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Sequential Discrete Hashing for Scalable

Cross-modality Similarity Retrieval
Li Liu, Zijia Lin, Student Member, IEEE, Ling Shao, Senior Member, IEEE, Fumin Shen,

Guiguang Ding, Member, IEEE, and Jungong Han

Abstract—With the dramatic development of the Internet, how
to exploit large-scale retrieval techniques for multimodal web da-
ta has become one of the most popular but challenging problems
in computer vision and multimedia. Recently, hashing methods
are used for fast nearest neighbor search in large-scale data
spaces, by embedding high-dimensional feature descriptors into
a similarity-preserving Hamming space with a low dimension.
Inspired by this, in this paper, we introduce a novel supervised
cross-modality hashing framework which can generate unified
binary codes for instances represented in different modalities.
Particularly, in the learning phase, each bit of a code can
be sequentially learned with a discrete optimization scheme
that jointly minimizes its empirical loss based on a boosting
strategy. In a bitwise manner, hash functions are then learned for
each modality, mapping the corresponding representations into
unified hash codes. We regard this approach as Cross-modality
Sequential Discrete Hashing (CSDH) which can effectively reduce
the quantization errors arisen in the the oversimplified rounding-
off step and thus lead to high-quality binary codes. In the
test phase, a simple fusion scheme is utilized to generate a
unified hash code for final retrieval by merging the predicted
hashing results of an unseen instance from different modalities.
The proposed CSDH has been systematically evaluated on three
standard datasets: Wiki, MIRFlickr and NUS-WIDE, and the
results show that our method significantly outperforms the state-
of-the-art multi-modality hashing techniques.

Index Terms—Cross-modality Retrieval, Hashing, Discrete Op-
timization, Bitwise, Unified Hash Code.

I. INTRODUCTION

IN recent years, with the increasing number of Internet

users, a large amount of multimodal web data (e.g., images,

texts and audio) has been continually generated and stored.

Under such circumstances, how to achieve cross-modality sim-

ilarity search becomes an interesting but challenging problems
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attracting a lot of attention [1], [2], [3], [4], [5], [6], [7], [8],

[9], [10], [11]. One of the most basic but crucial schemes

for previous similarity search is the nearest neighbor (NN)

search. Particulary, given a query instance, we aim to find

an instance that is most similar to it within a large database

and assign the same label of the nearest neighbor to this

query instance. However, such an NN search has the linear

computational complexity O(N), which is intractable for

large-scale retrieval tasks in realistic scenarios. To overcome

this issue, tree-based schemes are proposed to partition the

search space via various tree structures. Among them, KD-

tree and R-tree [12] are the most successful methods which

can be applied to indexing the data for fast query responses

with sub-linear complexity, i.e., O(log(N)). Although tree-

based methods have their advantages for retrieval tasks, they

still suffer from the curse of dimensionality problems1, since

good and informative descriptors usually have hundreds or

even thousands of dimensions. To achieve more effective

and fast search, hashing schemes have been proposed to

embed data from a high-dimensional feature space into a

similarity-preserving low-dimensional Hamming space where

an approximate nearest neighbor of a given query can be found

efficiently. Current hashing techniques can be roughly divided

into two groups, i.e., single-modality hashing [1], [13], [14],

[15], [16], [17], [18], [19], [20], [21], [22], [23], [24], [25],

[26], [27] and cross-modality hashing [3], [2], [28], [29], [4],

[30], [6], [7], [31], [8], [9], [32].

In particular, single-modality hashing mainly focuses on

generating hash codes for only one specific data domain in

both training and test phases. One of the most well-known

single-modality hashing techniques is the Locality-Sensitive

Hashing (LSH) [20] which simply employs random linear

projections (followed by random thresholding) to map data

points, that are close in a Euclidean space, to similar codes.

Furthermore, Spectral Hashing (SpH) [19] is another repre-

sentative unsupervised hashing method, in which the Laplace-

Beltrami eigenfunctions of manifolds are used to determine

binary codes. Principal linear projections like PCA Hashing

(PCAH) [21] was introduced for better quantization rather

than random projection hashing. Anchor Graph-based Hashing

(AGH) [24] can automatically discover the neighborhood

structural inherent in the data to learn appropriate compact

codes. More recently, Spherical Hashing (SpherH) [25] was

proposed to map more spatially coherent data points into

1The effectiveness and efficiency of these methods drop exponentially as
the dimensionality increases, which is commonly referred to as the curse of
dimensionality.
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a novel spherical binary space compared to using previous

hyperplane-based binary space. Iterative Quantization (ITQ)

[23] was developed for more compact and balanced binary

coding. Besides, asymmetric hashing [33] (e.g., Asymmetric

Inner-product Binary Coding [27]) was also introduced for

better retrieval performance. More single-modality hashing

techniques can be seen in [34], [35], [36], [37], [38], [5], [39],

[40].

In terms of the cross-modality hashing, it deals with similar-

ity searching between different data domains (e.g., image, text,

audio, and video). For instance, we utilize text information as a

query and retrieval the similar instances in an image database.

Since multimedia era arriving, cross-modality retrieval has

become significantly helpful and attracted increasing attention.

Recently, various hashing methods for cross-modality retrieval

were exploited, including unsupervised methods [9], [31], [41]

and supervised methods [1], [3], [4], [7], [30], [28], [29]. For

unsupervised methods, preserving intrinsic data structure via

matrix decomposition or reconstruction is the most common

scheme utilized in the binary code learning procedure. Thus,

the quality of high-dimensional data before hashing is usually

the vital fact influencing the effects of binary codes. Differ-

ently, supervised cross-modality hashing can generate more

discriminative binary codes for better retrieval performance,

since it effectively preserves the high-level label information

instead of the low-level data structures. Such supervised in-

formation used in the cross-modality hashing can be semantic

category labels and also even be multiple attribute tags.

Regardless of the types of the hashing methods (either

single-modality hashing or cross-modality hashing), learning

binary codes via target hash functions with discrete constraints

always involve a mixed binary-integer optimization problem

[26] which is generally NP-hard. To become tractable, most

of the previous hashing methods [19], [42], [24], [21], first

simplify such an NP-hard problem into a relaxed continues

embedding problem by directly discarding the discrete con-

straints, and then threshold (quantize) the optimized continues

embedding into an approximate binary solution. However,

the relaxation scheme always makes the hash function less

effective and leads to low-quality binary codes due to the

accumulated quantization errors, especially when learning long

binary codes. To further improve hashing quality, some other

works, such as Kernelized Supervise Hashing (KSH) [18],

attempt to simulate discrete constraint by replacing the sign

function with the sigmoid function instead. Although this

kind of discrete approximation can theoretically achieve better

hash codes, hash functions with the sigmoid operation still

make the optimization problem suboptimal. More importantly,

for large-scale training data, the sigmoid operation will also

be computationally expensive for hash function optimization

due to the lack of an analytic solution, and the best way

to achieve the non-closed-form solution is using gradient

descent methods (e.g., SGD, or Newton method). To seek more

effective hashing scheme, recently, some pioneer works [26],

[27], [43], [44] have devoted to directly optimizing the hashing

problem using discrete constraints and obtained closed-form

solution. The provided results show that the methods based

on the discrete optimization significantly outperform those

methods relying on the relaxed optimization.

