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Binary choice tasks, such as 2-alternative forced choice, show a complex yet consistent pattern of sequential

effects, whereby responses and response times depend on the detailed pattern of prior stimuli going back at

least 5 trials. We show this pattern is well explained by simultaneous incremental learning of 2 simple statistics

of the trial sequence: the base rate and the repetition rate. Both statistics are learned by the same basic

associative mechanism, but they contribute different patterns of sequential effects because they entail different

representations of the trial sequence. Subtler aspects of the data that are not explained by these 2 learning

processes alone are explained by their interaction, via learning from joint error correction. Specifically, the

cue-competition mechanism that has explained classic findings in animal learning (e.g., blocking) appears to

operate on learning of sequence statistics. We also find that learning of the base rate and repetition rate are

dissociated into response and stimulus processing, respectively, as indicated by event-related potentials,

manipulations of stimulus discriminability, and reanalysis of past experiments that eliminated stimuli or prior

responses. Thus, sequential effects in these tasks appear to be driven by learning the response base rate and

the stimulus repetition rate. Connections are discussed between these findings and previous research attempt-

ing to separate stimulus- and response-based sequential effects, and research using sequential effects to

determine mental representations. We conclude that sequential effects offer a powerful means for uncovering

representations and learning mechanisms.
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representation
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Sequential effects are ubiquitous in human and animal behavior.

Across a wide range of domains, spanning stimulus detection

(Posner & Cohen, 1984), perceptual identification (Garner, 1953;

Treisman & Williams, 1984), probability learning (Myers, 1976),

categorization (M. Jones, Love, & Maddox, 2006; Stewart, Brown,

& Chater, 2002), and decision-making (Hogarth & Einhorn, 1992),

choice probabilities and response time (RT) are sensitive not just

to the current stimulus or experimental condition, but also to the

local history of preceding events. Sequential effects are often

marginalized (literally) in statistical analyses, an approach that

equates them with random noise. However, careful consideration

of sequential effects can reveal a great deal about knowledge

representation and learning mechanisms. This article argues that

many sequential effects reflect trial-by-trial learning of statistics of

the task environment, and that their detailed pattern can reveal

which statistics are being tracked and how they are learned.

The present study investigates sequential effects in speeded

perceptual tasks, in particular two-alternative forced choice

(2AFC). This paradigm is extremely simple, involving, for exam-

ple, pressing one of two keys in response to a dot that appears

either above or below visual fixation. However, even this simple

setting gives rise to a complex pattern of sequential effects in RT

extending over many trials, which has been replicated in detail

across several previous studies (e.g., Cho et al., 2002; Jentzsch &

Sommer, 2002; Soetens, Boer, & Hueting, 1985). We propose

these sequential effects reflect learning of statistics of the stimulus

and response sequences, such as the binary sequence of dot posi-

tions (above vs. below) and of response hands (left vs. right). Our

results show that the observed pattern of sequential effects can be

explained in impressive detail by the combination of two simple

learning mechanisms. In particular, subjects appear to be contin-

ually engaged in learning the base rate (i.e., the proportion of trials
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on which each stimulus or response occurs) and the repetition rate

(i.e., the proportion of trials that repeat vs. alternate from the

previous trial). We refer to the base rate and repetition rate,

respectively, as first- and second-degree statistics of the trial

sequence, to highlight their close relationship and the fact that the

repetition rate is the more complex of the two.

A common explanation for sequential effects is incremental

learning, a mechanism assumed by classical theories of association

learning (Estes, 1950; Rescorla & Wagner, 1972), more modern

connectionist models (Rumelhart, Hinton, & Williams, 1986), and

the computational framework of reinforcement learning (Sutton &

Barto, 1998). Incremental learning naturally leads to recency ef-

fects (REs), whereby response probabilities are biased toward

recent feedback, and RT is speeded whenever the current trial

matches recent trials (Estes, 1957). We show here that in 2AFC,

incremental learning of the base rate and repetition rate can both

lead to REs, which separately are simple but which in combination

produce a complex pattern of sequential effects.

We define a first-degree RE as a reduction in RT due to a

physical match between the current stimulus and stimuli on recent

trials, or between the current response and the responses on recent

trials. (The question of whether these effects are driven by stimuli

or responses is a further focus of this article, discussed shortly.) In

the models considered here, first-degree REs arise because the

estimate of the base rate is adjusted in the direction of the stimulus

or response on each trial. This adjustment increases the expectancy

that the same stimulus or response will occur on subsequent trials,

and if this expectancy is met then processing is faster.

Likewise, we define a second-degree RE as a reduction of RT

due to a match between the current trial and recent trials in terms

of repetition versus alternation. A repetition trial is one on which

the stimulus and response match those of the previous trial,

whereas an alternation trial is one that mismatches the previous

trial. It is well established in 2AFC that responding on repetition

trials tends to be faster when recent trials were repetitions, whereas

responding on alternation trials tends to be faster when recent trials

were alternations (e.g., Soetens et al., 1985). The models consid-

ered here produce second-degree REs through incremental learn-

ing of the repetition rate, adjusting their estimate upward following

repetition trials and downward following alternation trials.1

There is broad evidence for both first- and second-degree REs

(e.g., Myers, 1976; Soetens et al., 1985), but they have largely

been studied in separate literatures and their relationship has not

been closely examined. As explained below, open questions re-

garding each of these sequential effects can be resolved by con-

sideration of the other. Furthermore, we show that models incor-

porating both first- and second-degree learning (i.e., learning of the

base rate and repetition rate) provide excellent fits to the complete

pattern of sequential effects observed in 2AFC tasks. We argue this

finding has implications for the psychological representation of

stochastic binary sequences, specifically that they are encoded in

terms of base rate and repetition rate, and that both of these

statistics are learned incrementally. This conclusion illustrates an

important theoretical contribution of sequential effects, that they

can reveal the nature of cognitive representations, because differ-

ent representations lead to different patterns of sequential effects.

In addition to their implications for representation, the present

data have implications for learning mechanisms. Specifically, we

compare a parallel-learning model that learns the base rate and

repetition rate independently with a joint-learning model in which

both statistics are learned from their combined prediction error

(Rescorla & Wagner, 1972). The parallel-learning model predicts

sequential effects to be a pure combination of first- and second-

degree REs, whereas the joint-learning model predicts additional

sequential effects arising from what amounts to competitive learn-

ing between the two statistics. The latter predictions are confirmed

in the present experiments, supporting the assumptions of the

joint-learning model and more generally supporting our learning-

based approach to sequential effects. Learning from joint predic-

tion error has been fundamental to explanations of many animal

conditioning phenomena (e.g., blocking; Kamin, 1968), but it has

not previously been applied to learning sequence statistics. Previ-

ous models of sequential effects built on first- and second-degree

REs that did not explicitly connect them to learning treated them

as arising from independent mechanisms and cannot explain the

results found here (Cho et al., 2002; Squires, Wickens, Squires, &

Donchin, 1976).

A final focus of this article is the question of whether sequential

effects are driven by stimuli or responses. This is a longstanding

issue in the study of sequential effects in speeded choice (e.g.,

Pashler & Baylis, 1991). The framework proposed here offers a

novel approach to this question, because of the possibility that

first- and second-degree REs originate from different processing

stages. We refer to this possibility as the separate-stages hypoth-

esis (although it is not meant to imply a strictly serial model). In

particular, several lines of evidence from the present experiments

and from reanalysis of previous data indicate that, at least in the

simple binary tasks considered here, first-degree REs arise in

response processing whereas second-degree REs arise in stimulus

processing. That is, sequential effects in 2AFC reflect learning of

response base rates and stimulus repetition rates. This conclusion

is supported most strongly by the present Experiment 1, which

examines sequential effects in components of event-related poten-

tial (ERP) believed to separate stimulus and response processing,

specifically the amplitude of the P100 signal in visual cortex and

the timing of the lateralized readiness potential (LRP) in motor

cortex. These analyses indicate that sequential effects in stimulus

processing are characterized by second-degree sequential effects

alone, whereas sequential effects in response processing are char-

acterized by first-degree sequential effects alone. Furthermore,

model fits to the RT data give good parameter-free predictions of

the ERP measures, under the assumption that the second-degree

component of the model resides in stimulus processing and the

first-degree component resides in response processing. These re-

sults provide a neurophysiological foundation for the psychologi-

cal separation of the two learning mechanisms proposed here and,

more generally, illustrate how latent variables of learning models

fit to behavioral data can be used to explain sequential effects in

neurophysiological data. Although the separate-stages hypothesis

1 It is important not to confuse the present distinction between first- and
second-degree REs with the common distinction in the literature between
first-order and higher-order sequential effects (e.g., Soetens et al., 1985).
First-order sequential effects are defined as effects of the immediately
preceding trial, and higher-order effects are from earlier trials. As the
results reported here demonstrate, the two distinctions are independent.
That is, both first- and second-degree REs contribute to both first- and
higher-order sequential effects.

T
h
is

d
o
cu

m
en

t
is

co
p
y
ri

g
h
te

d
b
y

th
e

A
m

er
ic

an
P

sy
ch

o
lo

g
ic

al
A

ss
o
ci

at
io

n
o
r

o
n
e

o
f

it
s

al
li

ed
p
u
b
li

sh
er

s.

T
h
is

ar
ti

cl
e

is
in

te
n
d
ed

so
le

ly
fo

r
th

e
p
er

so
n
al

u
se

o
f

th
e

in
d
iv

id
u
al

u
se

r
an

d
is

n
o
t

to
b
e

d
is

se
m

in
at

ed
b
ro

ad
ly

.

629SEQUENTIAL EFFECTS IN 2AFC



might seem surprising a priori, we explain in the Separating

Stimulus- and Response-Based Sequential Effects section how it is

consistent with previous theories of stimulus- versus response-

based sequential effects.

The remainder of this article is organized as follows. We begin

by reviewing evidence for first- and second-degree REs. Then we

show how a model that produces both, through learning of the base

rate and repetition rate, can explain the detailed pattern of sequen-

tial effects found in previous 2AFC experiments. Next, data from

three previous studies (Jentzsch & Sommer, 2002; Maloney, Dal

Martello, Sahm, & Spillmann, 2005; Wilder, Jones, Ahmed, Cur-

ran, & Mozer, 2013) are reanalyzed to motivate the hypothesis that

first- and second-degree REs are dissociated into response and

stimulus processing, respectively. Two new experiments are then

reported that test the proposed theoretical framework. Experiment

1 varied the repetition rate between sessions, to evaluate model

predictions concerning the relationship between learning and se-

quential effects. The RT data from this experiment are used to

evaluate different possible mechanisms by which first- and

second-degree statistics are learned, in support of the joint-learning

model. This model is then found to provide good predictions of the

ERP data, supporting the separation of first- and second-degree

learning into response and stimulus processing. Experiment 2

provides a further test of this separation, by varying the difficulty

of the stimulus discrimination and assessing the impact on first-

and second-degree sequential effects.

Overall, the results provide a remarkably clear and coherent

picture of the origins of sequential effects in 2AFC tasks. Accord-

ing to this view, sequential effects are a signature of learning

certain statistics of the trial sequence. By considering the details of

this signature, one can uncover which statistics are learned, and

how. We conclude that sequential effects offer a powerful tool for

revealing learning mechanisms, the representations on which they

operate, and their neurophysiological underpinnings.

First-Degree Recency Effects

Perhaps the most ubiquitous sequential effect observed in psy-

chology is a facilitation of performance when the current stimulus

or response matches those of recent events. We refer to such an

effect as a first-degree RE because it depends on the identities of

individual events and not on sequential properties (such as whether

events are repetitions or alternations). First-degree recency effects

are observed in essentially any behavioral paradigm involving

repeated trials and a fixed set of stimuli or responses (see refer-

ences in the Introduction section).

An illustrative example comes from the paradigm of probability

learning, in which a subject repeatedly chooses one of a few

response options (usually two), without any cues, and then is told

which response was correct for that trial. Research in probability

learning was originally concerned with people’s ability to discern

differential reward rates for different responses, but it was discov-

ered that behavior in this paradigm is dominated by the recent trial

history (see Myers, 1976, for a review). For example, Engler

(1958) ran a two-choice task in which responses 1 and 2 were each

correct on 50% of trials. He found that subjects chose 1 on 60% of

trials following reinforcement of 1 on the previous trial, whereas

they chose 1 on only 40% of trials following reinforcement of 2.

This effect is not limited to the previous trial, but can instead

extend back many trials (e.g., Gambino & Myers, 1967).

First-degree REs are well explained by incremental learning

models that update expectancies or associations following each

trial. Incremental learning models have a long history in learning

theory (Estes, 1950; Hebb, 1949) and are fundamental to modern

neurophysiological and computational theories of reinforcement

learning (Schultz, Dayan, & Montague, 1995; Sutton & Barto,

1998). As explained in the A Simple Two-Component Model

section, incremental learning naturally leads to an exponentially

decaying influence of past experience on current behavior, with

more recent events having the greatest impact (Estes, 1957).

Although this mechanistic explanation of REs suggests they are

merely byproducts of the learning process, there is also reason to

suspect they have a functional or rational purpose. When an

environment is nonstationary, meaning that contingencies or out-

come probabilities change over time, it is generally optimal to

weight decisions on more recent events (Anderson & Schooler,

1991; Cuthill, Kacelnik, Krebs, Haccou, & Iwasa, 1990; Flood,

1954; M. Jones & Sieck, 2003; Real, 1991). This normative view

of REs suggests they should be adaptive, such that they become

stronger when autocorrelation in the outcome sequence is in-

creased (M. Jones & Sieck, 2003; Yu & Cohen, 2009). In the

context of incremental-learning models, adaptation of REs could

naturally be explained by adjusting the learning rate. A faster

learning rate is adaptive for highly nonstationary environments

because it allows more rapid tracking of changes in outcome

probabilities, and it also produces stronger REs.

M. Jones and Sieck (2003) found evidence for an adaptive

first-degree RE in a category-learning task with two categories.

They manipulated the autocorrelation in the sequence of correct

categories, so that the repetition probability was 30% (negative

autocorrelation), 50% (independent trials), or 70% (positive auto-

correlation), and found that subjects in the positive condition

exhibited the strongest REs while subjects in the negative condi-

tion exhibited the weakest. They interpreted this finding under the

normative explanation given above: REs improve performance in

the positive autocorrelation condition, whereas they hurt perfor-

mance in the negative condition. However, M. Jones and Sieck

also presented a computational model embodying a different ex-

planation. This model learned to use the outcome (i.e., correct

category) on the previous trial as a cue, in addition to the current

stimulus, for predicting the current outcome. Thus, rather than

adapting the strength of the first-degree RE (e.g., by changing the

learning rate), the model directly learned the repetition rate of the

outcome sequence. Hence, we have two competing hypotheses for

why first-degree REs adapt in autocorrelated environments: the

adaptation hypothesis, whereby first-degree REs become stronger

when nonstationarity is greater, and the direct hypothesis, whereby

subjects directly learn the repetition rate in the trial sequence. The

contrast between these explanations bears on the fundamental

question of functionality of sequential effects in learning. Testing

between them requires understanding the contribution of learning

of second-degree sequential statistics such as repetition rates.

Second-Degree Recency Effects

Evidence for learning of repetition rates comes from the pattern

of sequential effects in RT commonly observed in 2AFC tasks. In
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this paradigm, RT appears to depend primarily on whether the

current trial is a repetition or an alternation—that is, whether the

stimulus and response are the same as on the previous trial. On

repetition trials, responding is faster if recent trials were primarily

also repetitions, whereas the reverse is true on alternation trials.

We refer to this phenomenon as a second-degree RE, because it

depends on the second-degree match between current and recent

trials (i.e., whether each is a repetition or an alternation).

Figure 1 shows two typical examples of this pattern (Cho et al.,

2002; Jentzsch & Sommer, 2002). In each of these experiments,

subjects made speeded key presses to one of two stimuli (lower or

uppercase “O,” or a dot above or below visual fixation). RT for

correct responses is plotted as a function of trials n � 3 through n

(where n is the current trial), yielding 16 possible histories, each

shown as a sequence of repetitions (R) and alternations (A). For

example, AAAR indicates cases in which the current trial is a

repetition and the previous three trials were alternations. In both

experiments, there is a clear trend for RT on repetition trials to be

faster when repetitions are more frequent and more recent in the

trial history, indicated by the rising pattern in the left half of each

graph. Likewise, RT for alternation trials is faster when alterna-

tions are more frequent and more recent, as indicated by the falling

pattern in the right half of each graph.

This pattern of second-degree REs is consistent with the same

explanations given above for first-degree REs, but applied to

learning of the repetition rate. That is, subjects estimate the prob-

ability that the current trial will be a repetition versus an alterna-

tion, based on the past history of repetitions and alternations. As

with first-degree REs, this explanation can be framed mechanisti-

cally, in terms of incremental learning, or computationally, in

terms of optimal Bayesian inference assuming a nonstationary

environment (Wilder, Jones, & Mozer, 2010; Yu & Cohen, 2009).

However, second-degree REs alone cannot explain the patterns

in Figure 1. For example, consider the histories ARAR and RAAR.

In both cases, the current trial is a repetition, and there is exactly

one repetition in the previous three trials. (Because trials were

independently sampled in these experiments, both data points

represent approximately half repetitions and half alternations on

each of trials n � 4 and earlier.) This previous repetition is more

recent in the ARAR case, and hence, ARAR should show shorter

RTs than RAAR. In contrast, both experiments in Figure 1 show

the opposite pattern, which we also replicate in the experiments

reported below.

This discrepancy from the predictions of second-degree REs can

be explained by a contribution of first-degree REs. This can be

seen by translating the second-degree history representations to

equivalent first-degree representations. The sequence ARAR for

trials n � 3 through n corresponds to a sequence XYYXX for trials

n � 4 through n, where X and Y are the two first-degree trial types

(i.e., the two possible stimuli or responses), with the final X

representing the value of trial n. Likewise, the RAAR history

corresponds to XXYXX. In terms of this first-degree representa-

tion, the two sequences differ only in trial n � 3, which matches

trial n for XXYXX but not for XYYXX. Thus, first-degree REs

should contribute to faster responding for the XXYXX/RAAR

history.

As a second example, consider RARR versus AARR. Second-

degree REs would produce faster responding to RARR, because of

the additional second-degree match (the R on trial n � 3), but the

data contradict this prediction. Translating the second-degree his-

tory representations to first-degree representations yields YYXXX

for RARR and XYXXX for AARR. Thus, first-degree REs could

explain the faster responding to XYXXX/AARR, due to the extra

first-degree match (the X on trial n � 4).

The picture of sequential effects in 2AFC therefore appears

somewhat complicated. The bulk of the variation in RT by trial

history is well explained by second-degree REs, but there are

reliable discrepancies that are consistent with a contribution of

first-degree REs.

To summarize the last two sections, previous research in a

variety of domains offers strong support for both first- and second-

degree REs. These effects are consistent with explanations based

on learning of base rates and repetition rates, respectively. How-

ever, neither offers a complete theory of sequential effects, even in

simple tasks. Understanding the relationship between first- and

second-degree REs might explain open questions regarding each,

including whether first-degree REs adapt to autocorrelated envi-

ronments and whether deviations from the predictions of second-

degree REs are due to first-degree effects. Therefore, we turn now

to a modeling framework that describes how the learning mecha-

Figure 1. Sequential effects in response time (RT) in two-alternative

forced choice. Trial histories indicate trials n � 3 through n (current trial)

as repetitions (R) or alternations (A). A: Cho et al. (2002). B: Jentzsch and

Sommer (2002), Experiment 1.
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nisms underlying these two sequential effects might combine to

influence behavior.

A Simple Two-Component Model

Consider a 2AFC task with two stimuli mapped to two re-

sponses. Let En represent the stimulus-response pair on trial n

(e.g., a left button press for a stimulus above fixation, or a right

press for a stimulus below fixation). We set aside the distinction

between stimuli and responses for now, implicitly limiting the

model to trials on which the current and recent responses are all

correct. To simplify notation in a way that will be clear shortly, we

encode En as �1.

To motivate the full model, assume first that the subject learns

only an estimate of the base rate—that is, the expected value of En.

A simple and standard incremental learning rule updates this

estimate after each trial, in proportion to the prediction error:

�wbase � εbase(En � wbase). (1)

Here, wbase is the estimate of the base rate, and εbase is a learning-

rate parameter (0 � εbase � 1). It is easy to show that iteration of

this rule leads the value of wbase at the beginning of trial n to be a

weighted average of all past events, with weights an exponentially

decreasing function of lag (Estes, 1957):

wbase � �
k�1

n�1

εbase�1 � εbase�k�1En�k. (2)

Here k indexes the lag from the current trial to each past trial. For

simplicity, we assume that wbase is initialized to 0 at the start of the

experiment (i.e., neutral expectation between the two outcomes).

