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Temporal communities are the result of a consistent partitioning of nodes across multiple snapshots of an
evolving network, and they provide insights into how dense clusters in a network emerge, combine, split and
decay over time. To reliably detect temporal communities we need to not only find a good community
partition in a given snapshot but also ensure that it bears some similarity to the partition(s) found in the
previous snapshot(s), a particularly difficult task given the extreme sensitivity of community structure
yielded by current methods to changes in the network structure. Here, motivated by the inertia of inter-node
relationships, we present a new measure of partition distance called estrangement, and show that
constraining estrangement enables one to find meaningful temporal communities at various degrees of
temporal smoothness in diverse real-world datasets. Estrangement confinement thus provides a principled
approach to uncovering temporal communities in evolving networks.

ommunity detection has been shown to reveal latent yet meaningful structure in networks such as groups

in online and contact-based social networks, functional modules in protein-protein interaction networks,

groups of customers with similar interests at online retailers, disciplinary groups of scientists in collab-
oration networks, etc.'. Temporal community detection aims to find how such communities emerge, grow,
combine and decay in networks that evolve with time. Temporal communities can provide robust network-based
insights into complex phenomena such as the evolution of inter-country trade networks, the emergence of
celebrities in social media, the formation of distinct political ideologies, the spread of epidemics, trends in venture
investment, etc.

Static community detection' partitions a network into groups of nodes such that the intra-group edge density is
higher than the inter-group edge density. A partition can be specified by labels assigned to the nodes in the
network, and a group of nodes with the same label constitutes a community. Methods used to discover com-
munities in static networks find a partition of nodes which optimizes some quality (objective) function that
quantifies how community-like the partition is. For time-varying networks, given time snapshots, temporal
community detection assigns labels to nodes in each snapshot, and the set of {node, time} pairs that get the same
label constitutes a temporal community. We define a temporal community structure as a partitioning of the {node,
time} pairs over all snapshots that optimizes an appropriate quality function. We focus on the sequential version of
the temporal community detection problem, where one is allowed to do computations only on the current
snapshot while using limited information from the past. Sequential methods are useful in situations where the
number of snapshots is large, or fast computation of temporal communities is important as new snapshots
become available.

A popular approach to detecting temporal communities is to find static communities independently in each
snapshot using some quality function and then “map” communities between snapshots to preserve labels when
possible. Examples of this approach include the map-equation method® and the clique percolation method®.
However, these methods do not explicitly use the partitions found in past snapshots to inform the search for the
optimal partition on the current snapshot. We argue (and show empirically in Results) that mapping indepen-
dently detected communities is likely to miss crucial temporal communities as most quality functions used for
static community detection are highly degenerate and extremely sensitive to changes in the network. This has
been demonstrated specifically for modularity*, one of the earliest proposed and still commonly used quality
functions, though several others have subsequently been introduced. Good et al.” show that for many real-world
networks, the modularity landscape is highly degenerate and disordered with numerous partitions yielding similar
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Figure 1| An example illustrating the detection of temporal
communities via estrangement confinement. The network on the left,
G,_; consists of 20 nodes and 52 links, and a maximal modularity partition
of this network consists of three communities represented by the three
colors (Q = 0.52). In the next snapshot, the network has evolved to G,
which differs from G,_; only in the absence of a single link, indicated by the
dotted line. The top right and bottom right networks both represent the
same network G, but indicate distinct choices of community partitions
available. The partition shown on the top right, P} consists of 4
communities, and is the partition that gives the highest modularity

Q! =0.5296. The partition P} for G, shown on the bottom right which
preserves the node partition chosen for G, has a slightly lower modularity
of Q} =0.5248. The partition P} with higher modularity, however, makes 7
links estranged. The estranged links (shown in gray) are those intra-
community links at #— 1 that change to inter-community links at ¢. Notice
that links in the orange community of P} despite having changed their
community affiliation from #— 1 to t are not estranged since they are still
intra-community links. In contrast to P}, the partition P} yields no
estranged links. Estrangement, E, defined as the fraction of estranged links
at tis therefore 0 for P but 7/51 = 0.13 for P|. Maximizing modularity
while constraining estrangement to a low value (e.g. 0.05) therefore yields
P}, as the partition for G, yielding a smoother temporal progression of the
community structure from ¢— 1 to f.

values of modularity and constituting distinct local maxima.
Importantly, they also show that other community quality functions
are also likely to have degenerate quality functions. Moreover, the
quality function landscape is highly sensitive to changes in the net-
work, as shown by Karrer et al.® for modularity on several synthetic
and real networks. Sensitivity implies it is very likely that a rather
distinct community structure is detected even when the network
changes slightly, which, when coupled with the degeneracy of the
quality function landscape, makes consistent mapping of indepen-
dently detected communities across snapshots very difficult.