In this paper, we mainly focus on designing a supervised

hashing approach which can produce compact but high-quality

binary codes for cross-modality retrieval. Inspired by recent

progresses in [26], [27], we propose a novel bitwise hash

learning scheme combining the discrete bit optimization with

a boosting trick, which aims to directly optimize the binary

codes efficiently and effectively. In particular, discrete bit

optimization is sequentially applied to obtain a least-weighted-

error binary code for each bit by jointly minimizing its

empirical loss with the boosting strategy [45] on the training

set. The supervision information in our CSDH is leveraged

in proposed discrete optimization by preserving the pairwise

semantic similarity, resulting in more discriminative binary

codes. As our target is to achieve cross-modality retrieval,

we regard the learned hash codes during the training phase

as the unified codes for different modalities of each instance.

We then adopt a linear regression to learn optimal hash code

projections (i.e., hash functions), which effectively bridge each

different modality and the learned unified binary codes. To

better capture the intrinsic data structure, the hash function

for each modality is actually learned in a nonlinear kernel

space rather than directly using the raw feature from different

modalities. In CSDH, we discretely optimize unified code for

each modality with an alternate manner. Similar to [29], for

better performance during the test phase, a simple unified

code generating method is also proposed to solve ”out-of-

sample” problems for unseen data from different modalities.

Experimental results clearly demonstrate that our CSDH can

achieve superior cross-modality retrieval performance on three

benchmark datasets compared to previous state-of-the-art hash

methods. It is worthwhile to highlight several contributions of

this paper:

• We propose a novel supervised hashing algorithm for

cross-modality similarity retrieval named CSDH, which

can generate high-quality unified binary codes for in-

stances represented in different modalities. In particular,

each bit of a code can be sequentially learned with the

proposed discrete optimization by jointly minimizing its

empirical loss with a boosting strategy. With such a

bitwise manner, hash functions are then learned for each

modality, mapping the corresponding representations into

hash codes.

• In order to achieve better discrete optimization, an alter-

nate scheme is adopted to transform the global NP-hard

problem into several tractable sub-problems which can be

directly solved with closed-form solutions.

The remainder of this paper is organized as follows. A brief

review of the related work is given in Section II. In Section

III, we present the proposed CSDH in detail. Experiments and

results are described in Section IV. In Section V, we conclude

this paper and outline the possible future work.

II. RELATED WORK

In terms of the cross-modality similarity retrieval, recently,

various unsupervised hashing methods and supervised hashing

methods have been proposed.
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For unsupervised methods, they usually optimize the hash

codes by preserving the data structure within each modali-

ty (intra-modality) and the data structure between different

modalities (inter-modality). In [9], an Inter-media Hashing

(IMH) was introduced to explore the correlations among

different modalities by considering the consistency of inter-

modality and intra-modality data distribution, and learned

hashing functions with the aid of a linear regression model.

Furthermore, a novel hash method terms Collective Matrix

Factorization Hashing (CMFH) was proposed in [31], where

latent collective matrix factorization was successfully adopt-

ed to learn unified hash codes for different mortalities of

instances. Besides, Latent Semantic Sparse Hashing (LSSH)

[41] was developed to learn latent semantic representations for

each modality with sparse coding scheme, and then mapped

these latent representations into unified hash codes in a joint

abstraction space. Despite the unsupervised setting, CMFH

and LSSH could still achieve high performance for cross-

modality search due to the qualitative latent semantics mining

used in their algorithms.

With respect to supervised methods, available semantic

information can be used to further improve the retrieval perfor-

mance. Cross-Modal Semi-Supervised Hashing (CMSSH) [3]

considered the optimization of the hash objective functions

for different modalities as a binary classification problem

and solved it based on a boosting scheme. In [4], Cross-

View Hashing (CVH) was introduced to extend the ordinary

spectral hashing [19] into the cases of multiple modalities

by minimizing similarity-weighed Hamming distance of the

learned codes. Moreover, to learn the hash function with good

generalization for cross-modality retrieval, Co-Regularized

Hashing (CRH) [7] was proposed to learn binary codes in

a bitwise manner based on the boosting framework. Sim-

ilarly, Cross-view Kernel-based Supervised Hashing (KSH-

CV) [30] aimed to preserve the similarity between different

modalities and learned kernel hash functions with AdaBoost.

Besides, some researchers integrated the semantic labels into

a new hash methods, i.e., Semantic Correlation Maximization

(SCM) [28], in which the binary codes could be optimized by

maximizing semantic correlations. In a practical implement,

two different versions of SCM were proposed, which were

sequential SCM and orthogonal SCM respectively. Recently,

another supervised hash method termed Semantics-Preserving

Hashing (SePH) [29] was developed to generate unified codes

by minimizing the KL-divergence of data semantic prob-

ability from different modalities. Once the optimal codes

were obtained, a kernelized logistic regression was used to

learn the hashing functions for each modality, respectively.

From the reported results, SePH can significantly outperform

most of state-of-the-art hashing techniques on cross-modality

similarity retrieval.

Similar to CMSSH, CVH and KSH-CV, the proposed CSDH

also adopts the boosting scheme in hash code learning proce-

dure. However, a vital difference between CSDH and the other

boosting related methods is that these three methods apply

weak classifiers in boosting scheme as the hash function for

generating binary codes; while, our CSDH just use boosting

scheme to better integrate the proposed discrete optimization

for each bit into a unified framework and the final hash

functions are learned with linear regression. Since CSDH

discretely optimizes hash codes without any oversimplifying

rounding-off step, it can effectively reduce the quantization

errors and leads to more accurate cross-modality retrieval

performance compared to previous ones mentioned above.

III. METHODOLOGY

In this section, we mainly introduce the algorithm of our

supervised Cross-modality Sequential Discrete Hashing (CS-

DH) in detail. A sequentially discrete optimization strategy

is proposed to learn the unified hash codes of each bit.

Simultaneously, hash functions are also learned during the

optimization for each modality, mapping the feature repre-

sentations into corresponding unified hash codes. For ease

of explanation, we only formulate CSDH with considering

a most common two-modality (i.e., image and text) retrieval

scenario in our following sections. Of course, our CSDH can

be intuitively extended to multi-modality (i.e., more than two

modalities) cases as shown in the later part.

A. Notations and Problem Formulation

Given O = {X(1), X(2)} is a set of multimodal da-

ta and X(1) = [x
(1)
1 , x

(1)
2 , . . . , x

(1)
n ] ∈ R

d1×n, X(2) =

[x
(2)
1 , x

(2)
2 , . . . , x

(2)
n ] ∈ R

d2×n indicate the two different

modalities (e.g., image and text) of O, where d1 and d2
(usually d1 6= d2) are the dimensions of data from the

two modalities, n is the number of instances. Due to our

supervised framework, we also introduce the label vector

Y = [y1, y2, . . . , yn] ∈ {0, 1}
C×n in the algorithm, where

C is the number of classes of O. Each column of Y contains

at least one entry2 as “1” which indicates the class of the

instance that it belongs to, otherwise as “0”. As mentioned

above, in this paper, we aim to learn the unified binary

codes B = [b1, b2, . . . , bn]
M×n for both modalities, where

M denotes the length of the codes and bi ∈ {1,−1}
M . To

make codes discriminative based on semantic information, we

denote each bit’s codes as the results of a binary classifier F (·).
Thus, following [46], [47], the m-th bit code learning problem

can be formulated as minimizing the pairwise classification

loss

Lm =

n∑

i=1

n∑

j=1

h(Sij − b
m
i b

m
j ), (1)

s.t. bmi = sign(Fm(1)(x
(1)
i )) = sign(Fm(2)(x

(2)
i )),

bmj = sign(Fm(1)(x
(1)
j )) = sign(Fm(2)(x

(2)
j ))

where, bmi is binary code for the m-th bit of the i-th instance

and S is a n× n semantic similarity matrix3 determined as

Sij =

{
1, if yTi yj 6= 0
-1, if yTi yj = 0

(2)