In advance of each trial, the current value of wbase acts as an

expectancy for En. A positive value of wbase corresponds to

an expectancy for En � 1, and a negative value corresponds to an

expectancy for En � �1. A natural assumption when modeling RT

is that responding will be faster to the extent the expectancy

matches the actual outcome (Bertelson, 1961; Kirby, 1976; Lam-

ing, 1968). Assuming a simple linear relationship with no bias

between the two responses yields the following prediction for

mean RT (where �0 and �base are scaling parameters):

RT � �0 � �base wbase En. (3)

Thus, when wbase is positive, RT will be faster (i.e., smaller) if

En � 1 than if En � �1. Likewise, if wbase is negative, RT will be

faster if En � �1. Combining Equations 2 and 3 leads to a direct

expression for predicted mean RT in terms of the trial history:

RT � �0 � �base�
k�1

n�1

εbase�1 � εbase�k�1M1�n � k, n�.
(4)

Here, M1 (n � k, n) � En�k · En denotes the first-degree match

between trials n � k and n. When these trials have the same

stimulus and response, M1(n � k, n) will equal 1, and when they

mismatch, M1(n � k, n) will equal �1. Writing the model’s

prediction in this way highlights how RT depends on these

matches between the current and past trials. RT is reduced when

there are more matches, and matches to more-recent trials have a

greater effect. In short, this model shows how incremental learning

of the base rate naturally produces exponentially decaying first-

degree REs.

The same analysis applies to second-degree REs arising from

incremental learning of the repetition rate. First, note that En�1 · En

encodes the second-degree outcome of trial n: It equals 1 when

trial n is a repetition and �1 when it is an alternation (this is just

a notational convenience, due to the �1 encoding). Therefore,

incremental learning of the repetition rate follows an update rule

analogous to Equation 1, with the first-degree outcome, En, re-

placed by the second-degree outcome, En�1 · En:

�wrep � εrep(En�1En � wrep). (5)

Iteration of this rule leads the estimate of the repetition rate, wrep,

to be an exponentially decaying weighted average of past trials,

this time in terms of whether they were repetitions or alternations:

wrep � �
k�1

n�2

εrep�1 � εrep�k�1En�k�1En�k. (6)

(The sum terminates at k � n � 2 because learning about repeti-

tions can only begin after trial 2.)

The current value of wrep generates an expectancy for each

upcoming trial, just as does wbase, but with a direction depending

on the identity of the previous trial. When wrep is positive, the

expectancy is in the direction of En�1 (expectancy of repetition),

and when wrep is negative, it is in the opposite direction (expec-

tancy of alternation). Assuming that both expectancies combine to

determine mean RT, we have

RT � �0 � �base wbase En � �rep wrep En�1 En. (7)

Combining Equations 2, 6, and 7 yields an explicit expression

for the predicted RT as a function of trial history:

RT � �0 � �base�
k�1

n�1

εbase�1 � εbase�k�1M1�n � k, n�

� �rep�
k�1

n�2

εrep�1 � εrep�k�1M2�n � k, n�.
(8)

Here, M2(n � k, n) � En�k�1En�k · En�1En denotes the second-

degree match between trials n � k and n, equal to 1 when both are

repetitions or both are alternations, and �1 otherwise. Thus, the

model’s predictions are a sum of first- and second-degree REs,

both of which decay exponentially as a function of lag. The rates

of decay are determined by the learning-rate parameters, εbase and

εrep. The �base and �rep parameters (both constrained to be non-

negative) determine the magnitudes of the two REs, via the influ-

ences of first- and second-degree expectancies on RT. (We later

interpret these parameters as speeds of response and stimulus

processing, respectively, in the context of the separate-stages hy-

pothesis.) We refer to Equation 4 as the parallel-learning model,

because it produces sequential effects from simultaneous and

independent learning of the base rate and repetition rate.

Figure 2 shows how the parallel-learning model can produce

excellent fits to the full pattern of sequential effects in a 2AFC

task. Figure 2A presents a fit of the model to the data from Figure

1A (Cho et al., 2002). The model was fit by least squares to the

mean RTs of the 16 trial histories. Predictions were derived di-

rectly from Equation 8, with the sums truncated after k � 4 for

first-degree effects and k � 3 for second-degree effects (i.e., at the

longest lags determined by these trial histories). Because Cho et al.

(2002) used independently sampled trials, the contributions from all
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earlier lags should approximately cancel out. Model parameters were

constrained to satisfy �0 � 0, �base � 0, �rep � 0, 0 � εbase � 1, and

0 � εrep � 1 (these constraints were used in all later model fits

unless noted otherwise). The model explains 98.98% of the

variance in mean RT across the 16 trial histories, on 5 free

parameters. The estimated values of these parameters are given

in Table 1.

To facilitate interpretation of Figure 2, the trial histories are

labeled using both first- and second-degree representations. The

first-degree representations indicate the identity of the stimulus

and response (which are perfectly correlated on correct trials) on

trials n � 4 through n. We collapse over the symmetry between the

two possible trial types, using the convention that X always indi-

cates the identity of the current trial (e.g., sequences 12221 and

21112 are combined as XYYYX). Therefore, the information in

the first-degree history is whether each of trials n � 4 through n �

1 is a first-degree match with trial n. The second-degree history

indicates whether each of trials n � 3 through n is a repetition (R)

or an alternation (A). It should be apparent that both representa-

tions contain exactly the same information. We refer to the trial

histories under both of these representations as 4-deep histories.

We use both first- and second-degree history representations be-

cause the relationship between them is nontrivial, which is also

why the two simple REs assumed by the model can give rise to

complex sequential effects.

To illustrate the separate contributions of first- and second-

degree REs to the model’s predictions, the model was broken

down into its first- and second-degree components, corresponding

to the second and third terms on the right side of Equation 7

(equivalently, the second and third main terms on the right side of

Equation 8). Figures 2B and 2C plot the predictions of these

separate components (the �0 term is included in both of these

figures, so that the partial predictions are aligned on the grand

mean RT). These separate predictions are the patterns produced by

first- and second-degree REs, respectively. Second-degree REs

generate the pyramid pattern that characterizes the overall shape of

the data, and first-degree REs explain the deviations from that

pattern (second-degree effects dominate because �rep � �base; see

Table 1). Adding together the predictions of the two components

(and subtracting the duplicated �0) yields the predictions of the full

model.

In conclusion, the complex pattern of sequential effects ob-

served empirically appears to be well explained by two simple

REs. The parallel-learning model formalizes this idea, based on the

following three assumptions: (1) estimates of the base rate and

repetition rate are both learned incrementally, updated from one

trial to the next; (2) the current estimates each generate an expec-

Figure 2. Fit of parallel learning model to data of Cho et al. (2002). Mean

response time (RT) is shown for each 4-deep trial history. First-degree

history representations (e.g., XXXXX) indicate identities of trials n � 4

through n, with X always defined as the value of trial n. Second-degree

history representations (e.g., RRRR) indicate status of trials n � 3 through

n as repetitions (R) or alternations (A). A: Fit of full model (Equation 8).

B: Predictions of first-degree (base-rate learning) component of model

only, plus intercept term (�0). C: Predictions of second-degree (repetition-

rate learning) component of model only, plus intercept term (�0).
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tancy for each upcoming trial; and (3) responding is faster when

these expectancies more strongly match the actual outcome. Inter-

estingly, each RE taken alone produces additive effects of all past

trials, and the model combines the two REs additively. Neverthe-

less, the model’s predictions (and the data) show strongly nonad-

ditive effects of past trials. The explanation is that the two learning

mechanisms operate on different types of trial representation

(physical stimulus-response identities vs. repetition/alternation)

which themselves are nonlinearly related. This result thus supports

an important link between sequential effects, learning, and psy-

chological representation of binary event sequences: The complex

sequential effects observed in 2AFC are the product of simple

learning mechanisms operating simultaneously on different repre-

sentations.

Previous investigators have offered models that combine first-

and second-degree sequential effects, but in a more ad hoc manner.

For example, Squires et al. (1976) assumed exponentially decaying

first-degree REs, combined with a special expectancy for alterna-

tion if at least two of the past three trials were alternations. Cho et

al. (2002) explored a complex set of detectors that develop expec-

tancies for upcoming trials based on various patterns of past trials.

Their most successful model combined a detector that develops an

expectancy for each trial type based on past occurrences of that

trial type, and a second detector that develops expectancy for

alternations based on past occurrences of alternations. These de-

tectors, respectively, generate exponentially decaying first- and

second-degree REs, and together they behave almost identically to

the parallel-learning model of Equation 8. An advantage of our

modeling approach is that it offers a reason that these detectors

should give the best fits out of all the combinations Cho et al.

tested. By interpreting sequential effects as due to learning, our

theory shows how first- and second-degree REs can arise from the

same simple learning mechanism. The only difference between the

two REs is that they operate on different representations of each

event (physical identity or repetition/alternation status) and thus

learn different statistics of the sequence (base rate or repetition

rate, respectively). As the experiments and analyses reported be-

low demonstrate, this unified treatment allows for modeling of

interactions between the two learning mechanisms, which can

explain further patterns of sequential effects not explained by the

two REs treated separately.

Separating Stimulus- and Response-Based Sequential

Effects

Thus far, we have not distinguished between the stimulus and

response on each previous trial, in terms of their role in driving

sequential effects. In tasks where stimulus-response mappings are

one-to-one, stimuli and responses are highly confounded, and

perfectly so on correct trials. Nevertheless, there is the question of

which underlies sequential effects. For example, does the sequence

of past stimuli affect perception of the current stimulus, or does the

sequence of past responses affect execution of the current re-

sponse? There is a long history of research attempting to answer

this question by a variety of methods, including analyzing trials

after errors (Laming, 1968; Rabbitt & Rogers, 1977), using many-

to-one stimulus-response mappings (Bertelson, 1965; Pashler &

Baylis, 1991; Soetens, 1998), varying the stimulus-response map-

ping across subjects (M. Jones, 2009), using quasicontinuous stim-

ulus and response values (Jesteadt, Luce, & Green, 1977; Petzold,

Table 1

Fits of Parallel-Learning Model to Sequential Effects in Previous Data Sets

Data set

Parameter

Var�0 �base εbase �rep εrep �

Cho et al. (2002) 345.75 23.20 .301 32.62 .472 — .9898
Jentzsch & Sommer (2002), Experiment 1, LRPr

Full model 71.88 23.20 .592 4.21 .527 — .8826
First-degree model 71.88 27.04 .517 — — — .8703

Second-degree model 71.88 — — 9.65 .793 — .2098
Jentzsch & Sommer (2002), Experiment 1, sLRP

Full model 234.06 0.00 — 28.12 .297 19.06 .9392
First-degree model 234.06 128,602.70 .999931 — — 128,612.89 .8593
Second-degree model 234.06 — — 28.12 .297 19.06 .9392

Maloney et al. (2005), Experiment 1
Full model 88.34 12.99 .100 18.42 .139 �0.31 .9834

First-degree model 88.34 14.51 .581 — — 6.82 .6453
Second-degree model 88.34 — — 11.71 .307 �1.61 .9039

Maloney et al. (2005), Experiment 2
Full model 87.94 0.00 — 2.99 .607 1.91 .9733
First-degree model 87.94 306,770.55 .999994 — — 306,770.64 .9070
Second-degree model 87.94 — — 2.99 .607 1.91 .9733

Wilder et al. (2013), Experiment 2
Full model 2.57 1.15 .340 0.00 — — .9797
First-degree model 2.57 1.15 .340 — — — .9797

Second-degree model 2.57 — — 0.28 .837 — .2124

Note. Var column indicates proportion of explained variance across trial histories. Units for � and � parameters are milliseconds for Cho et al. (2002)
and Jentzsch and Sommer (2002), degrees for Maloney et al. (2005), and centimeters for Wilder et al. (2013); ε parameters are dimensionless. Dashes
indicate parameters held to zero (�) or irrelevant (ε, when corresponding � parameter equals 0). Bold rows indicate the model taken as the best explanation
for each data set. LRPr � latency from lateralized readiness potential (LRP) onset to response; sLRP � latency from stimulus onset to LRP onset.
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1981), and providing stochastic feedback (M. Jones, 2009; M.

Jones et al., 2006).

The two-component theory advanced here suggests a novel

possibility, that stimulus and response processing could be respon-

sible for different types of sequential effects. That is, if first- and

second-degree REs are due to separate psychological mechanisms,

then it is possible they could be dissociated on the basis of stimulus

versus response processing. It turns out that existing data are well

explained by such a dissociation, specifically that first-degree REs

arise primarily in response processing, whereas second-degree REs

arise primarily in stimulus processing. As noted above, we refer to

this as the separate-stages hypothesis. This proposal at first appears

arbitrary (e.g., the reverse hypothesis is just as sensible a priori),

but we demonstrate in this section that it does a surprisingly good

job of explaining past findings, and it is further supported by the

new experiments reported below.

Consider first the 2AFC data of Jentzsch and Sommer (2002,

Experiment 1). The sequential effects in RT from that experiment

are shown in Figure 1B. The parallel-learning model produces

good fits to these data (95.35% variance explained; not shown),

but here we focus on a different aspect of their data. Jentzsch and

Sommer also recorded ERPs during their task, which they used to

compute the LRP, a hemispheric asymmetry of activation in motor

cortex that shows a spike of activity before a motor response is

executed. If each response is executed by one of the two hands

(each primarily controlled by the opposite hemisphere), the onset

of the LRP spike can be used to divide total RT into separate

stimulus- and response-processing stages (Coles, 1989; de Jong,

Wierda, Mulder, & Mulder, 1988). The time from stimulus onset

to LRP onset is assumed to correspond to stimulus identification

and stimulus-response mapping, and the time from LRP onset to

the response is assumed to correspond to execution of the response

motor plan. When the stimulus-response mapping is trivial (as was

the case in Jentzsch & Sommer’s, 2002, Experiment 1), the

stimulus-LRP time (sLRP) can be taken as a measure of stimulus

processing time, with the LRP-response time (LRPr) taken as a

measure of response processing time.

Figure 3 (solid lines) shows the LRPr and sLRP times obtained

by Jentzsch and Sommer (2002), as a function of 4-deep trial

history. The patterns of sequential effects in these two stages of

processing are quite different, with LRPr more consistent with

first-degree REs and sLRP more consistent with second-degree

REs. To test this dissociation, the parallel-learning model was

divided into separate first- and second-degree components, and

each component was fit to both LRPr and sLRP.

The prediction of LRPr by the first-degree component is given

by omitting the second-degree component from Equation 7, or

equivalently by setting �rep � 0:

LRPr � �LRPr � �basewbaseEn, (9)

where �LRPr is an intercept term corresponding to some portion of

the intercept �0 in the full model. This first-degree model explains

87.03% of the variance in LRPr across the 16 trial histories, on 3

free parameters (�LRPr, �base, and εbase; see dashed line in Figure

3A). When the corresponding second-degree model is fit to the

same data (i.e., Equation 7 with �base � 0), it explains only

20.98% of the variance (see Table 1). The full model (i.e., with

both first- and second-degree components) can explain 88.26%,

only a small improvement over the first-degree model with 2 extra

free parameters (�rep and εrep). Therefore, sequential effects in

response processing time appear to be well-explained by first-

degree REs alone.

The analysis for sLRP is complicated by the large difference

between repetition and alternation trials (compare left and right

halves of Figure 3B). Stimulus processing appears to be signifi-

cantly faster for alternation trials. We refer to this phenomenon, as

well as a similar pattern in RT observed in Experiments 1 and 2

below, as an alternation advantage. We argue below, via further

modeling analyses and data fits, that the alternation advantage is

localized to stimulus processing and has important implications for

Figure 3. Fits of the parallel-learning model to electroencephalography

data of Jentzsch and Sommer (2002, Experiment 1), under the assumption

that first-degree recency effects operate only in response processing, and

second-degree recency effects operate only in stimulus processing. A:

Latency from lateralized readiness potential (LRP) onset to response. Only

the first-degree component of the model is used to fit these data. B: Latency

from stimulus onset to LRP onset. Only the second-degree component of

the model, together with a bias term representing an alternation advantage,

is used to fit these data.
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understanding the learning mechanisms producing sequential ef-

fects. However, for the moment, we set this issue aside by intro-

ducing an artificial bias parameter to the parallel-learning model,

�, which is added to repetition RTs and subtracted from alternation

RTs (cf. Equation 7):

RT � �0 � �basewbaseEn � �repwrepEn�1En � �En�1En. (10)

As noted above, EnEn�1 equals 1 on repetition trials and �1 on

alternation trials, so that � � 0 produces an alternation advantage.

The � term is similar to the term involving wrep except that � is

constant, meaning its contribution is the same for all repetition

trials and for all alternation trials, whereas wrep depends on the full

trial history. We henceforth use Equation 10 instead of Equation 7

in defining the parallel-learning model.2 We stress that the bias

parameter is a wholly ad hoc assumption; the joint-learning model

presented later in this article explains the alternation advantage

without this assumption.

Because the alternation advantage is claimed to reside in stim-

ulus processing, we include the bias term for modeling sLRP (but

not LRPr; see Equation 9). Thus, the prediction for sLRP by the

second-degree model is given by

sLRP � �sLRP � �repwrepEn�1En � �En�1En. (11)

This model explains 93.92% of the variance in sLRP across the 16

trial histories, on 4 free parameters (�sLRP, �rep, εrep, and �; see

dashed line in Figure 3B). When the first-degree model is fit to the

same data (with bias term included), it explains 85.93% of the

variance (see Table 1). However, the latter model achieves this fit

from the bias term alone, together with degenerate parameters

under which the first-degree RE partially mimics a second-degree

RE.3 Critically, when the full model of Equation 10 is fit to the

sLRP data, the optimal value of �base is zero. Thus, the full model

reduces to the second-degree model; allowing first-degree effects

does not improve the fit. Therefore, sequential effects in stimulus

processing time appear to be best explained by second-degree REs

alone, together with an alternation advantage.

To be clear, the �base, wbase, �rep, and wrep variables used in

predicting LRP latencies (Equations 9 and 11) are meant as the

same variables as those used in predicting RT (Equation 10).

The same is true of the εbase and εrep parameters that underlie the

dynamics of wbase and wrep. Indeed, we demonstrate in Experiment

1 below that these parameters can be estimated from RT data and

directly used to predict LRP latencies.

Further evidence for the separate-stages hypothesis comes from

reanalysis of data from Maloney et al. (2005). Subjects in these

experiments were shown ambiguous motion quartets, consisting of

brief visual display of a pair of dots followed immediately by brief

display of a second pair. All four dots lay on the circumference of

an unseen circle, and together they produced an apparent motion

effect in which a single pair of dots appeared to rotate about the

center of that circle. Whether the perceived rotation was clockwise

or counterclockwise depended on the angle between the pairs’

positions on the circle, measured clockwise from the first pair to

the second. Angles below 90 degrees tended to induce perceived

clockwise motion, and angles above 90 degrees tended to induce

perceived counterclockwise motion.

In their first experiment, Maloney et al. (2005) presented sub-

jects with a series of ambiguous motion quartets, varying in angle,

and had subjects report the direction of perceived motion follow-

ing each. Trials were analyzed according to the sequence of

responses on trials n � 4 through n � 1. For each of these 16

histories, standard psychophysical techniques were used to esti-

mate each subject’s threshold on trial n, defined as the angle that

led both directions of motion to be perceived equally often. This

threshold was found to depend strongly on the trial history. For

example, when the previous 4 trials were all perceived as clock-

wise, there was a strong bias for subjects to perceive clockwise

motion on the current trial, such that the angle could be as large as

100 degrees and subjects would still respond clockwise about half

the time.

Mean thresholds as a function of stimulus history are shown in

Figure 4A (solid line). Maloney et al. (2005) did not collapse over

the symmetry between the two responses, so the first-degree his-

tory representations in this figure are in terms of the actual re-

sponses—c for clockwise and C for counterclockwise—as op-

posed to the abstract XY labeling used in Figures 2 and 3. Also

unlike the previous figures, these histories do not include the

current trial; the first-degree representations indicate trials n � 4

through n � 1, and the second-degree representations indicate

trials n � 3 through n � 1. The function being plotted can be

interpreted as an index of subjects’ expectancy on trial n, with

larger values indicating a stronger expectancy or bias for clock-

wise motion.

Maloney et al. (2005) interpreted these results as reflecting

tendencies to continue patterns of repetition or alternation; that is,

as second-degree REs. For example, subjects showed strong biases

toward c following cccc and toward C following CCCC, consistent

with expectancy of a repetition following many repetitions. They

also showed biases toward C following CcCc and toward c fol-

lowing cCcC, consistent with expectancy of an alternation follow-

ing many alternations. However, we show here that the data are

better explained by a combination of first- and second-degree REs,

using the parallel-learning model.

