli. The net effect on the
regression line relating average log judged magnitude to
log physical magnitude is a reduction in its slope relative
to that of a line through points free of order bias. The
greater the order bias, the greater the reduction in slope.
But it is the slope of precisely this line that is customarily
taken as the “best’” estimate of the exponent in the
power function relating sensory magnitude to physical
magnitude. Consequently, exponents are underestimated
when ogder effects are present.

A Descriptive Model

How we compensate for this order bias in the search
for the presumably correct power function depends on
how the problem is modeled. Presumably, the model
should treat magnitude estimations of stimuli preceded
only by themselves as free of bias. Also, since the dashed
lines in Fig. 1 approximating the apparent trend with
respect to preceding stimulus level are all parallel, the
bias should be a monotonic function of the size of the
ratio of the preceding stimulus to the focal stimulus.

The simplest model incorporating these constraints is
represented by Eq.1 below. In terms of the focal
stimulus, S;. and the immediately preceding stimulus. S;.
it asserts that numerical judgment. Ny;. is proportional to
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the true power function relating sensory magnitude to
sumulus intensity, multiplied by a bias factor which is
proportional to the ratio §;/S; raised to a power, b. the
sign and size of which determines the direction and
magnitude of the effective bias. This is written as
follows:

Ny = aSP(S;/Sp)P. )
For positive b, this model produces assimilation, and for
negative b, it results in contrast. For a given b, the
magnitude of the bias is monotonically increasing with
separation between the focal and contextual
stimulus levels; when the levels are identical, the
judgment is bias free. The exponent, n, represents the
true exponent, not that value which would be obtained
by fitting via conventional procedures a function to the
geometric means, N;, represented in Fig.1 by open
symbols. Each of these six data points represents a
geometric mean of six values of Ny, one value for each
preceding stimulus level. Thus

N, = (TINg)VS. )
)

By rewriting Eq. I and substituting in Eq. 2. we obtain
3)

Since, as in the above presentation schedule, the factor
in parenthesis can be made constant for all i regardless of
b, it can be absorbed by the proportionality constant
and we can write

N; =aSP P (IIsP)t/e.

N; = kS, )
where m = n—b and k = a(TIS?)'/®. Equation 4
expresses the function conventionally fitted to

magnitude estimation data.. But the exponent, m,
underestimates the theoretically correct exponent, n, by
the size of the bias component, b. Additional variance
about the regression curve (and even systematic
contribution to bias) may arise by failure to equate the
stimulus contexts for each level; that is, k may vary with
Si, depending on the context, and this dependence may
be systematic.

A means of analysis is called for that will provide
estimates of both n, the desired exponent, and b, the
bias parameter. Equation 1 can be rewritten as a power
product involving both focal and preceding stimuli,

()

remembering that m = n —b. For the data depicted in
Fig. 1, this is a simple three-variable regression problem
in which least squares estimates of m and b can be
obtained by fitting the following linear regression
equation:

Ny = asS"spP,
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Fig. 2. Sequential effects in magnitude estimations of the
loudness of 1,000-Hz tones. Data from Ward (1973).

log Nj; =log a + mlog S; + b log S;. 6)
This was done for the data at hand, with the following
results:

m=0.585 and b=0.055.

The first regression coefficient,” m, represents the
slope of the least squares line drawn through the open
symbols in Fig. 1. The dashed lines passing through the
filled symbols all have the common slope, b = 0.055. An
adjusted estimate of the loudness exponent isn=m+b
= 0.64, a value that is not significantly different from
the proposed theoretical value of 0.67.

An alternative way of obtaining a bias-free estimate of
this exponent is to discard the biased responses and
simply fit the appropriate function to an unbiased subset
of the data; namely, to those responses evoked by
stimuli preceded by themselves in the presentation
schedule. This is highly wasteful of data, but the model
regards only these responses as bias free. Using Eq. 5 and
setting i = j, we obtain

Nii = aS?_b Slb = aS? (7)
The finely dashed line running diagonally through Fig. 1
represents the least squares fit to the six data points
entering the above equation. The least squares estimate
of n in this case turns out to be 0.672; this estimate has
a standard error of 0.023.