2For multi-labeled data, multiple “1” would exist in each column of Y .
3In fact, for large-scale setting, S matrix can be easily rewritten with low-

rank decomposition as S = Y TΛY , where Λ = 1−2I, 1 is C×C all ones
matrix and I is the identity matrix.
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In our approach, any two samples can jointly form a data

pair and theoretically n2 pairs in total can be obtained for all

training instances. h(·, ·) in Eq. (1) indicates the Hamming

distance. The linear binary classifiers can be regarded as the

hash functions H(x(1)) = sign(Fm(1)(x
(1))) and H(x(2)) =

sign(Fm(2)(x
(2))) which can encode the data from two different

modalities into the single bit unified hash code. sign(·) is the

sign function outputting +1 for positive values and −1 for

negative ones. The similar formulation has also been used in

Collaborative Hashing (CH) [48]. Particularly, CH can effec-

tively handle many scenarios involving nearest neighbor search

on the data given in matrix form, where two different yet

naturally associated entities correspond to its two dimensions

or views. Different from CH, Eq. (1) of our method involves

the semantic similarity Sij which is calculated from label

information rather than directly using an existing relationship

matrix as CH. Moreover, CH is specifically designed for

retrieval in recommendation systems with user-item ratings,

while our target is to design a unified framework for general

cross-modality retrieval.

From Eq. (1), each bit can be optimized separately, however

it will lead to redundant and less discriminative hash codes.

To further make the codes more compact and effective, we

adopt a sequential learning framework to optimize hash codes

bit by bit instead of separately learning them. In particular,

we tend to minimize the weighted error for each bit with a

boosting strategy [45], which has been successfully deployed

in previous hash techniques [46], [3], [4], [30], so that the

total empirical loss can be written as

L =

M∑

m=1

n∑

i=1

n∑

j=1

αmijh(Sij − b
m
i b

m
j ), (3)

s.t. bmi = sign(Fm(1)(x
(1)
i )) = sign(Fm(2)(x

(2)
i )),

bmj = sign(Fm(1)(x
(1)
j )) = sign(Fm(2)(x

(2)
j ))

where, αmij is the the sample weight, which controls and

adjusts the pairwise data classification results corresponding

to m-th bit codes. Eq. (3) reflects the accumulated pairwise

loss on the binary code prediction using the bitwise hash

functions. Minimizing Eq. (3) aims at reducing the Hamming

distances between data from positive pairs (Sij = 1) while

increasing the Hamming distances between data from negative

pairs (Sij = −1). The optimization problem of Eq. (3)

seems to be related to the standard boosting formulation.

Initially, each data pair is assigned the identical weights i.e.,

α1
ij , i, j = 1, . . . , n. After a single bit optimization, the

weights associated to incorrectly recognized binary code pairs,

i.e., Sij 6= bmi b
m
j , i, j = 1, . . . , n and m = 1 . . . ,M ,

will be incremented, i.e., αmij ↑ which will be used in the

next iteration of the bit optimization. Otherwise, the weights

of correctly embedded binary code pair are decreased, i.e.,

αmij ↓. In this way, we attempt to minimize the weighted

error
∑n

i=1

∑n

j=1 α
m
ijh(Sij − b

m
i b

m
j ) in each bit optimization

procedure and next bit always tend to correct the errors of

preceding ones.

However, the problem in Eq. (3) is still NP hard and difficult

to solve due to the discrete constrain of bi. For easier getting

the solutions, many of previous works, such as PCAH [21],

KSH [18], AGH [24], tackle this by simply dropping off the

sign function and transfer the discrete hashing optimization

problem into a continues embedding problem, i.e., bi = F (xi).
After continues embedding bi is obtained, the binary codes

can be calculated by thresholding (quantization) schemes.

However, as we mentioned above, due to the accumulated

quantization errors in the non-discrete learning procedure,

this kind of relaxing scheme causes low-quality binary codes

and make the hash function less effective. Specifically, in

multimodal hashing cases, this problem will become worse

since large structure gap exists in different data modalities.

To obtain better unified hash codes for our cross-view

similarity retrieval, in this paper, we propose a discrete binary

codes optimization scheme by adding the binary constrain

in Eq. (3) as a regularization item to achieve the large-

scale optimization [49], [26]. Inspired by the previous discrete

hashing method [26], [27], [44], [43], an alternate scheme is

exploited here for each bit learning. In the following section,

we will first introduce the kernelized feature embedding in

F (·), then discrete bit optimization and boosting joint learning

will be explained in detail.

B. Kernelized Feature Embedding

For hashing methods, the quality of large-scale data feature

is one of the important factor determining the retrieval accura-

cy. However, in practice, the large variances, redundancies and

noises would be unavoidably existed in mess of data features,

which all negatively affect the quality of the generated hash

codes. Thus, having good feature representations becomes

crucial. To achieve better performance, in this paper, we

propose a simple kernelized nonlinear embedding scheme to

produce more powerful and discriminative data representations

beyond the raw features. Particularly, we first adopt Gaussian

Mixed Model (GMM) [50], [51] for each class of data in

different modalities. From the viewpoint of data probabilistic

distribution, instances in the original feature space do not

always follow the same distribution, but are naturally clustered

into several groups. The data in the same group shares the

same probabilistic distribution. Thus, GMM can find the

distribution centroids as the anchor points, which helps to form

our kernelized nonlinear embedding as

φ(x) = [exp(−γ||x− g1||
2), . . . , exp(−γ||x− gk||

2)]T (4)

where, || · || denotes the 2-Norm operation, φ(x) ∈ R
k×1 is

the k-dimensional column vector computed via RBF kernel

mapping, {gi}
k
i=1 indicates the k learned GMM anchor points

from training data and γ is radial basis. It is noteworthy that for

our cross-modality scenarios, we respectively embed x(1) into

φ(x(1)) with GMM anchors learned from X(1), and x(2) into

φ(x(2)) with GMM anchors learned from X(2). To simplify

our method, in fact we learn the same number of anchors

k for both modalities in our CSHD algorithm. This kind of

nonlinear embedding provides an effective way to obtain better

feature representations and has also been demonstrated with

superior performance in previous hashing method [30], [29],

[26], [18]. Once the kernelized feature embedding is achieved,
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Algorithm 1: Cross-modality Sequential Discrete Hashing (CSDH)

Input: Multimodal training data matrices X(ψ) ∈ R
dψ×n, ψ = 1, 2, label matrix Y ∈ {0, 1}C×n, parameter k, λ1 and λ2.

Output: Unified Hash codes B = [B1T , . . . , BM
T
]T ∈ {−1,+1}M×n of the training set, projection matrices

P(ψ) = [P 1
(ψ)

T
, . . . , PM(ψ)

T
]T ∈ R

M×k, ψ = 1, 2 for different modalities.