To counter these challenges, it is important to use the past com-
munity structure when searching for good partitions in the current
snapshot to maintain some temporal contiguity between subsequent
partitions. Obviously, independent maximization of modularity (or
some other quality function) on each snapshot has no incentive to
maintain such a temporal contiguity between partitions. Also, the
naive approach of initializing the search for a good partition of the
current snapshot at the preceding snapshot’s optimal partition has
the serious drawback in that it fails to detect the birth of new com-
munities (unless a significant number of new nodes are added) since
most partition search methods decrease or keep constant the number
of communities found.

We propose a principled approach to find meaningful temporal
communities that limits the search for near-optimal partitions to
those partitions in the current snapshot that bear some similarity
to the partitions found in previous snapshots. One of the key chal-
lenges is to find a measure of this partition-similarity (or distance)
that is appropriate for comparing partitions of different snapshots
of an evolving network. None of the existing measures of partition
distance, such as Variation of Information (VI)°, are suitable for
comparing partitions of nodes in distinct snapshots because they
do not consider edges, and therefore cannot account for changes in
network structure. In particular, we require a measure that is tolerant
of differences in partitions when the network has changed signifi-
cantly but penalizes dissimilar partitioning when there are only
minor changes in the network.

We present a novel measure of partition distance, called estrange-
ment, which quantifies the extent to which neighbors continue to share
community affiliation. This is motivated by the empirical ob-
servation that it is some form of social inertia inherent to group affili-
ation choices that prevents the community structure from changing
abruptly”®. The estrangement between two time-ordered snapshots is
defined as the fraction of edges that stop sharing their community
affiliation with time. In other words, estrangement is the fraction of
intra-community edges that become inter-community edges as the
network evolves to the subsequent snapshot, as illustrated in Fig. 1.

Our method of detecting temporal communities consists of max-
imizing modularity in a snapshot subject to a constraint on the
estrangement from the discovered partition in the previous snapshot.
The amount of estrangement allowed controls the smoothness of the
evolution of temporal communities, and varying it reveals various
levels of resolution of temporal evolution of the network. The estran-
gement constrained modularity maximization problem described
above is at least as hard as modularity maximization which is NP-
complete’. Moreover, known heuristic methods for unconstrained
modularity maximization are not directly applicable to the con-
strained version. However, we show that the dual problem con-
structed using Lagrangian relaxation can be tackled by adapting
techniques used for unconstrained modularity maximization, specif-
ically a version of the Label Propagation Algorithm (LPA)'*'".

Some recent proposals for detecting temporal communities, simi-
larly to ours, use the past community structure. Mucha et al.’* extend
the notion of random walk stability, introduced by Lambiotte et al.”?,
to mutli-slice networks and show that optimization of this stability
yields coherent temporal communities (Incidentally, estrangement
can be interpreted as temporal stability as we show in SI). However,
their method is not sequential as it requires all slices (snapshots) to be
aggregated into a stacked graph by introducing arbitrary weighted
links between node copies in different slices. No principled method is
presented for picking the weights of the inter-slice links. Our method
is closest to evolutionary clustering introduced by Chakrabarti et al.**
where the quality of a community partition is measured by a com-
bination of its snapshot cost and its temporal cost. However, unlike
our method, the work of Chakrabarti et al'*, does not prescribe
specific relative contributions of the two costs, or demonstrate the
effect of varying these contributions. Furthermore, the partition dis-
tance measure and the optimization techniques we use are different.
GraphScope®® finds temporal communities by breaking the sequence
of graph snapshots into graph segments and finding good communit-
ies within each graph segment such that the total cost of encoding the
sequence of graphs is minimized. However, it can only be used on
unweighted networks. Subsequent techniques such as FacetNet'® and
MetaFac"” apply the evolutionary clustering approach to partitions
derived from a generative mixture model approximation of the net-
work adjacency matrix. A distinctive drawback of generative models
in the context of community detection is the necessity of providing a
priori, the number of communities in the network, or using com-
munity quality function based methods to find the most suitable
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Figure 2 | Mapping community labels from time t - 1 to time t. The left
panel shows the situation after estrangement confinement has found a
partition of the graph at time #, consisting of three communities. Two of
these have arisen due to an uneven split of the red community at t— 1, and
one due to the merging of the blue and green communities at time ¢— 1. The
mapping procedure causes fewest nodes to change labels from t—1 to ¢. The
center panel shows the bipartite construction that the mapping procedure
uses. Here, nodes on the left (set U) represent communities at ¢t — 1 and
nodes on the right (set V) represent those at time . Each node in U has an
outgoing link to the node in V with whom its Jaccard overlap is maximal.
Similarly each node in V'has an outgoing link to the node in Uwith whom
its Jaccard overlap is maximal. For simplicity, we say that each node points
to its maximal overlap partner in the other set. Once these links are drawn,
the mapping procedure allows inheritance of labels only between pairs of
nodes which have bidirectional links between them, i.e., a node in U
(community at t— 1) passes on its label to a node in V (community at t)
only if they are maximal overlap partners of each other. Conseqeuntly, a
node in Uwhich is not bidirectionally connected to any node in V, does not
pass on its label (e.g., the green node in U). Similarly, a node in V' which is
not bidirectionally connected to any node in U, does not inherit a label, and
therefore obtains a new label (e.g., the topmost node in V). The progression
of appropriately labeled communities from t— 1 to t after the mapping step
is shown in the panel on the right.

