
814 IEEE TRANSACTIONS ON COMPUTER AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 19, NO. 7, JULY 2000

[11] J. Kozhaya and F. N. Najm, “Accurate power estimation for large se-
quential circuits,” inProc. IEEE Int. Conf. Computer-Aided Design,
Nov. 1997, pp. 448–493.

[12] L. Ljung, System Identification: Theory for the User. Engelwood
Cliffs, NJ: Prentice-Hall, 1987.

Sequential Equivalence Checking Based on Structural
Similarities

C. A. J. van Eijk

Abstract—Checking the functional equivalence of sequential circuits is
an important practical problem. Because general algorithms for solving
this problem require a state-space traversal of the product machine, they
are computationally expensive. In this paper, we present a new method for
sequential equivalence checking which utilizes functionally equivalent sig-
nals to prove the equivalence of both circuits, thereby avoiding the state-
space traversal. The effectiveness of the proposed method is confirmed by
experimental results on retimed and optimized ISCAS’89 benchmarks.

Index Terms—Equivalence checking, finite-state machine verification,
formal verification, sequential circuits, structural similarity.

I. INTRODUCTION

With the increasing use of sequential optimizations during logic
synthesis, sequential equivalence checking is becoming an important
practical verification problem. Conventional algorithms for solving this
problem first build the so-called product machine, which is the parallel
composition of the two circuits being verified. Then they check that the
corresponding outputs of the two circuits are identical in every state of
the product machine reachable from its initial state. To determine which
states in the product machine are reachable, a state-space traversal of
the product machine is required. This state-space traversal is a signif-
icant bottleneck in these algorithms, which limits their applicability
to relatively small circuits. Impressive progress has been made in this
respect by the introduction of so-called symbolic algorithms, which are
basedon theapplicationofbinarydecisiondiagrams(BDD’s) to traverse
the state-space (see, e.g., [3], [8], [26]). Although these techniques can
conceivably handle large circuits and are still being improved (see, e.g.,
[6], [13],and [20]), theycannotbeexpected toscalewellwithcircuit size
for many types of circuits.

For combinational equivalence checking, the state-of-the-art verifi-
cation methods combine a powerful base verification algorithm with
techniques to exploit the structural similarities of the circuits under
verification (see, e.g., [2], [5], [11], [16]–[19], and [21]). These sim-
ilarities typically occur in practical problem instances because of the
incremental nature of the design process. The techniques to capture
them are based on functional equivalences, indirect implications, or
permissible functions. It has clearly been shown that the utilization of
structural similarities is extremely important for the efficient verifica-
tion of synthesized circuits. Because sequential optimizations such as
retiming only have a limited impact on the structure of a circuit, this
approach of exploiting structural similarities is also likely to be appli-

Manuscript received December 16, 1998; revised December 14, 1999. This
paper was recommended by Associate Editor D. Dill.

The author is with the Eindhoven University of Technology, 5600 MB Eind-
hoven, the Netherlands (e-mail: C.A.J.v.Eijk@ele.tue.nl).

Publisher Item Identifier S 0278-0070(00)05862-0.

cable to sequential equivalence checking. In this paper, we present a
new method for proving the equivalence of sequential circuits that ex-
hibit structural similarities. The method is not based on a state-space
traversal, and can handle larger circuits than existing methods.

When verifying combinational circuits, structural similarities can be
identified before they are used to simplify the verification problem.
When dealing with sequential circuits, this is clearly more difficult.
In the presence of sequential feedback, it is necessary to combine the
detection and utilization of similarities to really benefit from them. In
this paper, we solve this problem by proposing a fixed point iteration
which gradually filters sets of potentially equivalent functions until the
actual equivalences remain. This filtering process only requires com-
binational verification techniques. Therefore, the proposed method can
be viewed as a way to extend the applicability of the state-of-the-art
combinational techniques to sequential equivalence checking.

The organization of this paper is as follows. Section II gives an
overview of related work on sequential equivalence checking. Sec-
tion III presents the theory on which the detection of equivalent signals
is based. The resulting verification method is described in Section IV.
Implementation issues are discussed in Section V. Section VI gives em-
pirical results and Section VII concludes the paper.