1 Compute the kernel feature embedding φ(X(ψ)) ∈ R
k×n for X(ψ), ψ = 1, 2 using Eq. (4), set the initial sample weight

α1
ij =

1
n2 , i, j = 1, . . . , n, and construct semantic similarity matrix S = Y TΛY ∈ {−1,+1}n×n, where Λ = 1− 2I, 1 is

C × C all ones matrix and I is the identity matrix.

2 for m = 1 :M do

3 Initialize Bm = [bm1 , . . . , b
m
n ]1×n for the m-th bit using Eq. (14).

4 Repeat

5 P-Step: Fix Bm and update Pm(ψ) using Eq. 9 or Eq. (10), ψ = 1, 2;

6 B-Step: Fix P(ψ), ψ = 1, 2 and update bmi using Eq. (13), i = 1, . . . , n;

7 Until convergency or reach maximum t iterations.

8 Return Bm and Pm(ψ), ψ = 1, 2.

9 Calculate the hash error of m-th bit using Eq. (15) and then update sample weight αm+1
ij ← αmij using Eq. (16).

10 end

the next step is to optimize the binary codes as well as the

hash functions.

C. Discrete Bit Optimization

Since our algorithm is based on a sequential learning

framework, the binary codes and corresponding hash functions

are learned with a bitwise manner. In this section, we mainly

focus on how to obtain a high-quality single bit of the

codes. Recalling the Eq. (1), we add the binary constrains

as regularization items to reshape our bitwise cross-modality

objective function to

min Lm(Sij , b
m
i b

m
j , α

m
ij ) + λ1

n∑

i=1

||bmi − F
m
(1)(x

(1)
i )||2

+ λ2

n∑

i=1

||bmi − F
m
(2)(x

(2)
i )||2 (5)

s.t. bmi , b
m
j ∈ {−1,+1} and m = 1, . . . ,M

We transfer the binary constrain in Eq. (1) into two regular-

ization terms which fit the error of the single bit binary code

with the continues embedding F (·). λ1 and λ2 are penalty

parameters which balance the discrete binary loss Lm and

regularization terms. As mentioned in [26], with the large

penalty parameters, minimizing Eq. (5) is approximately equal

to Eq. (1) and in the realistic applications, the small difference

between bm and F (x) is tolerant. Similar formulation has also

been applied in [27], [43]. In fact, to make the our algorithm

more general, the embedding function F (x)m of m-th bit here

adopts a simple projection form for both modalities as

Fm(j)(x) = Pm(1)φ(x
(1)) and Fm(2)(x) = Pm(2)φ(x

(2)) (6)

where Pm(1) ∈ R
1×k and Pm(2) ∈ R

1×k are m-th bit projection

vectors that map φ(x(1)) and φ(x(2)) into a low-dimensional

feature space.

From Eq. (5) and Eq. (6), it is obvious that the bitwise

optimization with discrete constrain is still a non-convex and

non-smooth NP-hard problem. To the best of our knowledge,

there is no direct way to find a globally optimal solution. Thus,

in our paper, we proposed an alternate approach to obtain

a local optimal solution instead. Particularly, we iteratively

tackle this problem by solving the sub-problem corresponding

to one variable when fixing all the other variables. For each

sub-problem, it is tractable and easy to solve, and in this way

we can effectively optimize Eq. (5). In the following part, we

will elaborate our alternate bitwise optimization algorithm.

Alternate Optimization Scheme: To make our method

more efficient and better for understand,, we first rewrite Eq.

(5) into matrix form and replace Hamming distance h(·, ·) with

Euclidean distance due to h(a, b) = 1
4 ||a−b||

2. The new-form

objective function of Eq. (5) is

min

n∑

i=1

n∑

j=1

αmij ||Si,j − b
m
i b

m
j ||

2 + λ1||B
m − Pm(1)φ(X

(1))||2

+ λ2||B
m − Pm(2)φ(X

(2))||2 (7)

s.t. bmi , b
m
j ∈ {−1,+1} and m = 1, . . . ,M

where Bm = [bm1 , . . . , b
m
n ]1×n is the m-th bit unified hash

codes. In Eq. (7), we have three variables i.e., Bm, Pm(1)
and Pm(2). It is noteworthy that αmij is regarded as a given

value here and its calculation method will be introduced in

the next section. To solve such an NP-hard problem, thus, we

further split the Eq. (7) into three sub-problems, each of which

becomes tractable.
1) Pm(1) sub-problem: To compute Pm(1), we fixed Bm and

Pm(2). The problem (7) will be shrunk to

min
Pm

(1)

||Bm − Pm(1)φ(X
(1))||2 (8)

Thus, the projection vector of X(1) can be then easily obtained

by a linear regression

Pm(1) = Bmφ(X(1))
T
(φ(X(1))φ(X(1))T )−1 (9)

2) Pm(2) sub-problem: Similar to solving P
(m)
(1) sub-problem,

P
(m)
(2) can also be computed by

Pm(2) = Bmφ(X(2))T (φ(X(2))φ(X(2))T )−1 (10)
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3) Bm sub-problem: It is challenging to optimize Bm in

Eq. (7), since the discrete constrain makes this problem perfor-

m as NP-hard. In this paper, we find a closed-form solution

for bmi by fixing all other bit {bmj }
n
j 6=i during optimization.

Once {bmj }
n
j 6=i are fixed, and ||bmi ||

2 = 1, ∀i ,we can rewrite

Bm sub-problem as the following equations:

min
Bm

n∑

i,j

αmij ||Si,j − b
m
i b

m
j ||

2 + λ1||B
m − Pm(1)φ(X

(1))||2

+ λ2||B
m − Pm(2)φ(X

(2))||2

= min
bm
i

n∑

i,j

αmij ||Si,j − b
m
i b

m
j ||

2 + λ1||b
m
i − P

m
(1)φ(x

(1)
i )||2

+ λ2||B
m
i − P

m
(2)φ(x

(2)
i )||2 + const

= min
bm
i

− 2

n∑

i 6=j

αmijSijb
m
i
T bmj − 2λ1b

m
i
TPm(1)φ(x

(1)
i )

− 2λ2b
m
i
TPm(2)φ(x

(2)
i ) + const

= min
bm
i

− 2bmi
T (

n∑

i 6=j

αmijSijb
m
j + λ1P

m
(1)φ(x

(1)
i )

+ λ2P
m
(2)φ(x

(2)
i )) + const

s.t. bmi , b
m
j ∈ {−1,+1}, i = 1, . . . , n (11)

where “const” means the constant value during the mathemat-

ical inferring. Eq. (11) can then be easily regarded as

max
bm

bmi
T (

n∑

i 6=j

αmijSijb
m
j + λ1P

m
(1)φ(x

(1)
i ) + λ2P

m
(2)φ(x

(2)
i ))

(12)

Straightforwardly, the above problem has the closed-form

optimal solution:

bmi = sign(

n∑

i 6=j

αmijSijb
m
j + λ1P

m
(1)φ(x

(1)
i ) + λ2P

m
(2)φ(x

(2)
i ))

= sign(B̂m(αmi ⊙ Si) + λ1P
m
(1)φ(x

(1)
i ) + λ2P

m
(2)φ(x

(2)
i ))

(13)

where B̂m ∈ {−1,+1}1×(n−1) indicates Bm excluding

bmi , Si = (Si,1, . . . , Si,i−1, Si,i+1, . . . , Si,n)
T and αmi =

(αmi,1, . . . , α
m
i,i−1, α

m
i,i+1, . . . , α

m
i,n)

T . Note that “⊙” indicates

the element-wise product.

