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ABSTRACT

Sequential tests outperform fixed sample size tests by re-

quiring fewer samples on average to achieve the same level

of error performance. The Sequential Probability Ratio Test

(SPRT) has been suggested by Wald [1] for sequential bi-

nary hypothesis testing problems. SPRT recursively calcu-

lates the likelihood of an observed data stream and requires

this likelihood to be stored in memory between samples. In

this paper we study the design of sequential detection tests

under memory constraints. We derive the optimal sequen-

tial test in the case where only a quantized version of the

likelihood can be stored in memory. An application of the

proposed techniques is large scale sensor networks where

price and communication constraints dictate limited com-

plexity devices, which store and transmit concise represen-

tations of the state of nature.

1. INTRODUCTION

In this paper we discuss the design of finite memory systems

for the sequential binary hypothesis testing problem. The

solution for the sequential binary hypothesis testing prob-

lem in the absence of constraints on memory is given by

the SPRT. For specified error probabilities, SPRT has the

property of minimum stopping time. Consequently, SPRT

can be shown to be Bayes optimal minimizing the sum of

observation cost and Bayes decision risk. SPRT is a station-

ary policy and therefore does not require a time index, but

it recursively calculates the likelihood of the observed data

stream and requires this likelihood to be stored in memory

between observations. We consider the design of a sequen-

tial test where only a quantized version of the likelihood can

be stored in memory. We model a sequential detector with

finite memory as a finite state machine with state transitions

directed by observations (Figure 1). Cover [2] gives an ex-

ample of a statistical test where quantization of the sufficient

statistics between samples leads to asymptotically subop-

timal behavior and suggest that quantization for statistical

tests should be approached from first principles. We derive

the optimal decision rule for the binary detection problem

under Bayes cost criterion and show that it is a simple parti-

tion of the a posteriori probability space specified by L + 1
thresholds for a detector with log(L) bits of memory.

Hellman and Cover [3] consider the design of finite-

memory systems for the binary hypothesis testing problem.

They consider a test which reports a decision after each

observation based on the current observation and what has

been stored in memory. The lower bound on the asymptotic

proportion of errors is derived. In general this bound cannot

be attained, instead Hellman et al. derives a family of tests

that are ǫ- optimal. Cover [2] considered the same prob-

lem for a system that can recall both the observation num-

ber and a finite memory representation of the previous mea-

surements. Cover shows that a test with two bit statistics

can achieve a limiting probability of zero under either hy-

pothesis. Mullis and Roberts [6] also considered the design

of finite-memory systems which can recall the observation

number. They propose a solution for truncated sequential

tests computed using dynamic programming. Solutions to

two-armed bandit problems with finite memory constraints

are discussed in [4, 5].
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Fig. 1. Sequential detection with limited memory
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2. MODEL

Let y0, y1, . . . be an infinite sequence of random variables in

R
N , conditionally independent and identically distributed

with density f(y|ω), where ω ∈ Ω = {ω0, ω1} represents

the state of nature. Further let π be the prior probabil-

ity of hypothesis ω1 and the likelihood ratio Λ(yt) is de-

fined as f(yt|ω1)/f(yt|ω0). We assume the density func-

tions f(y|ωi) and the prior π are known. The sequential

test is performed by a finite state machine with L states.

At each state l ∈ {1, . . . , L} the decision rule is speci-

fied by the triple (δl, γl, ηl), where δl : R
N → {0, 1},

γl : R
N → {0, 1}, ηl : R

N → {1, 2, . . . , n} specify stop-

ping, final decision and state selection rules, respectively.

If the detector is at state l it computes δl(yt), γl(yt), ηl(yt)
using the most recent observation. If δl(yt) = 0 then the

detector stops and declare that hypothesis γl(yt) is true on

the other hand if δl(yt) = 1 the detector jumps to state

ηl(yt) and make a new measurement yt+1. In this paper,

we restrict our attention to nonrandomized decision rules

and consider the problem of minimizing probability of error

under constraints on average number of observations and

memory.

3. A SEQUENTIAL TEST WITHOUT MEMORY

First consider the design of a sequential test with no mem-

ory (i.e., with one state). In this case the state selection rule

is trivial and we need to specify only the stopping and fi-

nal decision rules {δ, γ}. Define the regions H0 = {y ∈
R

N |δ(yt) = 0 and γ(yt) = 0}, H1 = {y ∈ R
N |δ(yt) =

0 and γ(yt) = 1}, and R = {y ∈ R
N |δ(yt) = 1}. If

yt is in Hi the detector stops and make a decision of ωi.

