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ABSTRACT Hybrid organic-inorganic halide perovskite

material has been considered as a potential candidate for

various optoelectronic applications. However, their high sen-

sitivity to the environment hampers the actual application.

Hence the technology replacing the organic part of the hybrid

solar cells needs to be developed. Herein, we fabricated fully-

inorganic carbon-based perovskite CsPbBr3 solar cells via a

sequential deposition method with a power conversion effi-

ciency of 2.53% and long-time stability over 20 d under am-

bient air conditions without any encapsulation. An evolution

process from tetragonal CsPb2Br5 to CsPb2Br5-CsPbBr3 com-

posites to quasi-cubic CsPbBr3 was found, which was in-

vestigated by scanning electron microscopy, X-ray diffraction

spectra, UV-vis absorption spectra and Fourier transform

infrared spectroscopy. Detailed evolution process was studied

to learn more information about the formation process before

10 min. Our results are helpful to the development of in-

organic perovskite solar cells and the CsPb2Br5 based optoe-

lectronic devices.
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INTRODUCTION
In the past several years, hybrid organic-inorganic halide
perovskites with the common formulation ABX3 (where A
is an organic cation, B is commonly Pb2+ and X is a
halide) have undergone breathtaking progress in power
conversion efficiency (PCE) from nascent 3.8% [1] to a
striking record of 22.1% [2]. Hybrid organic-inorganic
halide perovskites have been verified to be in possession

of many excellent properties, such as long electron/hole
diffusion length [3], remarkable sunlight absorption [4],
easy and low-cost fabrication process [5], etc., which
make them an ideal candidate for lots of applications in
photodetectors [6], light-emitting devices [7], semi-
conductor lasers [8], and solar cells [9–11].
However, the actual application of hybrid perovskites is

hindered because of their strong sensitivity to ultraviolet
(UV) light [12], heat [13], and moisture [14,15]. For-
tunately, inorganic cesium lead halides, CsPbX3 (X=Cl,
Br, I) show prominent compositional stability under
thermal stress and remarkable photoelectric features with
high electron mobility up to ~1000 cm2 V–1 s–1 [16]. In
2015, the first inorganic CsPbBr3 perovskite solar cells
(PSCs) were reported by Kulbak et al. [17], acquiring a
PCE of about 5%. More recently, Liao et al. [18] reported
CsPbX3 nanowires stable solar cells with PCE of 1.21%
and stability around 5500 h. Liang et al. [19] reported
carbon-based CsPbBr3 solar cells with a PCE of 6.7% and
stability over three months in humid air (90%–95% re-
lative humidity, 25°C). As for CsPbI3, undesired orthor-
hombic phase was formed with a low PCE of 0.09% due
to its poor phase stability to moisture [20]. CsPb2Br5 is
another important material for optoelectronic applica-
tions. The advantages of CsPb2Br5 used in optoelectronic
devices lie in the intrinsic sandwiched structure and
physical properties from the structure. In the tetragonal
CsPb2Br5 structure, one layer of Cs ions is sandwiched
between two layers of Pb-Br coordination polyhedrons
[21]. Now the applications of CsPb2Br5 include laser and
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light-emitting devices [22–24]. Compared with the per-
ovskite CsPbBr3, the available research on the structure
and physical properties of the tetragonal CsPb2Br5 is not
very sufficient and many great blanks need to be filled
[21]. Our results offer a facile way to synthesize CsPb2Br5,
which could enlighten other researchers to develop and
design more applications of CsPb2Br5. At the same time,
we use sequential deposition method obtaining CsPbBr3
films using carbon as hole-transporting material and
photocathode, achieving a PCE of 2.53% with long-term
stability. Scanning electron microscopy (SEM), X-ray
diffraction spectra (XRD), Fourier transform infrared
spectroscopy (FT-IR) and UV-vis absorption spectra were
used to investigate CsPb2Br5, CsPbBr3 and the transition
from CsPb2Br5 to CsPbBr3. Our results are helpful to the
development of fully-inorganic CsPbBr3 solar cells and
CsPb2Br5 based optoelectronic device.