We can observe that computing single bit binary codes for

each data point relies on the rest of pre-learned (n−1) binary

codes. Thus, we need to learn bmi for each data one by one

and update Bm for n times to obtain the final optimized Bm.

Since only one bit of a certain data is updated at each time, the

total procedure for discretely learning Bm in this sub-problem

will be very efficient.

We have so far described our optimization of each step for

Eq. (7) in detail. As mentioned above, to obtain a local optimal

solution of problem 7, we adopt an alternate scheme for each

bit code learning, in which we repeat t times to solve Pm(1) sub-

problem, Pm(2) sub-problem and Bm sub-problem in sequence.

In our experiments, t = 3 ∼ 5 is proved to be enough for

convergence.

Bm initialization: Since Bm a conjunction variable in-

volved in all three sub-problems, in our alternate optimiza-

tion procedure, a good initialization of Bm becomes very

crucial. Inspired by SH [19] and KSH [18], we initialize the

binary codes by thresholding spectral graph decomposition.

Considering supervised setting, in this paper, we construct

a weighted semantic graph on training data and minimize

Trace(V m(A ⊙ S)V mT ) s.t. V mTV m = 1, V m ∈ R
n×1,

where S ∈ {−1,+1}n×n as defined in Eq. (2) and A ∈ R
n×n

is the sample weight matrix for current bit optimization,

in which Aij = αmij , ∀i, j. The initial Bm can be easily

determined as

Bm = sign(V m) (14)

where we apply a standard eigenvector-eigenvalue decompo-

sition on (A⊙ S) and V m is the eigenvector with the largest

eigenvalue.

D. Boosting Joint Learning

In the above section, we have presented the discrete learning

algorithm for each bit of our CSDH. However, we haven’t

discussed how to calculate the sample weight αmij , i, j =
1, . . . , n for minimizing the total loss function in Eq. (3),

where αmij is a key factor effectively linking each bit together

and forming our final compact hash codes. In this paper, we

adopted an AdaBoost-like scheme to updated αmij for each

bit optimization, as AdaBoost is the most practically efficient

boosting algorithm used in various applications, such as Viola-

Jones face detector [52].

After the discrete optimization (mentioned in Section III-C)

for m-th bit is accomplished, we can calculate the embedding

error of this bit by

Erm =
n∑

i,j=1

αmijh(Si,j−b
m
i b

m
j ) =

n∑

i,j=1

αmij
1

4
||Si,j−b

m
i b

m
j ||

2

(15)

where m = 1, . . . ,M . Based on AdaBoost scheme [45], for

the next bit (i.e., m + 1-th bit), the sample weight αm+1
ij can

be updated as

αm+1
ij =

αmij exp(−ln(
1−Erm

Erm
)Sijb

m
i b

m
j )

∑n

i,j=1 α
m
ij exp(−ln(

1−Erm

Erm
)Sijbmi b

m
j )

(16)

s.t.

n∑

i,j=1

αm+1
ij = 1

where ln(·) denotes the natural logarithm. Based on above

updating rules, at each bit incorrectly hashed instances (e.g., a

pair data with same semantic label was mistakenly embedded

into different binary values bmi 6= bmj ) will be re-assigned to

larger sample weight αm+1
ij in next bit optimization. Other-

wise, the weight αm+1
ij will be reduced for correctly hashed

instances.

Note that, for the first bit (m = 1) optimization, the

identical sample weight α1
ij = 1/n2 is initially assigned

and then sequentially updated via Eq. (16) for subsequent bit

optimization. Besides, due to the mechanism of AdaBoost,

hashing bits are not equally important in our method, and

the importance of each bit can be quantitatively described by
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ln( 1−Er
m

Erm
) with a roughly decreased tendency from the first

to the last bit.

According to the boosting joint learning, we can conclude

our CSDH algorithm as follows: given training data X(1),

X(2) and the corresponding label Y , CSDH can sequentially

learn a bitwise binary codes Bm and projections of hash

function Pm(1) and Pm(2) with updated sample weight αmij
according to Section III-C, where m = 1, . . . ,M . Such a

sequential learning scheme tends to continually correct the

hashing errors of preceding bits and jointly optimize its

empirical loss with boosting strategy. Thus, the final hash

projection matrices for different modalities can be comput-

ed as P(1) = [P 1
(1)

T
, . . . , PM(1)

T
]T ∈ R

M×k and P(2) =

[P 1
(2)

T
, . . . , PM(2)

T
]T ∈ R

M×k, where k is the dimension

of kernelized feature space. The optimized hash code is

B = [b1, b2, . . . , bn]
M×n = [B1T , . . . , BM

T
]T . The overall

of the proposed CSDH is depicted in Algorithm. 1.

E. Out-of-sample Hash Codes Generating

Once we obtain hash projection matrices in each view P(1)

and P(2), for an unseen instance, the predicted hash code can

be computed via a sign function on a linear embedding. In

particular, if the unseen instance can only be observed from

one certain view, the straightforward way is to hash the data to

the view-specific binary codes. For instance, given an unseen

data x
(ψ)
u from ψ-th view, we first compute kernelized feature

embedding φ(x
(ψ)
u ) by Eq. 4 and the final hash codes for this

unseen data are defined by

H(x(ψ)u ) = sign(P(ψ)φ(x
(ψ)
u )), ψ = 1, 2 (17)

For the unseen instance that can be observed from multiple

views (i.e., 2 views for simplification) observed, we want

to generate unified hash codes by merging the predicted

codes under different views. As mentioned in recent cross-

view hashing methods SePH [29] and CMFH [31], unified

code can achieve much better results for cross-view similarity

retrieval tasks, especially when the predicted hash codes from

different views are inconsistent. Inspired by the success in

[31], [29], we also want to generate the unified code for

our searching task. However, our code generating in different

views are not based on any probabilistic prediction like SePH

which combines Bayes’s theorem with probabilities outputted

from kernel logistic regression to formulate a code unifying

framework. Thus, we have to figure out a novel code unifying

way under our framework rather than directly use previous

techniques. In this paper, we carry out a weighted linear

combination of the hash predictions from different views to

generate the unified codes. More specifically, for m-th bit

(∀m ∈ {1, . . . ,M}), we aim to learn a proper balancer

Wm ∈ R
1×2 and bias Ωm ∈ R

1×1 to better fit

Bm = sign(Wm

[
Pm(1)φ(X

(1))

Pm(2)φ(X
(2))

]
+Ωm) s.t. Bm ∈ {−1,+1}n

(18)

where X(1) and X(2) are the training data from both views

and Bm is optimal hash codes for m-th bit after the discrete

optimization by Eq. (13). To solve problem (18), we simply

Algorithm 2: Out-of-sample Hash Code Generating

Input: Multimodal training data O = {X(1), X(2)}, label

matrix Y ∈ {0, 1}C×n and an unseen multimodal

data ou = {x
(1)
u , x

(2)
u }.

Output: Wm and Ωm, m = 1, . . .M .