If yt ∈ R the detector makes another observation. For a

given test (δ, γ), we can calculate the probability of miss

PM , probability of false alarm PFA, and expected number

of samples N(ωi) under hypothesis ωi using:

PM =
P (y ∈ H0|ω1)

1 − P (y ∈ R|ω1)
,

PFA =
P (y ∈ H1|ω0)

1 − P (y ∈ R|ω0)
,

N(ω0) =
1

1 − P (y ∈ R|ω0)
,

N(ω1) =
1

1 − P (y ∈ R|ω1)

We seek to find the optimal test that minimizes the sum of

expected observation cost and probability of error given by:

C = πPM + (1 − π)PFA + c((1 − π)N(ω0) + πN(ω1))

where c is the cost of each observation. This criterion can

be extended trivially to include cross terms in Bayes deci-

sion cost and state dependent cost of experimentation.

The posterior probability π(yt) of ω1 after observing yt

can be computed using:

π(yt) =
π̃Λ(yt)

π̃Λ(yt) + 1 − π̃
, (1)

where π̃ is the probability of ω1 given the fact that the test

is still continuing. π̃ can be computed for a given test using

Bayes rule as

π̃ =
πN(ω1)

πN(ω1) + (1 − π)N(ω0)
. (2)

Note that the test has no memory and therefore cannot recall

anything about the previous samples, not even the number

of samples taken before the current sample.

Now given the test took another observation, we define

the expected cost-to-go function as

V (π(yt)) = (1 − π(yt))(cN(ω0)PFA)

+π(yt)(cN(ω1) + PM )

and the expected cost of terminating test is given by:

U(π(yt)) = min{π(yt), 1 − π(yt)} .

The optimal decision rules satisfy:

δ(yt) =

{

0 if V (π(yt)) > U(π(yt))
1 otherwise

(3)

γ(yt) =

{

0 π(yt) < 0.5
1 π(yt) ≥ 0.5

(4)

V (π) is linear and can intersect at most at two points with

U(π). Since the equations (1) and (2) are monotone trans-

formations of the likelihood ratio Λ(yt), we have the fol-

lowing result.

Theorem 1 The optimal sequential test (δ∗, γ∗) with no me-

mory is specified by two thresholds t0, t1. The test is stopped

and ω0 is declared if Λ(yt) < t0; the test is stopped and ω1

is declared if Λ(yt) > t1; and the test continues with the

next sample otherwise.

The relations in (3) and (4) are not equilibrium condi-

tions that characterize the optimal decision rules. They are

not explicit expressions for the decision rules, because the

variables C0, C1, PM , PFA are functions of the thresholds

specified in (δ, γ). A policy iteration method [7] can be used

for the solution of these coupled nonlinear equations.

Example We apply the binary sequential hypothesis test with-

out memory to constant signal detection problem in Gaus-

sian noise for π = 0.25 and c = 0.01 and f(y|ω) ∼
N(µ(ω), σ = 1). The resulting posterior probability of ω1

given the test is continuing is π̃1 = 0.33 . The equilibrium

cost-to-go functions and the resulting thresholds are given

in Figure 2.
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Fig. 2. Sequential signal detection without memory

4. A SEQUENTIAL TEST WITH L STATE

MEMORY

Now consider the design of a sequential test using L states

(i.e., log(L) bits of memory). Given a test {δl, γl, ηl}L
l=1

we

consider the resulting L+2 state Markov chain, where the L

states are augmented by two absorbing states corresponding

to stopping the test and declaring ω0 or ω1. We define the

regions:

Hl
0 = {y ∈ R

N |δl(yt) = 0 and γl(yt) = 0} ,

Hl
1 = {y ∈ R

N |δl(yt) = 0 and γl(yt) = 1} ,

Rl
m = {y ∈ R

N |δl(yt) = 1 and ηl(yt) = m}

The L + 2 by L + 2 transition matrix T (ω) of the resulting

Markov chain depends on the state of nature and is given

by:



















P (y ∈ R1
1|ω) · · · P (y ∈ H1

0|ω) P (y ∈ H1
0|ω)

P (y ∈ R2
1|ω) · · · P (y ∈ H2

0|ω) P (y ∈ H2
0|ω)

...

P (y ∈ RL
1 |ω) · · · P (y ∈ HL

0 |ω) P (y ∈ HL
0 |ω)

0 · · · 1 0
0 · · · 0 1



















The n-step transition probabilities are simply the elements

of the n-fold matrix product Tn(ω). As n approaches infin-

ity the Markov chain settles in one of the absorbing states.

Therefore the limit transition matrix T∞ has the following

form:

T∞(ω0) =



















0 · · · 0 (1 − P 1
FA) P 1

FA

0 · · · 0 (1 − P 2
FA) P 2

FA
...

