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   1. Introduction. 

   The purpose of this paper is to discuss statistical properties of an estimate of 

a probability density function based on the first n observations under the assump-

tion of continuity or uniform continuity of the probability density function in case 

where we observe a sequence of random vectors which come from a population 

with the probability density function. 

   Let X1,  X2,X3,••• be a sequence of independent identically distributed m-dimen-

sional random vectors having a probability density function f(x). Suppose the first 

n observations be denoted by X1, X2, ••• Xn. Then a natural estimate of the pro-

bability density function f(x) may be denoted as follows for a suitable positive 

constant h

(1.1) 71(X) =- n(2hyTh{no. of observations such that xi—h� Xi;x,-Fh 

                  for i = 1, 2, • • • , n and j = 1, 2, -•- , 7n among X1, X2, ••• 

                 where X1-=(Xi1, Xi2, ••• , Xi.) for i 1, 2, ••• , n and 

                  x = (xi, x2, ••• , x„)} . 

This may be denoted more adequately, by defining K(y) as 

            {1/21n if —11 for i= 1, 2, •,7nwhere yy2, •••,ym) (1.2) K(y),--              0 
otherwise 

and 

(1.3)ince x—X;                        n hm/71h 

   In case of one-dimensional random variable, Parzen [4] considered a generalized 

estimate ?TA) -= Ki x— ̀Y' ) in the sense K(y) need not be equal to 1/2 for 
            nhn j=i h. 

y I 1, but satisfies all or some of 

(1.4)sup 1 K(y)1 < co 
                                                  --00<y<0. 

(1.5) 1 K(y)1dy < co 
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(1.6)lim y K(y)1= 0 
                                                    y-±.0 

(1.7) K(y)dy =1 

and for a certain class of probability density function he proved the following 

statistical properties under a certain condition about a sequence {hi} and an addi-

tive condition about the measurable function K(y): (1) the estimate .77,(x) is asymp-
totically unbiased, consistent, uniformly consistent and asymptotically normal and 

(2) a sample mode obtained from 17,(x) is a consistent estimate of the population 
mode and asymptotically normal. 

   Now we shall consider as an estimate of the probability density function f(x) 

(1.8)/7,4)=  11 lc(  x—X;              nh;h
; 

                   n-11 K( x—X7,  

                  = 

      nhn , 

The estimate fn(x) is considered more suitable than .77,,(x) in order to correct the 
estimate successively in case where a sequence of radom vectors or variables are 

observed. In the following sections, we shall treat the statistical properties of f„(x) 

under the assumption that the measurable function K(y) satisfies all or some of 

(1.9)sup 1K(y)j< 00 
                                          vE/in' 

(1.10) „, K(11)14< oc) 
                                                   R - 

(1.11) K(y)dy =1 

(1.12)lim Y II m I K(y) I = 0 

where Irm denotes the m-dimensional Euclidian space and             

!lull +.Y2)1" for y = (y1, y2, ••• Ym) Rm - 

   Wolverton and Wagner [7] pointed out that an estimate of a probability density 

functioh could be obtained by modifying their asymptotically optimal discriminant 

function and their estimate turns out to be identical with ours. Their consideration 

over the statistical properties from point of view of the estimation theory, however, 

were only on its asymptotically uniform unbiasedness assuming the uniform con-

tinuity of the probability density function. 

   In section 2 we shall prove the asymptotic unbiasedness of the estimate in(x) 

for the continuous probability density function and moreover at the continuous 

points x of the probability density function. 

   In section 3 we shall treat the limits of the variance and the mean square error 

of the estimate in(x) and the limit of nh;',' Var [f„(x)]. We shall also treat the limit 

of the ratio of the variance of the estimate fn(x) to the one of the estimate in(x). 
   In section 4 we shall treat the uniform consistency of the estimate 1,,(x), which
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enable us to obtain the consistency of a sample mode obtained by the estimate  fn(x). 

   In section 5 we shall treat the limit distribution of the estimate fn(x). 

   In section 6, for the probability density function known in form except for some 

parameters, we shall compare the estimate fn(x) of f(x) with the one based on the 
estimates of parameters. 

   Unfortunately the author has not been able to treat the limit distribution of a 

sample mode obtained by the estimate fn(x), which the author wishes to develop on 

another occasion. The author shall treat the statistical properties of the asymp-

totically optimal discriminant function constructed by Wolverton and Wagner [7] 

from point of view of the estimation theory in Yamato [8]. 