DISCUSSION

Since this initial experiment was undertaken, the basic
paradigm has been replicated several times, both in
classroom demonstrations and in controlled laboratory
scaling experiments. In all demonstrations and
experiments in which an atypically low exponent was
obtained, the data also exhibited the systematic
assimilative order effects exemplified by the present
study. The amount of bias may differ from one
experiment to another and across modalities (the bias
has also been observed in sequential judgments of
brightness, vibration on the fingertip, and of lifted
weights), but the direction appears to be consistently
that of the assimilation of response magnitude toward a
previous value.

The largest sequential bias effect thus far detected
appears in the results obtained by Ward (1973) from
magnitude estimations of the loudness of 1.000-Hz
tones. Quantitative assessment of the bias was not
attempted by Ward, but, by applying the present model
to stimulus and response values read off the graphs
published by him, it is possible to repeat the analysis
performed here and to see how well the model of Eq. 1
can handle these results.

The least squares estimate of the loudness exponent
for the data depicted in Fig. 1 of the cited study is equal
to 0.51 and has a standard error equal to 0.016. This
estimate is unusually low, but examination of the
sequential properties of the data provides an explanation
of why such a small value was obtained.

The sequential effects observed by Ward are exhibited
in Fig. 2. This graph is a redrawing of Ward’s Fig. 2 to
show the results in loglog coordinates. A test for
homogeneity of the individual bias regression
coefficients supports the hypothesis of  parallelism;
F(4,17) = 0.667. Consequently, the dashed lines showing
the trend of this bias have all been drawn with a
common slope corresponding to the average regression
coefficient, which represents the bias parameter, b, of
Eq. 1; it is equal to 0.177. This value is three times the
size of the effect obtained in the present study.

It may be pointless to speculate on the procedural
differences in the two studies that might have
contributed to this large difference. Ward notes that his
method of instructing S to judge the ratio between the
present and previous stimulus and to assign a number
that bears the same ratio to the number previously
assigned should be particularly subject to sequential bias.

A revised estimate of the loudness exponent is
obtained by adding the two empirical regression
constants, m and b of Eq. 5. The result is 0.510 + 0.177
= 0.687, a value not significantly different from the
proposed theoretical value of 0.67.

Ward presents a summary (his Table 2) of average log
response ratios for all ordered pairs of stimulus values
occurring successively in his experiment. These measures



provide an opportunity to examine other implications of
the bias model. For example, the diagonal elements of
this table are all logarithms of the ratios N;;/N;-the
geometric mean response to S;, when preceded by itself,
divided by the geometric mean response to S;, regardless
of previous stimulus. Using Eqs. 7 and 4, the following
identity can be written:

N;i/Ng = a(SPPSP)/SPP = 8P, ®)
Thus, the diagonal elements should be proportional to
the product of the bias parameter and the log of the
focal stimulus value; that is, log N;;/N; =b log S; + log a.
This relationship for Ward’s data is plotted here in
Fig. 3. The least squares line in this graph has a slope
equal to 0.179—a value in close agreement with that of
the above analysis.

A similar analysis can be extended to all pairs of
adjacent response ratios. It turns out, however, to be
simpler to take the geometric means of complementary
pairs, i.e., [(Ny/N;)(N;i/N;)]*. For these measures, the
order effects model implies an engagingly simple
relationship:

[N /NDIN;/N ¥
=al(SP PSS TISASTTENST T
©)

For the 55 wunordered stimulus pairs involved, a
correlation of 0.962 is obtained between the log of the

= a(S;S;)P/2.

geometric mean of the response ratios for
complementary pairs of stimuli, Ward’s “symmetry
numbers,” and b(log S; +log§;)/2, the linear

relationship in log coordinates implied by Eq.9. This
relationship explains why Ward obtained a high
correlation (r=0.947) between the “symmetry
numbers” and total strength of the two stimuli (the sum
of the stimulus magnitudes in millivolts). The linear
regression of the ‘‘symmetry numbers” against
(log S; +log S;)/2 ‘yields 0.19 as an estimate of the bias
parameter, b. This value is not significantly different
from the values 0.179 or 0.177 previously calculated.
The invariances indicated in these analyses are all the
more impressive when it is recognized that the mean
responses, N; (or N;) entering the above equations are
not unblased estimators of S{'™"° as asserted in Eq. 4,
but, rather, are subject to second-order sequential
dependencies arising from the fact that preceding
stimuli, themselves, were not all preceded by every other
stimulus.