number of communities a posteriori. Also, these modeling tech-
niques assume that the networks are generated by a given stochastic
data model. However, as argued by Breiman'®, the utility of such
techniques is limited by the accuracy of the models which are gen-
erally difficult to design for complex networks. In contrast, our
approach is based on empirically observed social inertia in commun-
ity affiliation and does not try to model the possibly complex evolu-
tion of the network itself. Thus, in summary, our method is
sequential, does not need any generative model for network structure
or evolution, and is applicable to both weighted and unweighted
networks.

Results

Our key results include the definition of the novel partition distance
measure of estrangement, a formulation of the problem of finding
temporal communities as a constrained optimization problem, an
efficient agglomerative method to solve the problem that relies crit-
ically on the locally decomposable nature of estrangement, and an
analysis of the temporal communities found by our method in vari-
ous synthetic and real complex networks.

Problem formulation. Given network snapshots G,_;, G, and the
partition P, that represents the community structure at time t — 1,
find a partition P, of G, that solves the following constrained
optimization problem:

maximize
P

Q(P)

Here Q is a quality function for the community structure in a snap-
shot, P denotes the space of all partitions, and E is a measure of
distance or dissimilarity between the community structure at times
t and t — 1. The formulation above is based on the intuition that
temporal communities can be detected by optimizing for quality in
the current snapshot while ensuring that the distance from the past
community structure is limited to a certain amount, as specified by
the parameter 5. Smaller values of & imply greater emphasis on
temporal contiguity whereas larger values of 6 place greater focus
on finding better instantaneous community structure. Hence, we
refer to & as the temporal divergence, or simply divergence. We
emphasize that our formulation is independent of the specific com-
munity structure quality function used. In this paper, we use mod-
ularity*, a widely studied and tested quality function, which is defined
as:

1 k.k,
Q= mz (Auv_ m) 5(lualv)s (2)

u,v

where A is the adjacency matrix for the network, k, is the degree of
node x, I, is the label assigned to x in this partition, and M is the total
number of edges in the network. 8(i, j) is 1 if and only if i = j, and 0
otherwise. Here a partition P is specified by the labels {I;,h, ... I}
assigned to the nodes. Modularity has also been generalized to
weighted networks'”.

For measuring partition distance, we use our novel measure of
estrangement which we now define precisely. Given network snap-
shots G, 1, G,and partitions P,_; and P;, an edge (u, v) in G, is said to
be estranged if I, # 1, in P,, given that u and v were neighbors in G,
and [, = I, in P,_;. Estrangement is now defined as the fraction of
estranged edges in G,. Note that equality of labels is required only
within partitions, not across partitions. Estrangement can be written
as:

zu,vth Z“‘/Z(]\zi 6 (l;’li)) (3)

where Z,, =06 (I," " I.71) /Al TA! , and A,_, and A, are the adja-
cency matrices of G,—; and A, respectively. The square root term
ensures that the definition applies to weighted networks as well,
where M is taken to be the sum of the weights of all the edges in
the network. Specifically, the term /Al 'A!  implies that if the
weight of an edge whose endpoints continue to share labels changes
from time ¢ — 1 to t, we take the geometric mean of the weights when
computing the partition distance. Estrangement can take values
between 0 and 1, with 0 estrangement implying maximum possible
similarity between the community structure in the two snapshots of
the network and a value of 1 implying maximum possible dissim-
ilarity.

E=

Duality based optimization approach. Greedy local optimization
methods used for modularity maximization cannot be directly used
to solve the constrained optimization problem in Eq. 1, since the
space of solutions is now confined to the set of partitions which
respect the constraint. We use the Lagrangian duality approach for
constrained optimization. Henceforth, for notational simplicity,
unless otherwise stated, all quantities of interest are with respect to
the current snapshot G,. Following the dual formulation®’, we write
the Lagrangian L and the Lagrange dual function g corresponding to
the primal problem (Eq. 1) as:

L(P,A)=Q—A(E—9)