II. RELATED WORK

In this paper, we focus on the utilization of structural similarities to
enable the verification of large sequential circuits. As mentioned in Sec-
tion I, such similarities are likely to exist between a specification and a
synthesizedimplementation; theirexistencecanbeinsuredbyputtingre-
strictions on thesynthesis process, such as the complete-1–distinguisha-
bility (C-1-D) property proposed in [1], or the data-enable decomposi-
tionconditionof [23].These restrictionsarecoupled tosequential equiv-
alencetechniquesthatavoidstate-spacetraversalof theproductmachine,
the same intention as the method proposed in this paper.

Conventional symbolic algorithms for sequential equivalence
checking do not attempt to benefit from the structural similarities
of the circuits under verification. Several techniques are proposed in
literature to improve them in this respect. In [10], the use of functional
dependencies is proposed to exploit the relation between the state
encodings of both circuits during the state-space traversal of the
product machine. In [22], a method is described to incrementally
re-encode one of the circuits to factor out their differences.

When a sequential circuit is only optimized with combinational syn-
thesis techniques, the correctness of the implementation can be verified
with a combinational verification method if it is known which registers
in the two circuits correspond. An efficient technique to automatically
identify this register correspondence without calculating the reachable
state-space of the product machine is proposed independently in [9] and
[12]. In [4], this approach is extended to also locate bugs in incorrect
circuits and to take don’t care conditions into consideration. The detec-
tion of corresponding registers also forms the basis for the utilization
of structural similarities in the verification method proposed in [15]. A
preprocessing step for handling retimed circuits is described in [14],
which relies on three-valued equivalence and name correspondences.
Because most combinational synthesis techniques do not preserve the
behavior of a circuit with respect to three-valued equivalence, the ap-
plicability of this step is limited in practice.

Recently, a new sequential verification method called “Record &
Play” was proposed in [25]. This method uses recursive learning in
combination with a so-called structural fixed point iteration to find
equivalent signals. By applying retiming transformations, the two cir-
cuits are made more similar. The concept of instruction queues is in-
troduced to capture the equivalent signals.

0278–0070/00$10.00 © 2000 IEEE

IEEE TRANSACTIONS ON COMPUTER AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 19, NO. 7, JULY 2000 815

Fig. 1. Time frame model of the product machine.

Based on the work outlined above, the following important obser-
vation can be made: In many practical cases, sequential equivalence
of circuits can be proved by determining the correct relation between
their state encodings rather than by calculating the entire reachable
state-space of the product machine. The method we propose in this
paper relies on this observation. It uses a greatest fixed point iteration
to identify functionally equivalent signals, which is a generalization of
the techniques used in [4], [9], and [12] for determining corresponding
registers.

III. T HE SIGNAL CORRESPONDENCERELATION

Our basic model of a sequential circuit is a deterministic Mealy-type
finite-state machine (FSM) with a specified initial state. We assume that
we are given two circuits, which are combined into a product machine
with input spaceX, state-spaceS, initial states0 2 S, next-state func-
tion �: S � X ! S, and output function�: S � X ! , where
= f0; 1g denotes the set of Boolean values. The output function�

is one for a given state and input vector, if all pairwise corresponding
outputs of the two circuits evaluate to the same value. The objective
of sequential equivalence checking is to prove that� is one for every
reachable state and input vector.

The basis of our verification method is a greatest fixed point itera-
tion, which works on the set of all functions associated with the signals
(or nets) in both circuits. It gradually partitions this set into equivalence
classes, such that all functions in the same equivalence class are sequen-
tially equivalent, meaning that for any reachable state and input vector,
they have the same value. In each step of the iteration, two consecutive
time frames of the product machine are considered which are called the
current time frameand thenext time frame, as shown in Fig. 1. Each
time frame consists of the combinational logic of the product machine.
The current time frame is used to model the potential equivalences be-
tween the signals found thus far. The correctness of these equivalences
is verified in the next time frame.