1 Compute Pm(1), P
m
(2) and Bm by running Algorithm. 1,

m = 1, . . .M .

2 for m = 1 :M do

3 Obtain Wm and Ωm via LibSVM by fitting Eq. (18).

4 end

5 Return the unified hash code

Bu=[H1(x
(1)
u , x

(2)
u ), . . . , HM (x

(1)
u , x

(2)
u )]T∈{−1,+1}M×1

for the unseen data ou = {x
(1)
u , x

(2)
u } via Eq. (19).

apply a linear SVM4 to find the solution of Wm and Ωm for

each bit, m = 1, . . . ,M . Once we obtained the balancers and

biases from the training set, for out-of-sample extension of a

unseen data from both views ou = {x
(1)
u , x

(2)
u }, the unified

codes for m-th bit can be generated as

Hm(x(1)u , x(2)u ) = sign(Wm

[
Pm(1)φ(x

(1)
u )

Pm(2)φ(x
(2)
u )

]
+Ωm) (19)

The later experiments demonstrate this unified code gen-

erating scheme can lead to good performance on cross-view

retrieval tasks. Algorithm. 2 concludes our out-of-sample

unified code generating procedure.

F. Multiple Modalities Extension

All the formulations above are used for the simplified

version of two-modality cross-view similarity search. In this

section, we will extend the current algorithm to more general

cases with O = {X(1), . . . , X(l)} (l > 2), where l is the

number of modalities. The bit optimization objective function

can be simply rewritten from Eq. (7) as

n∑

i=1

n∑

j=1

αmij ||Si,j − b
m
i b

m
j ||

2 +

l∑

ψ=1

λψ||B
m − Pm(ψ)φ(X

(ψ))||2

s.t. bmi , b
m
j ∈ {−1,+1} and m = 1, . . . ,M

Here, our alternate optimization scheme can be directly used

to compute Bm and Pm(ψ) for each bit, where ψ = 1, . . . , l and

m = 1, . . . ,M . For out-of-sample unified code learning of an

unseen multimodal data, we can also rewrite the Eq. (19) as

Hm(x(1)u , . . . , x(l)u ) = sign(Wm




Pm(1)φ(x
(1)
u )

...

Pm(l)φ(x
(l)
u )


+Ωm)

where ou = {x
(1)
u , . . . , x

(l)
u } is the multimodal data from l

views, Wm and Ωm are optimized via a linear SVM similar

to two-modality case. By doing so, our CSDH can be applied

on general cross-modality retrieval tasks.

4In practical implementation, LibSVM toolbox is used to solve this binary
classification problem.
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TABLE I
CROSS-MODAL RETRIEVAL PERFORMANCE OF THE PROPOSED CSDH AND COMPARED BASELINES ON ALL DATASETS WITH DIFFERENT HASH CODE

LENGTHS, IN TERMS OF MAP.

Task Method
Wiki MIRFlickr NUS-WIDE

16 bits 32 bits 64 bits 128 bits 16 bits 32 bits 64 bits 128 bits 16 bits 32 bits 64 bits 128 bits

Image
Query

vs.
Text
Database

IMH 0.1576 0.1596 0.1632 0.1593 0.6020 0.6119 0.6082 0.5991 0.4171 0.3974 0.3792 0.3673
CMFH 0.2150 0.2268 0.2396 0.2424 0.5849 0.5844 0.5843 0.5841 0.4309 0.4231 0.4217 0.4201
LSSH 0.2155 0.2293 0.2235 0.2188 0.5785 0.5787 0.5811 0.5811 0.3919 0.3939 0.3951 0.3964

CMSSH 0.1866 0.1729 0.1670 0.1562 0.5722 0.5737 0.5721 0.5704 0.4051 0.3995 0.3886 0.3805
CVH 0.1249 0.1199 0.1212 0.1167 0.6075 0.6177 0.6156 0.6078 0.3689 0.4172 0.4605 0.4459
CRH 0.1562 0.1576 0.1560 0.1520 0.5595 0.5647 0.5633 0.5648 0.3448 0.3454 0.3513 0.3578
QCH 0.2058 0.2173 0.2202 0.2199 0.5505 0.5528 0.5589 0.5732 0.4897 0.4980 0.5015 0.5017

KSH-CV 0.2005 0.1835 0.1775 0.1649 0.5782 0.5826 0.5786 0.5744 0.4049 0.4061 0.3910 0.3810
SCM-Orth 0.1544 0.1511 0.1230 0.1290 0.5848 0.5765 0.5707 0.5639 0.3782 0.3678 0.3604 0.3528
SCM-Seq 0.2214 0.2325 0.2443 0.2601 0.6236 0.6325 0.6467 0.6494 0.4843 0.4936 0.4948 0.4967

SePH 0.2787 0.2956 0.3064 0.3134 0.6723 0.6771 0.6783 0.6817 0.5421 0.5499 0.5537 0.5601

CSDH
0.3173

± 0.0102
0.3377

± 0.0084
0.3441

± 0.0095
0.3567

± 0.0062
0.7032

± 0.0091
0.7143

± 0.0076
0.7222

± 0.0080
0.7274

± 0.0068
0.5638

± 0.0031
0.5742

± 0.0026
0.5808

± 0.0020
0.5869

± 0.0033

Text
Query

vs.
Image
Database

IMH 0.1472 0.1358 0.1286 0.1285 0.5896 0.6035 0.6010 0.5937 0.4037 0.3907 0.3769 0.3621
CMFH 0.4884 0.5139 0.5314 0.5391 0.5945 0.5932 0.5928 0.5920 0.4639 0.4561 0.4505 0.4487
LSSH 0.4954 0.5205 0.5244 0.5291 0.5909 0.5924 0.5937 0.5944 0.4280 0.4239 0.4228 0.4177

CMSSH 0.1620 0.1594 0.1557 0.1539 0.5694 0.5741 0.5709 0.5686 0.3896 0.3779 0.3750 0.3673
CVH 0.1194 0.1046 0.1016 0.1003 0.6036 0.6034 0.6016 0.5966 0.3635 0.4032 0.4346 0.4261
CRH 0.1205 0.1174 0.1221 0.1189 0.5612 0.5629 0.5615 0.5630 0.3511 0.3516 0.3583 0.3623
QCH 0.3033 0.3173 0.3263 0.3290 0.5613 0.5674 0.5712 0.5705 0.5768 0.5810 0.5969 0.6047

KSH-CV 0.1701 0.1721 0.1669 0.1638 0.5761 0.5789 0.5747 0.5735 0.4066 0.3941 0.3847 0.3826
SCM-Orth 0.1546 0.1332 0.1099 0.1106 0.5870 0.5761 0.5692 0.5605 0.3762 0.3645 0.3573 0.3523
SCM-Seq 0.2138 0.2377 0.2469 0.2574 0.6147 0.6212 0.6301 0.6327 0.4540 0.4631 0.4626 0.4652

SePH 0.6318 0.6577 0.6646 0.6709 0.7197 0.7271 0.7309 0.7354 0.6302 0.6425 0.6506 0.6580

CSDH
0.6778

± 0.0078
0.6915

± 0.0054
0.6986

± 0.0088
0.7038

± 0.0079
0.7440

± 0.0098
0.7532

± 0.0077
0.7618

± 0.0080
0.7639

± 0.0110
0.6530

± 0.0041
0.6681

± 0.0052
0.6742

± 0.0047
0.6760

± 0.0024

The results of CSDH are mean accuracies of 5 runs with a degree of uncertainty.