   The author expresses his hearty thanks to Professor A. Kudo of Kyushu Uni-

versity for his kind encourangement and advice during this work and also to Pro-

fessor T. Yanagawa of Kumamoto University for his suggestion.

   2. Asymptotic unbiasedness. 

   THEOREM 1. We suppose that the probability density function f(x) is continuous 

in Rim and {127,} is a sequence of monotone decreasing positive numbers and satisfies a 

condition 

(2.1)lim hn = 0 . 

Let K(y) be a measurable function satisfying (1.10) and (1.11). Then the estimate fn(x) 
,defined by (1.8) is asymptotically unbiased at all points x. 

   The following corollary can be essentially found in Wolverton and Wagner [7], 

which is needed in the proof of Theorem 5. 

   COROLLARY 1. If we assume the uniform continuity of the probability density 

function f(x) in Theorem 1, then we have 

(2.2)urn sup I Ef..(x)— f(x) I = 0 
                              n—ce x 

   COROLLARY 2. We suppose that {k} is a sequence of monotone decreasing posi-
tive numbers and satisfies (2.1) and that the measurable function K(y) satisfies (1.10), 

(1.11) and (1.12). Then the estimate fn(x) is asymptotically unbiased at all points x at 
which the probability density function f(x) is continuous. 

   The proofs of Theorem 1, Corollary 1 and Corollary 2 can be easily obtained 

by noting, at first, 

(2.3)Ef„(x)= 1                     n f Rm h; ( hi                           Kh;)f 
and then by applying following Lemma 1 and Lemma 2 on (2.3). Lemma 1 is essen-

tially identical with Theorem 1A in Parzen [4]. 

   LEMMA 1. We assume that {k} is a sequence of monotone decreasing positive 

numbers satisfying (2.1) and the measurable function K(y) satisfies (1.10). Then we 

have: (1) if f(x) continuous, then fRn, K(-1211--n)f(x—y)dy converges to f(x)f K(y)dy hn 
.at all points x as n tends to co. (2) if f(x) is uniformly continuous, then
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   1  

   hm-K( )f(x—y)dy uniformly converges to  f(x)L.K(y)dy as n tends to CO. (3) 
if we assume that K(y) satisfies (1.12), then f 1 K(-1I—.)f(x—y)dy converges to                                    117:h 

f(x)fK(y)dy as n tends to 00 at all points x at which the probability density func- 
     Rm 

tion f(x) is continus. 

   LEMMA 2. If a sequence of functions {g„(x)} converges to a function g(x) at a 

                              1 9: p
oint x as n tends to 00, then  Eg;(x) converges to g(x) at the same point x as n 

                                  n ;=1 

tends to 00. If a sequence of functions {g,,(x)} is uniformly bounded on I?' and uni-

                                                            1  n f
ormly converges to a bounded function g(x) on I?' as n tends to oo, then E 2.;(x) 

                                                                                  n j=i 

uniformly converges to g(x) in 1?7Th as n tends to 00 (See, for instance, pp. 122 in 

Tucker [5]). 
   In the above theorem and corollaries we do not assume that the function K(y) 

satisfies (1.9), but it is considered to be natural that we restrict the estimate .,,i(x) 
to the one with K(y) satisfying (1.9). 

   3. Consistency. 

   We can obtain the consistency of the estimate ./7,(x) by the following theorem. 
   THEOREM 2. We suppose that the probability density function f(x) is continuous 

in Rin and a sequence of monotone decreasing positive numbers fkil satisfies (2.1) and 

(3.1)lim nhn=oo . 
                                               n—co 

Let the measurable function K(y) satisfy (1.9) and (1.10). Then we have 

(3.2)lim Var[f,,(x)]= 0 at all points x . 

Furthermore if K(y) satisfies (1.11), then we have 

(3.3)lim E I fri(x) — f(x)I2 = 0 at all points x. 

   PROOF. We shall note, at first, that 

(3.4)VarEfii(x)1= 12 1 EIK(-x—h;Xj)—E[K(x—hlYi32                                               j=i 

                       1" 1 r                       = n2h .2;74JRmIC2(f4-11)4 
       1 " 12                  --  KCY)f(x—y)dy} 

              n2RmCh; 

From (1.9) and (1.10), we have 

(3.5) 
R„,i1C(11)1 sdy < CO for s--= 2, 3 . 