0 · · · 0 (1 − PL
FA) PL

FA

0 · · · 0 1 0
0 · · · 0 0 1



















T∞(ω1) =



















0 · · · 0 P 1
M (1 − P 1

M )
0 · · · 0 P 2

M (1 − P 2
M )

...

0 · · · 0 PL
M (1 − PL

M )
0 · · · 0 1 0
0 · · · 0 0 1



















where P k
M and P k

FA are respectively the probability of miss

and probability of false alarm if the test is started at state k.

The expected number visits to state j if the Markov chain

is started at state i is given by the elements of the matrix

Sij(ω), which can be computed using [8]:

S(ω) =
∞
∑

n=0

Tn(ω)

For the particular Markov Chain corresponding to the se-

quential test S(ω) have the following form:

S(ω) =



















N1
1 (ω) N2

1 (ω) · · · NL
1 (ω) ∞ ∞

N1
2 (ω) N2

2 (ω) · · · NL
2 (ω) ∞ ∞

...

N1
L(ω) N2

L(ω) · · · NL
L (ω) ∞ ∞

0 0 · · · 0 ∞ 0
0 0 · · · 0 0 ∞



















where Nk
l (ω) denotes the number of visits to state l for a

test starting at state k under the hypothesis k. The partial

row sums of S(ω) gives Nk(ω), the expected number of

samples before the test terminates in one of the absorbing

states if started in state k:

Nk(ω) =
L

∑

l=1

N l
k(ω)

In summary, T∞ and S give the probability of detection

P k
M , probability of false alarm P k

FA, and expected number

of samples Nk(ωi) under each hypothesis ωi, given that the

sequential test is started at state k. We seek to find the op-

timal test that minimizes the sum of expected observation

cost and probability of error given by:

C = min
k

{πP k
M + (1 − π)P k

FA

+c((1 − π)Nk(ω0) + πNk(ω1))}

Let πk(yt) be the posterior probability of ω1 given the

test is at state k and yt was observed. The posterior proba-

bility πk(yt) is given as:

πl(yt) =
π̃lΛ(yt)

π̃lΛ(yt) + 1 − π̃l
, (5)

where π̃l is the probability of ω1 given the fact that the test

is at state l. π̃l can be computed for a given test using Bayes

rule as

π̃l =
πN l

k(ω1)

πN l
k(ω1) + (1 − π)N l

k(ω0)
. (6)
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Again we note that the test can only discern that it is at state

l and cannot recall how it arrived to that state. Consider the

decision at state l. Expected cost of continuing the test with

state m is given as:

V m(πl(yt)) = πl(yt)(cNm(ω1) + Pm
M )

+(1 − πl(yt))(cNm(ω0) + Pm
FA)

and the expected cost of terminating test is given by:

U(πl(yt)) = min{πl(yt), 1 − πl(yt)} .

The optimal decision is then:

δl(yt) =

{

0 if minm{V m(πl(yt))} > U(πl(yt))
1 otherwise

γl(yt) =

{

0 πl(yt) < 0.5
1 πl(yt) ≥ 0.5

ηl(yt) = arg min
m

{V m(πl(yt))}

Each V m(π) is a linear function of π. The lower envelope

of the linear functions {V m(·)} is a concave function de-

fined with L − 1 intersection points. The lower envelope

minm{V m(π)} can intersect with U(π) at most two points.

Since the equations (5) and (6) are monotone transforma-

tions of the likelihood ratio Λ(yt), we have the following

result.

Theorem 2 The optimal sequential test (δ∗, γ∗, η∗) with L
state memory is specified by L + 1 thresholds tl0, t

l
1, . . . , t

l
L

for each state l. The test is stopped and ω0 is declared

if Λ(yt) < tl0; the test is stopped and ω1 is declared if

Λ(yt) ≥ tlL; and the test continues with the next sample

at state m if tlm−1 ≤ Λ(yt) < tlm.

Example We can interpret the optimal test as a quantization

of the posteriori probability space, with the vector π̃ giv-

ing the quantization levels. Consider the binary sequential

hypothesis testing problem with single bit of memory for

π = 0.25 and c = 0.01 and f(y|ω) ∼ N(µ(ω), σ = 1).
Then we have π̃1 = 0.23 and π̃2 = 0.64. The equilibrium

cost-to-go functions and the resulting decision functions for

each state are given in Figure 3.

5. CONCLUSION

In this paper we derived the Bayes optimal sequential test

for the binary detection problem under memory constraints.

The test can be seen as an optimal quantization of the like-

lihood ratio. The results can be extended to sequential mul-

tiple hypotheses testing problems. The asymptotic perfor-

mance of the proposed tests for large L and comparison with

the SPRT [1] and M-SPRT [9] for moderate values of L are

future research topics.
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Fig. 3. Signal detection with one bit memory
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