To apply the parallel-learning model to this task, we assumed

the threshold following each trial history is linearly (negatively)

related to the subject’s expectancy for counterclockwise motion,

with expectancies derived from both first- and second-degree

learning. Following the same reasoning that led to Equation 10,

and writing En � �1 for clockwise and 1 for counterclockwise,

yields an expression for the model’s predictions in terms of the

trial history:

2 Allowing a bias in fitting the data from Cho et al. (2002) slightly
improves the fit to 99.07% variance explained, on 6 free parameters. As
will become clear in the analysis of the joint-learning model (see the Cue
Competition Explanation for the Alternation Advantage section), the
parallel-learning model’s need for a bias term depends on the relative
magnitudes of �base and �rep, which can vary across experiments.

3 Specifically, setting εbase very close to 1 and �base very large makes the
k � 1 term of the first-degree RE very large, the k � 2 term moderate, and
longer-lag terms negligible (see Equation 8). The contribution of the k �
1 term is exactly opposite that of the bias term. The large value of � thus
cancels out the k � 1 term, leaving a net bias of � � �baseεbase � 19.07 ms,
in close agreement with the fit of the second-degree model. The contribu-
tion of the k � 2 term is identical to that of a second-degree RE at k � 1
(because trials n � 2 and n are a first-degree match if and only if trials
n � 1 and n are a second-degree match). Therefore, under these parame-
ters, the model amounts to an alternation advantage plus a second-degree
RE restricted to lag 1.
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Threshold � �0 � �basewbase � �repwrepEn�1 � �En�1. (12)

This equation embodies the same principles as the model’s

predictions for RT tasks (Equation 10). Expectancy for the upcom-

ing trial is a combination first- and second-degree REs, both

determined by exponentially weighted sums of past trials (Equa-

tions 2 and 6). The first-degree expectancy, wbase, is based on the

individual identities of past trials. The second-degree expectancy,

wrepEn�1, is based on whether past trials were repetitions or

alternations, and its direction depends on the identity of the most

recent trial (En�1). The final term in Equation 12 produces a bias

for alternation of magnitude �, by shifting the threshold toward

En�1.

The model’s fits to Experiment 1 of Maloney et al. (2005) are

shown in Figure 4A (dashed line). The model explains 98.34% of

the variance across the 16 trial histories, with 6 free parameters.

The fit is nearly unchanged without the alternation-bias parameter

(98.23% variance explained with 5 free parameters), but we in-

clude it for consistency with the fit of Maloney et al.’s second

experiment, presented shortly. Critically, the fit is markedly worse

if either the first- or the second-degree component of the model is

removed (see Table 1). Although formal model comparison is not

possible without individual subjects’ data, we take these fits to

indicate that sequential effects in this task are best explained as a

combination of both types of REs.

In Experiment 2 of Maloney et al. (2005), subjects only re-

sponded on every fourth trial. Stimuli for the intervening trials had

sufficiently extreme angles that the directions of perceived motion

could be taken as known, even though no responses were given.

Thus, a response trial could be preceded by any of eight possible

sequences of three no-response trials, according to whether each

induced clockwise or counterclockwise motion. Each subject’s

threshold for equal responding between c and C was estimated

following all eight trial histories. The results are shown in Figure

4B (solid line).

Under the separate-stages hypothesis, this experiment procedure

should eliminate first-degree REs, because there are no recent

responses to generate a base-rate expectancy. Therefore, we fit the

second-degree model (i.e., Equation 12 with �base � 0) to the data

from this experiment. Figure 4B (dashed line) shows the fit, which

explains 97.33% of the variance across the 8 trial histories. Fitting

the full model produces the same fit, with an optimal value of �base

equal to zero. Fitting the first-degree model (Equation 12 with

�rep � 0) produces a significantly worse fit, with degenerate

parameters that partially mimic the second-degree model (see

Footnote 3). Therefore, the sequential effects in this experiment

appear to be best explained by second-degree REs alone (together

with an alternation bias).

Our final line of prior evidence for the separate-stages hypoth-

esis comes from Experiment 2 of Wilder et al. (2013). Comple-

mentary to Maloney et al.’s (2005) elimination of recent responses,

this experiment effectively eliminated stimuli. On each trial, the

subject grasped the handle of a large robotic arm and moved it 15

cm forward in the axial plane, while the robot applied a perpen-

dicular perturbing force randomly to either the left or the right.

Critically, this force was uncued; the subject experienced it only by

its direct influence on the movement. The subject’s task was to

move directly forward, compensating as much as possible for the

perturbation. On each trial, Wilder et al. measured the maximal

lateral deviation (in centimeters) of the subject’s trajectory in the

direction of the force. For example, on trials with a rightward

force, this measure equaled the maximum distance that the move-

ment deviated to the right from a straight midline path. This

deviation measure was then used to investigate sequential effects.

For example, on trials with a rightward force, the trajectory tended

to deviate much more to the right if the past several trials had

leftward forces than if they had rightward forces.

The focus of Wilder et al.’s (2013) analysis was how long-

lasting sequential effects in this task were, but here we are con-

cerned with the relative contributions of first- and second-degree

effects. We assumed that the absence of overt stimuli would

eliminate stimulus-based sequential effects, which the separate-

Figure 4. Fits of parallel-learning model to data of Maloney et al. (2005).

Trial histories are indicated both as sequences of clockwise (c) and coun-

terclockwise (C) responses for trials n � 4 through n � 1, and as sequences

of repetitions (R) and alternations (A) for trials n � 3 through n � 1.

Threshold is the stimulus angle estimated to produce equal responding of

c and C on trial n. Larger values indicate biases to respond c. A: Fit of

parallel-learning model to their Experiment 1. B: Fit to their Experiment 2,

in which no response was given during the previous three trials. Only the

second-degree component of the model, together with the alternation bias

term, is used to fit the Experiment 2 data.
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stages hypothesis predicts to manifest as an absence of second-

degree REs. To test this prediction, we fit the full parallel-learning

model as well as the first- and second-degree submodels. The

alternation bias parameter (�) was held to zero for all three models,

in line with the conjecture (supported by the new experiments

reported below) that the bias resides in stimulus processing. To fit

the models, we calculated the mean lateral deviation for each

4-deep history for each of the 20 subjects. We then averaged over

subjects and fit the model to the means for the 16 histories by least

squares.

As Table 1 shows, the optimal value of �rep in the full model is

zero, and thus the full model reduces to the first-degree model.

This model explains 97.97% of the variance across the 16 trial

histories, whereas the second-degree model explains only 21.24%.

As a further test for the presence of second-degree effects, we fit

the full model to the data of each individual subject, allowing the

� parameters to be negative. The value of �base was positive for

every subject (mean and median both 1.28), but �rep was negative

for 11 of the 20 subjects, with a median of �.03. Wilcoxon’s

signed-rank test showed no reliable difference from zero, p � .36

(a nonparametric test was needed because the model found degen-

erate solutions for 3 subjects, with εrep near zero and �rep very

large). Figure 5 shows the fit of the first-degree model, with the

trial histories ordered by their second-degree representations (as in

previous figures) and with the histories reordered according to

their first-degree representations. The latter ordering clearly shows

the purity of the first-degree pattern.

In conclusion, the reanalyses of data from Jentzsch and Sommer

(2002), Maloney et al. (2005), and Wilder et al. (2013) support the

separate-stages hypothesis for first- and second-degree REs. The

dissociation is seen both neurophysiologically, in Jentzsch and

Sommer’s ERP data, and behaviorally, through Wilder et al.’s and

Maloney et al.’s elimination of stimuli and of recent responses

from their respective tasks. The fact that these data come from

measures quite different from behavioral RT (viz., ERP latencies,

motion-perception thresholds, and deviations in motor trajectories)

speaks to the robustness of this dissociation. Thus, there is strong

evidence for psychologically distinct learning mechanisms under-

lying sequential effects in binary tasks, one learning the base rate

and the other the repetition rate. Furthermore, the nature of the

dissociation leads to a more specific proposal, namely that sequen-

tial effects arise from incremental learning of the response base

rate and the stimulus repetition rate. We turn now to new experi-

ments testing this hypothesis.

Experiment 1

Experiment 1 was designed to test the theoretical proposals

introduced above: (1) that sequential effects in 2AFC can be

explained as a combination of first- and second-degree REs; (2)

that these effects arise from incremental learning of the base rate

and repetition rate; and (3) that first- and second-degree REs,

respectively, occur in response and stimulus processing. Subjects

performed a speeded visual discrimination task, in which on each

trial a dot appeared above or below a horizontal fixation line.

Measures of RT and ERP were both collected, to enable analysis

of sequential effects in each.

The experimental methods closely followed those of Jentzsch

and Sommer (2002, Experiment 1), with one exception: Each

subject performed two sessions, under different conditions of

autocorrelation in the stimulus sequence. In the positive condition,

the repetition rate was
2

3
, whereas in the negative condition it was

1

3
. The sequences had no multi-step dependencies (i.e., they were

Markov). The primary purpose of this manipulation was to test

how long-term learning of the repetition rate relates to second-

degree REs. To foreshadow, subjects showed faster responding to

repetitions than to alternations in the positive condition, and the

reverse pattern in the negative condition. Thus, they appear to have

learned the differential repetition rates in the two sessions. Under

the hypothesis that sequential effects and long-term learning both

arise from the same incremental mechanism, a single model should

be able to explain variations in RT across trial histories as well as

between conditions.

Figure 5. Fits of parallel-learning model to the reaching task of Wilder et al.
(2013, Experiment 2). Sequential effects in this task were induced by a random
force on each trial perpendicular to the subject’s movement; thus, there were
no overt stimuli. As predicted by the separate-stages hypothesis, the model fits
the data best with no second-degree sequential effects (i.e., �rep � 0). A: Mean
maximal deviation of the subject’s movement trajectory in the direction of the
current force, as a function of trial history. Histories are ordered according to
their second-degree representations, as in Figures 1–3. B: The same data and
model fit, with the histories reordered according to their first-degree represen-
tations, to highlight the purity of the first-degree sequential effects. The curve
shows perfect monotonicity except in every fourth gap, where multiple past
first-degree mismatches (Ys) are replaced by a single more-recent mismatch (a
pattern the model captures). Error bars in both graphs indicate within-subject
standard errors (Masson & Loftus, 2003).
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ERP analyses focused on LRP and on the P100 component in

early visual processing, with the goal of isolating sequential effects

in stimulus and response processing. LRP was used to decompose

total RT into stimulus- and response-processing times (Coles,

1989; de Jong et al., 1988). Importantly, this approach does not

commit to a strictly serial model of stimulus and response pro-

cessing; response planning could begin while stimulus identifica-

tion is still incomplete. The only necessary assumptions are that

variation in the time from stimulus onset to LRP onset (sLRP)

reflects variation in stimulus processing, whereas variation in the

time from LRP onset to the response (LRPr) reflects variation in

response processing. Therefore, sequential effects in sLRP can be

taken to reflect the contribution of stimulus expectancies, and

sequential effects in LRPr can be taken to reflect the contribution

of response expectancies. The logic behind the P100 analysis is

similar: The P100 component is believed to reflect stimulus pro-

cessing, with a greater amplitude when stimuli are more expected

(Mangun & Hillyard, 1991; Spehlmann, 1965). Therefore, sequen-

tial effects in P100 amplitude can be taken to reflect stimulus

expectancies.

An additional goal of the experiment was to test between the

direct and adaptation hypotheses regarding changes in sequential

effects from nonstationarity in the task environment. As a re-

minder, the direct hypothesis states that first-degree REs are un-

affected by nonstationarity; sensitivity to autocorrelation arises

only because of direct learning of the repetition rate. Thus, the

direct hypothesis predicts the only difference between autocorre-

lation conditions to be in subjects’ asymptotic estimates of the

repetition rate, which should speed repetition RTs in the positive

condition and alternation RTs in the negative condition. The ad-

aptation hypothesis holds that first-degree REs become stronger

with positive autocorrelation in the task environment. Thus, it

predicts that the contribution of first-degree learning will be stron-

ger in the positive condition. In terms of the parallel-learning

model, this adaptation could arise from increased values of �base

(i.e., stronger weighting of first-degree expectancies) or from

increased values of εbase (leading to faster adjustment of base-rate

estimates). Experiment 1 affords two means of testing the adapta-

tion hypothesis. First, first-degree REs can be assessed at lags

longer than 1, where the estimated repetition rate should have no

effect, and compared across conditions. Second, if the ERP anal-

yses supported the separate-stages hypothesis, so that LRPr could

be taken as a pure indicator of first-degree learning, then the

adaptation hypothesis could also be tested by comparing sequential

effects in LRPr across conditions.4

Method

Subjects. Twenty-eight undergraduate students participated

for monetary compensation.

Design. Each subject performed two sessions, one each in the

positive and negative conditions. Sessions were spaced by 2–7

days, and order was counterbalanced between subjects.

Each session comprised 3,744 trials divided into 33 blocks. The

first block contained 22 trials and was excluded from all analyses

as practice. The remaining 32 blocks contained 116 or 117 trials

each. The first 10 trials of each of these blocks were also excluded

from analyses, to reduce transient effects following breaks. Thus,

3,402 trials—the test trials—were included in the analysis for each

session.

Local stimulus histories for test trials were controlled to a depth

of six trials in both conditions, as follows. In both conditions, the

base rate of the two stimulus locations was exactly 50%. In the

positive condition, the repetition rate in the test trials was exactly
2

3
. Each test trial was classified according to the stimulus sequence

on the current and previous five trials, yielding 64 history types.

The frequency of each history type was exactly as dictated by the

overall
2

3
repetition rate. For example, on �2

3�5 of the 3,402 test

trials, or 448 trials, the current and previous five stimuli were all

identical. These trials were evenly divided between 111111 and

222222 sequences (where 1 and 2 represent the two stimulus

locations), reflecting the 50% base rate. On �1

3�5 of the test trials,

or 14 trials, the current and previous trials followed a perfect

alternating pattern. These trials were divided evenly between

121212 and 212121 sequences. Stimulus sequences in the negative

condition were defined analogously, using a repetition rate of
1

3
.

The sequence of test trials for each subject in each condition was

generated pseudo-randomly according to the preceding constraints.

The excluded trials were generated pseudo-randomly with the

constraint that they conformed to the appropriate repetition rate

within each block (i.e., for trials 2–22 in Block 1 and trials 2–10

in the other blocks).

Procedure. The subject’s task on each trial was to respond to

the location of a white dot, 5 mm in diameter, presented 11 mm

above or 12 mm below a 4-mm horizontal white fixation line that

was in the center of a computer monitor. Target locations were

arranged vertically rather than horizontally to prevent visual lat-

erality effects that might interfere with measurement of ERP

components (described below). Responses were made using a

button box, which was oriented vertically so as to be spatially

compatible with the target locations. The left and right index

fingers were assigned to the two buttons, with the assignment

counterbalanced across subjects and fixed between sessions for

each subject. Stimulus duration was 60 ms. Reaction time was

recorded at a resolution of 1 ms. If the subject did not respond

within 1,000 ms of stimulus onset, the trial was terminated and a

blank response was recorded. A 700-ms response-stimulus interval

(RSI) followed each response (or the end of the 1,000-ms response

window, when no response was given). This RSI duration was

chosen because previous research has shown it to produce

expectancy-based sequential effects (see Figure 7 and the General

Discussion section). The fixation line was visible throughout the

task.

Electrophysiological recordings. Scalp voltages were col-

lected with a 128-channel HydroCel Geodesic Sensor Net con-

nected to AC-coupled, 128-channel, high-input impedance ampli-

fiers (200 M�, Net Amps; Electrical Geodesics Inc., Eugene, OR).

Amplified analog voltages (0.1–100 Hz bandpass) were digitized

at 250 Hz. Individual sensors were adjusted until impedances were

less than 50 k�. Electroencephalography (EEG) was recorded with

respect to a vertex reference (Cz). The EEG was digitally low-pass

filtered at 40 Hz prior to ERP analysis. Trials were included in the

4 A preliminary analysis of the behavioral data from this experiment is
reported in Wilder et al. (2013). The focus there was restricted to second-
degree REs and how their magnitude decreases over long lags.
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ERP analyses if the current trial and previous 3 trials were all

correct with RT between 100 and 1,000 ms. Trials were discarded

from analysis if more than 20% of the channels were bad (average

amplitude over 100 	V or voltage fluctuations of greater than 50

	V between adjacent samples). These criteria led to exclusion of

31.8% of all trials in peristimulus analyses (i.e., for sLRP and

P100) and 31.4% of all trials in periresponse analyses (i.e., for

LRPr). Individual bad channels were replaced on a trial-by-trial

basis with a spherical spline algorithm (Srinivasan, Nunez, Silber-

stein, Tucker, & Cadusch, 1996). Eye movements were corrected

using an ocular artifact detection algorithm (Gratton, Coles, &

Donchin, 1983).

For the LRP analyses, the ERPs were re-referenced to the

average of the two mastoid channels, as is standard for LRP

analyses. LRPs were measured using the voltage difference be-

tween EEG channels 36 (C3) and 104 (C4), which are located over

the hand areas of the left and right motor cortex, respectively. The

LRP on each trial was defined in the standard way, by subtracting

the voltage in the channel ipsilateral to the correct response from

the voltage in the contralateral channel (Coles, 1989). To assess

sequential effects on the LRP onset, trials were classified into eight

3-deep trial histories (4-deep histories, as were used with RT data,

provided insufficient trial counts for the ERP analyses). For each

subject, two LRP waveforms were constructed for each history in

each condition, one by temporally aligning trials on the stimulus

(peristimulus) and the other by aligning on the response (perire-

sponse). All peristimulus waveforms were defined from 200 ms

before stimulus onset to 800 ms post-onset and were baseline-

corrected using average LRP activity from 0 to 100 ms after onset.

All periresponse waveforms were defined from 600 ms before the

response to 400 ms after and were baseline-corrected using aver-

age LRP activity from 300 to 200 ms before the response. Thus,

896 total waveforms were produced, corresponding to 28 subjects,

crossed with 2 conditions, crossed with 8 trial histories, crossed

with peristimulus versus periresponse.

The onset of the LRP spike was estimated using three different

criteria in both peristimulus and periresponse analyses. For peri-

response waveforms (used for estimating LRPr), LRP onset was

estimated as the time at which LRP dropped below �.8 	V, �1

	V, or 50% of the minimum for each waveform (i.e., 50% of the

peak negative voltage). These criteria were taken from Jentzsch

and Sommer (2002). For peristimulus waveforms (used for esti-

mating sLRP), LRP onset was estimated as the first time point at

which the LRP dropped below �.4 	V, �.5 	V, or 50% of the

minimum. The milder absolute criteria were necessary in the

peristimulus analysis because LRP waveforms were broader with

less extreme peaks than in the periresponse analysis. Initial anal-

yses reported below (see the LRP section) tested each criterion

separately and then chose the criteria for sLRP and for LRPr that

provided the most statistically reliable pattern of sequential effects

for purposes of modeling. For all criteria in both peristimulus and

periresponse analyses, linear interpolation was used between the

first time point satisfying the criterion and the preceding time

point, to obtain a continuous-valued estimate of the moment at

which the threshold was crossed (time points were separated by 4

ms, due to the 250-Hz digitization of all ERP data).

For each history and condition, a pair of aggregate LRP wave-

forms (periresponse and peristimulus) was created by averaging

the waveforms of individual subjects. The aggregate waveforms

were used for estimating LRP onset, and hence sLRP and LPRr,

averaged over all subjects. In addition, for each aggregate wave-

form, a set of 28 jackknife waveforms was created by omitting

each of the 28 subjects and averaging over the other 27. LRP

onsets from the jackknife waveforms were used in statistical tests

reported below, following Miller, Patterson, and Ulrich (1998; see

also Miller, Ulrich, & Schwarz, 2009; Ulrich & Miller, 2001). The

logic of this procedure is that the residual variance of the

jackknife-based onsets is approximately equal to the residual vari-

ance of onsets from individual subjects, divided by (n � 1)2, where

n is the number of subjects. Because LRP onsets cannot be reliably

estimated from individual subjects (the data are too noisy and

noise has a nonlinear effect on onset estimates), one can perform

statistics on jackknife-based onsets and then correct for the change

in residual variance. The correction amounts to multiplying F

statistics by (n � 1)2 or t statistics by n � 1 before computing

p-values. All inferential statistics reported below (see the LRP

section) are values after this correction has been made.