Consequently by Lemma 1h1  f(x—y)dyconverges tof(x)K2(y)dy- 
         71n,'hngeRm
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at all points x as n tends to co. Therefore from (3.1)n1enierthnK2(-11)  f(x—y)dy 
converges to zero at all point points x as n tends to 00 and hence by Lemma 2 

 11  K2( Y)f(x—y)dy converges to zero at all points x as n tends to 
 njk2;77'Rmh; 
CO. By applying this fact on an inequality : 

                      1 n lr (3.6)0 2K2( Y )f(x—ii)dY 
                      J=1h;Riah 

                                      n 

        11   E .Y                          K2()f(x—y)dy 
             n j-iRmh; 

we have . 

(3.7)K-2()f(x_y)dy_, 0 (n co)                n2;=, hr.remh 

Next, by Lemma 1 we have easily 

(3.8).”12f( 1,11).Ax-11)4}2.--'0 (n-'00).                                 ‘,7R- 

By applying (3.7) and (3.8) on (3.4), we have (3.2). 

   At last, we suppose that K(y) satisfies (1.11). By applying Theorem 1 and (3.2) 

on 

(3.9)E Ifn(x)—f(x) I = Var Y.(x)1 + I Ein(x)— f(x) 12 

we have (3.3). Thus the theorem is proved. 

   Now by (3.3) we have 

(3.10)f.(x) f(x) at all points x co) , 

so the estimate fn(x) is consistent at all points x, where (3.10) denotes that fiz(x) 

converges to f(x) in probability at all points x as n tends to CO. 

   COROLLARY 3. If we assume the uniform continuity of the probability density 

function f(x) in Theorem 2, then we have lim sup Var[fii(x)]=- 0 and lirn sup El fn(x) 
                   n—co xn--.00 x 

—f(x) I 2 -= O. 

   COROLLARY 4. We suppose that a sequence of monotone decreasing positive num-
bers {hn} satisfies (2.1) and (3.1) and that the measurable function K(y) satisfies (1.9), 

(1.10) and (1.12). Then we have 

<3.11)lim Var[L(x)]= 0 

at all points of continuity of f(x). Furthermore if K(y) satisfies (1.11), then we have 

(3.12)lirn Elfn(x)—f(x) 1 0 

rat all points of continuity of f(x). 

   We can prove the above corollary in a same manner as the proof of Theorem 2. 

   THEOREM 3. We suppose that the probability density function f(x) is continuous 

in IP and for the sequence of monotone decreasing positive numbers {k} satisfying 

(2.1) there exists a limit with
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(3.13)lim1-n h7TE= a  (0  a  1) 
                            n—= n 2=1 127 

Let the measurable function K(y) satisfy (1.9) and (1.10). Then we have 

(3.14)lim nh7,inVarikx)1=af(x)f K2(y)dy 
                                                  Rm 

   PROOF. From (3.4) we have 

                              hm n (3.15)nh;','Var[fii(x)]= nn EIC2( ,„11f(x—y)dy 
                          j-iRmj 

                       - 

               l Eenn{ 12                                 IC(f( x—y)dy} 
                                n 3=1Rm h; 

At first, we have 

(3.16)1  f K(_)f(x_y)dy}2 
          n 31 h, 

                                                                        ,2                     h;lnlif 112 ISRD,I K(Y)I 
which tends to zero as n tends to 00, where 'VII = max f(x) , whose existence is 

secured by the continuity of f(x). 

   Next, we have 

(3.17)If:lf K2(y)f(x—y)dy 
               nj=iRm,h, 

                 =51E hK2(y){f(x— hjy)}dy. 
                   nyi 

                1 n hm We shall show thatEf(
x—h,y) uniformly converges to af(x) in y{yItill                         it

j=1h7j!' 
  M} for any M> 0. It follows from the continuity of f(x) that for arbitrary s>0 

there exists a positive integer No not depending on y E {y I Ilyll � M} such that 

(3.18) f(x-hiY)-i(x)i< E for j> No and y E IYIllyll 

Hence for sufficiently large n, we have 

(3.19)I 1 14f(x— h;y)— a f(x)1                n17'1 hy1 

      1nh1 

                                                              m 

                 n1f(x-h,y) f(x)1+n jE=.1-h4—al f(x) 
                                                .1=1 