With each signalv, we associate a current-state functionfv: S �
X ! which expresses the value ofv in the current time frame as
a function of the current state and the current input vector, and a next-
state function�v: S � X � X ! which expresses the value of
v in the next time frame as a function of the current state, the current
input vector and the next input vector. Note that�v(s; xt; xt+1) =
fv(�(s; xt); xt+1).

Before we describe the fixed point iteration in detail, we first intro-
duce the theory on which it is based. The set of all signals in the product
machine is denotedV . Based on this set, we construct the following
set of functionsF . We take the initial states0 and a randomly selected
input vectorx0 2 X as a reference point. For each signalv 2 V , we
consider the value offv(s0; x0). If it is one, then we add the function
fv to the setF and, otherwise, its complementfv . This procedure nor-
malizes each signal in the product machine with respect to its polarity,
which is important for detecting not only equivalent, but also antivalent
signals (i.e., signals having opposite values in every reachable state).

Informally, the detection of structural similarities corresponds
to identifying signals with sequentially equivalent current-state

functions. This can be formalized as the calculation of an equivalence
relation onF , such that all functions equivalent with respect to this
relation are also sequentially equivalent. Note that this still allows a
function to correspond with several other functions. Before defining
the conditions an equivalence relation onF has to comply with to
represent a correct signal correspondence, we first introduce the notion
of a state compatibility condition to associate a set of states with an
equivalence relation onF . More specifically, this state compatibility
condition is a function which evaluates to true for all states conforming
to that relation.

Definition 1: Given an equivalence relation
sc
= on the setF . The

state compatibility conditionis the functionQ
=
: S � X ! that

defines whether a state conforms to the relation
sc
=, i.e., whether all

functions in the same equivalence class of
sc
= indeed have the same

value

Q
=
(s; x) =

f ; f 2F^f =f

fm(s; x) = fn(s; x):

Note that the state compatibility condition may also depend on the cur-
rent input vector. This is a technicality: The theory is not influenced by
adding a universal quantification over the input space in the definition
of the condition.

We can now define the conditions an equivalence relation
sc
= on F

has to satisfy to represent a correct signal correspondence. We impose
the following two conditions. The first condition is that if two func-
tions correspond according to

sc
=, then they must have the same value

in the initial states0. This guarantees that both circuits start in a state in
whichQ

=
holds. The second condition we impose is that if we consider

two functions that correspond according to
sc
=, and a state in whichQ

=

holds, then the associated next-state functions have to be equivalent in
this state. This condition guarantees that if the two circuits are in a state
for whichQ

=
holds, thenQ

=
will also hold for every next state of the

circuits. If both these conditions are satisfied, it can directly be con-
cluded that all functions in the same equivalence class necessarily are
sequentially equivalent. We introduce the termsignal correspondence
relation to denote an equivalence relation onF that complies with the
two conditions described above.

Definition 2: An equivalence relation
sc
= onF is asignal correspon-

dence relationiff for each pair of functionsfm; fn 2 F with fm
sc
= fn:

• for all x 2 X: fm(s0; x) = fn(s0; x);
• for all s 2 S; xt; xt+1 2 X: Q

=
(s; xt)) �m(s; xt; xt+1) =

�n(s; xt; xt+1).
We will use the example of Fig. 2 to illustrate the notion

of a signal correspondence relation and the associated state
compatibility condition. An example of a correct signal corre-
spondence relation for this example is given by the partition
fff1g; ff2g; ff3; f6g; ff4; f7g; ff5gg. This relation states that the
signalsv3 andv6 are sequentially equivalent, as are the signalsv4 and
v7. The associated state compatibility condition is

Q
=
= (v1v2 � v6)(v1v2xt � v6xt) (1)

which can be simplified toQ
=

= (v1v2 � v6). Using the infor-
mation given in the table of Fig. 2, it can be checked that this signal
correspondence relation satisfies both conditions stated in Definition
2. For example, applying the second condition of this definition to the
functionsf3 andf6, gives

v1v2 � v6) v1v2 xt � xt + v6 (2)

which is a tautology. Similarly, it can be proved that the functions of
the outputsv4 andv7 are equivalent and, thus, that the two circuits are
equivalent.

816 IEEE TRANSACTIONS ON COMPUTER AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 19, NO. 7, JULY 2000

Fig. 2. Example of a retimed and logically optimized circuit.