For the P100 analyses, the EEG was re-referenced to an average

reference, the voltage difference between that channel and the

average of all channels, to minimize the effects of reference site

activity and to improve estimates of electrical field topography

(Dien, 1998). The average reference was corrected for the polar

average reference effect (Junghöfer, Elbert, Tucker, & Braun,

1999). The ERPs were baseline corrected with respect to the

200-ms pre-stimulus interval. P100 latency and amplitude were

measured over two bilateral electrode clusters, selected by identi-

fying the bilateral electrodes where the P100 was maximal across

all subjects and conditions (left channel number 66, between

standard 10–10 locations P1 and O1; right channel number 84,

between locations P2 and O2). To account for topographic vari-

ability, analyses were conducted on the mean ERPs across elec-

trode clusters including each of those maximal locations and the 6

immediately surrounding electrodes within each hemisphere.

Based on visual inspection of the ERPs within those clusters

averaged across all subjects and conditions, a temporal analysis

window of 96–156 ms after stimulus onset was selected. Voltage

amplitudes were computed as the mean amplitude within that

window. To assess sequential effects in P100, trials were classified

according to 3-deep trial history as in the LRP analysis, and the

mean P100 amplitude was estimated for each subject within each

history and condition. P100 amplitudes were estimated for indi-

vidual subjects rather than from jackknife waveforms and were

analyzed using standard statistical tests (in contrast to LRP onsets).

Results: Reaction Time

Trials were included in RT analyses if the subject responded

within the 1,000-ms deadline, the RT was at least 100 ms, and the

current and previous four responses were all correct. These criteria

resulted in exclusion of an average of 32.5% of the 3402 test trials

in each session, primarily due to the correct-response requirement

(only 1.3% of responses fell outside 100–1,000 ms). The rationale

for this stringent requirement is that we are interested in sequential

effects arising from both stimulus and response processes, and

hence stimuli and responses needed to be jointly controlled. An

alternative analysis that required only the current response and one

previous response to be correct, which excluded 15.4% of the test

trials, yielded the same qualitative results, with only minor differ-

T
h
is

d
o
cu

m
en

t
is

co
p
y
ri

g
h
te

d
b
y

th
e

A
m

er
ic

an
P

sy
ch

o
lo

g
ic

al
A

ss
o
ci

at
io

n
o
r

o
n
e

o
f

it
s

al
li

ed
p
u
b
li

sh
er

s.

T
h
is

ar
ti

cl
e

is
in

te
n
d
ed

so
le

ly
fo

r
th

e
p
er

so
n
al

u
se

o
f

th
e

in
d
iv

id
u
al

u
se

r
an

d
is

n
o
t

to
b
e

d
is

se
m

in
at

ed
b
ro

ad
ly

.

640 JONES, CURRAN, MOZER, AND WILDER



ences for sequential effects at higher lags. The button box failed

for the 20th block of the negative condition for one subject, so

those trials were excluded as well.

Trials were classified according to the history of the current and

previous five stimuli, as follows. First, 64 groups of trials were

defined according to the sequence of physical stimulus locations

(top or bottom) on trials n � 5 through n. Second, these groups

were combined into 32 groups, by collapsing over the physical

identity of stimulus n. These 32 groups thus correspond to the

possible 5-deep histories. Each such history is specified by

whether trials n � 5 though n � 1 are first-degree matches or

mismatches with trial n (e.g., XYXXXX, where the final X indi-

cates trial n), or equivalently by whether trials n � 4 through n are

repetitions or alternations (e.g., AARRR).

Mean RT was calculated for each 5-deep history for each

subject in both conditions. These mean RTs were then averaged in

pairs (collapsing over trial n � 5 in the first-degree labeling, or

equivalently collapsing over trial n � 4 in the second-degree

labeling) to obtain estimated mean RTs for all sixteen 4-deep

histories. This two-step procedure served to control for the first-

degree correlation between trial n � 4 and all earlier trials, which

differed between conditions. In other words, this procedure en-

sured that the RT estimate for each history reflected an equal

balance between trials on which stimuli n � k and n were first-

degree matches and trials on which they were mismatches, for all

k � 4. This balance also facilitates interpretation of the parallel-

learning model (see Appendix A).

Figure 6 shows the mean RTs for each history and condition,

averaged over subjects. A 2 
 16 (Condition 
 History) repeated-

measures analysis of variance (ANOVA) shows a strong main

effect of history, F(1.75, 42.29) � 34.44, p � .0001, using

Greenhouse–Geisser (GG) sphericity correction with ε � .117.

This effect follows a similar pattern to that seen in the RT data of

Cho et al. (2002) and Jentzsch and Sommer (2002) (see Figure 1).

In addition, there is a strong history-condition interaction, F(5.10,

137.70) � 102.58, p � .0001, GG ε � .340, such that RTs on

repetition trials are faster in the positive condition, and RTs on

alternation trials are faster in the negative condition. The main

effect of condition is nonsignificant, F(1, 27) � 1.

A core assumption of our modeling approach is that variation

in mean RT across histories and conditions is due to varying

expectancies prior to each trial (see Equation 10). This assump-

tion leads to a “cost-benefit” prediction, whereby faster re-

sponding to one stimulus is always perfectly balanced by slower

responding to the other stimulus (Audley, 1973; Laming, 1968).

For example, Figure 6 shows the fastest mean RT occurs in the

negative condition with history XYXYX/AAAA. The assump-

tion is that this fast responding is due to strong expectancy of

X/A following XYXY/AAA, which implies expectancy of Y/R

must be very low. This reasoning leads to the correct prediction

that mean RT will be especially long for history XYXYY/

AAAR (which by our convention is rewritten YXYXX/AAAR)

in the negative condition.

A standard way to test the cost-benefit prediction is with an

exchange plot, a scatterplot of mean RT for both possible stimuli

following each history (Audley, 1973). To create such a plot, the

trial histories are combined into pairs that differ only in the value

of the current trial (e.g., pairing XYXYX/AAAA and YXYXX/

AAAR). This pairing is the same under first- or second-degree

labeling of trial histories. For each pair, mean RT for the repetition

case (e.g., YXYXX/AAAR) is plotted against mean RT for the

alternation case (e.g., XYXYX/AAAA). The values being plotted

are the same as in a standard plot of RT by trial history (e.g.,

Figures 1 and 6), but they are arranged in a way that makes the

implications of the expectancy assumption more apparent. If the

assumption is correct, then the cost-benefit pattern should manifest

as all points lying on a common negative diagonal. This prediction

can be contrasted with a “pure facilitation” pattern that is often

observed in tasks with very short RSIs, whereby RT is faster or

slower for both members of a history pair, leading to points lying

on a positive diagonal (Soetens et al., 1985).

Figure 7 shows the exchange plot for Experiment 1. Across all

16 history pairs (8 for each condition), the correlation between

mean RT on repetition and alternation trials is �.986. The plot

thus shows a strong cost-benefit pattern, supporting the expectancy

assumption. Also evident is the effect of the autocorrelation ma-

nipulation, in that RT is faster for repetitions in the positive

condition and faster for alternations in the negative condition. The

fact that the data from the two conditions differ in this way but still

lie on the same diagonal shows that long-term learning of the

repetition rate is mediated by expectancy just as sequential effects

are. This conclusion is consistent with the assumption that sequen-

tial effects and long-term learning arise from the same mechanism.

In the next two subsections, we show that the parallel-learning

model fits the data from Experiment 1 well overall, but it cannot

account for two key phenomena. These phenomena lead to a new

model—the joint-learning model—that learns the same two se-

quence statistics as the parallel-learning model but with a more

sophisticated learning mechanism. This new model is then applied

to the ERP data to further evaluate the separate-stages hypothesis.

Figure 6. Mean response time (RT) by trial history for Experiment 1. The

4-deep histories are labeled by both their first- and second-degree repre-

sentations, as in previous figures. Error bars correspond to the within-

subjects standard error taken across all 32 observations, following Masson

and Loftus (2003), to facilitate comparisons across histories and condi-

tions. Positive � positive condition; Negative � negative condition.

T
h
is

d
o
cu

m
en

t
is

co
p
y
ri

g
h
te

d
b
y

th
e

A
m

er
ic

an
P

sy
ch

o
lo

g
ic

al
A

ss
o
ci

at
io

n
o
r

o
n
e

o
f

it
s

al
li

ed
p
u
b
li

sh
er

s.

T
h
is

ar
ti

cl
e

is
in

te
n
d
ed

so
le

ly
fo

r
th

e
p
er

so
n
al

u
se

o
f

th
e

in
d
iv

id
u
al

u
se

r
an

d
is

n
o
t

to
b
e

d
is

se
m

in
at

ed
b
ro

ad
ly

.

641SEQUENTIAL EFFECTS IN 2AFC



Parallel-Learning Model Fits

The parallel-learning model (Equation 10) was fit separately for

each subject by least squares to the 32 mean RTs from all 4-deep

histories in both conditions. Model predictions were derived from

Equation 10, as described in detail in Appendix A. Model param-

eters for each subject were held constant between conditions.

Figure 8 shows the model fits, averaged over subjects and com-

pared to the mean RTs from Figure 6. Table 2 shows the median

parameter values across subjects. To evaluate the fit of the model,

it was fit to the aggregate data (i.e., averaged over subjects) using

a single set of parameters. This aggregate model explains 96.67%

of the variance in mean RT across the 32 trial types (16 histories

in 2 conditions), on 6 free parameters.

One important contribution of the parallel-learning model is that

it explains sequential effects and long-term learning by the same

mechanism. Specifically, the model assumes that incremental

learning of the repetition rate (Equation 5) is responsible both for

second-degree REs and for differential learning of the repetition

rate in each condition. The latter effect is seen in the fact that RT

for every history ending in a repetition is faster in the positive

condition (left half of Figure 8), and RT for every history ending

in an alternation is faster in the negative condition (right half of

Figure 8). According to the model, this long-term learning effect is

due to the accumulated contributions of trials n � 5 and earlier

(i.e., those not controlled in our partitioning of trial histories). As

shown in Appendix A (see Equation A11), the magnitude of this

predicted long-term learning effect can be directly calculated as
4

3
�rep�1 � εrep�

4. Because �rep and εrep are the same parameters

responsible for the second-degree RE, there is a strong constraint

linking the model’s predictions for second-degree REs and for the

size of the long-term learning effect. The fact that the model

simultaneously provides good fits of both phenomena supports the

link between REs and incremental learning.

Lag Profiles

A more fine-grained picture of the parallel-learning model’s fit

to the RT data comes from assessing the first- and second-degree

REs separately at each lag. We quantify REs at each lag, k, as the

reduction in RT due to a match between trials n and n � k. This

is done for both first- and second-degree matches. Once REs are

calculated at each lag, one can analyze the first- and second-degree

lag profiles, which show the strengths of the first- and second-

degree REs as a function of lag.

The first-degree lag profile, RE1(k), represents the RT facilita-

tion (if RE1 � 0) or slowing (if RE1 � 0) due to a first-degree

match between trials n and n � k. To calculate this effect, we

separated the sixteen 4-deep histories into the eight for which trials

n and n � k mismatch and the eight for which they match. Mean

RTs were averaged over both groups of histories, and then the

difference was taken. Averaging the means for the histories, rather

than directly averaging individual trials, leads to all histories being

weighted equally, which simplifies the model-based analysis.

The second-degree lag profile, RE2(k), was computed analo-

gously to the first. The histories were grouped according to

whether there is a second-degree match between trials n and n �

k. Mean RTs were averaged across groups of histories and the

difference taken between groups.

When starting from mean RTs based on 4-deep histories, RE1(k)

can be defined up to a lag of k � 4, whereas RE2(k) can be defined

up to k � 3. RE1(2) and RE2(1) are logically equal and hence

unidentifiable, because trials n and n � 2 are a first-degree match if

and only if trials n and n � 1 are a second-degree match (i.e., both

repetitions or both alternations). Thus, the lag profiles provide six

independent measures of sequential effects. Each measure corre-

sponds to a balanced contrast among the mean RTs for the sixteen

4-deep histories, and it is easily verified that all six contrasts are

orthogonal.

The lag profiles are especially useful in the context of the

parallel-learning model, because they essentially invert that mod-

Figure 8. Fit of the parallel-learning model to response time (RT) data of

Experiment 1. Error bars correspond to the within-subjects standard error

taken across all 32 observations, following Masson and Loftus (2003).

Positive � positive condition; Negative � negative condition.

Figure 7. Exchange plot for Experiment 1. Each point represents a pair of

trial histories differing only in the value of the current trial, one a repetition

and the other an alternation. The values plotted are the same as in Figure

6. RT � response time; Positive � positive condition; Negative � negative

condition.
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el’s predictions, isolating the effects of both learning components

at all lags. The model’s predictions for both lag profiles can be

exactly solved at all lags in terms of the model parameters, as

derived in Appendix B. The results are shown in Table 3. The

predicted REs at higher lags (RE1(k) for k � 3 and RE2(k) for k �

2) are pure measures of the respective learning components, de-

caying exponentially as a function of k with magnitude 2�ε and

decay rate 1 � ε. RE1(2) and RE2(1) are not especially diagnostic

because they are equal and depend on both learning components,

as explained above. Finally, RE1(1) corresponds to (the negative

of) the alternation advantage. It reflects both a first-degree RE and

long-term second-degree learning, the latter being the only way in

which the model predicts the two conditions to differ (note the

opposite signs in rows 1–2 of Table 3). The artificial bias term is

also reflected in RE1(1), shifting it negatively (when � � 0) to

capture the net alternation advantage between the two conditions.

Figure 9 (dashed lines) shows the joint-learning model’s pre-

dictions for the second-degree lag profile, RE2(k). These predic-

tions are derived from the same fits used in Figure 8 and are

averaged across the predictions for individual subjects. The model

predicts a second-degree lag profile that decays with increasing lag

and that is identical for the two conditions. Solid lines show the

empirical second-degree lag profile, computed for individual sub-

jects and then averaged over subjects. The data are consistent with

the model’s prediction of no difference between conditions, as

supported by a paired-samples t-test at each of the three lags, as

well as on the average across all three lags (p � .2 for each of the

four comparisons). We regard the second-degree lag profile to be

consistent with the predictions of the parallel-learning model, as

well as of the joint-learning model considered below (fits not

shown), and we do not consider it further.

The first-degree lag profile turns out to be more theoretically

informative. Figure 10A shows the parallel-learning model’s

prediction for the first-degree lag profile, based on averaging

the predictions from the fits of individual subjects. The model

predicts the only difference between conditions to lie in RE1(1),

due to long-term learning of the repetition rate (see also Table

3). These predictions correspond to the direct hypothesis re-

garding the influence of autocorrelation on sequential effects.

Recall that this hypothesis states that differences in first-degree

REs due to autocorrelation come only from direct contributions

of second-degree learning (i.e., learning the repetition rate),

rather than from adaptation of first-degree learning. The model

as presented in Figure 10A embodies this hypothesis, because

there is no change in model parameters (in particular, �base or

εbase) between conditions.

The alternative possibility considered here is the adaptation

hypothesis, which posits that first-degree learning adapts to envi-

ronmental statistics. For example, �base could increase in the

positive condition, because such an adaptation would contribute to

more correct expectancies. This possibility is illustrated in Figure

10B. To generate representative predictions, each subject’s esti-

mated �base was scaled by an arbitrary constant factor (1.25) to

Table 2

Fits of Models to Response Time Data of Experiment 1

Model

Parameter

Var�0 �base εbase �rep εrep �

Parallel learning 260.19 67.45 .551 62.13 .091 39.13 .9667
Joint learning 260.72 24.85 .190 80.46 .099 — .9713

Note. Parameter values are medians across fits to individual subjects. Var column indicates proportion of variance explained across all 32 of the 4-deep
trial histories (16 in each condition), based on fit to group data. Dash indicates parameter held to zero.

Table 3

Predictions of Parallel-Learning Model for Lag Profiles

Measure Value

RE1(1), Positive condition 2�base εbase �
2

3
�rep�1 � εrep�

4 � 2�

RE1(1), Negative condition 2�base εbase �
2

3
�rep �1 � εrep�

4 � 2�
RE1(2) 2�base εbase �1 � εbase� � 2�repεrep

RE1(3) 2�base εbase �1 � εbase�
2

RE1(4) 2�base εbase �1 � εbase�
3

RE2(1) 2�base εbase �1 � εbase� � 2�repεrep

RE2(2) 2�rep εrep �1 � εrep�
RE2(3) 2�rep εrep �1 � εrep�

2

Note. All measures but RE1(1) are predicted to be the same for the two
conditions.

Figure 9. Second-degree lag profiles from Experiment 1, with predic-

tions from the parallel-learning model. Model’s predictions are identical

for the two conditions. Error bars indicate standard error between subjects.

RT � response time; Positive � positive condition; Negative � negative

condition.

T
h
is

d
o
cu

m
en

t
is

co
p
y
ri

g
h
te

d
b
y

th
e

A
m

er
ic

an
P

sy
ch

o
lo

g
ic

al
A

ss
o
ci

at
io

n
o
r

o
n
e

o
f

it
s

al
li

ed
p
u
b
li

sh
er

s.

T
h
is

ar
ti

cl
e

is
in

te
n
d
ed

so
le

ly
fo

r
th

e
p
er

so
n
al

u
se

o
f

th
e

in
d
iv

id
u
al

u
se

r
an

d
is

n
o
t

to
b
e

d
is

se
m

in
at

ed
b
ro

ad
ly

.

643SEQUENTIAL EFFECTS IN 2AFC



predict the positive condition, and the inverse scaling was applied

in the negative condition. The result is an adaptation of RE1 at all

lags. A similar prediction can be obtained by adjusting εbase

between conditions (not shown).

Figure 10C shows the empirical first-order lag profiles, averaged

over the profiles derived from individual subjects. Most relevant to the

contrast between the direct and adaptation hypotheses are the differ-

ences in RE1 at lags 2 and greater. Contrary to both hypotheses,

RE1(k) for k � 2 is larger in the negative condition than in the positive

condition. This difference is nonsignificant at lag 2 (p � .5), but it is

highly reliable at lag 3 (Mpositive � 0.42 ms, Mnegative � 7.73 ms,

paired t(27) � �5.94, p � .0001) and lag 4 (Mpositive � 4.04 ms,

Mnegative � 8.49 ms, paired t(27) � �4.21, p � .001). We refer to

this finding as a reverse adaptation effect, because it is opposite

Figure 10. A: Predictions of the parallel-learning model for the first-degree lag profile in Experiment 1. These

predictions correspond to the direct hypothesis, in that the only difference between conditions is due to direct

learning of the repetition rate. Predictions for the two conditions are identical for lags greater than 1. B: Example

predictions of the adaptation hypothesis, derived by rescaling the magnitude of the first-degree component of the

model (�base), upward in the positive condition and downward in the negative condition. C: Empirical

first-degree lag profiles from Experiment 1. Error bars indicate standard error between subjects. D: Probability,

as determined by the experiment design, of a first-degree match between the current trial and previous trials as

a function of lag. Probabilities for even lags are the same for both conditions. RT � response time; Positive �

positive condition; Negative � negative condition.
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the effect predicted by the adaptation hypothesis (whereas the

direct hypothesis predicts no effect in either direction). The reverse

adaptation effect is a counterintuitive result because it goes against

the statistics built into the trial sequences. Specifically, the prob-

ability that the current trial will physically match the trial at lag k

is always greater in the positive condition (for k odd) or else equal

in both conditions (for k even), as shown in Figure 10D.

Figure 10C also highlights a second challenge to the parallel-

learning model: the alternation advantage, which the model can

only explain using the artificial bias term. The large difference

between conditions at lag 1 is explained by the model as long-term

second-degree learning, as discussed above. However, the data

also show that the negative value in the negative condition is

stronger than the positive value in the positive condition; that is,

RE1(1) is reliably negative when averaged over the two conditions

(M � �18.45 ms, t(27) � �3.65, p � .01). This effect represents

the net alternation advantage: overall faster responding on alter-

nation trials. The analytic predictions in Table 3 demonstrate that

the parallel-learning model logically cannot explain the net alter-

nation advantage without an explicit bias term (add the predictions

in rows 1 and 2, with � � 0). The bias term was included in the

model for generating the predictions in Figures 8 and 10A (it has

no impact on Figure 9), but it is entirely ad hoc. It was added to

enable presentation of the various aspects of the data that the

model does explain, while postponing real consideration of the

alternation advantage until this point in the article.

In summary, the lag profiles do not answer the question between

the direct and adaptation hypotheses, but they do leave us with two

critical phenomena that cannot be explained by the parallel-learning

model: the reverse adaptation effect and the net alternation advantage.

We turn now to a new model that suggests these findings are both

signatures of the learning mechanism underlying sequential effects.

