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SEQUENTIAL DESIGN FOR RANKING RESPONSE SURFACES

RUIMENG HU AND MIKE LUDKOVSKI

DEPARTMENT OF STATISTICS AND APPLIED PROBABILITY UNIVERSITY OF CALIFORNIA, SANTA

BARBARA 93106-3110 HU@PSTAT.UCSB.EDU,LUDKOVSKI@PSTAT.UCSB.EDU

Abstract. We propose and analyze sequential design methods for the problem of ranking several

response surfaces. Namely, given L ≥ 2 response surfaces over a continuous input space X , the

aim is to efficiently find the index of the minimal response across the entire X . The response

surfaces are not known and have to be noisily sampled one-at-a-time. This setting is motivated by

stochastic control applications and requires joint experimental design both in space and response-

index dimensions. To generate sequential design heuristics we investigate stepwise uncertainty

reduction approaches, as well as sampling based on posterior classification complexity. We also

make connections between our continuous-input formulation and the discrete framework of pure

regret in multi-armed bandits. To model the response surfaces we utilize kriging surrogates. Several

numerical examples using both synthetic data and an epidemics control problem are provided to

illustrate our approach and the efficacy of respective adaptive designs.

Keywords: sequential design, response surface modeling, kriging models, sequential uncertainty

reduction, expected improvement

1. Introduction

Let µℓ : X → R, ℓ ∈ L ≡ {1, 2, . . . , L} be L smooth functions over a subset X of Rd. We are

interested in the problem of learning the resulting ranking of µℓ over the input space X , namely

finding the classifier

(1.1) C(x) := argmin
ℓ
{µℓ(x)} ∈ L.

The functions µℓ are a priori unknown but can be noisily sampled. That is for any x ∈ X , ℓ ∈ L

we have access to a simulator Yℓ(x) which generates estimates of µℓ(x):

(1.2) Yℓ(x) = µℓ(x) + ǫℓ(x), ℓ ∈ L

where ǫℓ are independent, mean zero random variables with variance σ2
ℓ (x). Intuitively speaking,

we have L smooth hyper-surfaces on X that can be sampled via Monte Carlo (MC).

Our goal is to identify the minimal surface globally over the entire input space. More precisely,

we seek to assign a label Ĉ(x) to any x ∈ X that well-approximates the true C in terms of the loss

function

(1.3) L(Ĉ, C) :=
∫

X

{
µĈ(x)(x)− µC(x)(x)

}
F (dx),

where F (·) is a specified weight function on X . Thus, the loss is zero if the ranking is correct

Ĉ(x) = C(x), and otherwise is proportional to the (positive) difference between the selected response

and the true minimum µĈ − µC . The weights F (x) come from the probability distribution that

describes the likely inputs x ∈ X , implying the relative importance of ranking different regions.

Date: Sept 1, 2015.
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The loss function in (1.3) is a blend of the classical regression and classification objectives. In

regression, the loss function is tied to a single response surface µℓ(x) and one seeks to estimate

the response marginally. Instead, (1.3) is only about correctly identifying the index of the minimal

response. As a result, small estimation errors are tolerated as long as the minimal response does not

change, leading to a thresholding behavior in the loss function. In classification the loss function is

discrete (typically with fixed mis-classification penalties), whereas (1.3) takes losses proportional to

the mis-classification distance µĈ(x)(x)−µC(x)(x). A further key distinction is that in classification

the sampling space is just X (returning a noisy label C(x) ∈ L), whereas in our context a sampling

query consists of the location-index pair (x, ℓ) ∈ X × L, sampling one response at a time. The

question of which surface to sample requires separate analysis over L.

We assume that sampling is not inexpensive and sampling efficiency is important. Hence, we

focus on the design problem of constructing efficient sampling strategies that can well-estimate

C(x) while optimizing the number of MC samples needed. Because µℓ(x) are unknown, we frame

(1.3) as a sequential learning problem of adaptively growing a design Z that quickly learns C(x).
Classical approaches to design of experiments (DoE), recently reinterpreted in the context of design

and analysis of computer experiments (DACE) construct static, i.e. response-independent, designs.

However, for problems such as ranking, static designs are inadequate since the whole essence of

the problem is to learn the structure of the unknown µℓ’s and then optimize computational efforts.

Intuitively, learning manifests itself in focusing the sampling efforts on the most promising regions

in terms of the loss function. This implies discriminating both in input space X (focus on regions

where identifying C(x) is difficult) and in sampling indices L (focus on the surfaces where µℓ is

likely to be the smallest response).

Due to the joint design space X×L, our problem allows for a dual interpretation. Fixing ℓ, (1.1) is

about reconstructing an unknown response surface x 7→ µℓ(x) through noisy samples. Aggregating

the different response surfaces, sequential design over X reduces to identifying the boundary areas

where the ranking C(x) changes values. Indeed, we observe that (1.1) is identical to the problem

of partitioning X = ∪Li=1Ci into the sets

Ci := {x : C(x) = i} = {x : µC(x)(x) = min
ℓ

µℓ(x) = µi(x)}, i = 1, . . . , L.(1.4)

Because in interiors of the partitions Ci the ranking C(x) is easier to identify, the main problem is to

find the partition boundaries ∂Ci. As a result, (1.1) is related to the problem of contour-finding, for

which sequential design was studied in [20, 40, 41]. Standard contour-finding attempts to identify

the level set {µ(x) = a} of the response surface which is precisely the case L = 2 and known

µ2(x) = a in (1.1). Hence, the analysis herein can be viewed as a multi-variate extension of contour

finding. In turn, contour-finding generalizes the classical objective of minimizing a noisy response,

allowing for connections to the Expected Improvement/Efficient Global Optimization approaches

in simulation optimization. In particular, we are inspired by the active learning rules of [12, 34]

that trade-off the loss criterion against information gain.

Conversely, fixing x the aim of determining the smallest response argminℓ µℓ(x) corresponds to

the setting of multi-armed bandits (MAB). Indeed, we have a bandit with L arms and corresponding

payoffs µℓ(x), ℓ ∈ L with a decision-theoretic objective (1.1) which is known as the pure exploration

problem in the bandit literature [6, 7]. Decision policies for which arm to pull are usually expressed

in terms of posterior mean and confidence about the respective payoff; this point of view motivates

our use of Gap-Upper Confidence Bound (UCB) design strategies [3, 44]. However, compared to
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existing literature, (1.3) contains two key differences. First, the loss function is a weighted pure-

regret criterion which to our knowledge has never been used in MAB context. Second, instead of

a single bandit with independent arms, we face the radical extension to a continuum of bandits

indexed by x ∈ X , and where arm payoffs have a correlation structure imposed by X . Recently,

[24, 15] considered multiple bandits which can be viewed as (1.1) with a discrete, non-metrized X .
We generalize their setting to a structured continuous X using kriging response models.

1.1. Summary of Approach. To handle response surfaces indexed by the continuous space vari-

able x ∈ X we adopt the framework of kriging or Gaussian process (GP) regression. Gaussian

processes are a robust algorithmic framework that offers tractable quantification of posterior uncer-

tainty and related sequential metrics. It has already been used extensively for sequential regression

designs and allows an intuitive approach to borrow information cross-sectionally across samples to

build global estimates of the entire surface µℓ. In both contexts of DoE and continuous MAB’s,

kriging models have emerged as perhaps the most popular framework [45]. Moreover, GPs possess

a wealth of analytic structure that allows for analytic evaluation of many Expected Improvement

criteria. They also admit a natural transition between modeling of deterministic (noise-free) ex-

periments where data needs to be interpolated, and stochastic simulators where data smoothing is

additionally required. Moreover, while classical kriging may not be flexible enough for some chal-

lenging problems, there are now several well-developed generalizations, including treed GPs [22],

local GPs [18], and particle-based GPs [21], all offering off-the-shelf use through public R packages.

We stress that kriging is not essential to implementation of our algorithms; for example competitive

alternatives are available among tree-based models, such as dynamic trees [23] and Bayesian trees

[11].

Following the Efficient Global Optimization approach [27], we define expected improvement

scores that blend together the local complexity of the ranking problem and the posterior variance

of our estimates. In particular, we rely on the expected reduction in posterior variance and borrow

from the Stepwise Uncertainty Reduction criteria based on GP regression from [39, 9]. We also

utilize UCB-type heuristics [3] to trade-off exploration and exploitation objectives. Based on the

above ideas, we obtain a number of fully sequential procedures that specifically target efficient

learning of C(x) over the entire design space X . Extensive numerical experiments are conducted to

compare these proposals and identify the most promising solutions.

As explained, our algorithms are driven by the exploration-exploitation paradigm quantified in

terms of (empirically estimated) local ranking complexity for C(x) and confidence in the estimated

Ĉ. To quantify the local ranking complexity, we use the gaps ∆(x) [15, 8, 26]. For any x ∈ X ,
denote by µ(1)(x) < µ(2)(x) < . . . < µ(L)(x) the ranked responses at x and by

∆(x) := µ(1)(x)− µ(2)(x)

the gap between the best (smallest) and second-best response. ∆(x) measures the difficulty in

ascertaining C(x): for locations where µ(1) − µ(2) is big, we do not need high fidelity, since the

respective minimal response surface is easy to identify; conversely for locations where µ(1)− µ(2) is

small we need more precision. Accordingly, we wish to preferentially sample where ∆(x) is small.

This is operationalized by considering the estimated gaps ∆̂(x), which drives the design decisions

over X .
In terms of design over L, exploration suggests to spend the budget on learning the responses

offering the biggest information gain. This intuition demonstrates that there will be substantial

benefits to discriminating over the sampling indices ℓ. To wit, one can locally concentrate on the
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(two) most promising surfaces µ(1), µ(2), ignoring the rest. As we demonstrate, this is much more

efficient than the naive strategy of sampling each Yℓ equally. In addition, since the noise level in

Yℓ may vary with ℓ this must also be taken into account. Summarizing, our expected improvement

metrics blend empirical gaps ∆̂ and empirical posterior uncertainty based on kriging variance δℓ(x),

jointly discriminating across X × L.