For a given pair of circuits, there may exist several signal correspon-
dence relations. We state without proof that the set of all signal cor-
respondence relations is a partially ordered set in which each pair of
elements has a least upper bound. As a consequence, there is a unique
maximum relation

msc
= . This maximum signal correspondence relation

can also be characterized by the property that for any other signal cor-
respondence relation

sc
= and for allfm; fn 2 F

fm
sc
=fn) fm

msc
= fn: (3)

Our verification method uses the following theorem to prove the
equivalence of sequential circuits. This theorem follows from the ob-
servation that the conditions imposed by Definition 2 are sufficient to
guarantee that the state compatibility condition of the maximum signal
correspondence relation is an overestimation of the product machine’s
reachable state-space.

Theorem 1: Let
msc
= denote the maximum signal correspondence

relation. If for alls 2 S, x 2 X

Q
=
(s; x)) �(s; x) = 1

then the two circuits are sequentially equivalent.
Note that Theorem 1 states asufficientand not anecessarycondition

for the equivalence of sequential circuits. It is useful because it offers
a different tradeoff between performance and accuracy than methods
that require a state-space traversal: As will be shown in the next sec-
tion, the maximum signal correspondence relation can be calculated
usingcombinationalverification techniques and, therefore, it provides
improved efficiency in comparison to state-space traversal methods,
with the weakness that the method may suffer from false negatives.

IV. V ERIFICATION METHOD

In the previous section we have shown how the maximum signal
correspondence relation

msc
= can be used to prove the sequential equiv-

alence of two circuits. We will now describe the greatest fixed point
iteration to calculate this relation. A sequence of equivalence relations
Ti is calculated, which converges to the maximum signal correspon-
dence relation. The first relationT0 compares the functions inF with
respect to the initial state

fm T0 fn , 8x 2 X: fm(s0; x) = fn(s0; x): (4)

Starting withT0, a sequence of relations is calculated by applying
the second condition of Definition 2

fm Ti+1 fn , fm Ti fn ^ (8 s 2 S; xt; xt+1 2 X:

QT (s; xt)) �m(s; xt; xt+1) = �n(s; xt; xt+1)): (5)

Since there is only a finite number of functions inF and the sequence
of relationsTi is monotone nonincreasing, a fixed point is reached after

a finite number of iterations, i.e., at some pointTi = Ti+1. ThisTi is
the maximum signal correspondence relation. The number of iterations
is at mostjF j + 1, because in every iteration, except the last one, the
number of equivalence classes increases by at least one.

Theorem 2: Given the sequence of equivalence relations as defined
by (4) and (5). IfTi = Ti+1, thenTi is the maximum signal correspon-
dence relation.

Proof: We first show thatTi is indeed a signal correspondence
relation as defined in Definition 2. Because of the structure of (5), it is
easy to see that each relationTj+1 is contained in the relationTj , with
0 � j � i: This implies thatfm Ti fn) fm T0 fn and, thus, that

fm Ti fn) (8x 2 X: fm(s0; x) = fn(s0; x)): (6)

Therefore, we may conclude thatTi satisfies the first condition of Def-
inition 2. If Ti = Ti+1, we can rewrite (5) to

fm Ti fn , fm Ti fn ^ (8 s 2 S; xt; xt+1 2 X:

QT (s; xt)) �m(s; xt; xt+1) = �n(s; xt; xt+1)): (7)

From (7), it follows that

fm Ti fn) (8 s 2 S; xt; xt+1 2 X:

QT (s; xt)) �m(s; xt; xt+1) = �n(s; xt; xt+1)) (8)

which proves thatTi also satisfies the second definition of 2; hence, if
Ti = Ti+1, then thisTi is a signal correspondence relation. We will
now prove thatTi equals

msc
= by showing that it satisfies Equation (3).