Joint-Learning Model

Both the reverse adaptation effect and the net alternation advantage

have a potential explanation rooted in joint error correction. Joint error

correction is a well-established principle of learning theory, whereby

learning is driven by the prediction error of all available cues com-

bined (Rescorla & Wagner, 1972), as opposed to learning each

cue-outcome contingency separately (Estes, 1950; Hebb, 1949). The

process of joint error reduction leads to interactive dynamics among

different association weights (here wbase and wrep), in particular pro-

ducing cue competition, whereby multiple cues can compete to pre-

dict the outcome (Gluck & Bower, 1988; Rescorla & Wagner, 1972).

Cue competition is central to most theories of classic learning phe-

nomena such as blocking (Kamin, 1968), in which little is learned

about one cue that is redundant to another cue that has already been

learned. Theories of joint error correction and cue competition have

previously been applied only to cases of multiple cues present on a

single trial (e.g., a tone and a light presented concurrently), but a

similar mechanism may be in play with sequential effects, where the

“cues” are aspects of the trial sequence.

Here, we develop a joint-learning analog to the parallel-learning

model analyzed above and show how it can explain the reverse

adaptation effect and net alternation advantage. We begin with a

simple connectionist interpretation of the parallel-learning model,

shown in Figure 11A. Under this interpretation, the parallel-

learning model learns two separate predictions for the upcoming

trial (En), one based on a constant cue for learning the base rate,

and the other using the previous trial as a cue, for learning the

repetition rate. The update rules of Equations 1 and 5 can be

viewed as Hebbian learning, where each association weight

(wbase and wrep) is adjusted toward the product of its input and

target output. Alternatively, they can be viewed as error-

correction rules, in which each weight is adjusted by a propor-

tion of the prediction error, multiplied by the value of the input

(i.e., gradient descent). The latter interpretation is straightfor-

ward for wbase (see Equation 1), and it can be seen for wrep by

rewriting Equation 5 as

�wrep � εrep(En � wrepEn�1)En�1. (13)

Figure 11. Illustration of the difference between parallel-learning and joint-learning models. A: In the

parallel-learning model, the association weights wbase and wrep generate separate predictions for each upcoming

trial (En). A constant cue (1) is used for wbase, leading it to estimate the base rate. The previous trial (En�1) acts

as a cue for wrep, leading it to estimate the repetition rate. Each association weight is updated by Hebbian

learning, or equivalently based on its own prediction error. B: In the joint-learning model, the two weights

combine to generate a joint prediction, and each is updated based on the joint error.
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The joint-learning model assumes that, instead of learning two

separate predictions, wbase and wrep combine to generate a single

prediction,

Ên � wbase � wrepEn�1, (14)

as illustrated in Figure 11B. Updating of each weight is then based

on the error of this joint prediction:

�wbase � εbase�En � Ên�
�εbase�En � wbase � En�1wrep� (15)

and

�wrep � εrep�En � Ên�En�1

�εrep�En � wbase � En�1wrep�En�1

�εrep�En�1En � wrep � En�1wbase�. (16)

The third line in Equation 16 is meant to show the symmetry between

the learning rules for wbase and wrep, as well as their close similarity

to the learning rules of the parallel-learning model (Equations 1 and

5). The only difference between the learning rules for the two models

is the joint-learning model’s inclusion of the cue competition terms,

�En�1wrep and �En�1wbase, by which each weight affects updating

of the other. As shown in the next two subsections, these two cue

competition effects turn out to predict the reverse adaptation effect

and net alternation advantage, respectively.

Table 4 summarizes the differences between the parallel- and

joint-learning models. In addition to learning wbase and wrep from

joint prediction error, the joint-learning model abandons the arti-

ficial alternation-bias term for predicting RT. Because cue com-

petition can explain the alternation advantage (as is shown below),

there is no longer a need for this ad hoc assumption. Thus the

joint-learning model’s RT prediction reverts to Equation 7 instead

of Equation 10. We also drop the alternation bias for predicting

ERP components, in the ERP analyses reported below.

Cue competition explanation for the alternation advantage.

The joint-learning model explains the net alternation advantage as a

consequence of how wbase modulates the learning dynamics of wrep,

via the cue competition term �En�1wbase in Equation 16. This cue

competition effect turns out to bias wrep toward an expectation of

alternation, as follows.

Incremental learning leads wbase to be biased toward the values

of recent trials (relative to the true long-term base rate). This is the

basic explanation of the first-degree RE. In particular, at the start

of trial n, the update following trial n � 1 has shifted wbase toward

En�1. Thus the cue competition term, �En�1wbase, in the update

equation for wrep (Equation 16) will on average be negative.

Therefore, cue competition exerts a negative bias on wrep, shifting

it toward expectancy of alternation.

More intuitively, the first-degree RE produced by incremental learning

of wbase biases the model’s expectancy toward repetition. Because learn-

ing is driven by joint error, wrep will learn to compensate for this bias, by

shifting its value in the direction of alternation. Thus, wrep will approxi-

mately learn whatever the repetition rate happens to be, but it will always

be biased away from the true repetition rate, in the direction of alternation,

as a result of cue competition from wbase.

Whether the model as a whole produces a repetition advantage or

an alternation advantage depends on the relative influences of first-

and second-degree expectancies on RT (see Equation 7). It can be

shown mathematically that an alternation advantage arises if and only

if �rep � �base. The fits presented below of the joint-learning model

confirm this is the case for Experiment 1. Experiment 2 tests the

further prediction that selectively increasing �rep leads to a stronger

alternation advantage.

Cue-competition explanation of the reverse adaptation

effect. The complementary cue competition mechanism, by which

wrep modulates the learning dynamics of wbase, logically leads to the

reverse adaptation effect found in the first-degree lag profiles. The

explanation for this conclusion is illustrated in Figure 12.

The starting point for this explanation is that, on average, wrep will

be greater in the positive condition than in the negative condition, due

to long-term learning of the repetition rate in each condition. This

difference in wrep leads to a difference in the model’s prediction for

the upcoming trial, such that it is more in the direction of repetition in

the positive condition and alternation in the negative condition. Imag-

ine first that the current trial is a repetition (see Figure 12, top).

Because repetition is more expected in the positive condition, the

prediction error will tend to be smaller.5 Therefore learning will shift

wbase toward En, but by a relatively small amount. In contrast, the

prediction error in the negative condition will tend to be larger,

leading to a bigger update, shifting wbase more strongly toward En.

Thus, following learning on trial n, wbase will be closer to En and En�1

(which were equal by assumption) in the negative condition than in

the positive condition. Therefore any future instances of that same

5 The situation is different if the outcome is overpredicted, that is, |Ên| �
1, but the conclusion is the same.

Table 4

Comparison of Parallel- and Joint-Learning Models

Assumption Parallel learning Joint learning

Update rules �wbase � εbase (En � wbase)
�w

base � εbase (En � wbase � En�1wrep )
�wrep � εrep (En�1En � wrep) �w

rep � εrep (En�1En � wrep � En�1wbase)
RT RT � �0 � �basewbaseEn � �repwrepEn�1En � �En�1En RT � �0 � �basewbaseEn � �repWrepEn�1En

LRP–Response latency LRPr � �LRPr � �basewbaseEn LRPr � �LRPr � �basewbaseEn

Stimulus–LRP latency sLRP � �sLRP � �repwrepEn�1En��En�1En sLRP � �sLRP � �repwrepEn�1En

Note. The models differ in two ways. The joint-learning model learns from joint prediction error, leading to cue-competition terms in its update rules.
The parallel-learning model includes an alternation-bias term (�) in predicting response time (RT) and stimulus processing time, whereas the joint-learning
model does not. These differences between the models are underlined in the table. LRPr � latency from lateralized readiness potential (LRP) onset to
response; sLRP � latency from stimulus onset to LRP onset.
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stimulus on the next several trials will produce faster responding in

the negative condition. That is, the negative condition will show a

stronger facilitation effect from subsequent first-degree matches to

En�1.

Next consider the case of an alternation trial, En � En�1 (see

Figure 12, bottom). In this case, the prediction error will tend to

be smaller in the negative condition, and the update will tend to be

greater in the positive condition. Therefore, wbase will shift more

toward En—and further from En�1—in the positive condition than

in the negative condition. Thus once again the negative condition

will benefit more from future matches to En�1.

Therefore, regardless of whether trial n is a repetition or an

alternation, wbase tends to end up closer to En�1 in the negative

condition than in the positive condition. The negative condition

thus exhibits a greater benefit of matches to En�1 on trials n  1

and later. In other words, the first-order RE is stronger in the

negative condition than in the positive condition, at lags 2 and

greater. This corresponds exactly to the reverse adaption effect that

was observed in the empirical data.

The joint-learning model’s explanation of the reverse-adaptation

effect can also be seen more formally, as a consequence of the cue

competition term �En�1wrep in Equation 15. In the positive condi-

tion, long-term learning of the repetition rate leads to a positive

expected value of wrep. Consequently, the cue competition term biases

wbase away from En�1 at the conclusion of trial n. Thus, the expec-

tancy for trial n  1 is biased away from the outcome of trial n � 1,

reducing the first-degree RE at lag 2. Because the bias in wbase persists

(only decaying due to subsequent updates), the first-degree RE at

longer lags is reduced as well. In the negative condition, the effect is

reversed. On average wrep is negative, so the cue competition term

biases wbase toward En�1. The result is an increase in the first-degree

RE at lags 2 and greater. Thus, cue competition leads RE1(k) for k �

2 to be larger in the negative condition than in the positive condition,

in agreement with the reverse adaptation effect.

Joint-learning model fits to RT data. The joint-learning mod-

el’s explanation of the alternation advantage and reverse adaptation

effect suggest it is a more accurate model of sequential effects than is

the parallel-learning model. To test this assertion, the joint-learning

model was fit to the mean RTs of each subject for all 4-deep trial

histories, by least squares. Model predictions were generated by

simulating the model on the actual stimulus sequence experienced by

each subject. Exact simulation was used because the joint-learning

Figure 12. Illustration of cue-competition explanation for reverse adaptation effect. Upper panel shows a

repetition trial, and lower panel shows an alternation trial. In both diagrams, time flows from left to right,

horizontal lines correspond to the two possible stimulus or response values, and the space between them

represents the range of possible predictions (i.e., strengths of expectancy between the two outcomes). The

vertical positions of circles labeled En�1 and En indicate the values of trials n � 1 and n. Superscript  and �

indicate positive and negative conditions, respectively. The contribution of the repetition weight (wrep, not

shown) leads the current prediction, Ên, to be further from En�1 in the negative condition than in the positive

condition. Regardless of whether trial n matches (upper panel) or mismatches (lower panel) trial n � 1, the

prediction error is more in the direction of En�1 in the negative compared to the positive condition. Thus, the

update to the base-rate weight, wbase, is more in the direction of En�1 in the negative condition. Consequently,

there is greater facilitation in the negative condition when trials n  1 and later match trial n � 1.
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model does not admit simple analytic derivations in the way the

parallel-learning model does. Mean predicted RTs were calculated

from the same trials that were included in the subject analyses (e.g.,

excluding trials with recent errors), using the same procedure of

balancing over 5-deep histories to obtain means for 4-deep histories.6

Model parameters were constrained to be equal for both conditions

within each subject.

Figure 13A shows the joint-learning model fits averaged over

subjects. These fits were converted to first-degree lag profiles, and

the resulting predictions are shown in Figure 13B. The joint-

learning produces the basic pattern of first- and second-degree REs

just as the parallel-learning model does, but the joint-learning

model’s predictions are superior in two ways. First, it captures the

net alternation advantage, in that the first-degree RE at lag 1 is

negative when averaged between conditions, and it does this

without the ad hoc bias parameter needed by the parallel-learning

model. Second, it captures the reverse adaptation effect, in that the

first-degree RE at lags 2 and greater is larger in the negative

condition. A further sign that the joint-learning model provides a

better explanation of the data than the parallel-learning model is

that it explains a greater proportion of variance when fit to the

mean RTs across subjects (see Table 2), even though it has one less

free parameter (5 vs. 6).

As noted above, the model predicts an alternation advantage

only if �rep � �base. A Wilcoxon signed-ranks test on the

difference �rep � �base estimated from individual subjects

showed a reliable difference (median difference � 52.5 ms, z �

2.39, p � .05), with 24 of the 28 subjects showing �rep � �base.

This result supports the prediction that repetition expectancy

has a more pronounced effect on RT than does base-rate ex-

pectancy, which is elemental to the model’s explanation of the

alternation advantage.

As a more stringent test of whether the model fully captures the

alternation advantage in the data, a biased joint-learning model was fit

by adding the same ��En�1En term to the model’s RT prediction that

was added to the parallel-learning model (i.e., using Equation 10). If

the joint-learning model’s explanation for the alternation advantage

were insufficient (or oversufficient), then it would be expected to take

advantage of this extra flexibility by yielding fitted values of the bias

parameter (�) that systematically differ from zero. This was not the

case. A Wilcoxon signed-rank test on the fitted � values for all

subjects showed no reliable difference from zero (median � � 8.2 ms,

z � 0.4, p � .68), and a t-test produced the same conclusion (p � .49).

Therefore, the joint-learning model provides a simultaneous explana-

tion of both the alternation advantage and the more detailed sequential

effects found in this experiment.

Summary of RT Modeling

The analyses presented above reveal a great deal about the

psychological mechanisms underlying sequential effects in 2AFC.

Table 5 lists the critical phenomena found in the RT data, as well

as which of the two models explains each and what the explanation

is.

The parallel-learning model, which assumes independent learn-

ing of the base rate and repetition rate in the trial sequence,

successfully explains the dependence of RT on trial history as a

combination of first- and second-degree REs. It also explains the

primary difference between conditions, in that repetition RTs

are faster in the positive condition and alternation RTs are faster in

the negative condition, as a consequence of long-term learning of

the repetition rate. The fact that short- and long-term effects can be

explained by a common mechanism supports the basic premise of

sequential effects as arising from incremental learning. However,

the parallel-learning model fails to account for the overall alter-

nation advantage (requiring an ad hoc bias parameter to match the

6 On trials when the subject made an error (i.e., stimulus and response
were not the same), we arbitrarily used the stimulus to define the feedback
for learning (i.e., En). This choice should have little impact on model
predictions because of the exclusion of trials with current or recent errors
in calculating mean RTs.

Figure 13. Fit of joint-learning model to response time (RT) data from

Experiment 1. A: Mean RT for each 4-deep trial history in each condition.

Error bars indicate within-subjects standard error. B: First-degree lag

profile, predicted from fit in Figure 13A. Error bars indicate between-

subjects standard error. Positive � positive condition; Negative � negative

condition.
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data), or the reverse adaptation effect whereby first-degree REs at

higher lags are stronger in the negative condition.

The joint-learning model accounts for all of the phenomena

explained by the parallel-learning model, and it also explains the

alternation advantage and the reverse adaptation effect, as signa-

tures of cue competition from joint error correction. Cue compe-

tition from wbase on the learning dynamics of wrep produces an

alternation advantage, as wrep compensates for the positive first-

degree RE in wbase (assuming second-degree expectations have a

stronger effect on RT, that is, �rep � �base as was found in the

model fits). Cue competition from wrep on the learning dynamics

of wbase produces the reverse adaptation effect, because long-term

learning of wrep leads expectancies to be further from the previous

trial in the negative condition, and thus error correction pushes

wbase further toward the previous trial in that condition. The

joint-learning model thus produces an excellent fit to the full

pattern of RT data, including sequential effects, the lag profiles,

and long-term differences between the conditions.

We consider it a remarkable result that the two mechanisms

introduced by the joint-learning model (i.e., the two types of cue

competition) align exactly with the two empirical patterns that the

parallel-learning model cannot explain. Neither of these phenom-

ena was anticipated, and the experiment was designed as a focused

test of the parallel-learning model (together with the direct and

adaptation hypotheses). In conclusion, the sequential effects in this

experiment turned out to be informative not just about the repre-

sentations on which learning operates (i.e., physical stimulus or

response identities, and repetitions vs. alternations) but also about

the nature of the learning mechanism itself (i.e., that it is driven by

joint error correction).

ERP Results

Having established the joint-learning model as a comprehensive

and parsimonious explanation for the various phenomena observed

in the RT data, we now test whether it can predict the ERP data.

ERP analyses focused on LRP, to estimate separate effects on the

durations of stimulus and response processing, and on P100, to

estimate stimulus expectancies. In both cases, we tested the

separate-stages hypothesis by evaluating whether these indices of

response and stimulus processing could be separately predicted by

the first- (wbase) and second-degree (wrep) components of the

model, respectively. These were parameter-free tests, in that the

model as fit to the RT data was used directly to make predictions

for the ERP data, without further parameter tuning (other than

linear scaling parameters).

One concern with this approach might be that the RT and ERP

analyses used slightly different sets of trials. As reported above,

the proportions of excluded trials were very similar for RT (32.5%)

and ERP (31.8% for peristimulus analyses and 31.4% for perire-

sponse), but the exclusionary criteria were different. Most impor-

tant for the goal of predicting ERP from RT is that the number of

trials within each history and autocorrelation condition do not

markedly differ between RT and ERP analyses. Therefore, we

determined the number of retained trials for each 3-deep history

within each condition. The RT and ERP trial counts differed by

less than 10% in every case.

LRP. The LRP analysis is founded on the assumption that

variation in sLRP and in LRPr, respectively, reflects the contribu-

tions of stimulus and response expectancies. Specifically, the

sLRP interval should be shorter when the stimulus is more ex-

pected, and the LRPr interval should be shorter when the response

is more expected. Thus, the separate-stages hypothesis predicts

that sLRP and LRPr will be well fit by the second- and first-degree

components of the joint-learning model, respectively.

Figure 14 shows aggregate LRP waveforms for each condition

and 2-deep history (obtained by averaging pairs of waveforms for

3-deep histories). LRP is characterized by a spike beginning 100–

200 ms after the stimulus onset and 50–100 ms before the re-

sponse. The figure indicates several effects of history and condi-

tion on sLRP and LRPr. These and higher-order predictions of the

joint-learning model are formally tested below.

As noted in the Method section, three different criteria were

used to define the time of LRP onset in both peristimulus (sLRP)

and periresponse (LRPr) analyses. To define a target for modeling,

we wanted to use the onset criteria that provided the greatest

signal-to-noise ratio across the histories and conditions, which is

equivalent to having the greatest F ratio in a one-way repeated-

measures ANOVA over the 16 history-condition pairs. The opti-

mal criteria by this measure were 50% of peak negative activation

for sLRP and �.8 	V for LRPr. All results reported in this section

are based on these onset criteria, although the other criteria lead to

the same qualitative conclusions.

Figure 15 shows sLRP and LRPr as a function of 3-deep history

and condition, derived using the onset criteria just given. To test

the separate-stages hypothesis, the joint-learning model was used

to generate separate predictions for sLRP and LRPr, with the

first-degree component predicting LRPr and the second-degree

component predicting sLRP, as shown in Table 4. The model

parameters, �base, εbase, �rep, and εrep, as well as the trial-by-trial

values of wbase and wrep, were taken directly from the fits to the RT

data. Therefore, the only free parameters in fitting the LRP data

Table 5

Model Explanations of Key Phenomena in Experiment 1 Response Time Data

Phenomenon

Explained by models

ExplanationParallel learning Joint learning

First-degree recency effect Yes Yes Incremental learning of base rate
Second-degree recency effect Yes Yes Incremental learning of repetition rate
Lag-1 difference between conditions Yes Yes Long-term learning of repetition rate
Reverse adaptation No Yes Cue competition on base rate
Alternation advantage No Yes Cue competition on repetition rate
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were the intercept terms, �LRPr and �sLRP, which partition the �0

intercept in the RT model (although the fits were not constrained

to satisfy �LRPr  �sLRP � �0).

The model predictions are shown as dashed lines in Figure 15.

The correlation between data and model taken across the 16

condition-history combinations is .921 for sLRP (p � .0001) and

.746 for LRPr (p � .01). The predictions for sLRP are more

accurate than those for LRPr (see Footnote 8 below for one

possible explanation), but we view both as impressive considering

they are based on only the behavioral data. To test the purity of the

dissociation, the opposite correlations were also computed. The

correlation between empirical sLRP and the model’s first-degree

component is �.059 (p � .83), and the correlation between em-

pirical LRPr and the model’s second-degree component is �.089

(p � .74).

These results provide strong support for the separate-stages

hypothesis, extending the reanalysis of Jentzsch and Sommer’s

(2002) LRP data presented in the Separating Stimulus- and

Response-Based Sequential Effects section in three ways. First, the

model accounts for the effects of the autocorrelation manipulation,

which differ between LRPr and sLRP. Second, it fits the data

without the alternation bias used in the parallel-learning model.7

Third, the fits represent genuine predictions from the RT data, with

no free parameters except for the intercept terms (which do not

affect the model-data correlations).