                    2  No 12,7                      E11f11 +
6 1 kn.+1_IL hi,            E2i                   n 3=1 h7 n i-No+1In5=1 

which is not depend on y E {Y111Y11� M}. As n tends to co, the second term of the 
last expression of (3.19) tends to as (�s) and the rest of the expression tend to 

zero. Since a is arbitrary, we have 

                                               " (3.20)1E hmf(x—hjy)—>a f(x)co) 
                            n j=i 

uniformly in y E IYIIIy11� M} and also by (1.9)
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(3.21)K2(y)1  E f(x — h iy)—> a f(x)K2(y) 00) 
 n  j=i 

uniformly in y E {y1111111 M}. Therefore for arbitrary M> 0 we have 

                                              n (3.22)IfK2(y) {1n E  " f(x— h dy — a f(x)f K2(y)dyl 

               Ily1115/ffn'71 

               K1 j=1h2(y)  E "f (x— h Jy)} dy a f(x)fenK2(y)dyl 

                              n 

  j 

         +11f II f K2(y)dy±af(x)f 10(y)dy 
          IlyIJuMm 

whose first term tends to zero by (3.21) as one lets n tend to 00 at first and secondly 

the remaining terms tends to zero by (3.5) as one lets M tend to 00. Therefore by 

applying (3.16), (3.17) and (3.22) on (3.15), we have (3.14). Thus the theorem is proved. 

   This theorem enables us to compare asymptotically the variance of our estimate 

in(x) with that of the estimate fn(x) proposed by Parzen [4] in one-dimensional 
case and quated as (1.3) in this paper. Our estimate is asymptotically at least as 

good as:f„(x), as stated in the following corollary. 
   COROLLARY 5. Under the same assumption as in Theorem 4, the variance of 7(x) 

is asymptotically at most as large as the one of .7(x). 
   PROOF. By comparing (3.11) and Theorem 2A in Parzen [4], we have 

             uirn Var Cf.(x)1iiar [f(x)]                                      = (3.23)a1 .                    V arY n(X)1con—con117TV arr in(X)1 

Thus the corollary is proved. 

   4. Uniform consistency of fn(x) and consistency of a sample mode. 

   In this section we shall show that the estimate /n(x) is uniformly consistent 

and by using this fact it turns out that a sample mode obtained from the estimate 

fn(x) is a consistent estimate of the population mode. 
   THEOREM 4. We suppose that the probability density function f(x) is uniformly 

continuous in Rm. and that the sequence of monotone decreasing positive numbers {hid 
satisfies (2.1) and 

(4.1)lim n1"1/7 = 0 . 
                                           n--co 

Let the measurable function K(y) satisfy (1.10) and (1.11), its Fourier transform 

(4.2)k(u) = f eiu'Y K(y)dy 

be absolutely integrable and k(u) be nondecreasing in negative part and nonincreasing 

in positive part for each argument. Then we have 

                            P 
(4.3)sup 1.4,(x)— f(x) 0 (n —t co) .
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 Furthermore if f(x) has a unique made 0 defined by 

(4.4)f(0)= max f(x) 

 then a sample mode O. defined by 

(4.5)fa ) max/7,(x) 

 converges to 0 in probability as n tends to co. 

    PROOF. Since K(y) and k(u) are absolutely integrable, we have 

(4.6)K(Y)=(271),n, j 
Rme-i" k(u)du . 

In term of k(u), the Fourier transform of K(y), we have 

(4.7)f n(x) = xj k(ku)}s du .eiu(27r)74jennj-i 

Hence if we let co(u) be the population characteristic function then 

(4.8) If n(x) — E f .(x) I =1(27r)len 1i{e'xi—w(u)} k(ku)e-iu'x dui                              74n
.1=-1 

Therefore we have 

(4.9) suP Ifm(x)—Ein(x)1.—  (27r1)74$Rmfnj=1±co(u)} k(h ju)Idu . 
It follows from (4.9) and Schwarz's inequality that 

(4.10) E [suP I f n(x)— Ef n(x) I](27r)1 mJRm.n21-Ix —yo(u)121k(ku)1211/2du . 
                                                j, 

Since El eiu'xj—so(u) I � 1, {hn} is the sequence of monotone decreasing positive num-

bers and k(u) is nondecreasing in negative part and nonincreasing in positive part 

for each argument, by (4.10) we have 

(4.11) E [sup if Th(x)— Ef n(x)i 5_ m                             (2r)nRmIn I k(Inu) IT/Yu 

             1  
                                                   =--                             n" 2 h;,n(27r)mSR. I k(u) I du 

By applying (4.1) on (4.11), we have 

(4.12)lim E [sup I Efn(x) I] 0 . 
              n—. X 

It follows from (4.12) and Markov's inequality (See, for instance, p. 158 in Loeve 

[2]) that 
                           P 

(4.13)suP Ifn(x)—Efn(x) I ---> 0 (n co) . 