1 )= sup L (4)
subject to  E(P) <. M g(%)= sup L(P.2)
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Figure 3| (a) An example of ground truth temporal communities that are used to generate evolving synthetic networks according to the markovian
evolution shown in (b) and explained below. We use an impressionistic visualization to show the temporal communities, that we refer to as the evolution
chart, in which nodes are shown along the Y axis and the snapshot number along the X axis. Each “pixel” in the evolution chart corresponds to a particular
node at a given time, and the color represents the community of that node at that time #. The left panel shows a network consisting of n = 50 nodes with
two temporal communities consisting of 20 nodes each. The first community arises from the markovian evolution of nodes 0 — 19 over the first 10
snapshots, while the second arises from the markovian evolution of nodes 30 — 49 over the last 10 snapshots. (b) Schematic of Markovian evolution for
intra-community edges, where an edge that exists in the current snapshot disappears with probability p in the subsequent snapshot, while a non-existing
edge appears with probability g which is chosen such that the group density p, is preserved.

where A is the Lagrange multiplier. For every value of A, the function
g(A) yields an upper bound to the optimal value Q* of the primal
problem. We are interested in the value of A that yields the smallest
upper bound, which would in turn give us the best estimate of Q*
subject to the constraint on E. This dual problem corresponding to
the primal problem in Eq. 1 is:
minimize g(A)
subjectto A>0

(5)

If the minimum of g(A) occurs at A*, the optimal partition for a
given snapshot is one that yields the supremum of L(P,4*) over all
partitions.

Solving the dual problem to find the best partition requires com-
puting the Lagrange dual function g(1), which itself involves a max-
imization. We show that the Lagrange dual can be computed by
adapting known methods for unconstrained modularity maximiza-
tion. We introduce a hierarchical version of LPA'®, which we refer to
as HLPA, and which works by greedily merging communities that
provide the largest gain in the objective function, and then repeating
the procedure on an induced graph in which the communities from
the previous steps are the nodes. In general, variants of LPA can be

constructed by modifying the local objective function that the label
update is maximizing. Barber and Clark'® propose one such variant,
LPAm, for modularity maximization. We construct the label update
rule for HLPA in a similar vein for the optimization problem given by
Eq. 4. Recall that a partition P is specified by the labels {l;, L, ..., In}
assigned to the nodes. Then, in HLPA, each node x updates its label I,
following the rule:

kK K
l,=arg mlax(le— o T m5(lx,1) +/10x1), (6)

where Ny= > Aud(lnl), Oa=3, . Zud(l,,l) and K=
> kud(ly,l). Here O, is the extra term that arises due to the con-
straint on E. We show in Methods that the above update rule con-
verges to alocal optimum of L(P,4), and also that the optimization of
L is further improved by the additional hierarchical procedure pre-
sent in HLPA. We note that HLPA works well for optimizing L(P,A)
because estrangement, similarly to modularity, can be decomposed
into node-local terms which allows L to be optimized by each node
updating its label based on those in its neighborhood.

Once the Lagrange dual has been computed, we solve the dual
problem (Eq. 5) of finding the best Lagrange multiplier by using
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Figure 4 | Estrangement confined modularity maximization allows detection of temporal communities in the benchmark network presented in Fig. 3.
The markovian evolution parameters (described in text) for this network are set to p = 0.6 and q = p p,/(1 — p.) = 0.4, which preserve the edge density (p,
= 0.4) within a dense group (unless it ceases to exist). The density of connections in the random network background is p, = 0.05. The ability to detect the
temporal communities diminishes as the constraint on estrangement is relaxed (6 — 1) with the poorest results obtained for independent modularity

maximization (6 = 1).

Brent’s method** which is commonly used for non-differentiable
objective functions (see Methods).

The optimization procedure and the HLPA update rule presented
above apply to weighted networks as well by considering k, to be the
strength of node u instead of the degree, where strength is defined as
the sum of the weights of adjacent edges, and by considering M to be
sum of the weights of all the edges in network.

Finally, after the best community partition for G, has been found,
we need to find an appropriate mapping of communities at time ¢ to
those found at time ¢ — 1. We use a mutually maximal matching
procedure illustrated in Fig. 2. Specifically, we map those communit-
ies across two consecutive snapshots that have the maximal mutual
Jaccard overlap between their constituent node-sets (Jaccard similar-
ity of two sets is defined as the size of their intersection set divided by
the size of their union), and generate new identifiers only when
needed.

Temporal communities in synthetic and empirical networks. Next,
we apply the estrangement confinement method to synthetic and real
networks and show the temporal communities obtained by varying
the temporal divergence allowed, and their relation to ground-truth or
meta-data where available.