Our contributions can be traced along three directions. First, we introduce and analyze a novel

sequential design problem targeting the loss function (1.3). As explained in Section 1.2 below, this

setting is motivated by dynamic programming algorithms where statistical response models have

been widely applied since the late 1990s [13, 31]. Here we contribute to this literature by propos-

ing a sequential design framework that generates substantial computational savings. This aspect

becomes especially crucial in complex models where simulation is expensive and forms the main

computational bottleneck. Second, we generalize the existing literature on Bayesian optimization

and contour-finding to the multi-surface setting, which necessitates constructing new EI measures

that address joint design in space and index dimensions. In particular, we demonstrate that this

joint design allows for a double efficiency gain: both in X and in L. Third, we extend the multiple

bandits problem of [15] to the case of a continuum of bandits, which requires building a full meta-

model for the respective arm payoffs. Our construction offers an alternative to the recent work [7]

on X -armed bandits (a single bandit with a continuum of arms) and opens new vistas regarding

links between MAB and DACE.

Our approach also generalizes Gramacy and Ludkovski [20]. The latter work proposed sequential

design for the case L = 2 and σ2(x) = 0, i.e. the contour-finding case. This allows to reduce

the design heuristics to be just over the input space X . In that context [20] introduced several EI

heuristics and suggested the use of dynamic trees for the response surface modeling. The framework

herein however requires a rather different approach, in particular we emphasize the bandit-inspired

tools (such as UCB) that arise with simultaneous modeling of multiple response surfaces.

The rest of the paper is organized as follows. Section 2 describes the kriging response surface

methodology that we employ, as well as some analytic formulas helpful in the context of ranking.

Section 3 then develops the expected improvement heuristics for (1.1). Sections 4 and 5 illustrate

the designed algorithms using synthetic data (where ground truth is known), and a case-study from

epidemic management, respectively. Finally, Section 6 concludes.

1.2. Motivation. The setting of (1.1) comes from the stochastic control context, where µℓ’s cor-

respond to Q-values for different actions ℓ ∈ L and noisy samples Yℓ(x) are pathwise rewards from

simulated scenarios. Consider the control objective of minimizing total costs associated with a

controlled state process X,

c(0;u0:T ) =

T∑

t=0

g(t,Xt, ut)(1.5)

on the horizon {0, 1, . . . , T}. Above g(t, x, u) encodes the stagewise running costs, u0:T is the control

strategy taking values in the finite action space ut ∈ L, and Xt ≡ Xu
t is a stochastic discrete-time

Markov state process taking values in the state space X ⊆ R
d. The dynamics of Xu are assumed

to be of the form

Xu
t+1 = F (Xt, ut, ξt+1)

for some map F : X ×L×R→ X , where ξt+1 is a random independent centered noise source. Since

from the point of view at 0, c(0;u0:T ) is a random variable, the performance criterion is based on
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expected rewards and consists of optimizing the value function V (0, x) defined as

V (t, x) := inf
ut:T∈U

E[c(t;ut:T )|Xt = x], t ∈ {0, 1, . . . , T}, x ∈ X ,

over all admissible closed-loop Markov strategies ut:T ∈ U . Thus, at time t, the action ut ≡ u(t,Xt)

is specified in feedback form as a function of current state Xt. Hence, the control u is determined

dynamically as X evolves. The policy map (t, x) 7→ u∗(t, x) translates system states into actions

and is related to the value function via the dynamic programming equation (DPE):

V (t, x) = min
u∈L

{
g(t, x, u) + Et

[
V (t+ 1, Xu

t+1)
]
(x)

}
= µu∗(x; t),(1.6)

with µu(x; t) := g(t, x, u) + Et[V (t+ 1, Xu
t+1)](x).(1.7)

The notation Et[·](x) ≡ E[·|Xt = x] is meant to emphasize averaging of the stochastic future at

t + 1 based on time-t information summarized by the system state Xt = x. The term µu(x; t) is

known as the Q-value associated with action u and provides the expected cost-to-go if one applies

u ∈ L at Xt = x.

To solve the DPE it suffices to compute the Q-values since by (1.6), V (t, x) = minℓ∈L{µℓ(x; t)}.
The above provides the first link to the ranking problem in (1.1). Thus, we identify the L response

surfaces with expected costs-to-go for each immediate action ℓ ∈ L and the ranking problem

corresponds to constructing the policy map x 7→ u∗(t, x), which partitions the state space X into

L action sets Ci(t). The second link is based on the modified backward induction method: given

u∗(s, ·) for all s = t+ 1, . . . , T and all x ∈ X (initialized via V (T, x) = g(T, x)), we observe that

µu(x; t) = g(t, x, u) + Et

[
T∑

n=t+1

g(n,X ũ
n , ũn)

]
(x),(1.8)

where (ũt) is a strategy that uses action u at t and u∗(s,Xs) thereafter, s > t. This formulation

allows pursuit of policy search methods by tying the accuracy in (1.7) not to the immediate fidelity

of (estimated) Q-values µu(·; t), but to the quality of the policy map u∗(t, x). Namely, one iteratively

computes approximate policy maps û(s, ·) for s = T − 1, T − 2, . . ., using (1.8) to construct û(t, ·)
based on {û(s, ·) : s > t}. As a result, rather than requiring a uniform approximation quality on the

entire X for µu(·; t), it becomes sufficient to optimize the fidelity of the ranking map x 7→ C(x; t),
i.e the relative ranking of each Q-value across possible actions ℓ ∈ L. Wrong decisions about C
lead to the loss (1.3), namely the difference between acting optimally as u∗(t,Xt) at t, vis-a-vis

taking action ℓ (and then acting optimally for the rest of the future, {t + 1, . . . , T}), weighted by

the distribution F (dx) of Xt. Note that the original objective of finding V (0, x) requires solving T

ranking problems of the form (1.1).

The above approach to dynamic programming is especially attractive when the action space

L is very small. A canonical example are optimal stopping problems where the action space is

L = {stop, continue}, i.e. L = 2. In the classical setting there is a single stopping decision and

the immediate reward µ2(x; t) is known directly, leading to the case of estimating a single Q-value

µ1(x; t), see [20]. Multiple stopping problems where both µ1 and µ2 need to be estimated arise

in the pricing of swing options [36], valuing of real options [1], and optimizing entry-exit trading

strategies [46]. The case L > 2 was considered for valuation of energy assets, especially gas storage

[29], that lead to optimal switching problems. For example, storage decisions are usually modeled

in terms of the triple alternative L = 3 of {inject, do − nothing, withdraw}. Small action spaces

also arise in many engineering settings, such as target tracking [2, 25], and sensor management [14].
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The above references highlight the wide range of control applications of (1.1) and will be further

explored in a separate forthcoming article.

2. Statistical Model

2.1. Sequential Design. Fix a configuration {µℓ, ℓ = 1, . . . , L} and corresponding classifier C(·).
A design of size K is a collection Z(K) := (x, ℓ)1:K , x ∈ X , ℓ ∈ L, with superscripts denoting

vectors. Fixing Z(K), and conditioning on the corresponding samples Y 1:K ≡ (Yℓk(x
k))Kk=1, let

Ĉ(K) ≡ Ĉ(Y 1:K ,Z(K)) be an estimate of C. We aim to minimize the expected loss L(Ĉ(·,Z(K)), C)
over all designs of size K, i.e.

inf
Z:|Z|=K

E

[
L(Ĉ(Y 1:K ,Z), C)

]
,(2.1)

where the expectation is over the sampled responses Y 1:K . To tackle (2.1) we are interested in

sequential algorithms that iteratively augment the designs Z as Y -samples are collected. The

interim designs Z(k) are accordingly indexed by their size k where k = K0,K0 + 1, . . . ,K. At each

step, a new location (xk+1, ℓk+1) is added and the estimate Ĉ(k+1) is recomputed based on the newly

obtained information. The overall procedure is summarized by the following pseudo-code:

(1) Initialize Z(K0) and Ĉ(K0)

(2) LOOP for k = K0, . . .

(a) Select a new location (xk+1, ℓk+1) and sample corresponding yk+1 := Yℓk+1(xk+1)

(b) Augment the design Z(k+1) = Z(k) ∪ {(xk+1, ℓk+1)}
(c) Update the classifier Ĉ(k+1) = Ĉ(Y 1:(k+1),Z(k+1)) by assimilating the new observation

(3) END Loop

The basic greedy sampling algorithm adds locations with the aim of minimizing the myopic

expected estimation error. More precisely, at step k, given design Z(k) (and corresponding Y 1:k),

the next pair
(
xk+1, ℓk+1

)
is chosen by

arg inf(xk+1,ℓk+1)∈X×L E

[
L(Ĉ(Y 1:(k+1),Z(k+1)), C)

]
,(2.2)

where the expectation is over the next sample Yℓk+1(xk+1). This leads to a simpler one-step-ahead

optimization compared to theK-dimensional (and typically we are looking atK ≫ 100) formulation

in (2.1). Unfortunately, the optimization in (2.2) is still generally intractable because it requires

• re-computing the full loss function L(·, C) at each step;

• finding the expected change in Ĉ given Yℓk+1(xk+1);

• integrating over the (usually unknown) distribution of Yℓk+1(xk+1);

• optimizing over the full d+ 1-dimensional design space X × L.