Given a signal correspondence relation
sc
=. It is easy to see that

fm
sc
=fn) fm T0 fn: (9)

Now assume that there are functionsfm; fn 2 F such thatfm andfn
are equivalent according to

sc
= but not with respect toTi, i.e.,fm

sc
=fn^

:(fm Ti fn). Then there has to be aTj , with 0 � j < i, such that:

8 fm; fn 2 F : fm
sc
= fn) fm Tj fn (10)

9 fm; fn 2 F : fm
sc
= fn ^ :(fm Tj+1 fn) (11)

From (10), it follows that
sc
= is included inTj and, thus, thatQT)

Q
=

, while from (11), it follows that there arefm; fn 2 F such that

8 s 2 S; xt; xt+1 2 X:

Q
=
(s; xt)) �m(s; xt; xt+1) = �n(s; xt; xt+1) (12)

and

9 s 2 S; xt; xt+1 2 X:

QT (s; xt) ^ �m(s; xt; xt+1) 6= �n(s; xt; xt+1): (13)

and This results in a contradiction and, therefore, we conclude that for
every signal correspondence relation

sc
= and for allfm; fn 2 F : fm

sc
=

fn) fm Ti fn. This completes the proof.
We use the example of Fig. 2 to illustrate the fixed point calculation.

The model of Fig. 3(a) is used to determineT0. In bold, the function of
each signal is shown for the initial state. By putting all functions that
are equivalent with respect to the intial state in the same equivalence
class, we obtain

T0 = fff1; f2; f3; f5; f6g; ff4; f7gg: (14)

Now the model of Fig. 3(b) is used to refine this partition. Note that
the model only contains combinational logic. The registers shown in
the figure have no formal meaning; they are only used to denote the
boundaries of the time frames. The state compatibility condition asso-
ciated withT0 is

QT = (f1 � f2)(f1 � f3)(f1 � f5)(f1 � f6)(f4 � f7): (15)

IEEE TRANSACTIONS ON COMPUTER AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 19, NO. 7, JULY 2000 817

Fig. 3. Example circuit models for calculating; (a)T and (b)T .

Fig. 4. Retiming with lag�1 to generate additional logic.

By applying (5),T0 is refined toT1

T1 = fff1g; ff2g; ff3; f6g; ff5g; ff4; f7gg: (16)

If we apply (16) again, no further refinement occurs, i.e.,T1 = T2.
Therefore, this partition represents the maximum signal correspon-
dence relation for this example.

The “scope” of the fixed point iteration explained above is deter-
mined by the functions in the setF . Its accuracy can, therefore, be
improved by extending this set with extra functions. In our verification
method, we do this by applying forward retiming transformations to the
product machine. Note that this differs from the way retiming transfor-
mations are used in [14] and [25]: we do not actually move latches
(and, thus, we avoid the problems related to maintaining a valid initial
state [24])but rather add the extra combinational logic that would result
from the retiming transformations. We only consider retimings with a
lag of�1, meaning that at most one register is moved from every input
to every output of a gate. This is illustrated in Fig. 4. In the circuit at
the left, theAND gate can be retimed with a lag of�1 by moving the
registersr2 andr4 to the output of the gate. We model the effects of
this retiming move by introducing an extraAND gate connected to the
registersr1 andr3.

The outline of the resulting verification method is shown in Fig. 5.
First the maximum signal correspondence relation is calculated. If the
current-state functions of all pairwise corresponding outputs of the two
circuits are equivalent according to this relation, then the sequential

equivalence of both circuits is proved and we can stop. Otherwise it is
checked whether the setF can be extended using retiming transforma-
tions as explained above. Note that because this step may be applied
more than once, also retiming transformations with a lag smaller than
�1 are considered. If the retiming generates new combinational logic
and, thus, results in an extension of the setF , the method continues
with the calculation of the maximum signal correspondence relation
for this larger set of functions.

The proposed verification method can easily be extended to also take
sequential don’t cares due to the nonreachable state-space into account.
For example, the reachable state-space of the specification can be used
to strengthen the state compatibility condition, i.e., instead of using the
state compatibility conditionQ

=
, the conditionQ

=
^ Sreach can be

used, whereSreach denotes the characteristic function of the specifica-
tion’s reachable state-space. Note that by combining the specification’s
reachable state-space with the state compatibility condition, this infor-
mation is also applied to the implementation. Instead of using the exact
reachable state-space, it is also possible to use an upper bound approxi-
mation of the reachable state-space, which can be calculated efficiently
using techniques as, e.g., described in [7], [13], and [20].