The existence of assimilative effects in psychophysical
experiments may be more widespread than indicated by
the relatively small number of experiments designed
explicitly to reveal them. The same effects in serial
integration tasks are called recency effects (Anderson,
1971). Anderson reports that when a S lifts three
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Fig. 3. Measurement of order effects bias from an experiment
by Ward (1973). Each ordinate represents the log of the
geometric mean of the response ratios Nj;/Ny;, where Ny; is the
average loudness of a tone, S;, when preceded by itself and Njjis
the average loudness of a tone preceded by an arbltrary level, S

weights in sequence under instructions to judge the
heaviness of the last weight, the judgments show a
positive context (assimilation) effect.

When assimilation or recency effects occur in
bisection experiments, they are identified as hysteresis
effects (Stevens, 1957). In the classic bisection
paradigm, three stimuli, say, {a, x, b), are presented one
at a time in either increasing or decreasing magnitude.
The first and third stimulus, a and b, are predetermined,
but the middle stimulus, x, is variable and is adjusted to
be halfway between a and b. If the apparent magnitude
of x is assimilated toward the value of the preceding
stimulus, a, it must be adjusted away from a, toward b,
in order to appear subjectively halfway between them.
When the sequence is reversed, with b preceding x, the
opposite occurs. This is what typically happens in
bisection.

In some experiments, Ss have been asked to give
magnitude estimations of the difference between a pair
of stimuli (Beck & Shaw, 1967; Curtis, Attneave, &
Harrington, 1968; Fagot & Stewart, 1969; Dawson,
1971). Sensory scales derived from these studies behave
like partition scales in that they are nonlinear relative to
scales created by matching numbers directly to single
stimuli. The scales are usually power functions of the
corresponding physical variable, but the exponents are
much smaller than expected; they compare in value with
exponents obtained from partition procedures such as
category judgments and equisection, or with exponents
obtained from experiments in which a large regression
effect was observed. Stevens (1971) contends that scales
for prothetic continua derived from interval estimation
procedures are of necessity biased, since a constant
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subjective interval must. as the defining stimulus levels
are raised, eventually fall below the limits of the sensory
system’s resolving power. Consequently, a constant
sensory diftterence seems smaller and smaller as it is
moved up the continuum. until. finally, it becomes
smaller than a jnd and simply disappears. To compensate
for this. Os judge intervals as if the underlying power
function had a viriual exponent about half as large as the
actual exponent of the continuum. This is a simple
descriptive account of the findings, and it represents one
way to model the bias that is presumed to be operating
in this paradigm. An alternative bias model might be
derived from the assumption of assimilative effects
operating in a symmetric fashion between a pair of
stimuli presented either repeatedly in succession or
presented simultaneously. The kind of effects that were
observed in this study would-make stimuli appear less
different than the simple subtraction of appropriate
power function scale values would predict. The simple
algebraic difference model may have to be abandoned,
where prothetic continua are involved, for a somewhat
more complicated model involving an interaction
between the members of a stimulus pair. Indeed, the
evidence based on tests of axioms of additivity and of
multiplicativity seem to point in this direction (Fagot &
Stewart, 1969). The problem requires further
investigation.

It would be nice to be able to conclude that the major
contribution of this study is the solution of the
regression problem in psychophysics. Indeed, it does
show that order bias is a sufficient condition for
psychophysical regression, and such a bias may well be a
major component of regression whenever regression
occurs, but it has not shown that order bias is a
necessary condition for that effect. For example,
unpracticed Os may simply feel constrained to avoid
extreme numbers in their judgments. That, too, may be
a sufficient condition -for regression, independent of
order effects. ,

The question that remains to be answered is whether
or not other forms of cross-modality
matching—including the method of magnitude
production—are also biased by order effects. There is
reason to believe that in most magnitude production
procedures order effects would not be a problem. In
adjusting loudness to match number, for example, it
may be necessary to repeat approximations to a match a
number of times before a final match is found. These
conditions may cancel a potential order bias, just as in
the present study judgments of repeated stimuli tend to
be free of bias.
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