EXPERIMENTAL SECTION

Materials

F-doped SnO2 glass (FTO, 15 Ω/square) was purchased
from Pilkington TEC. Lead bromide (PbBr2, ≥98%), N,N-
dimethylformamide (DMF) and dimethyl sulphoxide
(DMSO) were obtained from Aldrich. Cesium bromide
(CsBr, >99%) was purchased from TCI. TiO2 (particle
size: about 30 nm, crystalline phase: anatase) was pur-
chased from Dyesol. Methanol (AR) and isopropanol
(IPA, 99.7%) were obtained from Sinopharm Chemical

Reagent Co., Ltd. All chemicals were straightly used
without further purification.

Device fabrication

Etched FTO-coated glass substrates were cleaned by ul-
trasonication in deionized water followed by washed with
acetone and ethanol. These substrates were exposed to
UV-ozone for 15 min. A ~60 nm-thick TiO2 blocking
layer was deposited on the cleaned FTO by spray pyr-
olysis, using N2 as carrier gas, at 430°C from a precursor
solution of 0.6 mL of titanium diisopropoxide and 0.4 mL
of bis(acetylacetonate) in 7 mL of anhydrous isopropanol.
A mesoporous TiO2 layer (particle size: about 30 nm,
crystalline phase: anatase, diluted to w/w=1/5.5 in etha-
nol) about 100–150 nm thickness film was deposited by
spin coating at 5000 rpm for 30 s onto the blocking layer
(bl)-TiO2/FTO substrates. After spin coating, the sub-
strate was immediately dried on a hotplate at 105°C, and
the substrates were then heated at 500°C to remove or-
ganic components followed by baking for 2 h. Then, as
illustrated in Fig. 1c, firstly, 1.4 mol L–1 PbBr2 DMF/
DMSO solution (DMF/DMSO v/v=9/1) was spread over
the entire surface of the substrate. Secondly, the spin-
coater was accelerated to the desired rotational speed at
2000 rpm for 30 s. Thirdly, the as-prepared PbBr2 films
were dipped into 15 mg mL–1 CsBr methanol solution for
various time. Finally, the perovskite films were rinsed by
IPA and heated at 250°C for 5 min. Then, the carbon
paste was deposited on the perovskite films by screen

Figure 1 (a) Device architecture of CsPbBr3/carbon based all-inorganic PSCs (glass/FTO/bl-TiO2/ms-TiO2-perovskite nanocomposite layer/per-
ovskite upper layer/carbon); (b) energy level diagram of CsPbBr3/carbon based all-inorganic PSCs; (c) scheme view of fabrication process of the
perovskite film using sequential deposition method.
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printing followed by heating at 70°C for 1 h.

Characterization

Film morphology was investigated by using a high-re-
solution scanning electron microscope (S4800, Hitachi)
equipped with a Schottky Field Emission gun. The X-ray
diffraction spectra were recorded on an X’pert PRO X-ray
diffractometer. The data were gathered at room tem-
perature in the 2θ range 5°–50°. The J-V curves were
measured using a solar simulator (Newport, Oriel Class
A, 91195A) with a source meter (Keithley 2420) at
100 mA cm–2 illumination AM 1.5 G and a calibrated Si-
reference cell. The J-V curves for all devices were mea-
sured by masking the active area with a black mask
0.09 cm2. The applied bias voltage was from 1.2 to –0.1 V
and the scan rate was 50 mV s–1. UV-vis absorption
spectra were recorded on a UV-vis spectrometer (Hitachi
U-3300). Fourier transform infrared spectroscopy (FT-IR,
ThermoFisher IS50R, USA) was used to collect the
spectral data for various solution in the range of
4000–500 cm–1.

RESULTS AND DISCUSSION

Structure and morphology characterization

Fig. 1 presents the device architecture, energy level dia-
gram as well as scheme of films fabrication process. The
cell structure (Fig. 1a) exhibits a bilayer structure making
up of mesoporous and planar structures, which is effec-
tive for adequately absorbing light and gathering charges.