A useful way to gain insight into the sequential effects in the

LRP data, as well as how the joint-learning model explains them,

is by consideration of lag profiles. As explained in the Lag Profiles

section, lag profiles measure first- and second-degree REs sepa-

rately at all lags. Lag profiles for sLRP and LRPr were defined in

the same way as for RT. For first-degree REs, RE1
sLRP(k) was

defined at lags k � 1, 2, 3, as the difference in mean sLRP between

the four 3-deep trial histories with first-degree mismatches be-

tween trials n � k and n, and the mean sLRP for the four histories

with first-degree matches between trials n � k and n. For second-

degree REs, RE2
sLRP(k) was defined at lags k � 1 and 2, in the

same way as RE1
sLRP(k) but based on second-degree matches. The

corresponding measures for LRPr were defined similarly, as

RE1
LRPr(k) and RE2

LRPr(k). All four lag profiles were calculated

separately for the positive and negative autocorrelation conditions.

Four comparisons of the LRP lag profiles are theoretically

informative for the present study. Table 6 summarizes the results

of these comparisons and their implications. Statistical tests of

these comparisons, as reported below, used the jackknife proce-

dure described in the Electrophysiological Recordings section, by

calculating lag profiles from the jackknife waveforms and apply-

ing the appropriate statistical corrections.

We describe first the results for higher lags, specifically RE1(3)

and RE2(2), because they most transparently distinguish between

first- and second-degree effects. These two measures are closely

related, because as Table 7 shows, they represent contrasts over the

same minimal pairs of histories, each pair differing in first-degree

representation only at lag 3 and in second-degree representation

only at lag 2. The two effects agree in direction for half of these

7 Fits of the joint-learning model to Jentzsch and Sommer’s (2002) data
are not reported here, but the results are comparable to those reported in the
Separating Stimulus- and Response-Based Sequential Effects section for
the parallel-learning model, on one less free parameter.

Figure 14. Average lateralized readiness potential (LRP) waveforms from Experiment 1, for all 2-deep

histories in both conditions. Positive � positive condition; Negative � negative condition.
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pairs, and they disagree for the other half. Thus first- and second-

degree REs both predict differences for all of these pairs, and

assessment of RE1(3) and RE2(2) can determine which mechanism

is responsible for these differences.

Averaging over both autocorrelation conditions, the mean value

of RE1
LRPr(3) is reliably positive, t(27) � 2.07, p � .05. That is,

response processing time averaged 5.02 ms faster following a

first-degree match at lag 3. Mean RE1
sLRP(3) was not significantly

different from zero (p � .5). Analysis of RE2(2) shows the oppo-

site pattern. Specifically, RE2
rLRP(2) is not reliably different from

zero (p � .5), but RE2
sLRP(2) is reliably positive, t(27) � 3.10, p �

.01, indicating that stimulus processing was 10.15 ms faster fol-

lowing a second-degree match at lag 2. In summary, higher-order

sequential effects in LRPr are driven by first-degree matches,

whereas higher-order sequential effects in sLRP are driven by

second-degree matches. These results lend strong support to the

separate-stages hypothesis, in agreement with the modeling anal-

ysis above.

The remaining tests of the LRP lag profiles address questions of

learning mechanisms, based on RE1(1), which measures the dif-

ference in processing time between alternation and repetition trials.

The following analyses are interpreted under the separate-stages

hypothesis, which we now take as firmly supported by the data.

We first address the value of RE1(1) averaged between condi-

tions. The joint-learning model predicts RE1
rLRP(1) � 0, corre-

sponding to a repetition advantage in response processing, and

RE1
sLRP(1) � 0, corresponding to an alternation advantage in

stimulus processing. The former prediction arises from incremen-

tal learning of the base rate (i.e., a simple first-degree RE), and the

latter prediction arises as a byproduct of the former, due to cue

competition. The data support both predictions: mean RE1
LRPr(1)

is reliably positive, t(27) � 3.66, p � .01, and mean RE1
LRPr(1) is

reliably negative, t(27) � �4.62, p � .001. These effects can be

seen in Figure 14, where the time from stimulus to LRP onset is

greater for repetition trials (upper panels, grey curves compared to

black), and the time from LRP onset to response is greater for

alternation trials (lower panels). These results support the joint-

learning model’s explanation for the net alternation advantage in

the RT data, as arising from cue competition in second-degree

learning, which compensates for the repetition advantage inherent

in first-degree learning.

Finally, we consider the difference in RE1(1) between condi-

tions. The RT data show a large difference, with a repetition

advantage in the positive condition and a (stronger) alternation

advantage in the negative condition. A primary question motivat-

ing this study was whether this difference is due to adaptation of

the mechanism underlying first-degree REs or to a direct effect of

second-degree learning. These hypotheses are indistinguishable

from the RT data at lag 1, but using LRP and the separate-stages

hypothesis we can break the difference between conditions into

first- and second-degree effects. The direct hypothesis predicts the

difference to lie in sLRP, due to long-term learning of the stimulus

repetition rate. The adaptation hypothesis predicts an additional

effect in LRPr, due to strengthening (positive condition) or weak-

ening (negative condition) of the sequential effects produced by

incremental learning of the base rate (i.e., of first-degree REs).

The RE profiles from the LRP data support both predictions. In

stimulus processing, there is a large and reliable difference in

RE1
sLRP(1) between conditions (MPositive � �19.35 ms, MNegative �

�55.84 ms, t(27) � 3.60, p � .01), consistent with the direct hypoth-

esis. In response processing, there is a smaller but still reliable dif-

ference in RE1
LRPr(1) between conditions (Mpositive � 24.04 ms,

Mnegative � 5.60 ms, t(27) � 3.66, p � .01), indicating adaptation

of the strength of first-degree REs. These effects can both be seen

in Figure 14, where the alternation advantage in sLRP (earlier LRP

onset for alternation trials) is greater in the negative condition, and

the repetition advantage in LRPr (shorter time from LRP to re-

sponse in repetition trials) is greater in the positive condition. Note

Figure 15. Estimates of (A) stimulus processing time, sLRP, and (B)

response execution time, LRPr, based on lateralized readiness potential

(LRP) from electroencephalography recordings in Experiment 1. Empirical

values were obtained from the aggregate event-related potential waveforms

averaged over subjects. Error bars indicate within-subjects standard error

and are estimated using the jackknife procedure of Miller et al. (1998).

Model predictions are derived from fits of the joint-learning model to the

response time data, under the separate-stages hypothesis. Thus, predictions

for sLRP are based only on the second-degree component of the model, and

predictions for LRPr are based only on the first-degree component. Positive

� positive condition; Negative � negative condition.
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that the evidence against adaptation in the RT data came from the

reverse adaptation effect at lags 3 and 4, which was attributed to

cue competition, but it is possible that adaptation and cue compe-

tition are both present at higher lags, with the latter exerting a

stronger effect.8

In summary, the model-based and statistical analyses of the LRP

data both provide excellent support for the joint-learning model

and the separate-stages hypothesis. First- and second-degree se-

quential effects appear to be separately localized to response and

stimulus processing, respectively. The data also support the joint-

learning model’s account of the alternation advantage in RT, as

due to a cue competition effect on learning the stimulus repetition

rate coupled with slower speed of stimulus versus response pro-

cessing (i.e., �rep � �base). Finally, if one accepts the separate-

stages hypothesis, then the comparison of RE1
LRPr(1) between

conditions gives the first evidence for the adaptation hypothesis

that is not confounded by direct contributions of second-degree

learning. This finding could be incorporated in the model by

allowing differential �base or εbase between conditions, but it

remains a challenge for future work to determine the learning

mechanism from which such differential values might emerge.

P100. Figure 16 shows P100 waveforms averaged across sub-

jects for each 2-deep history in each condition. The P100 compo-

nent is the positive peak between 100 and 150 ms after the

stimulus onset. The waveforms show changes in P100 amplitude

as a function of history and condition. These and higher-order

predictions of the joint-learning model are formally tested below.

The primary prediction regarding P100 amplitude was that it

would correlate with the second-degree component of the joint-

learning model. This prediction was based on the evidence above

that second-degree sequential effects are located in stimulus pro-

cessing, together with the standard interpretation of P100 as arising

in visual processing (e.g., Spehlmann, 1965). To test this hypoth-

esis, the RT predictions of the model were separated into first- and

second-degree components as was done for the LRP predictions.

Because P100 amplitude is greater for expected than for unex-

pected stimuli (Mangun & Hillyard, 1991), we defined the degree

to which the current stimulus matches the model’s first- and

second-degree expectations as

P1 � wbaseEn

P2 � wrepEn�1En. (17)

These predictions are identical to those made above for LRPr and

sLRP (see Table 4), except for a reversal of sign and omission of

the scaling parameters (�s). Because P100 is defined on a different

scale than RT and the LRP intervals (i.e., voltage rather than time),

we simply evaluated the correlations of P1 and P2 with P100

amplitude. As with the LRP predictions, the values of wbase and

wrep were taken directly from the RT fits. The hypothesis given

above, that P100 reflects the second-degree component of the

model, translates to the specific prediction that empirical P100

should correlate positively with P2 and not with P1.

To test this prediction, P1, P2, and the P100 amplitude were

averaged across subjects for each 3-deep history in both condi-

tions. Over the 16 history-condition pairs, the correlation between

P100 and P2 is .706 (p � .01), whereas the correlation with P1 is

.071 (p � .5). Therefore, P100 appears to selectively reflect the

second-degree learning component of the model. This result is

illustrated in Figure 17, which shows P100 amplitude as a function

of condition and history, together with the model predictions from the

second-degree component. These predictions involve no free param-

eters, other than the two degrees of freedom for linearly scaling them

into voltage units. The predictions are not as accurate as they were for

the sLRP data, but they are still quite good. The fact that RT can be

used to generate good predictions of a variable as different as P100

amplitude (which does not even involve timing, as LRP does) sug-

gests the model is capturing a fundamental psychological process

underlying both measures.

As a model-free test of the connection between P100 amplitude

and second-degree sequential effects, the same statistical compar-

isons of first- and second-degree lag profiles that were performed

on the LRP data were repeated with P100. Lag profiles for P100

were defined up to k � 3 for RE1
P100(k) and up to k � 2 for

RE2
P100(k), following essentially the same definition used for RT

and LRP. The only difference was a reversal of sign: The mean

P100 amplitude over all histories having a (first- or second-degree)

mismatch at lag k was subtracted from mean P100 over histories

having a match at lag k. Thus, the values of RE1
P100 and RE2

P100

reflect the increase in amplitude due to a match to each past trial.

The same four comparisons tested with the LRP lag profiles

were repeated on P100 (see Table 6). The predictions were the

8 The evidence for the adaptation effect explains why the joint-learning
model predicts sLRP better than it does LRPr. The model embodies the
direct hypothesis, in that it assumes equal values of �base and εbase in both
conditions. Thus, its first-degree expectancies (i.e., its predictions for
LRPr) are nearly identical between conditions, whereas empirically the
adaptation effect leads to slightly different patterns of LRPr between
conditions (see Figure 15).

Table 6

Critical Measures of Recency Effects in Event-Related Potential Components From Experiment 1

Effect LRPr (ms) sLRP (ms) P100 (	V) Conclusion

RE1(3) 5.02� �.35 .008 First-degree effects lie in response processing
RE2(2) 1.24 10.15� .075� Second-degree effects lie in stimulus processing
RE1(1) 14.82� �37.60� �.155� Alternation advantage is due to cue competition
RE1(1), P � N 18.44� 36.49� .208� Support for both direct and adaptation hypotheses

Note. LRPr � latency from lateralized readiness potential (LRP) onset to response; sLRP � latency from stimulus onset to LRP onset. Positive values
for LRPr and sLRP indicate shorter processing time following matches to recent trials. Positive values for P100 indicate greater amplitudes following
matches to recent trials. P � N indicates difference between positive and negative autocorrelation conditions. First three rows show averages across the
two conditions.
� p � .05.
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same as those made above for sLRP, because both of these

measures are assumed to reflect stimulus processing. Starting with

REs at higher lags, which are fairly pure measures of first- and

second-degree learning, RE1
P100(3) was not significantly different

from zero (p � .5), whereas RE2
P100(2) was reliably positive, t(27) �

2.55, p � .05. Thus, P100 amplitude was increased by a second-

degree match two trials back, but not by a first-degree match three

trials back. This pattern matches that seen in sLRP and is opposite that

seen in LRPr, and it supports the hypothesis that P100 reflects second-

but not first-degree learning.

The tests of RE1
P100(1) also replicated the findings from the

LRP analysis. Averaged over both autocorrelation conditions,

RE1
P100(1) was reliably negative, t(27) � �3.44, p � .01. This

effect can be seen in Figure 16 as the overall greater P100 ampli-

tude on alternation trials. This finding reflects an overall alterna-

tion advantage in stimulus processing that is explained in the

joint-learning model by cue competition. Comparing conditions,

RE1
P100(1) was reliably more negative in the negative condition

(Mpositive � �0.051 	V, Mnegative � �0.259 	V, t(27) � 2.29,

p � .05). This effect can be seen in Figure 16 in that the amplitude

difference between alternation and repetition trials is greater in the

Negative condition. This finding is explained in the model as

long-term learning of the repetition rate.

In summary, both the model-based and statistical analyses of

P100 replicate the LRP findings, supporting the hypothesis that

stimulus processing reflects second-degree but not first-degree

sequential effects. Specifically, the P100 amplitudes show evi-

dence of second-degree REs from incremental learning of the

repetition rate, differences between conditions due to long-term

learning, and cue competition from learning from joint prediction

error.

Experiment 1 Conclusions

The RT and ERP data from Experiment 1, together with the

model-based analyses, provide converging evidence for a remark-

ably consistent picture of the psychological mechanisms underly-

ing sequential effects in 2AFC, summarized in the joint-learning

model and the separate-stages hypothesis.

The RT data show evidence of first- and second-degree REs, as

well as long-term learning of the differential repetition rates be-

tween conditions. These findings are consistent with the parallel-

learning model, which holds that sequential effects arise from

separate incremental learning of the sequence base rate and repe-

tition rate. However, the RT data also show a net alternation

advantage and a reverse adaptation effect (i.e., long-lag first-

degree REs are stronger in the negative condition), which the

parallel-learning model cannot explain. These two phenomena turn

out to align exactly with the two cue-competition effects intro-

duced by the joint-learning model, which holds that first- and

second-degree learning are driven by a common prediction-error

signal. The joint-learning model thus provides an excellent fit of

the RT data.

The LRP and P100 data also support this model, together with

the separate-stages hypothesis. Sequential effects in LPRr are

well-explained by first-degree REs, with no evidence of second-

degree effects. Conversely, sLRP and P100 show no evidence of

first-degree effects and are well-explained by second-degree REs,

Table 7

Contrast Between RE1(3) and RE2(2)

Recency effect

History

XXXX/RRR vs. YXXX/ARR YYXX/RAR vs. XYXX/AAR YYYX/RRA vs. XYYX/ARA XXYX/RAA vs. YXYX/AAA

First-degree � � � �
Second-degree � � � �

Note. Each entry indicates which of the two trial histories is predicted to show faster processing on the current trial, due to either first- or second-degree
recency effects alone. For each pair, differences in first-degree effects arise only from trial n � 3, and differences in second-degree effects arise only from
trial n � 2. The table shows RE1(3) and RE2(2) are orthogonal across the full set of 3-deep histories.

Figure 16. Average P100 waveforms in Experiment 1, for all 2-deep histories in both conditions. Positive �

positive condition; Negative � negative condition.
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long-term learning of the repetition rate, and cue competition. The

latter two measures thus support the present theory in the same

ways, despite being quite different measures of stimulus process-

ing (timing in motor cortex vs. amplitude in visual cortex). Fur-

thermore, when the joint-learning model is fit to RT and its

predictions are separated into first- and second-degree expectan-

cies, LRPr is well predicted by the first-degree component alone,

and sLRP and P100 are well predicted by the second-degree

component alone. The fact that the model makes such good

parameter-free predictions across such different variables suggests

that it captures fundamental psychological processes that underlie

all of these measures.

Although the ERP predictions were based on the group data, it

would be interesting in future work to test whether individual

differences could be predicted in the same way. That is, subjects

with stronger first-degree effects in RT might show stronger se-

quential effects in LRPr, and likewise subjects with stronger

second-degree effects in RT might show stronger sequential ef-

fects in sLRP and P100.9

Finally, the results show mixed support for the adaptation hy-

pothesis, that first-degree REs become stronger with positive au-

tocorrelation in the environment. The RT data appeared to show a

reverse adaptation effect, but this was explained in the joint-

learning model as cue competition. On the other hand the LRPr

data do show positive adaptation. To the extent that LRPr is

affected only by first-degree learning, this is the first evidence for

adaptation of REs that is not confounded by second-degree learn-

ing (i.e., by the direct hypothesis). It is possible that adaptation is

present in RT as well but that it is masked by the cue-competition

effect. Thus, the data as a whole are consistent with the adaptation

hypothesis, but more research will be needed to better answer this

question.

Experiment 2

Experiment 2 sought to separately manipulate the speed of

stimulus and response processing and to test the impact on sequen-

tial effects. Stimuli were random-dot kinematograms, and the

subject’s task was to discriminate between leftward and rightward

motion. Motion coherence in the stimulus was varied between

blocks, as a way of manipulating the rate of stimulus processing

(e.g., Gold & Shadlen, 2000). In addition, each subject was as-

signed to respond throughout the experiment with the middle and

index fingers of either the dominant or the nondominant hand. The

dominant hand was predicted to exhibit faster response execution.

These manipulations provide further tests of the joint-learning

model and the separate-stages hypothesis, as follows. According to

this theory, overall RT depends on the summed contributions of a

stimulus-processing component that is influenced by second-

degree expectancies and a response-processing component that is

influenced by first-degree expectancies (see Table 4). The timing

of these two components is determined by the parameters �rep and

�base, respectively. Slowing either processing component should

manifest in an increase of the corresponding � parameter. Because

RT depends on the product of each � and the corresponding

expectancy, w, slowing a component (i.e., increasing its �) should

also yield an amplification of expectancy effects on RT. In other

words, slowing stimulus processing should magnify the effects of

second-degree expectancies, and slowing response processing

should likewise magnify the effects of first-degree expectancies.

We therefore predicted that, provided the stimulus and response

manipulations in this experiment affected overall RT, they would

also moderate the effects of second- and first-degree expectancies,

respectively. Specifically, lower stimulus coherence should in-

crease the magnitude of second-degree REs and increase the

alternation advantage, and responding with the nondominant hand

should increase the magnitude of first-degree REs and decrease the

alternation advantage (or produce a repetition advantage). Because

autocorrelation was not manipulated in this experiment, predicted

effects on long-term learning and the reverse adaptation effect

were not tested.

Method

Participants. One hundred eighty-one undergraduate students

participated for partial course credit. Each subject was randomly

assigned to respond using the dominant (n � 90) or nondominant

(n � 91) hand. Dominant hand was determined by self-report, with

21 subjects (12 in the dominant condition) reporting being left-

handed.

Stimuli. The stimulus on each trial was a random-dot kine-

matogram, displayed on a black background on a 20-in. (50.8 cm)

computer monitor with 60-Hz refresh rate. The stimulus region

was circular, in the center of the monitor, with radius subtending

approximately 2.5 degrees of visual angle. Dots were white with

diameter approximately .6 mm.

Five dots were present on each refresh frame of the monitor.

Three interleaved sequences of dots were shown, so that the dots

on each frame corresponded to the dots from three frames earlier.

On each frame, every dot had an independent probability of

moving coherently relative to its position three frames earlier,

versus jumping randomly to a new point in the stimulus region.

This probability, referred to as the coherence of the stimulus, was

40% in low-coherence blocks and 80% in high-coherence blocks.

9 We thank an anonymous reviewer for this suggestion.

Figure 17. Mean P100 amplitude by history and condition. Error bars

indicate within-subjects standard error. Dashed lines show predictions from

the second-degree component of the joint-learning model. Positive �

positive condition; Negative � negative condition.
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The stimulus on each trial was either a rightward or a leftward

stimulus. For rightward stimuli, every time a dot moved coher-

ently, it shifted 3.5 mm to the right from its previous position (with

no vertical change). This shift corresponds to motion at approxi-

mately 6.2 degrees of visual angle per second. If the motion took

the dot off the right edge of the stimulus region, it was replaced on

the corresponding point on the left edge. Leftward stimuli were

constructed similarly.