In the inequality : 

(4.14)sup I f n(x) — f (x) I suP f .(x) — Ein(x) I +sup I Efn(x)— f(x) I 

the righthand side converges to zero in probability as n tends to co by (4.13) and 

(2.2). Thus we obtain (4.3).
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   Next, from the absolute integrability of k(u), it turns out by the similar method 

to the proof of Theorem 31 in Bochner and Chandrasekharan [1] that  in(x) tends 

to zero as IIxiI tends to co and by the similar method to the proof of (1.3) in Bochner 

and Chandrasekharan [1] we can obtain the uniform continuity of /7,(x) by using 

an inequality 1721+ ••• +um I (u1+ ••• -Ful)"2. Therefore there exists a random 

vector en defined by (4.4). By the same reason as the proof of Theorem 3A in 

Parzen [4] we are able to obtain 

(4.15)On 0 (n-- co) , 

which completed the proof of the theorem. 

   Thus the uniform consistency of f,i(x) and the consistency of On are established. 

Concerning the measurable function K(y) satisfying the assumption in Theorem 4, 
             1  f

or example, K(y),e-Y'Y/2satisfies the assumption and in the case k(u)=e-'2".                  (27r)m" 

   5. Asymptotic normality of fn(x). 

   We shall consider the asymptotic normality of f7,(x). 
   THEOREM 5. We suppose that the probability density function f(x) is continuous 

in Rim and that for the sequence of monotone decreasing positive numbers {kJ satisfy-

ing (2.1) and (3.1), there exists a non-zero limit with (3.13). Let the measurable func-

tion K(y) satisfy (1.9) and (1.10). Then the distribution function of 

(5.1)f.(x)—E.1.(x)                          'N/ V ar [f n(x)] 

.converges to the standardized normal distribution function at all points x. 

   hn= 1/(log n)l/m and hn = 1/n.' (0 <r<1/2) are examples of sequences of mono-

tone decreasing positive numbers {hn} satisfying (2.1), (3.1), (4.1) and (3.13) with 
 =1 and a -= 1/(r+1) respectively. In case of h„= 1/nrim (0<r<1/2), 

                  2 1 'a2,7                         < lim
nE< 1 .               31=1h7 

Thus the assumption of the existence of non-zero limit with (3.13) does not appear 

to be very restrictive. 

   PROOF. If we put for any fixed x 

                   h17.7K(x—h.;Y;  (5.1)for j 1, 2, 3, --• 

then V„V„V„••• are a sequence of independent random variables and we have 

                                                                                                              m. 

(5.3)in(x)— Ein(x)E(V1-EV;)             J=1  

                 ^Var [.,„(x)] E VarEV 
                                                              j=1 

Therefore, by virtue of Lyapunov's condition (See, for instance, p. 432 in Parzen 

[3]), it is enough to show that
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                     E El V j— EV J13 
(5.4)lirn  5%1= 0 . 

                    ( E V ar[V 3])312 
                                          3=1 

From Theorem 3, we have 

(5.5) h" ar [V3]nh;,"Varrin(x)1' af(x)f K2(y)dyco) .   723=1Rm 

On the other hand, by using an inequality: 

(5.6)(a+b)3 4(a3-1-b3) for a, b 0 , 

we have 

(5.7)iElVi—EV;13�47±{EIV;13-1-1EK/13} 
        j=1.1=1 

and further 

(5.3)El v,i3=Lnilhn,K(4103 f(x—y)dy                  

II fIl h2 Lnillqz)Iscrz 

(5.9)IE17;1 El V; I :5, II K(z)Idz . 

As {12„} is a sequence of monotone decreasing positive numbers, we can evaluate 

the lefthand side of (5.7) by using (5.8) and (5.9), 

(5.10) E V ,— EV j 1 3 5 411 fll SR. K(z) 3dz+4n11 f 113{f B. 1 K(z)1 dz} . 