We start by describing our method to generate realistic synthetic
benchmarks for testing temporal communities. Given a target tem-
poral community structure, we generate a snapshot sequence consis-
ting of dense groups (corresponding to the communities) embedded
in a random background, with links in the dense groups undergoing
markovian evolution and thus giving rise to a temporal community
that persists over some period of time. An example target tempo-
ral community structure is shown in Fig. 3 which consists of two

temporal communities of 20 nodes each that exist for the first 10 and
the last 10 snapshots respectively in 25 snapshots of a 50 node net-
work. Each of the remaining nodes is a community by itself which
lasts for exactly one snapshot, or equivalently, does not belong to any
temporal community.

The initial snapshot in the synthetic networks consists of an
instance of an Erdds-Rényi random graph (ER(n, p,)), among the n
nodes where any edge exists independently with probability p,, and
intra-community edges exist with an additional probability of p.
(over the background probability of p,). Subsequent snapshots are
generated by first creating a new random instantiation of (ER(n, p,)),
and enforcing a markovian evolution for the edges within a tempo-
ral community while it exists in the target temporal community
structure. Specifically, an edge that exists in the current snapshot
disappears with probability p in the subsequent snapshot, while a
non-existing edge appears with probability g (Fig. 3). The markovian
evolution thus gives rise to a temporal community that persists over
some period of time depending on the values of p and g chosen, since

these parameters c?)ntrol the edge density within the community. For

c
(I—=pc)
is preserved in the subsequent evolution. Using this prescription, we
generate different sequences of network evolution for the ground
truth temporal communities shown in Fig. 3 by varying p. and p
and setting p, = 0.05.

In Fig. 4, we show the evolution chart of our results on the above
synthetic networks with p. = 0.4 and p = 0.6. This implies that the
average density of edges inside the dense groups is 0.4 and 60% of the
edges change in each snapshot. For low enough values of J, our
method is able to detect the temporal communities, even in this
rapidly evolving network. Independent modularity maximization

the choice g= the initial edge density within the community
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Figure 5 | Effect of varying the temporal divergence on the distance from the ground truth for benchmark evolving network described in Fig. 4. The
average loss in modularity (over all snapshots) due to the estrangement constraint decreases as the constraint is relaxed. Estrangement, on the other hand,
increases as the constraint is relaxed. The distance of the obtained temporal partition (labeled on the right y axis) from the benchmark ground truth as
quantified by VI islowest around ¢ = 0.05. The range of this distance varies roughly between 2.5 and 3.1 (labeled on the right y axis) as ¢ is varied, which is
significant since VI is a logarithmic measure (see Methods). Thus, by varying the constraint on estrangement we get a different set of temporal

communities which could all be meaningful. The average loss in modularity relative to the average gain in estrangement indicates the range of values of J

which might yield meaningful temporal communities.

(which corresponds to ¢ = 1) is unable to detect the temporal com-
munities as shown in the rightmost panel in Fig. 4. For a more
quantitative comparison of the detected temporal communities to
those known to be present in the ground truth, we use VI which is a
common metric to evaluate the distance between two partitions of a
set®. A static community is a partitioning of the set of nodes of the
network, while a temporal community is defined as a partition of the
set of {node,time} pairs. Thus using VI we can measure the distance
of the partition of {node,time} pairs produced by a temporal com-
munity detection algorithm from the partition defined in the ground
truth shown in Fig. 3 (see Methods for details).

In Fig. 5, we show the effect of varying J on the synthetic network
used in Fig. 4. Low values of d yield low estrangement but also yield a
lower value of modularity compared to what would result from
unconstrained modularity maximization. Thus, reduction in
estrangement comes at the expense of modularity. There appears
to be no “correct” value of ¢ for obtaining a meaningful structure,
but in-practice very low values of 4 (0.05 or less) provide smooth
communities. Fig. 5 shows that VI is about 0.5 lower (which is sub-
stantial since V1 is a logarithmic measure) for low values of 6 than the
maximum VI seen. Despite fluctuations in VI values due to the
stochasticity inherent in greedy optimization on partition space,
the VI curve demonstrates clearly that significantly lower VI values
(relative to the characteristic size of fluctuations) are achieved below
some value of 9. It is difficult to estimate this threshold value of J, but
an empirical plot like Fig. 5 can provide insights into the range of &
values to which the detection can be restricted. A possible heuristic,
that works well in practice, is choosing values of ¢ lower than the
point at which the average loss in modularity roughly equals the
average estrangement. However, this is an ad-hoc prescription and
a limitation of our method is that the desired smoothness is not

determined a priori. Similar difficulties are also inherent in several
other methods'>'*'%".