In this article we accordingly propose efficient numerical approximations to (2.2). Construction

of these approximations relies on the twin ideas of (i) sequential statistical modeling (i.e. computing

and updating Ĉ as Z grows), and (ii) stochastic optimization (i.e. identifying promising new design

sites (x, ℓ)).

2.2. Response Surface Modeling. A key aspect of sequential design is adaptive assessment of

approximation quality in order to maximize information gain from new samples. Consequently,

measuring predictive uncertainty is a central tool in picking (xk+1, ℓk+1). For that purpose, we use

a Bayesian paradigm, treating µℓ as random objects. Hence, we work with a function space M
and assume that µℓ ∈ M with some prior distribution F0. Thus, for each x, µℓ(x) is a random
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variable whose posterior distribution is updated based on the collected information from samples

(x, ℓ, yℓ(x)). We assume that the sample noise ǫℓ is independent of µℓ. Let Fk be the information

generated by the kth step design Z(k), i.e. Fk = σ
{
Yℓ(x) : (x, ℓ) ∈ Z(k)

}
. Given the information

summarized in Fk, we define the posterior M
(k)
ℓ (x) ∼ µℓ(x)|Fk. The random variable M

(k)
ℓ (x) is

the belief about µℓ(x) conditional on Fk; its two first moments are referred to as the kriging mean

and variance respectively,

µ̂
(k)
ℓ (x) := E[µℓ(x)|Fk],(2.3)

δ
(k)
ℓ (x)2 := E[(µℓ(x)− µ̂

(k)
ℓ (x))2|Fk].(2.4)

We will use µ̂(x) as a point estimate of µℓ(x), and δℓ(x) as a basic measure of respective uncertainty.

The overall global map x 7→ M
(k)
ℓ (x) is called the ℓth kriging surface. Note that while there is a

spatial correlation structure over X , we assume that observations are independent across L, so that

the posteriors M
(k)
ℓ (x), ℓ = 1, 2, . . . are independent.

Remark 2.1. Note that beyond the kriging surface, many (Bayesian) regression algorithms also

generate the full predictive distribution Ỹℓ(x), i.e. the posterior of Yℓ(x) which requires additionally

an estimate of the noise distribution ǫ̂ℓ(x),

Ỹℓ(x)|Fk
d
= M

(k)
ℓ (x) + ǫ̂ℓ(x),

where ǫ̂ℓ(x) has mean zero and posterior variance σ̂2
ℓ (x). Since we are only interested in the mean

response µℓ(x) we do not discuss Ỹℓ(x) in the sequel.

To describe the ranking of the surfaces, we use the order statistics µ̂(1)(x) ≤ µ̂(2)(x) ≤ . . . to

denote the sorted posterior means at a fixed x. A natural definition is to announce the minimum

estimated surface

(2.5) Ĉ(x) := argmin
ℓ
{µ̂ℓ(x)} ,

i.e. the estimated classifier Ĉ corresponds to the smallest posterior mean, so that µ̂Ĉ(x)(x) = µ̂(1)(x).

On the other hand, the uncertainty about C(x) can be summarized through the expected minimum

of the posteriors M1,M2, . . . ,ML,

m(k)(x) := E[M
(k)
(1) ] = E[min(µ1(x), . . . , µL(x))|Fk].(2.6)

Observe that E[minℓ µℓ(x)|Fk] = m(k)(x) ≤ µ̂
(k)
(1) = minℓ E[µℓ(x)|Fk], and we accordingly define the

M-gap

M(x) := µ̂(1)(x)−m(x) ≥ 0,(2.7)

The M-gap measures the difference between expectation of the minimum and the minimum expected

response, which precisely corresponds to the Bayesian expected loss at x in (1.3). This fact offers

an empirical analogue EL(Ĉ) of the original loss function L(Ĉ, C) in (1.3),

EL(Ĉ) :=
∫

X
M(x)F (dx).(2.8)

The above formula translates the local accuracy of the kriging surface into a global measure of

fidelity of the resulting classifier Ĉ and will be the main performance measure for our algorithms.
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2.3. Kriging. The response surfaces are assumed to be smooth in X . As a result, information

about µℓ(x
′) is also revealing about µℓ(x) for x 6= x′, coupling observations at different sites.

To enforce such conditions without a parametric representation, we use the Reproducing Kernel

Hilbert Space (RKHS) approach to view each µℓ as a sample from a Gaussian process (GP). A GP

is specified by its trend or mean function tℓ(x) = E[µℓ(x)] and a covariance structure Kℓ : X 2 → R,

with Kℓ(x, x
′) = E[(µℓ(x)−tℓ(x))(µℓ(x

′)−tℓ(x′))]. The resulting function class span(K(·, x′), x′ ∈ X )
forms a Hilbert space and is denoted byMK. By specifying the correlation behavior, the kernel K
encodes the smoothness of the response surfaces drawn from the GP. We postulate that µℓ ∈MK;
it then follows from the reproducing property that both the prior and posterior distributions of

µℓ(·) are multivariate Gaussian.

Fix the response surface index ℓ and let ~y = (y(x1), . . . , y(xn))T denote the observed noisy sam-

ples at locations ~x = x1:n. These realizations are modeled as in (1.2) with the response represented

as

µℓ(x) = tℓ(x) + Zℓ(x),

where tℓ(·) is a fixed trend term and Zℓ(·) is a realization of a Gaussian process. Given the samples

(x, y)1:n, the posterior of µℓ again forms a GP; in other words any collection M
(n)
ℓ (x′1), . . . ,M

(n)
ℓ (x′k)

is multivariate Gaussian with mean µ̂
(n)
ℓ (x′i), covariance v

(n)
ℓ (x′i, x

′
j), and variance δ

(n)
ℓ (x′i)

2, specified

by [45, Sec. 2.7]:

µ̂
(n)
ℓ (x′i) = tℓ(x

′
i) +

~k
(n)
ℓ (x′i)

T (Kℓ +Σ
(n)
ℓ )−1(~y − ~t

(n)
ℓ )(2.9)

v
(n)
ℓ (x′i, x

′
j) = Kℓ(x

′
i, x

′
j)− ~k

(n)
ℓ (x′i)

T (Kℓ +Σ
(n)
ℓ )−1~k

(n)
ℓ (x′j)(2.10)

with

δ
(n)
ℓ (x′i)

2 = v
(n)
ℓ (x′i, x

′
i) ~t

(n)
ℓ = (tℓ(x

1), . . . , tℓ(x
n))T , and

~k
(n)
ℓ (x′i) = (Kℓ(x

1, x′i), . . . ,Kℓ(x
n, x′i))

T

and where Σ
(n)
ℓ := diag(σ2

ℓ (x
1), . . . , σ2

ℓ (x
n)) and Kℓ is the n× n positive definite matrix (Kℓ)i,j :=

Kℓ(x
i, xj), 1 ≤ i, j ≤ n. Each posterior Mℓ(x) is Gaussian and by independence across ℓ, the vector

of posteriors M(x) at a fixed x satisfies

M(x) ∼ N (µ̂(x),∆(x)) with µ̂(x) = [µ̂1(x), . . . , µ̂L(x)]
T , ∆(x) = diag

(
δ21(x), . . . , δ

2
L(x)

)
.

The role of the covariance kernel is to specify the complexity of µℓ under the RKHS norm. Two

main examples we use are the squared exponential kernel

K(x, x′; s, θ) = s2 exp(−‖x− x′‖2/(2θ2))

and the (isotropic) Matern-5/2 kernel

K(x, x′; s, θ) = s2
(
1 + (

√
5 + 5/3)‖x− x′‖2θ

)
· e−

√
5‖x−x′‖θ , ‖x‖θ =

√
x diag θxT .(2.11)

The length-scale parameter θ controls the smoothness of members ofMK, the smaller the rougher.

The variance parameter s2 determines the amplitude of fluctuations in the response. For both of

the above cases, members of the function space MK can uniformly approximate any continuous

function on any compact subset of X .
A major advantage of kriging for sequential design are updating formulas that allow to efficiently

assimilate new data points into an existing fit. Namely, if a new sample (x, y)k+1 is added to an
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existing design x1:k, the mean and kriging variance at location x are updated via

µ̂(k+1)(x) = µ̂(k)(x) + λ(x, xk+1;x1:k)(yk+1 − µ̂(k)(xk+1));(2.12)

δ(k+1)(x)2 = δ(k)(x)2 − λ(x, xk+1;x1:k)2[σ2(x(k+1))− µ̂(k)(xk+1)],(2.13)

where λ(x, xk+1;x1:k) is a weight function specifying the influence of the new sample at xk+1 on

x (conditioned on existing design locations x1:k). In particular, the local reduction in posterior

standard deviation at xk+1 is proportional to the current δ(k)(xk+1) with a proportionality factor

[10]:

δ(k)(xk+1)− δ(k+1)(xk+1)

δ(k)(xk+1)
= 1− σ(xk+1)√

σ2(xk+1) + δ(k)(xk+1)2
.(2.14)

Note that the updated posterior variance δ(k+1)(x)2 is a deterministic function of xk+1 which is

independent of yk+1.

Several options are available for modeling the trends tℓ(·). The zero-trend case tℓ(x) = 0 is called

Ordinary Kriging. Universal Kriging assumes a parametric trend tℓ(x) =
∑

i β
itiℓ(x), and estimates

the trend coefficients βi based on generalized least squares regression. See [40] or [45, Sec. 2.7] for

the corresponding formulas of kriging mean and covariance. The constant trend sub-case tℓ(x) = β0

is known as Simple Kriging. For our examples below, we have used the DiceKriging R package [43]

to compute (2.9). The software takes as input the location-index pairs (x, ℓ)1:n, the corresponding

samples yℓ(x)
1:n and the noise levels σ2

ℓn(x
n), as well as the kernel family (Matern-5/2 (2.11) by

default) and trend basis functions tiℓ(x) and runs an EM MLE algorithm to train a (Universal)

kriging model, i.e. to estimate the kriging kernel Kℓ hyper-parameters s, θ. One advantage of

DiceKriging is support for state-dependent noise levels, as well as a variety of optimization routines

to estimate the hyper-parameters.