IV. EXPERIMENTS AND RESULTS

In this section, we first introduce three different datasets,

i.e., Wiki, MIRFlickr and NUS-WIDE, used in our experi-

ments and then carefully describe corresponding experimental

settings. After that, we systematically evaluate our CSDH

with several state-of-the-art methods and illustrate the relevant

results.

A. Datasets

The Wiki dataset [53] collects samples from Wikipedia

“featured articles”, containing 2866 image-text pairs in 10

semantic classes. For each image, a 128-dimensional SIFT

[54] feature is extracted and a 10-dimensional topic vector

is used for representing each text. Wiki is announced as a

single label dataset, in which each image-text pair is only

attached to one of the 10 semantic labels. Following the setting

in the original paper [53], we take 2173 image-text pairs as

the retrieval set and the remaining 693 image-text pairs as the

query set.

The MIRFlickr dataset [55] contains 25,000 images as

well as their textural tags collected from Flickr. Unlike Wiki

dataset, each instance in the MIRFlickr dataset is assigned

with multiple semantic labels from some of the 24 provided

categories. For each instance, the image view is represented

by a 150-dimensional edge histogram and the text view is

represented by a 500-dimensional feature vector which is

derived from PCA on its textual tags. Following the previous

setting in [29], we take 5% of the dataset as the query set and

the rest as the retrieval set.

The NUS-WIDE dataset [56] is a real-world web image

dataset containing around 270,000 web images associated with

81 ground truth concept classes. As in [29], we only use the

most frequent 10 concept classes, each of which has abundant

relevant images ranging from 5,000 to 30,000, and totally

186,577 instances are kept. Similar to the MIRFlickr dataset,

each image in the NUS-WIDE dataset is also assigned with

multiple semantic labels. Each image-text pair of one instance

is represented by a 500-dimensional Bag-of-Word SIFT feature

and a 1000-dimensional binary tagging vectors, respectively.

Similar to [31], [29], [30], we further sample 1% of the dataset

as the query set and the rest as the retrieval set.

Following the popular experimental setting in [29], [31],

we use the whole retrieval set of Wiki dataset as the training

set due to its small size, while for larger MIRFlickr and

NUS-WIDE datasets, to reduce the computational complexity,

we take 5000 instances from their retrieval sets to construct

training set, respectively. Specifically, for a fair comparison,

we use the selection index of 5000-instance training data for

these two datasets provided by [29]. Since all three datasets

are with two-modality cases, i.e., Image and Text, we evaluate

the performance of cross-modality retrieval for both “Image

Query with Text Dataset” (i.e., I2T) and “Text Query with

Image Dataset” (i.e., T2I) on each dataset. Besides, MIRFlickr

and NUS-WIDE are multi-label datasets, thus we regard two

instances to be in the same category only if they share at least

one common tag.

B. Compared Methods and Experimental Settings

In our experiments, we systematically compare the proposed

CSDH method with three unsupervised hashing methods:

CMFH [31], LSSH [41] and QCH [32], and eight supervised

hashing methods: IMH [9], CVH [4], CMSSH [3], CRH [7],

SCM-Orth [28], SCM-Seq [28], KSH-CV [30] and SePH

[29] for cross-modality retrieval tasks. It is noteworthy that

IMH is originally designed as an unsupervised method, but

in our experiments, we follow [29] to regard IMH as a

supervised method by using annotated category tags of the

training instance to compute the required similarity matrix.

All the compared methods are achieved with the public codes
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except for self-implemented CVH. For fair comparison, the

parameters of the above baselines are carefully selected via

cross-validation rather than using default values for yielding

better performance.

For the proposed CSDH, the parameter k in Eq. (4) is

emphatically set to 500 as same as [29] and the radial basis γ
is tuned with cross-validation on the training set. Furthermore,

to make optimization simple, we set the balancing parameters

for two modalities λ1 = λ2 = λ in Eq. (7) which is

selected from one of {0.0001, 0.001, 0.01, 0.1, 1, 10} yielding

the best performance by cross-validation on the training set.

The maximum iteration number for each bit optimization is

set to t = 5. It is noted that the semantic similarity matrix

construction for CSDH in Eq. (2) is slightly different on the

three datasets used in this paper. Particularly, for Wiki dataset,

we define Sij == −1 as if two instances are not from the same

category, otherwise Sij == 1. However, for multi-labeled

MIRFlickr and NUS-WIDE datasets, Sij == −1 only if two

instances do not have at least one common label; otherwise

Sij == 1.

In the query phase, we report the mean average precision

(MAP) to evaluate the retrieval performance for all three

datasets. It is defined as

MAP =
1

|Q|

|Q|∑

i=1

1

r

r∑

j=1

P (ij),

where |Q| is the size of the query set, r is the number of

the ground-truth relevant instances in the retrieval set for the

i-th query and P (ij) indicates the precision of the top j
retrieved texts (images) of the i-th image (text). In addition,

all of the methods are evaluated on four different lengths of

codes {16, 32, 64, 128}. Our experiments are conducted using

Matlab 2014a on a server configured with a 12-core processor

and 128 GB of RAM running the Linux OS. Since relative

randomness exists in the selection of k centroids by GMM

during our CSDH procedure, we repeated CSDH five times

for all the datasets, and we report the averages as the final

results.

C. Results

In Table I, we demonstrate the MAP on all three datasets,

i.e, Wiki, MIRFlickr and NUS-WIDE datasets. Since we focus

on the cross-modality retrieval task, we show the correspond-

ing results on two aspects respectively: image query vs. text

database (I2T) and text query vs. image database (T2I). In

general, we can clearly see that the MAP of Wiki dataset is

lower than those of MIRFlickr and NUS-WIDE datasets in

terms of both I2T and T2I. The reason is that each instance of

Wiki is assigned with only one single label, while the instances

of other two datasets are assigned with multiple labels. As

we mentioned above, two instances are regarded as the same

category in MIRFlickr and NUS-WIDE datasets, only if they

share at least one common tag.

More detail, it is easy to discover that the MAP of CVH

CMSSH and IMH are always fluctuant with the increase of the

code length. Specifically, the best performances of CVH and

IMH are achieved with relatively short length of codes (i.e., 16
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Fig. 3. Effect of training set size of proposed CSDH on NUS-WIDE datasets
@128 bits.

TABLE III
EFFECT OF THE DIFFERENT BINARY CODE INITIALIZATIONS ON ALL

THREE DATASETS @128 BITS.