We now compare our method with other known methods on a
series of synthetic networks generated by varying p, and p which
corresponds to varying the density of edges inside a community
and the rate at which they evolve, respectively. As shown in Fig. 6,
our method consistently detects a temporal community structure
that is most similar to the ground truth as compared to those found
by the multislice modularity method'" and independent modularity
maximization in each snapshot along with label-mapping. For our
method we pick the minimum value of VI that is achieved as ¢ is
varied between 0 and 0.1. A minimum of VI is usually attained at a
value of 0 between 0.0 and 0.05. For the multislice method we pick
the minimum VI achieved by varying the inter-slice coupling w
between 0.05 and 1. We find that multislice modularity method finds
the two communities, but is less adept at detecting the temporal
variation, i.e., the birth and death of the large temporal communities
for even small values of w. Furthermore, for even marginally high
values of w, (e.g. 0.2), it finds large spurious temporal communities.
The performance of all three methods improves with increase in
intra-community edge density. The rate of change, p, has a noticeable
effect on performance only for low values of p..

Having shown the performance of our method on a range of
synthetic benchmarks, we next turn to the analysis of a real network:
the human contact network data provided by the Reality-mining
project” which tracked the mobility of about hundred individuals
over nine months. A contact is registered when the Bluetooth devices
being carried by the individuals come within 10 m of each other. The
evolution chart in Fig. 7 shows the temporal communities resulting
from applying estrangement confinement to snapshots created by
aggregating contacts between individuals over a week (except over
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we perform the label mapping step between successive partitions. The distance between the two temporal partitions is measured using VI (see text). The
comparison is done on a range of evolving synthetic networks (constructed as described in Fig. 3(b)) obtained by varying the rate of change of intra-
community edges, p, for different values of intra-community edge density, p.. For each benchmark we show the minimum VI obtained by Estrangement
as the constraint 0 is varied and similarly the minimum VI obtained by Multislice as the inter-slice coupling is varied.

vacation weeks in December) thus creating a weighted time evolving
network, where in each snapshot the weight on an edge represents
the number of contacts between the corresponding individuals. The
nodes are ordered on the Y axis by the tuple of labels they take over
time, where the labels in the tuple itself are ordered by the frequency
of acquiring that label. Ties are broken by the time of first appearance
of nodes. This ordering causes the nodes in a temporal community to
appear contiguously. We illustrate communities and events that can
be correlated with ground truth in Fig. 7.

Finally, we analyze a time-evolving weighted network consisting of
United States senators where the weight on an edge represents the
similarity of their roll call voting behavior. The data was obtained
from voteview.com and the similarities between a pair of senators was
computed following Waugh et al** as the number of bills on which
they voted similarly, normalized by the number of bills they both
voted on. The network consists of 111 snapshots corresponding to
congresses over 220 years and 1916 unique senators. In Fig. 8, we
show the evolution chart for 6 = 0.05, the value at which loss in
modularity roughly equals the gain in estrangement.

A broad feature that is observed for all values of temporal diver-
gence is the emergence of two dominant voting communities with
time. The party affiliation of the majority of the constituent nodes
within these communities allows us to identify them as the tempo-
ral streams which culminate in the present day Democratic and
Republican parties (Fig. 8(a)). These features were previously
observed by Mucha et al.">. However, in contrast to their method,
ours is sequential and does not need to construct and analyze the
stacked network comprising of all snapshots. In addition to the dom-
inant Democratic and Republican streams, we also detect two minor
communities that consist of senators who predominantly vote in
alignment with one of the two dominant communities, but have occa-
sional switches to the other. One of these detected minor communities
consists predominantly of Democratic members of the conservative

coalition (Fig. 8(b)). The second minor community found consists of
several moderate Democrats and left-leaning Republicans (Fig. 8(c)).

Another feature we find is the reduction with time in the number
of senators whose aggregating voting behavior over the duration of a
congress are not aligned with the rest of their party. Fig. 8(d) shows
the number of such “atypical” senators over time. Notice that after
the year 1995, there is only one such senator detected by our method,
whereas prior to 1995, a much larger number of senators voted
differently from the bulk of their party.

Discussion

We have presented a novel approach to detect temporal communities
based on a constrained optimization formulation. A critical piece of
the formulation is the definition of estrangement, an effective mea-
sure of partition distance between snapshots of a time-varying net-
work that is motivated by the tendency of nodes to maintain
similarity of community affiliations with their neighbors. The con-
straint on estrangement allows us to pick solutions from the highly
degenerate and sensitive modularity landscape that maintain tem-
poral contiguity without compromising the current community
structure. Our solution technique using Lagrangian duality relies
on the fact that estrangement can be decomposed into local, single
node terms. Our method operates on one snapshot at a time thus
allowing us to compute temporal communities in a sequential man-
ner, which is particularly useful for large networks. Notably, even if
all snapshots are available to us in advance, estrangement provides a
non-trivial but intuitive control parameter using which a broad range
of temporal smoothness can be probed, potentially enabling com-
munity discovery on many temporal scales. We demonstrate that
meaningful temporal communities can be found by estrangement
constrained modularity maximization. In particular, our demonstra-
tions on empirical networks are corroborated by available ground
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Time in weeks

Figure 7 | Temporal communities seen in the reality mining network®'. The network consists of two communities predominantly at lower values of J,
one corresponding to staff and students at the MIT Media Lab (blue), and the other corresponding to students at the MIT Sloan School of Business
(green). As ¢ is increased the average size of the communities decreases and the number of communities increases, a consequence of the decreasing

temporal contiguity.

truth and by previous studies which used non-sequential methods to
discover temporal communities.