2.4. Summary Statistics for Ranking. Given a fitted kriging surface Mℓ (for notational con-

venience in this section we omit the indexing by the design size k), the respective classifier Ĉ is

obtained as in (2.5). Note that Ĉ(x) is not necessarily the MAP (maximum a posteriori probability)

estimator, since the ordering of the posterior probabilities and posterior means need not match for

L > 2. Two further quantities are of importance for studying the accuracy of Ĉ: gaps and posterior

probabilities. First, the gaps quantify the differences between the posterior means, namely

∆̂ℓ(x) := |µ̂ℓ(x)−min
j 6=ℓ

µ̂j(x)|,(2.15)

∆̂(x) := |µ̂(1)(x)− µ̂(2)(x)|,(2.16)

where recall that µ̂(1) ≤ µ̂(2) ≤ . . . ≤ µ̂(L) are the ordered posterior means. Note that under L = 2,

we have ∆̂1 = ∆̂2 = ∆̂ due to symmetry.

Second, define the posterior probabilities for the minimal rank

pℓ(x) := P
(
µℓ(x) = µ(1)(x)|Fk

)
= P(Mℓ(x) = min

j
Mj(x)).(2.17)

We refer to p(1)(x) ≥ p(2)(x) ≥ . . . ≥ p(L)(x) as the decreasing ordered values of the vector

~p(x) := {pℓ(x)}Lℓ=1, so that the index of p(1)(x) is the MAP estimate of the minimal response

surface. The following proposition provides a semi-analytic recursive formula to evaluate ~p(x) in

terms of the kriging means and variances (µ̂ℓ(x), δ
2
ℓ (x)).
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Proposition 2.2 (Azimi et al. [4]). If M(x) ∼ N (µ̂(x),∆(x)), then for any ℓ ∈ L,

(2.18) pℓ(x) = P

(
Mℓ(x) = min

j
Mj(x)

)
=

L−1∏

j=1

Φ
(
−r(ℓ)j

)
,

where Φ(·) is standard normal cdf, r(ℓ) = [r1, r2, . . . , rL−1]
T = (A(ℓ)∆(x)A(ℓ)T )−1/2A(ℓ)µ̂(x), with

A(ℓ) a (L− 1)× L matrix defined via

A(ℓ)i,j =





1 if j = ℓ,

−1 if 1 ≤ i = j < ℓ,

−1 if ℓ < i+ 1 = j ≤ L,

0 otherwise.

Corollary 2.3. For L = 2, we have p1(x) = P(M1(x) ≤M2(x)) = Φ

(
µ̂2(x)−µ̂1(x)√
δ21(x)+δ22(x)

)
, and p2(x) =

1− p1(x).

The next proposition provides another semi-analytic formula to evaluate m(x) defined in (2.6).

Proposition 2.4. Suppose that L = 2 and let Mℓ(x) ∼ N (µ̂ℓ(x), δ
2
ℓ (x)), ℓ = 1, 2 be two independent

Gaussians. Define

d12 :=
√

δ21(x) + δ22(x), and a12 := (µ̂1(x)− µ̂2(x))/d12.

Then the first two moments of M(1)(x) = min(M1(x),M2(x)) are given by:

m(x) ≡ E[M(1)(x)] = µ̂1(x)Φ(−a12) + µ̂2(x)Φ(a12)− d12φ(a12),(2.19)

E
[
M(1)(x)

2
]
= (µ̂2

1(x) + δ21(x))Φ(−a12) + (µ̂2
2(x) + δ22(x))Φ(a12)(2.20)

− (µ̂1(x) + µ̂2(x))d12φ(a12).

Equation (2.19) provides a closed-form expression to evaluate m(x) = E[M(1)(x)] for L = 2.

In the case L > 2, one may evaluate m(x) recursively using a Gaussian approximation. To wit,

for L = 3, approximate Ỹ := M1(x) ∧M2(x) by a Gaussian random variable with mean/variance

specified by (2.19)-(2.20) respectively (i.e. using a12 and d12) and then apply Proposition 2.4 once

more to M(1)(x) = Ỹ ∧M3(x).

3. Expected Improvement

The Bayesian approach to sequential design is based on greedily optimizing an acquisition func-

tion. Maximizing the acquisition function is used to select the next design point and is quantified

through Expected Improvement (EI) scores. The aim of EI scores is to identify pairs (x, ℓ) which are

most promising in terms of lowering the global empirical loss function EL according to (2.2). In our

context the EI scores are based on the posterior distributions M
(k)
ℓ which summarize information

learned so far about µℓ(x).

3.1. Gap-UCB Heuristic. Motivated by multi-armed bandit literature, our first proposal for EI

is based on the exploration-exploitation trade-off. Recall that in MAB exploitation corresponds to

sampling the most promising arm, while exploration corresponds to reducing posterior variance of

arm payoffs. To measure the relative value of arms, we use the local empirical gap measure [15]
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∆̂ℓ(x). To quantify exploration we use kriging variance δ2ℓ (x). To merge these criteria, we borrow

the ‘UCB’ (upper confidence bound) concept [44], i.e. construct the linear combination

EGap−UCB
k (x, ℓ) := −∆̂ℓ(x) + γkδℓ(x).(3.1)

The above Gap-UCB criterion favors locations with small gaps in posterior means and high krig-

ing variance. The tuning parameter γk, indexed in terms of the current design size k, balances

exploration (regions with high δℓ(x)) and exploitation (regions with small gap). Srinivas et al. [44]

proved that in a cumulative regret setting γk = O(
√
log k) should grow logarithmically in sample

size k.

To better understand (3.1) note that it is based on two components: the local complexity of

determining the true C(x) and the information gain from a new sampling location. For the latter,

information gain can be related to the kriging variance δ2(x) which measures uncertainty regarding

the posterior mean and can be related to the usual standard error of a point estimator. For

the former, recall that in a frequentist setting with fixed unknown µi(x)’s, the gap ∆ℓ(x) :=

µℓ(x)− µ(1)(x) is a basic measure of the hardness for testing whether µℓ(x) = mini µi(x); the

smaller ∆ℓ(x) the tougher. Analogously, in our Bayesian framework, the posterior estimated ∆̂(x)

evaluates the complexity of identifying the minimum surface at x. Thus, the idea of Gap-UCB is

to mimic a complexity-sampling scheme that selects design sites based on the complexity of the

underlying ranking-and-selection problem, i.e. preferring sites with small ∆ℓ(x). This link was

exploited to generate rules on how to choose γk (for the case of a finite state space X ) in [15]. Still,

finetuning the schedule of k 7→ γk is highly non-trivial in black-box settings. For this reason, usage

of the Gap-UCB approach is sensitive to implementation choices.

We further note that when working with the gap ∆ℓ(x) the UCB approach is necessary to

assure convergence. To wit, with γk ≡ 0 the algorithm would not be globally consistent. Indeed,

consider x1, x2 such that ∆(x2) > ∆(x1), but the estimated gaps based on interim Z(k) satisfy

∆̂(x1) > ∆̂(x2) > ∆(x2). Then at stage k the algorithm will prefer site x2 over x1 (since it has

smaller gap ∆̂) and will then possibly get trapped indefinitely, never realizing that the estimated

ordering between ∆(x1) and ∆(x2) is wrong. Hence without UCB the algorithm is prone to get

trapped at local minima of ∆̂.

3.2. M-Gap & Uncertainty Reduction Heuristic. From a wholly different perspective of sto-

chastic optimization, we next design an acquisition function based on the loss function. Recall

that we strive to lower the empirical loss EL in (2.8) which is related to the M-gap in (3.2),

EL =
∫
M(x)F (dx). Accordingly, we useM(x) to guide the adaptive design, by aiming to maxi-

mizing its expected reduction

EGap−SUR
k (x, ℓ) := E[M(k)(x)−M(k+1)(x)|xk+1 = x, ℓk+1 = ℓ,Fk].(3.2)

Thus the Gap-SUR criterion quantifies the expected reduction in local M(x) if we add (x, ℓ) to

the design. To evaluate E[M(k+1)(x)|xk+1 = x, ℓk+1 = ℓ,Fk] recall Proposition 2.4 (which gives

an exact formula for L = 2) that reduces to computing the expected mean and variance of Mℓ at

x. Now the updating formula (2.12) implies that (keeping K fixed) E[µ̂k+1
ℓ (x)|xk+1 = x, ℓk+1 =

ℓ,Fk] = µ̂k
ℓ (x), while (2.14) yields δ

(k+1)
ℓ (x). This allows a straightforward method to obtain (3.2)

from the present kriging mean and variance µ̂ℓ(x), δ
2
ℓ (x). Stepwise uncertainty reduction (SUR)

strategies were introduced in [5, 9] who were the first to take advantage of kriging updating formulas

for this purpose.
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Importantly, the Gap-SUR heuristic does not require any additional tuning schedules such as the

(γk) in the UCB approach. Moreover, it intrinsically ensures exploration by enforcing M(x) → 0

everywhere on X . BecauseM(x)→ 0 if and only if µ̂(1) → m(x), which is equivalent to the kriging

variance vanishing δ2ℓ (x) → 0 for all ℓ, this guarantees strong consistency for learning µℓ (and

in turn strong consistency for learning the ranks C(x)). Hence, using Gap-SUR as an EI metric

produces a globally consistent algorithm; in particular the resulting designs Z(K) become dense on

X as K →∞.