Datasets
Image Query vs. Text Database Text Query vs. Image Database

Optimized B

initialization
Random B

initialization
Optimized B

initialization
Random B

initialization

Wiki 0.3567 0.3447 0.7038 0.6894
MIRFlickr 0.7274 0.7151 0.7639 0.7577

NUS-WIDE 0.5869 0.5763 0.6760 0.6701

“Optimized B initialization” indicates initializing binary codes bit by bit using Eq. (14)

of our paper. “Random B initialization” indicates initializing binary codes with random

values of -1 or 1.

and 32 bits) for both I2T and T2I on all three datasets. Besides,

we can also find that with the code length increasing, the

tendencies of MAPs calculated by KSH-CV and SCM-Orth are

dramatically deceasing on all datasets. Moreover, unsupervised

methods QCH, LSSH and CMFH always achieve better per-

formance than supervised IMH, CVH, CMSSH, CRH, SCM-

Orth and KSH-CV for both I2T search and T2I search, since

the qualitative latent semantic features are well exploited in

QCH, LSSH and CMFH. Besides, the unified codes used in

CMFH can also improve the retrieval accuracies. From Table

I, our CSDH can produce significantly better performance

than CMFH, LSSH and QCH, IMH, CVH, CMSSH, CRH,

SCM-Orth, SCM-Seq and KSH-CV for both I2T and T2I on

all three datasets and even slightly outperforms the recent

SePH method. Beyond those, the degree of uncertainty via

5 trails of our CSDH is generally less than 1% according to

the corresponding MAP for both tasks, since the selection of

the GMM centroids is not that influential in achieving good

performance. The precision-recall curves with the code lengths

of 32 and 128 bits are also shown in Fig. 1. By measuring the

area under curve (AUC), it is obviously discovered that the

proposed CSDH can consistently lead to better performance

than all other state-of-the-art methods.

We have also done parameter sensitivity analysis on λ. Fig.

2 shows the MAP with 32 and 128 bits of our CSDH by

using different λ values on all three datasets and two different

tasks (i.e., I2T and T2I). From the general perspective, the best

retrieval performance always occurs when λ = 0.01 or λ =
0.001 for all datasets. Particularly, it is discovered that with the

increase of λ, the MAPs on the Wiki and NUS-WIDE datasets

is relative stable for I2T task, while for T2I task the MAPs

on these two datastes are fluctuant. For the MIRFlickr dataset,

the MAP has the similar tendency of ”rise-then-down” for both

I2T and T2I tasks. To conclude, when λ takes various values

for all datasets, it is not sensitive for the I2T performance, but

variation slightly exists for the T2I task.

Moreover, we have also illustrated the effectiveness of

varying training set size on the NUS-WIDE dataset. In detail,

we vary the number of samples in the training set from 500 to

5000 with the step of 500. Fig. 3 demonstrates the MAP of our

proposed CSDH with 128 bits for different training set sizes.

It is obviously observed that the performance significantly
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Fig. 1. Comparison of precision recall curves for cross-modal retrieval with different bits on the Wiki, MIRFlickr and NUS-WIDE datasets.
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Fig. 2. Parameter sensitivity analysis on λ @32 bits and @128 bits for the Wiki, MIRFlickr and NUS-WIDE datasets.

increases when the number of training samples grows from

500 to 4000 for both I2T and T2I tasks. With the training size

growing larger than 4000, the performance becomes converged

and stable. Fig. 3 reflects our CSDH can achieve satisfactory

performance for scalable cross-modality retrieval with only a

small set of training samples.

At last, we evaluate the different unified code generating

schemes and effects of different binary code initializations

for our CSDH. In terms of unified code generating schemes,

we introduce our scheme as “SVM-weighted merge” which

indicates the proposed method in Algorithm. 2 and two com-

parable baselines: (1) “Average merge” indicates the Wm =
[0.5, 0.5] and Ωm = 0 in Eq. (19), where m = 1, . . . ,M ; and

(2) “Random merge” indicates Wm = [a, b] and Ωm = 0 in

Eq. (19), where m = 1, . . . ,M , a and b are random values,

s.t. 0 ≤ a ≤ 1, 0 ≤ b ≤ 1 and a + b = 1. Since different

schemes lead to different unified codes, we evaluate the

retrieval performance (MAP) of the three schemes in Table II

for both I2T and T2I tasks. It is discovered that our “SVM-

weighted merge” used in CSDH can consistently achieve better

results than other baselines on all of datasets and tasks. Despite

discarding the weights from different modalities, “Average

merge” can still produce acceptable performance. However,

for “Random merge”, the arbitrary and unbalanced weights

cause loss of the retrieval actuaries due to the distortion of the

code to some extent. In terms of the binary code initialization,

we mainly compare our scheme in Eq. (14) with the random

binary code initialization. The results in Table III illustrate our

scheme can achieve slightly better retrieval performance on all

three datasets for both I2T and T2I tasks. It proves that our

CSDH is not very sensitive when applying different binary

code initialization.

V. CONCLUSION

In this paper, a novel supervised approach named Cross-

modality Sequential Discrete Hashing (CSDH) has been in-

troduced for large-scale similarity retrieval. In the training

phase, we learn each bit of codes sequentially with discrete

optimization that jointly minimizes its empirical loss based on

a boosting strategy. With such a bitwise manner, hash functions

are then learned for each modality, mapping the corresponding
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TABLE II
COMPARISON OF MAP BY USING DIFFERENT UNIFIED CODE LEARNING SCHEMES WITH DIFFERENT HASH CODE LENGTHS ON ALL THREE DATASETS.

Image Query vs. Text Database

Method
Wiki MIRFlickr NUS-WIDE

16 bits 32 bits 64 bits 128 bits 16 bits 32 bits 64 bits 128 bits 16 bits 32 bits 64 bits 128 bits

CSDH+Random merge 0.2672 0.2904 0.3017 0.3131 0.6438 0.6503 0.6698 0.6787 0.5248 0.5377 0.5482 0.5501
CSDH+Average merge 0.3060 0.3251 0.3317 0.3502 0.6923 0.7104 0.7116 0.7269 0.5592 0.5634 0.5722 0.5793

CSDH+SVM-weighted merge 0.3173 0.3377 0.3441 0.3567 0.7032 0.7143 0.7222 0.7274 0.5638 0.5742 0.5808 0.5869

Text Query vs. Image Database

Method
Wiki MIRFlickr NUS-WIDE

16 bits 32 bits 64 bits 128 bits 16 bits 32 bits 64 bits 128 bits 16 bits 32 bits 64 bits 128 bits

CSDH+Random merge 0.6016 0.6240 0.6479 0.6521 0.6771 0.6814 0.6992 0.7002 0.5792 0.5917 0.6041 0.6103
CSDH+Average merge 0.6628 0.6777 0.6896 0.7021 0.7257 0.7367 0.7572 0.7609 0.6331 0.6573 0.6653 0.6744

CSDH+SVM-weighted merge 0.6778 0.6915 0.6986 0.7038 0.7440 0.7532 0.7618 0.7639 0.6530 0.6681 0.6742 0.6760

“SVM-weighted merge” indicates our proposed method in Algorithm. 2. “Average merge” indicate the Wm = [0.5, 0.5] and Ωm = 0 in Eq. (19), where m = 1, . . . ,M .

While “Random merge” indicates Wm = [a, b] and Ωm = 0 in Eq. (19), where m = 1, . . . ,M , a and b are random value, s.t. 0 ≤ a ≤ 1, 0 ≤ b ≤ 1 and a+ b = 1.

representations into hash codes. In the test phase, a simple

fusion scheme is utilized to generate the unified hash codes

for final retrieval by merging the predicted hashing results

of an unseen instance from different modalities. Extensive

results have shown that our CSDH can outperform state-of-

the-art methods in terms of cross-modal retrieval accuracies.

Our future work aims to generalize our approach to achieve

not only ordinary cross-modularity task but also for large-scale

retrieval with partial modalities missing.
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