Several issues are worthy of further study. A limitation of our
method is that it does not provide a specific prescription for choosing
values of the constraint ¢ that lead to meaningful temporal com-
munities. Such a prescription will improve the utility of the method
in practice. Another important issue is determining the granularity at
which the time varying network is snapshotted. If the snapshots are
made too frequently, there may not be enough density of edges to
discover communities, whereas aggregating for too much time may
prevent detection of some evolving patterns. In this work, we assume
that there is a natural timescale of interest for creating snapshots,
such as the one defined by biennial congressional elections in the case
of the senator voting similarity network. In general, such natural
timescales can perhaps be found by analyzing the frequency spec-
trum of some relevant variable in the dataset®. A related issue is that
of sporadic interruptions in data collection which could affect the
calculation of estrangement as well as the mapping of communities
between snapshots. The effect of interruptions can be mitigated by
using a history of the extent to which nodes share community affilia-
tions to compute estrangement. Also, estrangement is generalizable
to the case of overlapping communities (see SI) which could reveal
further interesting features in community evolution.

Methods

We describe our lagrangian duality based method for estrangement constrained
optimization of modularity. As summarized in Results, we first need to compute the

Lagrange dual function (Eq. 4), which we show can be computed by adapting known
methods for unconstrained modularity maximization. The key to computing the dual
lies in exploiting the property that estrangement is decomposable, similarly to
modularity, into single node (or local) contributions. We utilize a hierarchical version
of the Label Propagation Algorithm'® to compute the dual. This method, which we
refer to as HLPA, works by greedily merging communities that provide the largest
gain in the objective function, and then repeating the procedure on an induced graph
in which the communities from the previous steps are the nodes. Once this method of
computing the Lagrange dual has been determined, we solve the dual problem of
finding the best Lagrange multiplier by using Brent’s method** which is commonly
used for non-differentiable objective functions. We now present the above steps in
greater detail.

HLPA update rule for computing the Lagrange dual. We compute the Lagrange
dual g(4) for a given 4, using HLPA in which each node x updates its community
identifier (I,) following the rule:

kK, ki

Ly = arg max (le_ DRI +A‘sz), (7)

where Ny = 2, A 0(l, 1), Oy = 2 eie Z,0(, 1) and Ky = X, k ,0(1, 1). Here Oy is
the extra term that arises due to the constraint on E. Next we show that this update

rule indeed performs a greedy maximization of the Lagrangian. Following Barber and
Clark™, we expand Q and write L(P,1) as:

LPA)= o (Z )y (A= g3t +Azw)é<zu,zv)> ®)

Zuvzuv

Here we have taken advantage of the fact that the first term in E (Eq. 3) is

independent of the partition and does not affect the optimization. To see the effect of a
label update for a single node x, we separate terms of Eq. 8 into contributions from x
and those from all other nodes. Doing so yields:
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Figure 8 | The different temporal communities observed in the senator voting similarity network. (a) The dominant temporal communities can be
identified with the modern day Republican (in red) and Democratic (in blue) parties. (b) and (c) Minor communities are also found, which consist of
republicans and democrats who often differ in their voting behavior from the majority membership of their party, as well as independents. (d) The
number of atypical senators defined as those whose temporal communities are different from their declared party affiliations. Our results indicate that the

number of such senators has been decreasing with time, perhaps indicating increasing polarization.

1
L= (A,W - kuk+ AZW> 5(1@))
UFEX VFEX M

1
<Axx — K +Azxx>

(zx

- E-

2M 2M

1 1 .
+ou (2 Z (Aux— mkukﬁxzw)) o(L.)

where in the interest of brevity, we have introduced the shortened notation L to mean
L(P,%). The first two terms in L (R.H.S. of Eq. 9) are unaffected by the label update of
node x, so we focus on the last term. Since our goal is to greedily optimize L via label
updates, we update the label of node x to one that results in the maximal gain in L.

Thus, the desired post-update label is:

1 1 ,
o= arg max_ <2 Z ((A,,X = g ke ﬂzM) ) o(L,.)