Remark 3.1. The mentioned link between kriging variance andM connects our Gap-SUR criterion

to the Active Learning Cohn (ALC) [12] approach to DoE. Namely, in ALC the goal of minimizing

integrated posterior variance is achieved by sampling at sites with maximum expected reduction

in posterior variance. In our context of minimizing the expected loss EL, a natural criterion is

therefore to prefer sites where the present (empirical) local loss M(x) is high and where δ2(x) can

be lowered quickly by augmenting the design. The ALC paradigm also suggests an alternative to

(3.1), namely EGap−ALC
k (x, ℓ) = −∆̂ℓ(x) + γk[δ

(k)
ℓ (x) − δ(k+1)(x)], that blends expected decline in

kriging variance with the estimated gap.

3.3. Selecting the Next Sample Location. Recall the basic looping procedure for growing the

designs Z(k) over k = K0,K0 + 1, . . .. The EI heuristic indicates promising sampling locations, so

that the “best” sites correspond to the highest EI scores Ek(x, ℓ). This leads to taking

(xk+1, ℓk+1) = arg sup
(x,ℓ)∈X×L

Ek(x, ℓ).(3.3)

Because the above introduces a whole new optimization sub-problem, in cases where this is compu-

tationally undesirable we instead replace arg supx∈X with argmaxx∈T where T is a finite candidate

set. Optimization over T is then done by direct inspection. The justification for this procedure is

that (i) we expect Ek(x, ℓ) to be smooth in x and moreover relatively flat around x∗; (ii) Ek(x, ℓ)

is already an approximation so that it is not required to optimize it precisely; (iii) performance of

optimal design should be insensitive to small perturbations of the sampling locations. To construct

such candidate sets T in X , we employ Latin hypercube sampling (LHS) [35]. LHS candidates

ensure that new locations are representative, and well spaced out over X . See [19, Sec 3.4] for

some discussion on how T should be designed. In addition, we refresh our candidate set T at each

iteration, to enable “jittering”.

Remark 3.2. There are other approaches on how to use acquisition functions to select the next

design site. For example, ǫ-greedy sampling applies a randomized approach, using (3.3) with prob-

ability 1 − ǫ at each step, and otherwise picking (x, ℓ) uniformly in X × L. The latter feature

guarantees (and possibly speeds up the rate of) global consistency by ensuring that the designs Z(k)

are dense in X as k → ∞. Another possibility is to use Ek(x, ℓ) as a potential in a probabilistic

sampling method, for example sampling according to weights w(x, ℓ) ∝ exp(−αkEk(x, ℓ)).

3.3.1. Hierarchical Sampling in X × L. Instead of sampling directly over the pairs (x, ℓ) ∈ X × L,

one can consider two-step procedures that first pick x and then ℓ (or vice-versa). This strategy

allows more intuition by connecting to the standard sequential design over X . Indeed, one can

then implement directly the active learning approach of [34, 12] by first picking xk+1 using the gap



Sequential Design for Ranking Response Surfaces 13

metrics, and then picking the index ℓk+1 based on the kriging variance. One concrete proposal is:




xk+1 = argmin
x∈X

∆̂(x)|Fk, cf. (2.16)

ℓk+1 = argmax
ℓ∈L

δ
(k)
ℓ (xk+1).

(3.4)

Conditional on picking xk+1, the above choice selects surfaces with large kriging variance δℓ(x),

attempting to equalize δℓ(x) across ℓ. As we mentioned before, to estimate C(x) well it is necessary
to know every µℓ(x) well, so that it is intuitive to require δℓ(x) to be equal. Another choice is to

pick ℓk+1 to greedily maximize the information gain as in (2.14). Such two-step EI heuristics allow

to avoid having to specify the schedule γk of UCB criteria (3.1).

The two-step procedure in (3.4) also links to the idea of concurrent marginal modeling of each

µℓ. Concurrent sampling means that after choosing a location xk+1 ≡ x, one augments the design

with the L respective pairs (x, 1) , (x, 2) , . . . (x, L). This approach “parallelizes” the learning of all

response surfaces while still building an adaptive design over X . The disadvantage of this strategy

becomes clear in the extreme situation when the variance of Y1(x) is zero, σ1(x) ≡ 0 while the

noise of Y2(x) is large. In that case, after sampling a given location once for each response, (x, 1)

and (x, 2), we would have δ1(x) = 0, δ2(x) ≫ 0. Hence, another sample from Y1(x) would gain

no information at all, while substantial information would still be gleaned from sampling Y2(x),

making parallel sampling twice as costly as needed.

At the same time, the idea of concurrent sampling yields an upper bound on the overall perfor-

mance of the ranking problem. Indeed, in the presence of multiple surfaces one may always learn

each of them separately and then compare the fitted models to pick the minimum index according

to (2.5), which is equivalent to L marginalized learning problems over X .

Algorithm 1 Sequential Design for Global Ranking using Kriging

Require: K0,K

1: Generate initial design Z(K0) := (x, ℓ)1:K0 using LHS

2: Sample y1:K0 , estimate the GP kernels Kℓ’s and initialize the response surface models Mℓ

3: Construct the classifier C(K0)(·) using (2.5)

4: k ← K0

5: while k < K do

6: Generate a new candidate set T (k) of size D

7: Compute the expected improvement (EI) Ek(x, ℓ) for each x ∈ T , ℓ ∈ L

8: Pick a new location (x, ℓ)k+1 = argmax
(x,ℓ)∈T (k)×L

Ek(x, ℓ) and sample the corresponding yk+1

9: (Optional) Re-estimate the kriging kernel Kℓk+1

10: Update the response surface Mℓk+1 using (2.12)-(2.13)

11: Update the classifier C(k+1) using (2.5)

12: Save the overall grid Z(k+1) ← Z(k) ∪ (xk+1, ℓk+1)

13: k ← k+1

14: end while

15: return Estimated classifier C(K)(·).

3.4. Implementation. To implement the abstract sequential ranking algorithm outlined in Sec-

tion 2.1, it remains to specify the initialization step. In the context of a kriging model, the initial
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design Z(K0) is crucial to ensure convergence, as the algorithm must first train the Gaussian process

by learning its covariance structure. One common challenge is to avoid assuming that µℓ’s are too

flat by missing the shorter-scale fluctuations [40]. Thus, K0 must be large enough to reasonably

estimate the covariance structure. In order to maximize exploration at this initial stage, we once

again utilize a space-filling LHS design (sampling equally across the L surfaces). The recommen-

dation is that K0 should be about 20% of the eventual design size K. In cases where a priori

knowledge about the kernels Kℓ is available, K0 can be much smaller. Algorithm 1 below presents

the resulting method in pseudo-code.

Our last remark concerns step 9 in Algorithm 1. Re-estimation of the kriging kernel Kℓ is

computationally expensive and makes the GP framework not sequential. In contrast, if one treats

Kℓ as fixed, updating the kriging model via (2.12)-(2.13) is efficient and takes only O(k) flops at

stage k. Since we expect the algorithm to converge as k → ∞, we adopt the practical rule of

running the full estimation procedure for K according to the doubling method [16]. To wit, we

re-estimate Kℓ for k = 2, 4, 8, . . . a power of two, keeping it frozen across other steps.

4. Simulated Experiments

4.1. Toy Example. In this section we consider a simple one-dimensional example with synthetic

data which allows a fully controlled setting. Let L = 2,X = [0, 1]. The noisy responses Y1(x) and

Y2(x) are specified by (cf. the example in [43, Sec 4.4])

Y1(x) = µ1(x) + ǫ1(x) ≡
5

8

(
sin(10x)

1 + x
+ 2x3 cos(5x) + 0.841

)
+ σ1(x)Z1,

Y2(x) = µ2(x) + ǫ2(x) ≡ 0.5 + σ2(x)Z2.

Here Zℓ are independent standard Gaussian, and the noise strengths are fixed at σ1(x) ≡ 0.2 and

σ2(x) ≡ 0.1, homoscedastic in x but heterogenous in ℓ = 1, 2. The weights F (dx) = dx in the loss

function are uniform on X .
The true ranking classifier C(x) consists of three pieces and is given by

(4.1) C(x) =





2 for 0 < x < r1,

1 for r1 < x < r2,

2 for r2 < x < 1.

where r1 ≈ 0.3193, r2 ≈ 0.9279.

To focus on the performance of various acquisition functions, we fix the kriging kernels Kℓ to be

of the Matern-5/2 type (2.11) with hyperparameters s1 = 0.1, θ1 = 0.18 for K1 and s2 = 0.1, θ2 = 1

for K2. These hyper-parameters are close to those obtained by training a kriging model for Yℓ(x)

given a dense design on X and hence capture well the smoothness of the response surfaces above.

Moreover, we employ a Simple Kriging model with a given constant trend tℓ(x) = 0.5.