V. IMPLEMENTATION ISSUES

When implementing the method of Section IV, we have to choose an
appropriate data structure for storing the relationsTi that are calculated
during the refinement process. Because everyTi is an equivalence re-
lation, it can be represented by its equivalence classes. Therefore, the
choice of an appropriate data structure is not difficult: We can simply
store the equivalence classes ofTi explicitly, resulting in a space com-
plexity of O(F).

In every iteration of the fixed point computation, a new relationTi+1

is derived from the previous relationTi by splitting some equivalence
classes into a number of smaller classes. This is done by evaluating (5).

818 IEEE TRANSACTIONS ON COMPUTER AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 19, NO. 7, JULY 2000

The complement of the state compatibility condition is basically used
as a don’t care set when comparing the next-state functions. We can
use functional dependencies [10] of the state compatibility condition
to better exploit this don’t care set. To illustrate this, consider the
example based on the circuits of Fig. 2 again. In this example, the state
compatibility condition isv1v2 � v6. This condition can be taken into
account by actually replacing state variablev6 by the functionv1v2. We
use a greedy heuristic based on the structure of the product machine to
select the state variables that can be written as a function of other state
variables before the state compatibility condition is actually calculated.

Sequential simulation of the product machine with random input
vectors can be used to partition the setF into sets of potentially equiva-
lent functions; if two functions have different values during simulation,
it can directly be decided that they are not equivalent. This results in
a better initial approximation of the maximum signal correspondence
relation and, thus, reduces the required number of iterations.

VI. EXPERIMENTAL RESULTS

This section reports the results of some experiments performed with
the proposed verification method. Our current implementation con-
structs BDD’s expressed over the input and state variables to represent
the state compatibility condition and the next-state functions without
introducing extra variables for intermediate signals. It is based on the
BDD package developed at Eindhoven University. Dynamic variable
ordering is used to control the BDD variable ordering. All tests are
performed on a 99 MHz HP9000/755 workstation with a memory limit
of 100 (Mb)imposed on the BDD package and a time limit of 3600 (s).
The verification method is tested on circuits from the ISCAS’89 bench-
mark set.

In the first set of experiments, we evaluate the performance of
the proposed method by comparing it with the symbolic verification
method of [10]; this method uses functional dependencies to capture
the relation between the state encodings of both circuits. The original
benchmark descriptions are verified against the synthesized versions
of these circuits from [25], which have been optimized by kerneling
and retiming. To make these circuits more difficult to verify, we have
further optimized them using script.rugged of SIS. Table I shows the
experimental results. The first two columns show the name of the
benchmark and the number of registers in the circuits before and after
synthesis. The following columns list the run time, the maximum
number of BDD nodes during verification, and the required number of
iterations for both verification methods. For the proposed method, the
number between parentheses in the column#its denotes the number
of times the retiming procedure is invoked. The last column shows the
percentage of signals in the specification for which a corresponding
signal in the implementation is found. The average percentage of
equivalences is 54%; without running script.rugged on the circuits of
[25], the percentage of equivalences is 85%.

The experimental results clearly show that the proposed verification
method can handle larger circuits than a symbolic method which uses
BDD’s to traverse the state-space, even if the latter method exploits
functional dependencies. Only the circuits s3384 and s6669 cannot be
handled, because the BDD’s become too large. This problem is how-
ever more related to the combinational verification technique used than
to the proposed method.

To investigate the false negative problem, we have also verified 15
of the original benchmark descriptions against versions optimized by
extracting reachability don’t cares and then running script.rugged of
SIS. The method of this paper can verify 80% of the examples, and only
suffers from false negatives in three cases. In comparison, the method
of [11], which only tries to relate the registers of both circuits and not
the other signals, can only verify 33% of the circuits; in all other cases,
it suffers from false negatives.

Fig. 5. Outline of the verification method.