(10)
1
= arg max <N,,7 ;mkukxé(lu,l)+ ;zuxa(zu,z)>

where we have used the fact that X, A,,.0(],,, I) is simply the number of neighbors of x
with label [, which we denote by N;. The diagonal terms (i.e. terms with u = x) in the
remaining sums of the above equation do not have any bearing on the maximization
and can be ignored. Then, using:

Y s kak (o) = 58— K 51,0)

UFX

and writing X« Z,,,6(1,, I) as Oy, (also, K; = Z,, k,0(1,, 1)), we see that Eq. 10 reduces
to Eq. 7. It follows that the HLPA label update rule maximizes the gain in L. The
optimization of L in HLPA is further improved by adopting an additional hierarchical
step after the labels have converged to a local maximum of L. We detail this hier-
archical procedure below.

Hierarchical procedure in HLPA for computing the Lagrange dual. Once the
sequence of label updates has converged on the original graph on which L is being
maximized, we build a new induced graph which contains the communities of the
original graph as nodes. Links between pairs of nodes in the new graph have weights
equal to the total number of links between the two communities in the original graph
that they correspond to. Then, L can be further increased by updating the labels of
nodes in the induced graph iteratively, following Eq. 6. Importantly, this is possible
only because L remains invariant in the transformation from the original graph to the
induced graph (see SI). This alternating procedure of label updates followed by the
induced graph transformation is recursively applied until we reach a hierarchical level
where the converged value of L is lower than that obtained at the previous level. The
partition found at the penultimate level before termination is chosen as the one
optimizing L. This hierarchical procedure for optimizing L is similar in spirit to the
one used in the Louvain algorithm® for optimizing Q.

Details on solving the dual problem. Having found a way to compute g(1) we can
solve the dual problem and determine the value of / at which g(4) is minimized. The
challenge here is that g(4) is not differentiable and moreover, it is expensive to

evaluate. We use Brent’s method which is often used to optimize non-differentiable
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scalar functions within a given interval. In our case, g(4) is the scalar function, and we
minimize it within a suitably large range of 2. We use an implementation provided by
python’s scientific library, SciPy, in the form of scipy.optimize.fminbound(). For all
experiments in this work, 4,,;,, = 0 and 4,,,c = 10.

Furthermore, to mitigate issues due to the local nature of the algorithm and the
degeneracy of the modularity landscape (and therefore the L(P,4) landscape), we
perform several independent runs of HLPA for a given 4 and pick the run which yields
the highest value of g(1). We perform at least 10 runs of HLPA as we start Brent’s
method and increase the number of runs by 10 with every iteration that narrows the
search interval for 4. Near the optimum value of /, we perform at least 150 runs to
compute the Lagrange dual. For the synthetic benchmarks we increase the number of
runs by 5 at every iteration. Once we identify the value A = /* for which g(1) is
minimized, the partition which yielded g(A*), from among the many independent
runs for 4 = A*, is chosen as the optimal partition for the given snapshot. In practice,
due to the degeneracy of the L(P, ) landscape for any A, we have to go slightly above
A* to ensure that the optimal partition lies within the feasible region.

Our implementation is available at https://github.com/kawadia/estrangement.

Comparing detected temporal communities with those in ground-truth:
Variation of Information. We utilize Variation of Information (VI)([5]) to quantify
how far the temporal community partitions detected by the algorithms -
estrangement confinement, multislice modularity maximation, independent
modularity maximization - are from those that exist in the ground-truth. Given
partitions P and P’ of the set of {node,time} pairs, the VI between them is defined as:

VIPP) =~ 3 nylog ()

ieP,jeP’

where 7 is the total number of {node,time} pairs, n; and n; denote the number of
{node,time} pairs in the temporal community i in P and the temporal community j in
P’ respectively, and n;; is the number of nodes common to both i in P and j in P'.

The ground truth partition for our synthetic networks consists of two large tem-
poral communities defined by the subsets of nodes having higher edge density and
undergoing markovian evolution (Fig. 3). Each remaining {node,time} pair (which is
not part of either temporal community) is assumed to be a temporal community by
itself. The latter is perhaps an extreme assumption, but necessitated by the difficulty of
appropriately defining ground truth communities within subsequent random
instantiations of an Erdés-Rényi network. To alleviate the punitive nature of this
definition, and to account for the fact that even within random graphs, communities
consisting of more than one node may exist, we only consider those community pairs
in the evaluation of VI for which at least one of the communities is of size greater than
ten nodes. Thus, small communities of size greater than one but less than ten detected
within the random background do not penalize VI despite not exactly corresponding
to the ground truth.

For purposes of comparison, we also run the multislice modularity maximization
algorithm on the synthetic networks. This was done using code publicly available at:
http://netwiki.amath.unc.edu/GenLouvain/GenLouvain. The results shown in Fig. 6
are for the temporal community partitions with the lowest VI from the ground-truth
obtained over values of w = 0.05, 0.1, 0.2, 0.4, 0.6, 0.8, 1.0, with 50 independent runs
for each value of w.
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