Design. Each subject performed five blocks of trials in a

single session. The first block comprised 35 trials at high coher-

ence and was excluded from all analyses as practice. Of the

remaining 4 blocks, 2 used high coherence and 2 used low coher-

ence, with the order counterbalanced across subjects (high-low-

high-low or low-high-low-high). Each of these blocks comprised

201 trials, the first 9 of which were excluded from analysis to

reduce transient effects following breaks. Thus, there were 192 test

trials in each of the four test blocks.

Local stimulus histories for test trials were controlled to a depth

of 6 trials, with each of the 64 possible sequences of leftward and

rightward stimuli occurring exactly three times in each test block.

The stimulus sequence for each test block was generated pseudo-

randomly according to this constraint. The excluded trials in all

five blocks were generated pseudo-randomly under the constraints

that the repetition rate in each block was exactly 50%, and the base

rate was as close to 50% as possible (each block had an odd

number of trials).

Each subject responded with either the dominant or the non-

dominant hand throughout the experiment. This assignment was

counterbalanced across subjects.

Procedure. The subject’s task on each trial was to respond to

the motion of the dots, by pressing G for left or H for right on a

standard keyboard. Each subject was instructed to keep the index

and middle fingers of the assigned hand on these two keys

throughout the experiment.

Each trial began with a 700-ms RSI, during which only a 1-mm

white fixation dot was present in the center of the monitor. The

stimulus was then displayed and continued until the subject made

a response. Following error responses, the word “Wrong” was

displayed in red in the center of the monitor throughout the RSI, in

place of the fixation dot. Subjects were given self-paced breaks

between blocks. The entire experiment lasted about 30 min.

Results

To assess sequential effects, test trials were classified according

to 4-deep histories, and the mean RT was computed for each

history in each coherence condition for every subject. Because the

repetition rate was exactly 50% in all blocks, there was no need to

balance over 5-deep histories as was done in Experiment 1. Trials

were excluded if the present RT was less than 100 ms or greater

than three standard deviations above the mean for the test trials on

the current block (the 1,000-ms criterion used in Experiment 1

excluded too many trials), or if the present or any of the three

previous responses was incorrect. These criteria led to exclusion of

24.1% of the test trials. One subject in the nondominant condition

had no valid trials for one cell (history ARRA with low coherence)

and was eliminated from all subsequent analyses. Thus, 90 sub-

jects were analyzed in each condition. An alternative analysis that

required only the current and one previous responses to be correct,

which excluded 14.9% of the test trials and included all subjects,

yielded the same qualitative results as those reported here.

Table 8 shows mean RT as a function of stimulus coherence and

response hand, averaged over trial histories and subjects. The

manipulation of stimulus coherence had a large effect (198.9 ms),

whereas the effect of response hand was much less and opposite

the predicted direction (11.6 ms faster for the nondominant hand).

To assess the influences of the stimulus and response manipula-

tions on RT and on sequential effects, a mixed-effects ANOVA

was applied to the mean RTs, with 4-deep history and coherence

as within-subjects factors and dominance as a between-subjects

factor. Results showed highly reliable effects of coherence, F(1,

178) � 555.7, p � .0001; history, F(9.03, 1607.63) � 47.2, GG

ε � .602, p � .0001; and their interaction, F(10.86, 1933.83) �

9.77, GG ε � .724, p � .0001, indicating the coherence manipu-

lation affected both overall RT and the pattern of sequential

effects. However, neither the main effect nor any interaction

involving dominance approached significance, even without sphe-

ricity corrections (ps � .2). Therefore, it appears that the response

manipulation had no effect in this experiment. All subsequent

analyses collapse over this variable.

Figure 18 (solid lines) shows mean RT as a function of trial

history and stimulus coherence, calculated separately for each

subject and averaged over subjects. As evident in the figure, there

is a large alternation advantage in the low-coherence condition,

with mean RT being 37.10 ms faster on alternation trials, and a

weaker alternation advantage of 4.35 ms in the high-coherence

condition. The difference in alternation advantage between condi-

tions is reliable by paired t-test, t(179) � 7.135, p � .0001. This

result supports the prediction that slowing stimulus processing will

increase the alternation advantage. Moreover, the effect on the

alternation advantage is not simply a byproduct of overall slowing

of RT, because the 37% increase in RT between conditions is

much less than the 8.5-fold increase in the alternation advantage.

Similarly, the range of sequential effects in the low-coherence

condition (131 ms, between the fastest history, AAAA, and the

slowest, AAAR) is only 85% greater than the range of sequential

effects in the high-coherence condition (71 ms). Therefore, the

coherence manipulation affected the alternation advantage much

more than it did sequential effects in general.

Turning to sequential effects from lags greater than 1, it is

evident from Figure 18 that these effects are stronger in the

low-coherence condition (because each half of the high-coherence

curve is flatter than the corresponding half of the low-coherence

curve). As with the alternation advantage, one possibility to con-

sider is that this difference is just a byproduct of the overall

slowing of RT. However, the separate-stages hypothesis makes a

more specific prediction, namely that the difference between con-

Table 8

Mean Response Time (in Milliseconds) by Condition in

Experiment 2

Response hand

Stimulus coherence

High Low

Dominant 536.5 744.4
Nondominant 533.9 723.8
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ditions should be restricted to second-degree effects. To test this

prediction, the joint-learning model was fit to the mean RTs of

each subject for all 4-deep trial histories, by least squares. Model

predictions were generated by simulating the model on the actual

stimulus sequence experienced by each subject, with mean pre-

dicted RTs calculated from the same trials that were included in

the empirical analysis (e.g., excluding error trials). For each sub-

ject, the model was fit separately to the low- and high-coherence

conditions, to test how the stimulus manipulation affected param-

eter values. To allow unbiased comparisons of �base and �rep

between conditions, these parameters were not constrained to be

nonnegative (as they were in the fits of Experiment 1).

Median parameter values for both conditions are reported in

Table 9, and model fits averaged across subjects are shown as

dashed lines in Figure 18. Wilcoxon signed-ranked comparisons

were used to compare each parameter between conditions, because

of heavy-tailed distributions for the � parameters (t-tests on the ε
parameters led to the same conclusions as reported here). These

tests showed significant differences for �0 (z � 11.62, p � .0001)

and �rep (z � 4.36, p � .0001), but not for �base, εbase, or εrep

(ps � .1). Thus, the influence of stimulus coherence on sequential

effects appears to have been localized to the second-degree com-

ponent of the model, as predicted by the separate-stages hypoth-

esis. Specifically, the differences in �0 and �rep are both consistent

with a slowing of stimulus processing, leading to an increased

dependence of RT on second-degree expectancies. As is evident in

Figure 18, the change in scaling of the model’s second-degree

component does a good job of explaining the difference between

conditions both in the alternation advantage and in the detailed

pattern of sequential effects.

Experiment 2 Conclusions

Although the manipulation of response hand appeared to have

no effect, the manipulation of stimulus coherence produced a large

difference in overall RT. The slowed responding in the low-

coherence condition presumably resulted from a reduction in the

rate of sensory evidence accumulation, as suggested by a large

body of behavioral and neurophysiological evidence with these

stimuli (Gold & Shadlen, 2007).

According to the separate-stages hypothesis, this slowing of

stimulus processing should selectively increase the contributions

of second-degree expectancies (i.e., expectancies of repetition vs.

alternation) to sequential effects in RT. This prediction was con-

firmed by fits of the joint-learning model. Comparison of esti-

mated model parameters between conditions showed a large and

reliable difference in �rep, which determines the influence of

second-degree expectancies on RT. There was no detectable dif-

ference between conditions in the influence of first-degree expec-

tancies (�base) or either learning rate (εrep, εbase). Fits of the

parallel-learning model (not reported) showed the same pattern of

results.

The results also support the joint-learning model (over the

parallel-learning model) and its explanation of the alternation

advantage. The joint-learning model holds that the alternation

advantage arises from a bias in the learned repetition rate (wrep),

due to cue competition from the base rate. Increasing the influence

of second-degree expectancies (�rep) should increase the impact of

this bias on RT. This prediction was confirmed in the data, as the

alternation advantage was significantly stronger in the low-

coherence condition.

In conclusion, the results of Experiment 2 are in excellent

agreement with the present theory. Changing the speed of stimulus

processing selectively influenced the contributions of second-

degree expectancies, as predicted by the separate-stages hypothe-

sis, and this change carried with it a change in the alternation

advantage, a signature of the cue competition predicted by the

joint-learning model.

General Discussion

The results of the present study yield a remarkably consistent

picture of the mechanisms underlying sequential effects in binary

choice tasks. Specifically, sequential effects appear to result from

simultaneous learning of the base rate and the repetition rate of the

trial sequence. The base rate is primarily represented in terms of

responses, whereas the repetition rate is primarily represented in

terms of stimuli. Furthermore, those aspects of the data that cannot

be explained by these two mechanisms separately are predicted by

their interaction, in learning from joint prediction error.

These conclusions are supported by several converging lines

of evidence from the present experiments and from previous

data. First, sequential effects in RT are well explained by

incremental learning of the base rate and repetition rate. When

Table 9

Median Parameter Estimates From Fits of Joint-Learning Model

to Experiment 2

Coherence �0
� �base εbase �rep

� εrep

Low 716.48 10.74 .128 88.20 .209
High 517.50 15.91 .105 45.70 .246

� Significant difference between conditions (p � .0001).

Figure 18. Mean response time (RT) by trial history for Experiment 2,

together with fits of the joint-learning model. Error bars correspond to the

within-subjects standard error taken across all 32 observations. Low � low

stimulus coherence; High � high stimulus coherence.
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this incremental learning is formalized in the joint-learning

model, it gives excellent simultaneous fits to first- and second-

degree REs, long-term learning of the repetition rate, and the

effects of cue competition (i.e., the alternation advantage and

reverse adaptation effect). Second, this model as fit to RT yields

good parameter-free predictions of sequential effects in ERP

components, and moreover these effects show a clean dissociation

into stimulus and response processing, in agreement with the

separate-stages hypothesis. Third, manipulation of stimulus dis-

criminability selectively influences the contribution of second-

degree expectancies (i.e., of repetition vs. alternation), as seen both

in second-order REs and in the alternation advantage. Fourth, past

studies that eliminated stimuli (Wilder et al., 2013) or recent

responses (Maloney et al., 2005) exhibit sequential effects char-

acterized by first- or second-degree REs alone.

A strength of the present theory is that it provides a unified

explanation of sequential effects in quite different dependent mea-

sures: timing (RT and LRP latency), P100 amplitude, motor tra-

jectories, and perceptual thresholds. We suggest the common

underlying construct is expectancy, which speeds or slows RT

(Laming, 1968), influences the magnitude of the P100 component

(Mangun & Hillyard, 1991), affects motoric compensation for

external forces (Wilder et al., 2013), and biases subjects’ percep-

tions of ambiguous stimuli (Maloney et al., 2005). This explana-

tion is fundamental to our interpretation of sequential effects as

reflecting learning of the trial sequence. The models tested here

embody this assumption, using past stimuli and responses to esti-

mate sequence statistics that generate expectancies for each up-

coming trial. In this way, we have been able to use sequential

effects to draw conclusions about the representations of stimulus

and response sequences and the mechanisms by which those

representations are learned.

The literature on sequential effects in 2AFC is over 50 years old

(e.g., Bertelson, 1961), and it has produced numerous models of

varying complexity and coverage of empirical phenomena (e.g.,

Gao, Wong-Lin, Holmes, Simen, & Cohen, 2009; Squires et al.,

1976; Yu & Cohen, 2009). The present model explains nearly all

of the previously reported phenomena, as well as new findings (the

reverse adaptation effect and the various dissociations between

stimulus and response processing), and it does so with a single

learning rule operating on two simple statistics (base rate and

repetition rate). However, one notable exception that the model

does not address is the influence of varying the response-stimulus

interval (RSI). With RSIs of about a half-second or longer, se-

quential effects conform to the patterns found here and are well-fit

by the joint-learning model. With shorter RSIs, in the range of

50–100 ms, the pattern of sequential effects becomes very differ-

ent. RTs on alternation trials are slower than on repetition trials,

and the alternation portion of the plot of RT by trial history (i.e.,

the right half of the graphs in Figures 1, 6, and 18) has an overall

upward instead of downward slope (Soetens et al., 1985; Vervaeck

& Boer, 1980). One explanation offered for this pattern is that

conflict monitoring during previous alternation trials increases

strategic control, thus slowing RT on the current trial (Gao et al.,

2009; A. D. Jones, Cho, Nystrom, Cohen, & Braver, 2002).10

Regardless of the explanation for sequential effects under short

RSIs, they do not bear on the questions of the present article.

Under our fundamental assumption that RT indexes expectancy,

sequential effects should exhibit a tradeoff between the two pos-

sible stimuli following each history (e.g., fast for RRRR and slow

for RRRA). This is the case in most 2AFC tasks with long RSIs

(Audley, 1973; Soetens et al., 1985), and it holds in the present

experiments as well, as shown by the strong negative correlation in

the exchange plot of Figure 7. With short RSIs, this cost-benefit

pattern is absent. Instead, the exchange plot shows a correlation

near 1, referred to in the literature as a benefit-only (or cost-only)

pattern (Soetens et al., 1985). Thus, RT varies by history regard-

less of the current stimulus (e.g., fast for both RRRR and RRRA).

The correct explanation for the benefit-only pattern is an important

question, as is the question of why it completely replaces the

cost-benefit pattern under short RSIs. The critical point for present

purposes is that the two patterns are orthogonal. Therefore sequen-

tial effects with short RSIs do not reflect expectancy, or learning

of sequence statistics, in any direct way. Nevertheless, further

work on understanding the transition from the benefit-only to the

cost-benefit pattern might shed light on the within-trial dynamics

of how the expectancy is generated.

Implications for Learning and Representation

We argue that sequential effects merit more attention in psy-

chology and in particular in cognitive modeling, because they offer

powerful means for identifying perceptual and cognitive represen-

tations, and for determining the learning mechanisms that operate

on those representations. This approach is founded on the inter-

pretation of (most) sequential effects as reflecting trial-by-trial

learning and updating of representations in response to feedback.

The present work suggests that sequential effects in 2AFC are

driven by learning of stimulus-response sequences, which in turn

is grounded in two simple statistics: the base rate and the repetition

rate. First- and second-degree REs can thus be thought of as

signatures of these two representations. That is, the sequence or its

generating process is represented in terms of estimates of these two

parameters. This in turn implies that individual trials are repre-

sented both as concrete events (specifically, by the physical re-

sponse that was executed) and more abstractly as repetitions or

alternations. These representations correspond to two possible

strategies for performing the task: One can identify the stimulus

and give the appropriate response, or one can identify whether the

stimulus changed from the previous trial and accordingly change

or repeat the previous response (Fletcher & Rabbitt, 1978).

Of course, sequence learning is not limited in general to base

rates and repetition rates. Large bodies of research on artificial

grammar learning and serial reaction time show that, when a

stimulus or stimulus-response sequence conforms to more com-

plex (stochastic or deterministic) regularities, people often readily

10 A conceptual difficulty with this explanation is that those models
implement control as reducing the input to a diffusion process representing
evidence accumulation (i.e., changing the drift rate). This assumption goes
against a large body of research fitting diffusion models to speeded choice
data, which concludes the drift rate is selectively influenced by the strength
of stimulus information, whereas strategic control processes selectively
influence decision thresholds (e.g., Ratcliff & Smith, 2004; however, for
dissenting views, see M. Jones & Dzhafarov, in press; Starns, Ratcliff, &
McKoon, 2012). An alternative model in which control modulates thresh-
olds could not explain the short-RSI data, because threshold variation
produces a speed-accuracy tradeoff. Sequential effects with short RSIs are
not characterized by a speed–accuracy tradeoff; RT and error rates vary in
the same direction across trial histories (e.g., Soetens et al., 1985).
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learn them (e.g., Cleeremans & McClelland, 1991; Nissen &

Bullemer, 1987; Reber, 1967). A complete theory of sequence

learning might best be founded on a Bayesian or simplicity prin-

ciple, whereby the brain seeks simple structure by default and

more complex structure when warranted by experience (Chater &

Vitányi, 2003; Feldman, 2000). In random or near-random se-

quences like the ones studies here, base rate and repetition rate

appear to provide a nearly complete account.

The present approach of using sequential effects to uncover

sequence representation builds on earlier work focused on stimulus

and category representations. M. Jones et al. (2006) analyzed

first-degree REs in choice probability in a perceptual categoriza-

tion task, and found the tendency to respond with the previous

feedback (i.e., with the correct category response from the previ-

ous trial) is determined by the similarity between the present and

previous stimuli. REs in perceptual categorization can thus be

interpreted as reflecting generalization of category knowledge

between successive stimuli (Shepard, 1987). By assessing the

strength of the first-degree RE as a function of the present and

previous stimuli, one can directly obtain a map of the similarity

structure of the stimulus space. M. Jones, Maddox, and Love

(2005) used this approach to test how stimulus representations

change with learning, specifically with learned shifts of attention

among stimulus dimensions. They found REs are stronger when

successive stimuli differ on unattended dimensions than when they

differ on attended dimensions. This finding supports classic theo-

ries of dimensional attention, which hold that similarity is more

sensitive to attended dimensions (Medin, Goldstone, & Gentner,

1993; Nosofsky, 1986; Sutherland & Mackintosh, 1971). M. Jones

(2009) applied a similar approach to the question of category

representation, showing the pattern of REs in category learning

matches the predictions of exemplar models but is inconsistent

with prototype or rule-based (decision bound) models. Finally,

Collins and Frank (2013) show the pattern of REs in RT can be

used to infer a hierarchical rule or control structure that a subject

spontaneously adopts in a simple association task with multidi-

mensional stimuli.

Turning from representation to learning mechanisms, our results

show the base rate and repetition rate in 2AFC are learned via error

correction based on their joint prediction, as embodied in the

joint-learning model. This is in contrast to the parallel-learning

model, in which each of these statistics is learned separately. An

alternative interpretation of the parallel-learning model is as sim-

ple priming, whereby expectancies are based on adding the decay-

ing traces of all past events (see Equations 2 and 6). Although the

parallel-learning model provides good overall fits to the data, it

cannot account for two key phenomena: the alternation advantage

and the reverse adaptation effect. These phenomena were found to

be signatures of the cue competition posited by the joint-learning

model.

The principle of cue competition via joint error correction is

well established in associative learning (Rescorla & Wagner,

1972), but the present model applies this principle in a novel way,

treating events from previous trials as latent or internal cues that

can contribute to learning of sequence statistics (rather than of

concrete stimulus-response associations). Moreover, this applica-

tion of joint error correction produces a more complex type of cue

competition effects. In previous findings of cue competition, such

as blocking (Kamin, 1968) or base-rate neglect (Gluck & Bower,

1988), the mean or steady-state value of one association weight

biases the mean value of another. In the present context, cue

competition manifests in a bidirectional interaction between error

correction and the very sequential effects that error correction

produces. In the case of the alternation advantage, the bias on wrep

comes not from the mean value of wbase but from sequential effects

in wbase. In the case of the reverse adaptation effect, cue compe-

tition from wrep produces a bias not in the mean value of wbase but

in its sequential effects (i.e., its relationship to past trials). Saka-

moto, Jones, and Love (2008) demonstrate a similar phenomenon

in learning the variability of time-varying perceptual categories,

whereby sequential effects in the estimated category mean produce

(via cue competition) a systematic downward bias in the estimated

category variance.

One challenge to the present theory concerns the manner in

which sequential effects decrease as a function of lag, as captured

by the lag profile (e.g., Figure 9). Models based on error correction

must predict lag profiles that, at least asymptotically, follow an

exponential decrease (see Equation 8 for the parallel-learning

model; a similar result holds for the joint-learning model). In

contrast to this prediction, Wilder et al. (2013) find that sequential

effects are better described by a power-law lag profile, with

significantly nonzero REs extending more than 500 trials back.

Power-law decay can easily be incorporated into trace models, as

is common in many models of memory (Anderson et al., 2004;

Wickelgren, 1974), but trace models cannot explain the cue com-

petition effects observed here because they do not use error cor-

rection. Thus, an important topic for future research is to investi-

gate how joint error correction and power-law decay might be

reconciled. Because power law decay is well approximated by a

mixture of exponentials, one potential solution is a multiscale

model (e.g., Mozer, Pashler, Cepeda, Lindsey, & Vul, 2009) in

which multiple copies of the joint-learning model operate over a

range of learning rates. Variability in the learning rates would yield

exponential decay on multiple time scales, which when combined

would result in approximately power-law decay.