TABLE I
EXPERIMENTAL RESULTS FORRETIMED AND LOGICALLY OPTIMIZED CIRCUITS

VII. CONCLUSION

We have proposed a new verification method for sequential equiv-
alence checking which proves equivalence by detecting and utilizing
structural similarities rather than performing a state-space traversal of
the product machine. A greatest fixed point iteration is used to deter-
mine sequentially equivalent signals. Because the method only requires
combinational verification techniques, it is more efficient than sym-
bolic verification methods requiring a state-space traversal. We expect
that the performance of the method on larger circuits can be signifi-
cantly improved by applying techniques that introduce cutpoints. Al-

IEEE TRANSACTION ON COMPUTER AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 19, NO. 7, JULY 2000 819

though the proposed method is sound, it is not a complete method, i.e.,
there are pairs of equivalent circuits for which it cannot prove equiv-
alence. The method can be used as an effective preprocessing step for
a general method such as [10]. It is interesting to note that for some
synthesis steps, the method is complete. This is, e.g., the case for cir-
cuits optimized with combinational synthesis techniques, and also for
retimed circuits.

The proposed method assumes that an initial state is designated for
both circuits. This initial state is used in two ways: It acts as a reference
point to allow the detection of antivalent signals, and it is used to calcu-
late the initial partitionT0 of the setF . The approach of [4] shows that
the assumption of a designated initial state can be weakened. It should
be possible to extend their work such that it also applies to the method
presented in this paper.

ACKNOWLEDGMENT

The author would like to thank W. Kunz and D. Stoffel for providing
the circuits of [25].

REFERENCES

[1] P. Ashar, A. Gupta, and S. Malik, “Using complete-1-distinguishability
for FSM equivalence checking,” inProc. Int. Conf. Computer-Aided De-
sign, 1996, pp. 346–353.

[2] D. Brand, “Verification of large synthesized designs,” inProc. Int. Conf.
Computer-Aided Design, 1993, pp. 534–537.

[3] J. R. Burchet al., “Symbolic model checking for sequential circuit ver-
ification,” IEEE Trans. Computer-Aided Design, vol. 13, pp. 401–424,
Apr. 1994.

[4] J. R. Burch and V. Singhal, “Robust latch mapping for combinational
equivalence checking,” inProc. Int. Conf. Computer-Aided Design,
1998, pp. 563–569.

[5] , “Tight integration of combinational verification methods,” in
Proc. Int. Conf. Computer-Aided Design, 1998, pp. 570–576.

[6] G. Cabodiet al., “Disjunctive partitioning and partial iterative squaring:
An effective approach for symbolic traversal of large circuits,” inProc.
34th Design Automotation Conf., 1997, pp. 728–733.

[7] H. Cho et al., “Algorithms for approximate FSM traversal,” inProc.
30th Design Automation Conf., 1993, pp. 25–30.

[8] O. Coudert, C. Berthet, and J. C. Madre, “Verification of synchronous
sequential machines based on symbolic execution,”Proc. Workshop Au-
tomatic Verification Methods for Finite State Machines, vol. 407, pp.
365–373, 1989.

[9] C. A. J. van Eijk and J. A. G. Jess, “Detection of equivalent state vari-
ables in finite state machine verification,”Workshop notes Int. Workshop
Logic Synthesis, pp. 3.35–3.44, 1995.

[10] , “Exploiting functional dependencies in finite state machine veri-
fication,” in Proc. European Design& Test Conf., 1996, pp. 9–14.

[11] C. A. J. van Eijk, “Formal methods for the verification of digital cir-
cuits,” Ph.D. dissertation, Eindhoven Univ. Technol., Eindhoven, The
Netherlands, Sept. 1997.

[12] T. Filkorn, “Symbolische methoden für die verifikation endlicher zus-
tandssysteme,” Ph.D. dissertation, Institut für Informatik der Technis-
chen Universität München, Munich, Germany, 1992.

[13] S. G. Govindaraju and D. L. Dill, “Verification by approximate forward
and backward reachability,” inProc. Int. Conf. Computer-Aided Design,
1998, pp. 366–370.

[14] S.-Y. Huang, K.-T. Cheng, and K.-C. Chen, “On verifying the correct-
ness of retimed circuits,” inProc. Great Lakes Symp. VLSI, 1996, pp.
277–281.