To apply Algorithm 1 we then initialize with K0 = 10 locations (x, ℓ)1:K0 (five each from Y1(x)

and Y2(x)), drawn from a LHS design on [0, 1]. Note that because the kriging kernels are assumed

to be known, K0 is taken to be very small. To grow the designs we employ the Gap-SUR EI

criterion and optimize for the next (x, ℓ)k+1 using a fresh candidate set T (k) based on a LHS design

of size D = 100. Figure 1 illustrates the evolution of the posterior response surface models. The

two panels show the estimated M
(K)
ℓ (x) at K = 100 and K = 400 (namely we plot the posterior

means µ̂
(K)
ℓ (x) and the corresponding 90% CI µ̂

(K)
ℓ (x) ± 1.645δ

(K)
ℓ (x)). We observe that most of

the samples are heavily concentrated around the two classification boundaries r1, r2, as well as

the “false” boundary at x = 0. As a result, the kriging variance δ2ℓ (x) is much lower in those
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Figure 1. Response surface modeling with the Gap-SUR EI criterion of (3.2). We

plot the true surfaces µℓ(x) (black dashed lines), the posterior means µ̂ℓ(x) (blue/red

solid lines), the 90% posterior credibility intervals (light blue/red areas) of M1(x)

and M2(x), and the sampling locations x1:K for Y1(x) (blue triangles) and Y2(x) (red

circles). The middle panel shows the local loss M(x), cf. (2.7), while the bottom

panel shows the Gap-SUR EI metric EK(x, ℓ) (blue: ℓ = 1, red: ℓ = 2).

neighborhoods, generating the distinctive “sausage” shape for the posterior credibility intervals of

Mℓ(x). In contrast, in regions where the gap ∆(x) is large (e.g., around x = 0.5), ranking the

responses is easy so that almost no samples are taken and the kriging variance remains large. Also,

because σ1(x) > σ2(x), the credibility intervals of µ2 are tighter, δ1(x) > δ2(x), and most of the

samples are from the first response Y1. Indeed, we find D1(k) ≃ 3D2(k) where

Di(K) := |{1 ≤ k ≤ K : ℓk = i}|

is the number of samples in the design Z(K) from the i-th surface. The above observations confirm

the double efficiency from making the EI scores depend on both the X and L dimensions.

From a different angle, Figure 2 shows the resulting design Z(400) in this example and the

location of sampled sites xk as a function of sampling order k = 1, . . . , 400. We observe that

the algorithm first engages in exploration and then settles into a more targeted mode, alternating

between sampling around 0, r1 and r2.

4.2. Benchmarks. To judge the efficiency of different sequential designs, we proceed to benchmark

the performance of different approaches.

To begin, we provide two non-adaptive designs that are heuristic upper and lower bounds for

the achieved (empirical) loss. For the upper bound, we consider the uniform sampling method that

relies purely on the law of large numbers to learn µℓ(x). Thus, at each step k, we generate a new

sampling location (x, ℓ)k uniformly from X ×L. This generates a roughly equal number of samples

D1(k) ≃ D2(k) from each response and a kriging variance δ2ℓ (x) that is approximately constant in

x.

For the “lower” bound, we assume that the true µℓ(·), σℓ(·) are known and use that foresight

to generate a design that takes into account the resulting complexity for resolving C(x). Namely,

we plug in the true ∆ℓ(x) into the constructed EI metrics, for example the Gap-UCB metric in
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Figure 2. Left: the design Z(400) based on the Gap-SUR EI criterion of (3.2).

There were D1(400) = 294 and D2(400) = 106 samples from Y1 and Y2 respectively.

Right: sampled locations xk as a function of k (blue for ℓk = 1, red for ℓk = 2).

(3.1). The resulting design is sequential but deterministic since the sampling depends solely on

the given ∆ℓ(x)’s and kriging variances δ
(k)
ℓ (x)2 that are iteratively determined by the previous

x1:k, cf. (2.10). We expect the above design to be non-myopic since it is independent of observed

Y 1:k (of course, the outputted Ĉ(·) is still a function of Y 1:K). We found that the resulting designs

perform comparably across the derived EI-heuristic, and report the representative results for True

Gap-UCB approach.

The left panel of Figure 3 shows the convergence rate of our two main algorithms, Gap-UCB

(with γk =
√
log k) and Gap-SUR against the above benchmarks in terms of the resulting empirical

loss EL which is approximated by

EL(Ĉ, C) = 1

M

M∑

j=1

{
µ̂(1)(j∆x)−m(j∆x)

}
,(4.2)

where we used M = 1000 = 1/∆x uniformly spaced gridpoints in X = [0, 1]. We observe that our

designs are much more efficient than the naive uniform design, and, perhaps surprisingly, also beat

the non-adaptive method that already knows the true gaps. This happens because the empirical

loss of the non-adaptive method is in fact rather sensitive to the observed samples Y 1:K which can

generate erroneous estimates of µℓ(x) and mis-classified C(x). Consequently the True Gap-UCB

design, while properly placing (x, ℓ)1:K on average, does not allow self-correction so that erroneous

beliefs about µℓ can persist for a long time, increasing EL. In contrast, adaptive algorithms add

samples to any regions where observations suggest that ∆(x) is small, precising the estimated

means there and lowering both true and empirical loss functions. All methods appear to enjoy a

power-law (linear behavior on the log-log plot) for EL as a function of design size k.

The right panel of Figure 3 shows boxplots of L(Ĉ(K), C), computed analogously to (4.2), across

a variety of designs. In addition to the four methods above, we also show the performance of

two more sequential designs, Best-UCB and Gap-SUR w/training that are discussed in Section 4.3

below, cf. Table 1.

4.3. Comparison and Discussion of EI Criteria. To further explore the role of the acquisition

function Ek, in this section we compare several heuristic EI definitions. A 100 trials are run for
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Figure 3. Left: Averaged empirical loss EL(Ĉ(k)) as a function of design size k (in

log-log scale). We compare our adaptive Gap-SUR (3.2) and Gap-UCB methods

(3.1) against a uniform sampler and a non-adaptive Gap-UCB based on the true

gap ∆(·). Right: boxplot of L(Ĉ(K), C) at K = 400 across six different methods.

each method to compute the resulting mean and standard deviation of the loss function L and the

empirical loss EL. To isolate the effect of the EI criterion, we continue to work in the setting with

a fixed GP covariance structure Kℓ for the µℓ’s (see hyperparameter values in Sec. 4.1).

Several further alternatives for evaluating expected improvement can be designed based on clas-

sification frameworks. For classification, the main posterior statistic is the probabilities pℓ(x) of

µℓ(x) being the smallest response. One can then use the vector ~p(x) to measure the complexity of

the resulting local classification at x. Note that such measures intrinsically aggregate across ℓ and

hence only depend on x. This suggests either using a two-step sampling procedure as in Section

3.3.1 or building a UCB-like criterion as in (3.1). We employ the latter method; to wit, a criterion

Γ(x) is used to discriminate among x-locations (larger scores are preferred) and is blended with

UCB according to the cooling schedule (γk), Ek(x, ℓ) = −Γ(k)(x) + γkδℓ(x).

A standard way to measure classification complexity is the posterior entropy, namely

ΓENT (x) := −
L∑

ℓ=1

pℓ(x) log pℓ(x).(4.3)

High entropy indicates more spread in ~p(x) and hence more uncertainty about which is the smallest

component of ~µ(x). A well-known drawback to (4.3) for large L (bigger than 3) arises from undesired

effects on ΓENT from the components with small pℓ(x). In other words, the responses that are very

unlikely to be the minimum still strongly affect the overall entropy, leading to non-intuitive shape

of the EI scores. To counteract this effect, [28] proposed the Best-versus-Second-Best (BvSB)

approach, which uses

ΓBvSB(x) = − [pBest(x)− pSB(x)] ,(4.4)

where pBest(x) := P

(
Ĉ(x) = C(x)|Fk

)
is the posterior probability the lowest posterior mean is

indeed the smallest response, and pSB is the probability that the second-lowest posterior mean is

the smallest response. Thus, only the lowest two posterior means are compared, and ΓBvSB is quite
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similar to the gap measure ∆̂(x) (while also taking into account the relative posterior variances).

Small differences between pBest and pSB indicate large uncertainty in identifying the minimum

response. The BvSB approach can break down however if δℓ(x)’s are highly unequal, whereby

the ordering between the posterior means and posterior probabilities is not the same. Another

alternative to (4.3) is

ΓBest(x) = −pBest(x).(4.5)

The ΓBest measure strongly prefers locations where pBest(x) ≃ 0.5, i.e. those close to classification

boundaries of Ĉ(x) and in our experience does not explore enough. ΓBest and ΓBvSB give the same

preferences over X in the case L = 2, whereby ΓBvSB(x) = 1− 2pBest(x).

Yet another alternative is a so-called pure M-Gap heuristic that uses (3.2) via

xk+1 = arg max
x∈T (k)

M(x), ℓk+1 = argmax
ℓ

δ2ℓ (x
k+1).

This hierarchical sampling strategy can be viewed as generalizing the Efficient Global Optimization

(EGO) criterion of [27] to the ranking problem, compare for example to the classification variant

of EGO in [22].

Table 1. True loss vs. empirical loss with Z(200) for the 1-D example. For UCB

heuristics the cooling schedule is of the form γk = c
√
log k with c as listed below.

The error probability ErrProb measures the mean of 1− p
(200)
Best (x) over the test set.

D1 = D1(200) is the number of samples out of 200 total from Y1.