Relation to Other Models

Some previous models of sequential effects in 2AFC have

explained first- and second-degree REs, but they cannot explain

the full set of present results because they do not adopt the

incremental learning framework used here. For example, Squires

et al. (1976) proposed a model in which expectancies are based on

weighted averages of past stimulus values, thus producing first-

degree REs. Their model also includes a special expectancy of

alternation when at least two of the last three trials were alterna-

tions. This assumption produces second-degree REs, but of a

different (and weaker) form than those predicted by either the

parallel-learning or joint-learning model developed here. More-

over, their heuristic framing of the alternation expectancy misses

the symmetry between first- and second-degree REs, as arising

from the same learning mechanism operating on different repre-

sentations. As a further consequence of not casting both mecha-

nisms as incremental learning, Squires et al.’s model cannot ex-

plain the cue competition effects predicted by the joint-learning

model.

Cho et al. (2002) propose a model in which separate detectors

develop expectancies based on past trials, which bias the decision-
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making process on the current trial. They tested an array of

detectors to determine which combination gives the best fit to data

(including the data shown in Figure 1A). Cho et al. interpreted the

two detectors in their best-fitting model as a repetition detector and

an alternation detector, but in fact they correspond to first- and

second-degree detectors. The first detector (named IR1) builds up

expectancy for each stimulus based on past occurrences of that

stimulus, such that the net effect (i.e., the difference between

expectancies for the two stimuli) is formally identical to wbase in

the parallel-learning model. The second detector (SA2) builds up

expectancy for alternation based on each past alternation, and its

contribution can be shown to be linearly related to wrep in the

parallel-learning model �specifically,
wrep�1

2 �. Because this latter

mechanism detects only alternations, it predicts an alternation

advantage in addition to second-degree REs. However, there is no

a priori reason why there should be a detector for alternations and

not for repetitions. Indeed, Cho et al. also defined a detector that

builds up expectancy for repetition based on each past repetition

(SR2), but they did not test that detector in conjunction with IR1.

Moreover, their model cannot explain the reverse adaptation ef-

fect, because its detectors operate independently. The joint-

learning model explains both the alternation advantage and the

reverse adaptation effect parsimoniously as consequences of the

same learning principle (i.e., cue competition from joint error

correction).

Wilder et al. (2010) present a Bayesian model of sequential

effects in 2AFC, named DBM2, that explicitly assumes environ-

mental nonstationarity in the base rate and repetition rate. The

model builds on Yu and Cohen’s (2009) finding that Bayesian

inference of discrete change-points in environmental statistics

leads to approximately exponentially decaying REs. DBM2 thus

predicts first- and second-degree REs in close agreement with the

predictions of the parallel-learning model. However, by casting

learning at a normative level, DBM2 fails to anticipate the cue

competition effects that result from joint error correction, and thus

it does not predict the alternation advantage or reverse adaptation

effect.

Cue competition thus plays a critical role in distinguishing the

joint-learning model both from simpler accounts based on decay-

ing traces of past events and from rational accounts based on

expectations of nonstationarity. These three frameworks for ex-

plaining sequential effects—decaying traces, incremental learning,

and rational inference—are difficult to distinguish when applied to

a single task variable (e.g., response base rate), because in that case

they all merely predict decaying influences of past events. How-

ever, their predictions diverge when sequential effects are driven

by multiple variables simultaneously (as seen here with base rate

and repetition rate). Among the various explanations for sequential

effects offered in the literature, learning from joint prediction error

is unique in predicting the cue competition effects that were

observed here.

A final issue for sequential effects in RT concerns the within-

trial dynamics that produce them. In this article, we have ab-

stracted over the within-trial dynamics of the decision process,

because that level of detail is unnecessary within our framework

for explaining sequential effects. Previous models (Cho et al.,

2002; Gao et al., 2009) have implemented sequential effects as

biases acting on competitive leaky diffusion processes (based on

Usher & McClelland, 2001). It would be straightforward to elab-

orate the joint-learning model in the same way, using wbase and

wrep to determine these biases. An advantage of such an approach

is that it might enable prediction of error rates and RT distribu-

tions, in addition to mean RT. Importantly, the bias parameters

could determine the starting values or input levels to evidence-

accumulation processes, but they cannot be identified with those

processes. The model of Gao et al. (2009) incorporates the latter

assumption, taking the starting evidence values on trial n to be

determined by residual activation of the evidence processes on trial

n � 1. This mechanism contributes a first-degree RE at a lag of

one trial (i.e., a simple repetition advantage), but as Gao et al. note,

it cannot produce sequential effects at higher lags because the

decision dynamics during trial n erase the residual information

from trial n � 1, preventing that information from carrying over to

trial n  1.

Further implications for modeling within-trial dynamics come

from the separate-stages hypothesis. Most current models of

speeded choice involve a single decision-making stage, in which

evidence for each option (or net evidence between two options)

evolves until some threshold is met (Brown & Heathcote, 2008;

Ratcliff & Smith, 2004; Usher & McClelland, 2001). The present

results suggest that a more accurate model would comprise two

such processes, one for stimulus identification and another for

response selection. Sequential effects would arise from wrep acting

on the first process and wbase on the second (e.g., by determining

initial evidence levels at the start of each trial). The two stages

might be discrete, with one beginning once the other reaches

threshold, or the activation level of the first might act continuously

to determine the drift rate of the second (McClelland, 1979). This

view is consistent with recent neuroimaging research showing that

sensory evidence accumulation and response selection are imple-

mented in different brain regions (Filimon, Philiastides, Nelson,

Kloosterman, & Heekeren, 2013). It would be an interesting ques-

tion for future research to determine whether a two-stage evidence-

accumulation model fits benchmark RT data better than extant

one-stage models, and whether stimulus and response manipula-

tions would be found to selectively affect model parameters of the

corresponding stages (extending the present results from Experi-

ment 2 with the joint-learning model).

Separating Stimulus- and Response-Based Sequential

Effects

The question of whether sequential effects are due to past

stimuli or past responses has been a focus of research in several

domains (DeCarlo & Cross, 1990; Jesteadt et al., 1977; M. Jones

et al., 2006; Pashler & Baylis, 1991; Soetens, 1998; Ward &

Lockhead, 1971; Willingham, Wells, Farrell, & Stemwedel, 2000).

The theory proposed here offers a new perspective on this ques-

tion: If sequential effects arise from two separate learning mech-

anisms, then these mechanisms may be differentially grounded in

stimulus and response processing. The present experiments and

reanalysis of previous data support this idea. In particular, they

substantiate what we refer to as the separate-stages hypothesis, that

sequential effects due to incremental learning of the base rate are

rooted in response processing, whereas sequential effects from
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learning the repetition rate are rooted in stimulus processing.

Support for this hypothesis comes from three lines of evidence.

First, the ERP data from Experiment 1 and from Jentzsch and

Sommer (2002) show a strong dissociation between sequential

effects in stimulus and response processing. For response process-

ing, the time from LRP onset to the response (LRPr) exhibited

first-degree REs and not second-degree REs. For stimulus process-

ing, the time from stimulus onset to LRP onset (sLRP) followed

the opposite pattern. The second ERP measure of stimulus pro-

cessing in Experiment 1, the amplitude of the P100 component,

also showed only second-degree REs. Moreover, the alternation

advantage, which the joint-learning model explains as a bias in the

repetition rate (via cue competition), was present in sLRP and

P100, but not in LRPr. When the RT fits of the joint-learning

model are divided into first- and second-degree components, they

give impressive parameter-free (except for linear scaling) predic-

tions of the ERP response and stimulus measures, respectively.

Therefore, sequential effects in response processing are well-

explained by first-degree learning, and sequential effects in stim-

ulus processing are well-explained by second-degree learning.

Second, the manipulation of stimulus coherence in Experi-

ment 2 selectively influenced the contribution of second-degree

learning. This was shown by the fits of the joint-learning model,

which revealed a large difference between conditions in the

dependence of RT on second-degree expectancies (�rep), as

well as in the intercept (�0), but not in any other parameters.

This difference manifested in a larger alternation advantage in

the low-coherence condition, and in more-pronounced higher-

order sequential effects, which the model attributed entirely to

second-degree REs. Therefore, slowing stimulus processing

appears to selectively magnify these two phenomena, implying

stimulus expectancies are determined by the learned repetition

rate.

Third, experiments that have eliminated stimuli or past re-

sponses produce sequential effects characterized by pure first- or

second-degree REs, respectively. As shown in the Separating

Stimulus- and Response-Based Sequential Effects section, com-

parison of Experiments 1 and 2 of Maloney et al. (2005) shows that

omission of previous responses selectively eliminates first-degree

REs. Their first experiment required responses on every trial, and

we found the data were well fit by a model that learns both the base

rate and the repetition rate. In their second experiment, subjects

gave no responses in the three-trial history leading up to each

response trial, and we found the data were best fit by a model that

learns only the repetition rate. Therefore, first-degree expectancies

appear to produce sequential effects only when recent trials in-

clude responses that can drive base-rate learning. A complemen-

tary result comes from Experiment 2 of Wilder et al. (2013).

Sequential effects in this task arose from random forces acting

directly on the subject’s movement, and they conformed to pure

first-order REs, with no indication of second-degree effects.

Therefore, second-degree sequential effects appear to be absent

when the task contains no (visual) stimuli.

The separate-stages hypothesis may appear arbitrary, apart from

its support by the results just listed, but it does have precedent in

previous work attempting to separate stimulus- and response-based

sequential effects. In more complex tasks such as absolute identi-

fication and magnitude estimation, where the previous stimulus

and previous response are not perfectly confounded, one can assess

the effect of each while controlling for the other. Research using

this approach (Jesteadt et al., 1977; Petzold, 1981) has found that

the present response is biased away from the previous stimulus

(i.e., stimulus contrast) and toward the previous response (i.e.,

response assimilation). This approach suffers problems of inter-

pretation due to the possibilities of autocorrelated response errors

and relative judgment strategies (DeCarlo & Cross, 1990; Holland

& Lockhead, 1968; Luce & Green, 1974), but studies that have

attempted to avoid these problems have come to the same conclu-

sions (M. Jones, 2009; M. Jones et al., 2006; M. Jones & Sieck,

2003).

M. Jones (2009; see also M. Jones et al., 2006) formalized these

conclusions in a reinforcement-and-contrast model, in which in-

cremental learning produces assimilation to the correct responses

on previous trials (as in Equation 1), and stimulus percepts are

biased away from previous stimuli, producing contrast (for similar

proposals, see Brown, Marley, Donkin, & Heathcote, 2008; Tre-

isman & Williams, 1984). The explanation for response assimila-

tion is identical to that for first-degree REs in the present study:

Incremental learning of response probabilities produces a bias

toward recent correct responses. In identification and categoriza-

tion, this effect is moderated by stimulus and response generaliza-

tion (Shepard, 1957), but these mechanisms are inconsequential in

binary tasks such as 2AFC. Regarding stimulus-based sequential

effects, we suggest the unifying principle is that stimuli are per-

ceived relatively to preceding stimuli, rather than absolutely

(Lockhead, 2004; Stewart et al., 2002; Stewart, Brown, & Chater,

2005). In identification and categorization tasks with many stimuli,

this relative perception manifests in contrast effects. In the binary

tasks studied here, relative perception leads stimuli to be perceived

as repetitions or alternations, which in conjunction with incremen-

tal learning of stimulus probabilities leads to second-degree REs.

Conclusions

Sequential effects are often viewed as simple phenomena, in-

volving a bias toward recent feedback or better memory for recent

events. They are generally explained implementationally or algo-

rithmically by residual activity or incremental learning, or com-

putationally by adaptation to a dynamic environment. When ap-

plied to a single task variable (e.g., response probability), these

explanations indeed predict a simple recency bias in the weighting

of past events (Estes, 1957; Yu & Cohen, 2009). However, more

complex patterns can arise when REs are based on abstract or

latent variables or on multiple variables at once (M. Jones, Mozer,

& Kinoshita, 2009; Sakamoto et al., 2008; Treisman & Williams,

1984).

We have shown here that the complex, nonadditive pattern of

sequential effects in 2AFC can be explained by two simple learn-

ing mechanisms and their interaction. This leads to a quite specific

conclusion about sequence learning in these tasks: It is based on

the response base rate and the stimulus repetition rate. More

complex mechanisms certainly operate in richer tasks, for example

with more stimuli or responses or with nonrandom sequences, but

these appear to be the default mechanisms that dominate in simple

tasks with unstructured sequences.

Setting aside the specifics of 2AFC, the larger point is that

sequential effects offer a valuable window into many aspects of

cognition, due to their close connection to learning. Not all se-
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quential effects are due to learning, but nearly all learning is likely

to produce sequential effects. Biological learning is generally

characterized by incremental or iterated updating of knowledge,

and different representations will naturally be updated in different

ways. Therefore, careful consideration of sequential effects can

reveal a great deal about learning mechanisms, the representations

on which they operate, and their neurophysiological underpin-

nings.
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Appendix A

Derivation of Parallel-Learning Model Predictions for Experiment 1

To derive predictions of the parallel-learning model for Experiment 1, we start by using Equation 10 to

predict the mean response time (RT) for each 5-deep trial history in each condition. Let h be any 5-deep

history. Specifying h means that M1(n � 1, n), . . . M1(n � 5, n) and M2(n � 1, n), . . . M2(n � 4, n) are fixed,

but M1(n � k, n) for k � 6 and M2(n � k, n) for k � 5 are variable. Therefore, to evaluate Equation 10, we

need the expected values of these higher-lag matches conditioned on h.

In the positive condition, trials n � 6 and n � 5 will be a first-degree match
2

3
of the time. Because matches

are coded as 1 and mismatches as �1, the expected value of M1(n � 6, n � 5) equals
1

3
. More generally,

E�M1�n � k, n � 5�� �
1

3k�5
for k � 6.

(A1)

In the negative condition, the expected value of M1(n � 6, n � 5) equals �
1

3
, and more generally

E�M1�n � k, n � 5�� �
1

��3�k�5
for k � 6.

(A2)

Because M1(n � k, n) � M1(n � 5, n) · M1(n � k, n � 5), the expected value of the first-degree match between

trials n � k and n following any history for k � 6 is given by

E�M1�n � k, n� 	 h� ��
M1�n � 5, n�

3k�5
Positive condition

M1�n � 5, n�
��3�k�5

Negative condition.

(A3)

The calculation for second-degree matches is easier. In the positive condition, trial n � k is a repetition
2

3

of the time. If trial n is a repetition, then M2(n � k, n) will equal 1 with probability
2

3
, and if trial n is an

alternation, then the probability is
1

3
. These values are reversed in the negative condition. Therefore, the

expected value of the second-degree match between trials n � k and n for k � 5 following any history is given

by

E�M2�n � k, n� 	 h� ��
M1�n � 1, n�

3
Positive condition

�
M1�n � 1, n�

3
Negative condition.

(A4)

Equations A3 and A4 enable calculation of the average contributions of first- and second-degree REs from

trials earlier than the specified history length. For first-degree REs, this contribution comes from all summands

with k � 6 from the first-degree component of the model (see Equation 8), given by

E���base�
k�6

εbase�1 � εbase�k�1M1�n � k, n�	 h�

���
�baseεbase�1 � εbase�5 M1�n � 5, n�

2 � εbase

Positive condition

�baseεbase�1 � εbase�5 M1�n � 5, n�
4 � εbase

Negative condition.

(A5)

(Appendices continue)
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For second-degree REs, the contribution from earlier trials comes from all summands with k � 5 from the

second-degree component of the model, given by

E���rep�
k�5

εrep�1 � εrep�k�1M2�n � k, n�	 h����
�rep�1 � εrep�4 M1�n � 1, n�

3
Positive condition

�rep�1 � εrep�4 M1�n � 1, n�
3

Negative condition.

(A6)

In Equations A5 and A6, we make the simplifying assumption that the sums in Equation 8 continue to infinity

instead of n � 1. This amounts to assuming that (1 � εbase)
n and (1 � εrep)n are negligibly small.

With the average contribution of earlier trials worked out, we can now evaluate Equation 10. In the positive

condition, mean RT following any 5-deep history h is given by

E�RT 	 h� � �0 � �base	�
k�1

5

εbase�1 � εbase�k�1M1�n � k, n� �
εbase�1 � εbase�5

2 � εbase

M1�n � 5, n�

��rep	�

k�1

4

εrep�1 � εrep�k�1M2�n � k, n� �
�1 � εrep�4

3
M1�n � 1, n�
� �EnEn�1.

(A7)

In the negative condition, mean RT following any 5-deep history h is given by

E�RT 	 h� � �0 � �base	�
k�1

5

εbase�1 � εbase�k�1M1�n � k, n� �
εbase�1 � εbase�5

4 � εbase

M1�n � 5, n�

��rep	�

k�1

4

εrep�1 � εrep�k�1M2�n � k, n� �
�1 � εrep�4

3
M1�n � 1, n�
� �EnEn�1.

(A8)

Finally, the predictions of pairs of 5-deep histories are averaged to get predictions for 4-deep histories,

paralleling the analysis of the data. Of the two 5-deep histories corresponding to any 4-deep history, one has

M1(n � 5, n) � 1, and the other has M1(n � 5, n) � �1; also one has M2(n � 4, n) � 1, and the other has

M2(n � 4, n) � �1 (it is inconsequential which is which). Averaging their predictions together yields

E�RT 	 h� � �0 � �base�
k�1

4

εbase�1 � εbase�k�1M1�n � k, n� � �rep�
k�1

3

εrep�1 � εrep�k�1M2�n � k, n�

� 	� �
�rep�1 � εrep�4

3 
M1�n � 1, n�
(A9)

for the positive condition and

E�RT 	 h� � �0 � �base�
k�1

4

εbase�1 � εbase�k�1M1�n � k, n� � �rep�
k�1

3

εrep�1 � εrep�k�1M2�n � k, n�

� 	� �
�rep�1 � εrep�4

3 
M1�n � 1, n�
(A10)

for the negative condition.

Equations A9 and A10 were used to fit the parallel-learning model to the RT data of Experiment 1 (see Figure

8). These equations show how the method of computing mean RTs for 5-deep histories before averaging to 4-deep

histories cancels out the first-degree effects of earlier trials, because the expected value of these earlier effects is

proportional to M1(n � 5, n). The second-degree effects of earlier trials do not cancel out but instead accumulate

as an expectancy for repetition (M1(n � 1, n) � 1) in the positive condition or alternation (M1(n � 1, n) � �1)

in the negative condition. This long-term learning effect combines with the built-in alternation advantage (�). The

model’s predictions for the two conditions are thus identical in all ways except for the alternation advantage, which

is predicted to be greater in the negative condition by an amount equal to

4�rep�1 � εrep�4

3
.

(A11)

(Appendices continue)
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Appendix B

Parallel-Learning Model Predictions for Lag Profiles

The predictions of the parallel-learning model for the lag profiles can be derived from its predicted mean

response times (RTs) for the 4-deep trial histories, as given by Equations A9 and A10 in Appendix A. Each

measure REi(k) equals the average RT prediction for histories with Mi(n � k, n) � �1 minus the average

prediction for histories with Mi(n � k, n) � 1 (for i � 1 or 2). It is easily verified that, with the exception of

M1(n � 2, n) and M2(n � 1, n), the various Mi(n � k, n) are all orthogonal over the sixteen 4-deep histories.

That is, if (i, k) � (i=, k=), the eight histories with Mi(n � k, n) � 1 are split evenly between Mi=(n � k=, n)

� 1 and Mi=(n � k=, n) � �1, as are the eight histories with Mi(n � k, n) � �1. Therefore, because Equations

A9 and A10 are linear in all M terms, all except Mi(n � k, n) will cancel out when calculating REi(k).

This reasoning leads to the following expressions for the model’s predictions. In the positive condition,

RE1(1) is found by collecting all M1(n � 1, n) terms in Equation A9 and subtracting their values when M1(n �

1, n) � 1 from their values when M1(n � 1, n) � �1:

RE1�1� � ���baseεbase��1� � 	� �
�rep�1 � εrep�4

3 
��1��
����baseεbase · 1 � 	� �

�rep�1 � εrep�4

3 
 · 1�
� 2�baseεbase �

2�rep�1 � εrep�4

3
� 2�.

(B1)

Similarly, in the negative condition,

RE1�1� � ���baseεbase��1� � 	� �
�rep�1 � εrep�4

3 
��1��
����baseεbase · 1 � 	� �

�rep�1 � εrep�4

3 
 · 1�
� 2�baseεbase �

2�rep�1 � εrep�4

3
� 2�.

(B2)

The other measures are calculated similarly, with results shown in Table 3.

Finally, because M1(n � 2, n) � M2(n � 1, n), RE1(2) and RE2(1) will be based on both terms. The result is

RE1�2� � RE2�1� � ���baseεbase�1 � εbase���1� � �repεrep��1��
����baseεbase�1 � εbase� · 1 � �repεrep · 1�

� 2�baseεbase�1 � εbase� � 2�repεrep.

(B3)
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