[15] S.-Y. Huang, K.-T. Cheng, and K.-C. Chen, “AQUILA: An equivalence
verifier for large sequential circuits,” inProc. Asian South Pacific Design
Automation Conf., 1997, pp. 455–460.

[16] J. Jain, R. Mukherjee, and M. Fujita, “Advanced verification techniques
based on learning,” inProc. 32nd Design Automation Conf., 1995, pp.
420–426.

[17] A. Kuehlmann and F. Krohm, “Equivalence checking using cuts and
heaps,” inProc. 34th Design Automation Conf., 1997, pp. 263–268.

[18] W. Kunz and D. Stoffel,Reasoning in Boolean Networks—Logic
Synthesis and Verification Using Testing Techniques. Amsterdam,
The Netherlands: Kluwer, 1997.

[19] Y. Matsunaga, “An efficient equivalence checker for combinational cir-
cuits,” in Proc. 33th Design Automation Conf., 1996, pp. 629–634.

[20] I.-H. Moon et al., “Approximate reachability don’t cares for CTL
model checking,” inProc. Int. Conf. Computer-Aided Design, 1998,
pp. 351–358.

[21] D. K. Pradhan, D. Paul, and M. Chatterjee, “VERILAT: Verification
using logic augmentation and transformations,” inProc. Int. Conf. Com-
puter-Aided Design, 1996, pp. 88–95.

[22] S. Quer et al., “Incremental re-encoding for symbolic traversal of
product machines,” inProc. Eur. Design Automation Conf., 1996, pp.
158–163.

[23] R. K. Ranjanet al., “Using combinational verification for sequential
circuits,” in Proc. Design, Automation Test Europe Conf., 1999, pp.
138–144.

[24] L. Stok, I. Spillinger, and G. Even, “Improving initialization through
reversed retiming,” inProc. Eur. Design Test Conf., 1995, pp. 150–154.

[25] D. Stoffel and W. Kunz, “Record & play: A structural fixed point iter-
ation for sequential circuit verification,” inProc. Int. Conf. Computer-
Aided Design, 1997, pp. 394–399.

[26] H. J. Touatiet al., “Implicit state enumeration of finite state machines
using BDD’s,” in Proc. Int. Conf. Computer-Aided Design, 1990, pp.
130–133.

Simultaneous Routing and Buffer Insertion with
Restrictions on Buffer Locations

Hai Zhou, D. F. Wong, I-Min Liu, and Adnan Aziz

Abstract—During the routing of global interconnects, macro blocks form
useful routing regions which allow wires to go through but forbid buffers to
be inserted. They give restrictions on buffer locations. In this paper, we take
these buffer location restrictions into consideration and solve the simulta-
neous maze routing and buffer insertion problem. Given a block placement
defining buffer location restrictions and a pair of pins (a source and a sink),
we give a polynomial time exact algorithm to find a buffered route from the
source to the sink with minimum Elmore delay.

Index Terms—Buffers, integrated circuit interconnections, layout,
routing.

I. INTRODUCTION

With the evolution of very large scale integrated (VLSI) circuit fab-
rication technology, interconnect delay, especially global interconnect
delay, has become the dominant factor in deep submicrometer design.
Many techniques are employed to reduce interconnect delay; among
them, buffer insertion has been shown to be an effective approach [1].

During routing process, especially that for global nets, there are
macro blocks placed within the area. These blocks form useful routing
regions because wires are allowed to run over them. But since buffers
are implemented by transistors, a buffer “over” a macro block must be

Manuscript received March 4, 1999; revised January 4, 2000. This paper was
recommended by Associate Editor C.-K. Cheng.

H. Zhou is with Advanced Technology Group, Synopsys, Inc., Mountain
View, CA 94043 USA.

D. F. Wong, is with the Department of Computer Sciences, University of
Texas, Austin, TX 78712 USA.

I-M. Liu, and A. Aziz are with the Department of Electrical and Computer
Engineering, University of Texas, Austin, TX 78712 USA.

Publisher Item Identifier S 0278-0070(00)05863-2.

0278–00700/00$10.00 © 2000 IEEE