Method Emp Loss (SE) True Loss (SE) ErrProb (SE) D1

Uniform Sampling 2.89E-3 (1.24E-4) 2.64E-3 (2.67E-4) 6.87% (0.25%) 100

True Gap-UCB c = 4 1.77E-3 (8.35E-5) 1.43E-3 (1.91E-4) 5.61% (0.23%) 174

Gap-SUR 9.56E-4 (4.98E-5) 1.19E-3 (1.84E-4) 3.82% (0.17%) 146

Pure M-Gap 1.20E-3 (5.39E-5) 1.81E-3 (2.33E-4) 4.28% (0.15%) 172

Concurrent M-Gap 1.36E-3 (8.33E-5) 1.52E-3 (1.97E-4) 4.78% (0.24%) 100

Gap-UCB, c = 4 1.54E-3 (7.12E-5) 2.00E-3 (2.85E-4) 5.15% (0.20%) 176

Gap-UCB, c = 1 1.27E-3 (5.61E-5) 1.50E-3 (1.98E-4) 4.39% (0.16%) 167

ΓENT -UCB c = 100 1.22E-3 (5.48E-5) 1.31E-3 (1.87E-4) 4.31% (0.16%) 146

ΓBest-UCB c = 100 1.28E-3 (5.03E-5) 1.49E-3 (2.05E-4) 4.56% (0.16%) 145

Gap-SUR w/training K1 1.20E-3 (5.87E-5) 1.69E-3 (3.24E-4) 4.34% (0.37%) 146

Table 1 compares the performance of several EI acquisition functions. Beyond the three methods

already mentioned in the previous section, we also examine (i) pure M-gap, (ii) concurrent sampling

with M-Gap, (iii) Gap-UCB (for two different γk-schedules), (iv) Γ
ENT -UCB entropy criterion based

on (4.3) , (v) ΓBest-UCB criterion based on (4.5). The first two alternatives compare the benefit

of taking into account uncertainty reduction and the benefit of discriminating in ℓ ∈ L. The latter

alternatives compare to UCB-type methods, including those based on the posterior probabilities

~p(x). To construct the summary statistics in Table 1 we ran each algorithm 100 times, initializing

with a random LHS design of size K0 = 10 and augmenting it until K = 200 sites. Throughout, we

compute both the true loss in this synthetic example where µℓ(x) are known, as well as EL as in

(4.2). A further metric reported is the error probability 1− p
(K)
Best(x) which measures the posterior

probability that the identified minimum response is incorrect.
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The Gap-SUR algorithm appears to be the most efficient, in particular performing better than

Gap-UCB or the pure M-Gap methods. It dominates across all metrics, and moreover also has

the smallest fluctuations across algorithm runs, indicating more stable behavior. Nevertheless, the

UCB methods are nearly as good, in particular the ΓENT -UCB approach is competitive. However,

as discussed these methods are sensitive to the choice of the γk-schedule; the table shows that a

poorly chosen γk can materially worsen performance (see rows in Table 1 comparing γ = 4
√
log k

vis-a-vis γ =
√
log k for Gap-UCB). At the same time, a limitation of Gap-SUR is that it requires

knowing the noise variances σ2
ℓ (·) when optimizing the EI acquisition function.

Table 1 also highlights the gain from discriminating among the response surfaces, as the Con-

current M-Gap algorithm is notably worse (with losses of about 30% higher) relative to Gap-SUR.

The only difference between these methods is that Gap-SUR sampled Y1 146 times out of 200, while

the concurrent method was constrained to sample each response exactly 100 times. All approaches

that optimize over the full X × L focus on fitting the noisier Y1, sampling it 70–85% of the rounds

(see the D1 column). The Table also confirms that our designs are much more efficient than the

naive uniform sampler, or non-adaptive methods, even those that have access to the true C(·) (the
True Gap method).

As a final comparison, the last row of Table 1 reports the performance of the Gap-SUR method

in the practical context where one must also train the GP kernels Kℓ’s. Since training introduces

additional noise into the fitted response surfaces, algorithm performance is necessarily degraded.

We observe that this effect, especially in terms of variation across algorithm runs, is non-negligible

which could indicate that Simple Kriging is not ideal for this particular example.

Table 1 also shows that the empirical EL(Ĉ(K)) and actual loss L(Ĉ(K), C) metrics are consistent,

so that the former can be used as an internal online assessment tool to monitor accuracy of the es-

timated classifier. Model mis-specification is the apparent cause of the observed mismatch between

the two quantities, as incorrectly inferred covariance structure of µ1(x) leads to over-optimism:

EL < L. Note that this issue would arise across all our algorithms and pertains more to the kriging

framework than to EI acquisition functions.

4.4. 2D Example. Our next example treats a more complex setting with L = 3 surfaces and a

2-dimensional input space X = [−2, 2]2. We take

Yℓ(x1, x2) = µℓ(x1, x2) + ǫℓ(x1, x2) where





µ1(x1, x2) = 2− x21 − 0.5x22;

µ2(x1, x2) = 2(x1 − 1)2 + 2x22 − 2;

µ3(x1, x2) = 2 sin(2x1) + 2,

(4.6)

and ǫℓ(x1, x2) ∼ N(0, σ2
ℓ (x1, x2)) have equal noise variance σ

2
ℓ (x1, x2) = 0.1(x2+2) for all ℓ = 1, 2, 3.

Thus, the noise level is heteroscedastic in X , being larger for large x2-values. The resulting classifier

C(x1, x2) consists of three connected pieces and is shown in Figure 4. This example is inspired by

a GP classification problem in [21].

To illustrate a slightly different design strategy, we generated Z’s using a kriging response surface

model and Gap-UCB expected improvement criterion based on estimated gaps ∆̂ℓ(x), cf. (3.1) and

γk = 2
√
log k. The model was initialized at K0 = 15 by generating 5 LHS samples from each

Yℓ(x1, x2); at each step the sampling locations were selected from a LHS candidate set T of size

D = 100 using ǫ-greedy method with ǫ = 0.1, cf. Remark 3.2.

Figure 4 summarizes the design Z(K) and resulting classifier Ĉ(K) after K = 150 samples in total.

Among 150 samples, D1(K) = 56 were chosen from Y1, D2(K) = 48 were chosen from Y2 and the
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Figure 4. 2-D Ranking on X = [−2, 2] × [−2, 2]. Left panel: estimated classifier

Ĉ(K)(x1, x2) for K = 150 (dashed red lines) and the true C(x1, x2) (solid black lines).

Right panel: scatterplot of the sampled locations (x1, x2)
1:K color-coded by the

respective sampling surface: Y1(x1, x2) (blue squares), Y2(x1, x2) (green circles) and

Y3(x1, x2) (red triangles). Shading indicates the posterior entropy Γ(ENT )(x1, x2)

from (4.3) based on the above design.

rest were from Y3, i.e. each surface took roughly one third of the budget. This is consistent with the

identical σℓ’s and the roughly equal volume of each Cℓ. We observe a close match between Ĉ(K) and

the true C. The fact that most of the samples were around the boundaries, and the rest scattered on

[−2, 2]2, indicates that the algorithm successfully balanced exploration and exploitation. Moreover,

as expected the higher noise variance for larger x2-values causes most of the sampling locations to

concentrate towards the upper half-plane where the ranking complexity is higher.

Figure 5 further shows that our algorithm is highly discriminating in sampling jointly on X ×L.
At any given classification boundary, the algorithm effectively only sampled two out of the three

responses, endogenously recovering the concept of Best-versus-Second Best testing. Thus, samples

from Yℓ are mostly located around the boundaries of surface µℓ and other surfaces. These contours,

where ∆ℓ = µℓ −mini µi = 0, are precisely the regions targeted by the Gap EI metrics.

5. Case Study in Epidemics Management

Our last example is based on control problems in the context of infectious epidemics [30, 32, 33,

37]. Consider the stochastic SIR model which is a compartmental state-space model that partitions

a population pool into the three classes of Susceptible counts St, Infecteds It and Recovereds Rt.

We assume a fixed population size M = St + It +Rt so that the state space is the two-dimensional

simplex X = {(s, i) ∈ Z
2
+ : s + i ≤ M}. In a typical setting, M ∈ [103, 105], so that X is discrete

but too large to be explicitly enumerated (on the order of |X | ≃ 106). The dynamics of (St, It) are

time-stationary and will be specified below in (5.3).
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Figure 5. Marginal designs (x1, x2)
1:Dℓ(K) at K = 150 for each of the 3 response

surfaces constructed using the Gap-UCB heuristic. Shading indicates the estimated

empirical gaps ∆̂ℓ(x1, x2), ℓ = 1, 2, 3. We observe that most samples gravitate

towards regions where ∆̂ℓ ≃ 0. Solid curves indicate boundaries of the true classifier

C(x1, x2).

The goal of the controller is to mitigate epidemic impact through timely intervention, such as

social distancing measures that lower the infectivity rate by reducing individuals’ contact rates;

mathematically this corresponds to modifying the dynamics of (St, It). To conduct cost-benefit

optimization, we introduce on the one hand epidemic costs, here taken to be proportional to the

number of cumulative infecteds, and on the other hand intervention costs, that are proportional to

the current number of remaining susceptibles CISt. Intervention protocol can then be (myopically)

optimized by comparing the expected cost of no-action µ0(s, i) (conditional on the present state

(s, i)) against the expected cost of immediate action, µA(s, i). More precisely, let

µ0(s, i) := E
0[S0 − ST |I0 = i, S0 = s] and(5.1)

µA(s, i) := E
A[S0 − ST |I0 = i, S0 = s] + CIs.(5.2)

Above, T = inf{t : It = 0} is the random end date of the outbreak; due to the fixed population

and posited immunity from disease after being infected, the epidemic is guaranteed to have a finite

lifetime. The difference S0 − ST thus precisely measures the total number of original susceptibles

who got infected at some point during the outbreak.

The overall goal is then to rank µ0 and µA, with the intervention region corresponding to {(s, i) :
µA(s, i) > µ0(s, i)}. Because no analytic formulas are available for µℓ’s, the only feasible procedure

(which is also preferred due to the ease with which it can handle numerous extensions of SIR

models) is a Monte Carlo sampler that given an initial condition S0 = s, I0 = i and the regime

ℓ ∈ {0, A} generates a trajectory (St, It)(ω) and uses it to evaluate the pathwise ST (ω), which maps

this problem into the framework of (1.1).

From the policy perspective, the trade-off in (5.1)-(5.2) revolves around doing nothing and letting

the outbreak run its course, which carries a unit cost for each individual that is eventually infected,

or implementing preventive social distancing measures which costs CI for each susceptible, but
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lowers the expected number of future infecteds. Typical countermeasures might be public ad

campaigns, school closures, or distribution of prophylactic agents. In general, intervention is needed

as soon as there is a threat of a big enough outbreak. However, if It is low, the cost of intervention

is too high relative to its benefit because the epidemic might end on its own. Similarly, if St is

low, the susceptible pool is naturally exhausted, again making intervention irrelevant (due to being

“too late”). Quantifying these scenarios requires a precise probabilistic model.