Atop the mesoporous (mp)-TiO2 layer lies a uniform
perovskite active layer. Upward the perovskite active layer
lies a layer of carbon working as bi-functional films for
both electron blocking and hole collecting for the reason
of its fit work function (–5.0 eV) close to that of gold
(–5.1 eV). Fig. 1b exhibits the energy band diagram of
FTO, TiO2, CsPbBr3 and carbon layers, uncovering the
smooth electron injection from CsPbBr3 conduction band
to TiO2 conduction band and hole extraction from
CsPbBr3 valence band to carbon photocathode. Fig. 1c
shows the perovskite films fabrication process, in which
the as-prepared PbBr2 films was dipped in 15 mg mL–1

CsBr methanol solution for 10 (D-10), 20 (D-20) and
40 min (D-40).
The surface morphology evolution of the inorganic

active layer based on different dipping time was in-
vestigated by SEM (Fig. 2a–c). The films dipped in CsBr
methanol solution for 10 min (D-10) exhibit relatively
low surface coverage and small grain size (the average
grain size is 216 nm calculated by software Nanomeasurer
with 30 sample points.) The D-20 film is relatively more
uniform with average grain size of 275 nm. For the D-40
film, the average grain size becomes larger up to 391 nm.
Our results show that longer dipping time is beneficial for
better performance of the CsPbBr3 PSCs. It is worthy to
note that all the three kinds of films have lots of fluc-
tuation, which is detrimental to electron and hole trans-
fer. The cause of the fluctuation is unclear and need to be
further studied. Fig. S1 (Supplementary information) il-
lustrates the carbon photocathode, which shows it com-

Figure 2 SEM Images of inorganic active layer: (a) D-10; (b) D-20; (c) D-40; the scale bar is 1 μm and XRD patterns of D-10 (d), D-20 (e), D-40 (f)
with standard XRD patterns, orange line: tetragonal CsPb2Br5, JCPDS No. 00-025-0211; black line: monoclinic CsPbBr3, JCPDS No. 00-018-0364.
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prised carbon nanoparticles with average diameter of
~100 nm.
The XRD measurement was conducted to investigate

the crystal phase evolution of these samples. As depicted
in Fig. 2d, the XRD pattern of D-10 films could match
well with standard patterns of tetragonal phase CsPb2Br5
(JCPDS No. 00-025-0211), whose lattice parameters are
a=b=8.483 Å, c=15.250 Å, α=β=γ=90.000°. Along with
the prolonging of dipping time, as shown in Fig. 2e, a
different material and phase emerged in the D-20 films,
which is ascribed to monoclinic phase CsPbBr3 (JCPDS
No. 00-018-0364), with lattice parameters a=b=5.827 Å, c
=5.891 Å, α=β=90.000°, γ=89.650°. It is quite similar as
cubic phase with slight difference of c and γ, so we call
this structure as quasi-cubic phase CsPbBr3. In the D-20
films, the XRD peaks belong to two kinds of materials
(tetragonal CsPb2Br5 and quasi-cubic CsPbBr3), indicat-
ing the material and phase evolution is in progress and
the CsPb2Br5 has not completely evolved to CsPbBr3.
However, when we turn to the D-40 films, as illustrated in
Fig. 2f, all the CsPb2Br5 converts to CsPbBr3. It is worthy
to note that no peak of PbBr2 could be found, indicating
the sufficient reaction of PbBr2 and CsBr with no PbBr2
residual remained in all the three kinds of films. Fig. S2
shows absorbance of the D-10, D-20 and D-40 films. The
light absorption peaks of D-20 and D-40 films are shorter
than ~540 nm and the absorption peak of D-10 films is
shorter than~375 nm, which suggests tetragonal CsPb2Br5
was not suitable for photovoltaic applications.
To learn more information about the formation process

at the interface of PbBr2 films and the CsBr methanol
solution before 10 min, we investigated the as-prepared
PbBr2 films dipped in the 15 mg mL–1 CsBr methanol
solution for 1 (D-1), 2 (D-2) and 5 min (D-5). XRD
measurement and UV-vis spectra were used to further
investigate CsPb2Br5. As depicted in Fig. 3a, the XRD
patterns of D-1, D-2 and D-5 have slight difference in the
intensity, while all matching well with the standard XRD
pattern (CsPb2Br5 JCPDS No. 00-025-0211), indicating
that even early at 1 min, the tetragonal CsPb2Br5 was
formed at the interface. It is worthy to note that the full
width at half maxima (FWHM) of XRD patterns of D-1,
D-2 and D-5 films are wider than that of D-10, showing
smaller grainsize compared with the D-10 films according
to Debye-Scherrer formula. As presented in Fig. S3, the
light absorption peaks of these films are shorter than
~375 nm.
Combining the previous reports [21,22,25] and the fact

that no PbBr2 residual could be found in D-10 films, we
hypothesize the reaction route according to the equation:

CsBr+2PbBr2→CsPb2Br5. Then, CsPb2Br5 continues to
react with CsBr in methonal according to the equation:
CsPb2Br5+CsBr→2CsPbBr3. In the first step, the effect of
the PbBr2·DMF adduct is considered to be important for
the formation of CsPb2Br5. Without the existence of the
adduct, the reaction process should be different [19,26].
FT-IR was conducted to confirm the existence of the
adduct. As depicted in Fig. 3b, the stretching vibrations of
C=O in DMF and DMSO (v/v=9:1) mixed solution (T-1
solution) were located at 1670 cm–1. When 513.8 mg
PbBr2 was added to 1 mL T-1 solution (T-2 solution),
some of the vibrations of C=O shifted to 1638 from
1670 cm–1, which could prove the existence of PbBr2·DMF
adduct.

Photovoltaic performance

The photovoltaic application of perovskite has recently
become a hotspot. In consideration of this, we fabricated
the PSCs based on D-10, D-20, D-40 films. Table 1
summarizes the typical photovoltaic properties of the
three kinds of solar cells. Unfortunately, the device based
on D-10 films did not perform photovoltaic properties
because of its broad band gap. However, we propose a
new strategy to synthesis CsPb2Br5 here, which will help
other researchers to expand its application in other fields.
The devices based on D-20 films show a relatively low
open circuit voltage (Voc), short current density (Jsc), PCE,
and fill factor (FF) comparing with the devices based on
D-40 films because of the existence of CsPb2Br5. The best
cell based on D-40 films, as depicted in Fig. 3c, yielded a
Jsc of 3.52 mA cm–2, a Voc of 1.15 V, an FF of 0.624 and a
PCE of 2.53%. Fig. 3d presents the cross-sectional SEM
image of the device based on D-40 films, signifying a
structure making up of FTO, 60 nm-thick bl-TiO2, 200
nm-thick meso-TiO2/perov., 650 nm-thick upper layer
and carbon photocathode.

Stability of devices

The stability of solar cells is of fundamental importance
to the commercialization process. Stability is still a chal-
lenge for the hybrid PSCs [27]. Herein the stability test of
the devices based on D-40 films were conducted under
ambient air without any encapsulation. Fig. 3e illustrates
normalized stability curves of the device based on D-40
films, which shows that the PSCs were stable after 20 d.
Prominent stability will be beneficial to the commercial
application process.

CONCLUSION
In summary, we proposed a simple sequential deposition
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method to fabricate fully-inorganic PSCs using carbon as
hole-transporting material and photocathode. A material
and phase evolution process from tetragonal CsPb2Br5 to
quasi-cubic CsPbBr3 was found and characterized. SEM,
XRD patterns, UV-vis spectra and FT-IR spectra were
used to investigate the evolution process. We proposed a
hypothesis to explain the evolution process. The best cell
based on quasi-cubic CsPbBr3 films presented a PCE of
2.53% with long stability over 20 d under ambient air
conditions without any encapsulation. Our results are
helpful to the development of CsPbBr3 based PSCs. In

addition, the facile way to synthesize CsPb2Br5 could
enlighten other researchers to develop and design more
applications of it.
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连续沉积法制备碳电极无机钙钛矿太阳电池
丁希宏1, 任英科1, 吴雅罕1, 徐亚峰2, 朱俊2,3*, Tasawar Hayat4,5, Ahmed Alsaedi4, 李兆乾2, 黄阳2, 戴松元1,2*

摘要 有机无机杂化钙钛矿是一种有潜力的光伏材料. 然而, 对于环境的高度敏感性限制了它的实际应用. 因此我们需要发展全无机钙钛
矿材料. 本文通过连续沉积法制备了效率达到2.53%的碳电极CsPbBr3太阳电池, 并且它能够在无封装的情况下稳定20天. 在制备CsPbBr3
薄膜的过程中, 我们首次发现从CsPb2Br5到CsPb2Br5-CsPbBr3混合物到CsPbBr3的转变. 该研究结果对于无机钙钛矿太阳电池的发展和
CsPb2Br5基光电器件具有帮助作用.
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