Hence by (5.10) we have 

                  El Vi—EV,18 

(5.11)lim  j=7,1 
          ' ( E V ar[V 

3])" 
                            j=1 

                                                   n 

                      (---1n1-)3/2El V 3—EV 313        _ iim j=1  
                  n—ca117: V ar[V3/2 

                               n j=1 

                    [�lirn 1                                   3/2L(nh1:)" J
R.I K(z) I 8dz                       Var[V 3]) 

                              n j-i 

                        hr                           +4 ni/2"f113leK(z)3dzi]. 

By applying (2.1), (3.1), (1.10), (3.5) and (5.4) on (5.10) we have (5.3), which leads us 

to the completion of the theorem.
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   6. Comparison with parametric estimation. 

   In the above sections  we discussed the statistical properties of the estimate fn(x) 

under the assumption that the probability density function is continuous at a point 
x, continuous in or uniformly continuous in Now, we shall consider the 

situation where the underlying distribution is assumed to be known in form. Let 
the probability density function be known in form except for the values of some 

real parameters, 6+ =(0,, 82, , Ok), belonging to a space co. Corresponding to a given 

0 E a), we shall denote the probability density function by fo(x). 

   If the probability density function fo(x) is continuous as a function of 8 at a 

point x, then for a consistent estimate ‘i of 8, fe (x) is a consistent estimate of fo(x) 
at the point x. When we compare two consistent estimates ./.7,(x) and fe (x), it is 
expected that the estimate fe(x) is preferable to the estimate f,i(x). Because the 

estimate fe (x) utilizes the assumption that the probability density function is known 
in form whereas the estimate in(x) does not. We shall show this fact by an ex-

ample in case where the underlying distribution is univariate normal N(8, 1) (-00 

<0<00). By using a consistent estimate of 6, X, we can obtain a consistent esti-
mate of fo(x), 

                                                         (.7*—Z2 

(6.1)fi(x)=1_e2 
             1/27r• 

It is easy to show that 

(6.2)Efi(x)= 1n e- 2(.7+1) (x-8)2                  ^27:- Vn+1 
                 1n(x_0)272—(x—e;2 (6

.3)V ar[ fi(x)]=2
n.n+ 227r n +1 

                              n n,2 
                                                             -                                                                    en+1 

                                1n-7,72 (x—O)2
Alnn_ixi)—(ng,)22)                =Vn4-2en+2 n  e (n n +1 

(6.4)1—Vn+2 n e(:±(ix)(7?+)22) 
       nn+1• 

           nn' 

                     n +2 (n+1)2(n+2) (x-8)2 +O(-11/2 for x 8. 
Hence we have 

(6.5)lim E fx-(x)= fo(x)for all x 
                                    n-00 

(6.6)lim E fi(x)— fo(x) 12 = 0 for all x 

                         1 (6
.7)lim n Var[fi,(x)] =2

7(x 0)2 e- (x -e)2for x # 8 

(6.8)lim n2 V ar[ fx(0)]=1 
                                               7,-00 

Therefore, under the assumption that for the sequence of monotone decreasing 

positive numbers satisfying (2.1) and (3.1) their exists a nonzero limit with (3.13)
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and that the measurable function K(y) satisfies (1.9) and (1.10), from (3.14), (6.7) and 

 (6.8) we have 

                Iiin Var[fi(x)]                                  =0 for all points x. 
                 Var[L(x)] 

As was expected it was shown that the variance of tne estimate fk-(x) is asymptotic-

ally smaller than the one of the estimate f„(x). 

   At last, we shall note the unique unbiased sufficient estimate of fo(x) (Washio, 

Morimoto and Ikeda [6]), 

                                              1_(x-1'52                    70(X) =1e 21--) 
27r(1— -n-                     )  

We can easily verify that 

                        1               lirn nVar[76(x)]=2
7.c                                         (x 0)2e-(x--0)2 for x # 6 

                                1                       lim n2 Var[18(0)]-=, 

which coincides with the limits in case of fx(x). Therefore it can be also shown 

that the variance of the estimate 70(x) is asymptotically smaller than the one of the 
estimate fn(x). 

   As is usually the case, however, in the situation where the underlying pro-

bability density function is not known in form except for its continuity, our estimate 

fn(x) is considered preferable.
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