The dynamics of (St, It) under the respective laws P
0 and P

A follow continuous-time Markov

chains with the following two transition channels:
{

Infection :S + I → 2I with rate βjStIt/M, j = 0, A;

Recovery :I → R with rate γIt.

}
(5.3)

Above, βA < β0 is interpreted as lowered contact rate among Infecteds and Susceptibles in the

intervention regime, which lowers the attack rate of the disease agent and hence reduces outbreak

impact. The Markov chain (St, It) described in (5.3) is readily simulatable using the Gillespie time-

stepping algorithm [17], utilizing the fact that the sojourn times between state transitions have

(state-dependent) Exponential distributions, and are independent of the next transition type. These

simulations are however rather time-consuming, requiring O(M) Uniform draws. Consequently,

efficient ranking of expected costs is important in applications.

Remark 5.1. Since (5.3) implies that each individual infected period has an independent Exp(γ)

distribution it follows that

E[S0 − ST ] = γE
[∫ T

0
It dt

]
,

so that (5.1) can also be interpreted as proportional to total expected infected-days.

We note that in this example the input space X is discrete, which however requires minimal

changes to our implementation of Algorithm 1. The biggest adjustment is the fact that the noise

variances σ2
ℓ (x) in (1.2) are unknown. Knowledge of σ2

ℓ (x)’s is crucial for training the GP covariance

kernel Kℓ, see e.g. (2.9). Indeed, while it is possible to simultaneously train Kℓ and a constant

observation noise σ (the latter is known as the “nugget” in GP literature), with state-dependent

noise K is not identifiable. We resolve this issue through a batching procedure to estimate σ2
ℓ (x)

on-the-go. Namely, we re-use the same site x ≡ (s, i) r-times, to obtain independent samples

y
(1)
ℓ (x), . . . , y

(r)
ℓ (x) from the corresponding Yℓ(x). This allows to estimate the conditional variance

σ̃2
ℓ (x) :=

1

r − 1

r∑

i=1

(y(i)(x)− ȳℓ(x))
2, where ȳℓ(x) =

1

r

r∑

i=1

y
(i)
ℓ (x)

is the sample mean. Moreover, as shown in [38, Sec 4.4.2] we can treat the r samples at x as the single

design entry (x, ȳℓ(x)) with noise variance σ̃2
ℓ (x)/r. The resulting reduction in post-averaged design

size by a factor of r offers substantial computational speed-up in fitting and updating the kriging

model. Formally, the EI step in Algorithm 1 is replaced with using (xk+1, ℓk+1) = (xk+2, ℓk+2) =

. . . = (xk+r, ℓk+r) and re-computing the EI score once every r ground-level iterations.

For our study we set M = 2000, β0 = 0.75, βA = 0.5, γ = 0.5. We further assume that the cost

of intervention is CI = 0.25 per susceptible. Figure 6 shows the resulting decision boundary ∂C.
In the light region, the relative cost of intervention is lower, and hence it is preferred to undertake

action. For example, starting at I0 = 10, S0 = 1800, without any action the outbreak would affect

more than 40% of the susceptible population (expected cost of about 800), while under social



Sequential Design for Ranking Response Surfaces 23

1200 1300 1400 1500 1600 1700 1800

0
5
0

1
0
0

1
5
0

2
0
0

Suspectibles

In
fe

c
te

d
s

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

(s,i)=0

(s,i)=A

Figure 6. Fitted response boundary ∂C for the epidemic response example using

the Gap-SUR expected improvement metric. The scatterplot indicates the design

Z(K) for K = 200; triangles indicate the initial design Z(K0), and circles the adap-

tively placed (s, i)K0:K (green: Y0; yellow: YA).

distancing, the impact would be about 60 infecteds (leading to much lower total expected cost of

60+CIS0 ≃ 510). In the light region, wait-and-see approach has lower expected costs. For example

at I0 = 50, S0 = 1400, the expected number of new infecteds without any action is 385 while the

cost of countermeasures is bigger at 0.25 × 1400 + 102 = 452. Overall, Figure 6 shows that the

optimal decision is very sensitive to the current number of susceptibles S0. This feature is due to the

fact that outbreaks are created when the infection rate dominates the recovery (reproductive ratio

R0 := (β0/γ)(S0/M) above 1). Hence, for a pool with more than 85% susceptibles (S0 > 1700),

the initial growth rate satisfies β0S0/M > γ and is likely to trigger an outbreak. However, as S is

lowered, the region where β0S0/M ≃ γ is approached, which makes social distancing unnecessary,

as outbreak likelihood and severity diminishes. In particular, Figure 6 shows than no action is

undertaken for S0 < 1350. In the intermediate region, there is a nontrivial classifier boundary for

determining C(s, i).
Figure 6 was generated by building an adaptive design using the Gap-SUR acquisition function

and a total of K = 200 design sites, with r = 100 batched samples at each site. The input space

was restricted to X = {s ∈ {1200, . . . , 1800}, i ∈ {0, 200}}. The initial design Z(K0) included

50 = 25× 2 sites on the same rectangular 5× 5 lattice for each of Y0, YA. In this example, the noise

levels σ2
ℓ (s, i) are highly state-dependent, see Figure 7. The µ0 surface has much higher noise, with

largest σ2
0(s, i) for (s, i) ≃ (1800, 5)), whereas µA has largest noise in the top right corner. As a

result, Z(K) contains mostly samples from Y0 and is denser towards the bottom of the Figure.

6. Conclusion

In this article we have constructed several efficient sequential design strategies for the problem of

determining the minimum among L ≥ 2 response surfaces. Our Gap-SUR heuristic connects (1.1)
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Figure 7. Estimated noise standard deviations σ̃ℓ(s, i) for the epidemic response

example in the no-countermeasures (left panel, ℓ = 0) and action (right panel, ℓ = A)

regimes. Note the different color scales of the two panels, with σ0(·)≫ σA(·) for all
(s, i).

to contour-finding and Bayesian optimization, providing a new application of the stepwise uncer-

tainty reduction framework [9]. Our Gap-UCB heuristic mimics multi-armed bandits by treating all

possible sampling pairs in X ×L as arms, and trying to balance arm exploration and exploitation.

Our approach is based on the kriging framework, but this is primarily for convenience and is not

crucial. To this end, instead of a Bayesian formulation, one could use a maximum-likelihood method

to fit µ̂ℓ(·), replacing the posterior Mℓ(x) with the point estimator and its standard error. Hence,

many other regression frameworks could be selected. However, computational efficiency and the

sequential framework place several efficiency restrictions on possible ways to modeling µℓ(·). On the

one hand, we need strong consistency, i.e. the convergence of the respective classifier Ĉ(K) → C as

K →∞. In particular, the regression method must be nonparametric and localized. On the other

hand, we wish for a sequential procedure that allows for efficient updating rules in moving from Ĉ(k)
to Ĉ(k+1). Lastly, in practical settings further challenges such as heteroscedasticity, non-Gaussian

samplers Yℓ, and heterogenous structure of the response surface are important.

One suitable alternative to GP’s is local regression or Loess [42], which is a nonparametric re-

gression framework that fits pointwise linear regression models for µℓ(x). Loess is efficient and

well-suited for heteroscedastic contexts with unknown noise distributions as in Section 5. It also

automatically generates the posterior mean and variance of the fit (allowing to use the derived

formulas based on µ̂ℓ(x) and δℓ(x)). However, Loess is not updatable, creating computational

bottlenecks if many design augmentation iterations are to be used. At the same time fitting is

extremely fast, so depending on the implementation it might still be competitive with more sophis-

ticated methods. In this spirit, piecewise linear regression (which first partitions X into several cells

and then carries out least-squares regression in each cell) is updatable via the Sherman-Morrison-

Woodbury formulas and could be employed if there is a clear partitioning strategy available.
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We further note that GP kriging is just a convenient interim surrogate for building the exper-

imental design. Consequently, once a good design Z is generated, one could switch to a different

response surface model to build a final estimate of the µℓ’s and hence Ĉ. For example, the treed

GP approach [22] allows for a higher-fidelity fit for the response surfaces, especially in cases where

the underlying smoothness (specified by the covariance kernel) strongly varies across X . Because

treed GP models are expensive to fit, one could compromise by using vanilla GP during DoE and

treed GP for the final estimate of Ĉ.
Another fruitful extension would be to investigate ranking algorithms in the fixed confidence

setting. As presented, the sequential ranking algorithm is in the fixed budget setting, augmenting

the design until a pre-specified size K. Practically, it is often desirable to prescribe adaptive, data-

driven termination by targeting a pre-set confidence level. A good termination criterion should take

both accuracy and efficiency into account, ensuring the accuracy of µ̂ℓ(x) and also anticipating low

information gain from further sampling steps. One proposed termination criterion is to keep track

of the evolution of the empirical loss EL(Ĉ(k)), and terminate once EL(Ĉ(k))− EL(Ĉ(k+1)) is small

enough. This is equivalent to minimizing Lk := EL(Ĉ(k)) + ǫk, where ǫ > 0 is a parameter for cost

of simulations; the more we care about efficiency, the larger the ǫ is. When the design size k is

small, the first term will dominate, so Lk is expected to first decrease in k. As k → ∞, the rate

of improvement in the loss function shrinks so that eventually Lk will be increasing. However, we

find that EL(Ĉ(k)) is quite noisy, especially if the kriging models are re-trained across stages. In

that sense, the termination criterion needs to be robust enough to generate sufficiently strong (ad

hoc) guarantees that a certain tolerance threshold has truly been achieved.
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