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SEQUENTIAL ESTIMATION OF THE RATIO OF SCALE
PARAMETERS IN THE EXPONENTIAL

TWO-SAMPLE PROBLEM

Chikara Uno*

We consider a sequential point estimation of the ratio of two exponential scale
parameters. For a fully sequential sampling scheme, second order approximations are
obtained to the expected sample size and the risk of the sequential procedure. We
also propose a bias-corrected procedure to reduce the risk.
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1. Introduction

Let X1, X2, . . . and Y1, Y2, . . . be independent observations from the popu-
lations Π1 and Π2, respectively, where Πi is according to an exponential distri-
bution having the probability density function (pdf)

fσi(x) = σ−1
i exp(−x/σi), x > 0(1.1)

with 0 < σi < ∞ for i = 1, 2. We assume that the scale parameters σ1 and σ2 are
both unknown. We want to estimate the ratio σ1/σ2 of scale parameters. Taking
samples of sizes n and m from Π1 and Π2, respectively, we estimate θ = σ1/σ2

by

θ̂(n,m) = Xn/Y m

where Xn = n−1
∑n

i=1 Xi and Y m = m−1
∑m

i=1 Yi. As the loss function, we
consider

L
(
θ̂(n,m)

)
=

(
θ̂(n,m) − θ

)2
+ c(n + m)

where c > 0 is the known cost per unit sample in each population, and the risk
is given by R(θ̂(n,m)) = E{L(θ̂(n,m))} which is finite if m > 2.

As for two-sample cases, the sequential estimation of the difference of the
means under the above loss structure has been investigated in the literature. For
instance, Ghosh and Mukhopadhyay (1980) and Mukhopadhyay and
Chattopadhyay (1991) considered the normal and the exponential cases, respec-
tively and gave second order approximations to the risks as c → 0.
Mukhopadhyay and Purkayastha (1994) and Uno and Isogai (2000) treated the
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same problem in the case of unspecified distributions. It is interesting to estimate
the ratio of scale parameters in a two-sample problem. The estimation of the
ratio of two normal variances is especially important. However, sequential proce-
dures for estimating the ratio of scale parameters have not been proposed so far.
Hence, in this paper we propose a sequential procedure for estimating the ratio
of two exponential scale parameters. Our sequential procedure can be applied to
the estimation of the ratio of two normal variances, which will be pointed out in
Remark 1 below. In Section 2, we present a fully sequential procedure and give
second order asymptotic expansions for the expected sample size and the regret
of the sequential procedure. A bias-corrected procedure is also proposed to re-
duce the risk and it is compared with the original one by simulation experiments.
All proofs of the results are given in Section 3.

2. Main results

In this section, we propose a fully sequential procedure and investigate second
order asymptotic properties of the procedure. Let m > 2. Estimating θ = σ1/σ2

by θ̂(n,m), the risk is given by

R
(
θ̂(n,m)

)
= E

(
Xn/Y m − θ

)2 + c(n + m) =
(

1
n

+
1
m

)
θ2 + rn,mθ2 + c(n + m),

where rn,m = ( 1
n + 1

m) 3m−2
(m−1)(m−2) + 2

(m−1)(m−2) . Since rn,m = O
(
( 1

n + 1
m)2

)
as n

and m tend to infinity, we have

R
(
θ̂(n,m)

)
=

(
1
n

+
1
m

)
θ2 + c(n + m) + O

((
1
n

+
1
m

)2
)

.

If we ignore the order term above, then the risk R(θ̂(n,m)) is (approximately)
minimized by taking

n = m = c−1/2θ = n∗ (say)(2.1)

(in practice, one of the two integers closest to this value) with R(θ̂(n∗,n∗)) ≈
4cn∗ for sufficiently small c. But σ1 and σ2 are unknown, so is n∗. Takada
(1986, 1998) gave details of the nonexistence of fixed sample size procedures.
Since fixed sample size procedures are not available, we propose the following
sequential sampling procedure motivated by (2.1). As the starting sample sizes,
we take X1, . . . , Xk and Y1, . . . , Yk from Π1 and Π2, respectively, where k > 2. If
k < c−1/2Xk/Y k, then we take one observation in addition from each population,
that is, Xk+1 and Yk+1 are taken from Π1 and Π2, respectively. The resulting
stopping time is defined by

N = Nc = inf{n ≥ k : n ≥ c−1/2Xn/Y n}.(2.2)

Then, by the strong law of large numbers, P (N < ∞) = 1 for all c > 0. Once
the sampling stops, using the total 2N samples X1, . . . , XN and Y1, . . . , YN , we
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estimate θ = σ1/σ2 by θ̂N ≡ θ̂(N,N) = XN/Y N . The risk R(θ̂N ) associated with
θ̂N is

R
(
θ̂N

)
= E

(
XN/Y N − θ

)2 + cE(2N).

The performance of the sequential procedure is assessed by the regret R(θ̂N ) −
4cn∗.

We shall now give the main results concerning second order approximations
to the expected sample size and the risk of the procedure.

Theorem 1. (i) If k > 3, then as c → 0,

E(N) = n∗ + ρ − 1 + o(1),

where ρ is a constant given in (3.11) and 0 ≤ ρ ≤ 3
2 .

(ii) If k > 12, then as c → 0,

R(θ̂N ) − 4cn∗ = 4c + o(c).

We shall propose another procedure to reduce the risk. The following theo-
rem concerns the bias of the sequential procedure θ̂N .

Theorem 2. If k > 6, then as c → 0,

E
(
θ̂N

)
− θ = −

√
c + o

(√
c
)
.

Taking account of Theorem 2, we propose a bias-corrected procedure

θ̂∗N = XN/Y N +
√

c.

Then, from Theorem 2, if k > 6, E(θ̂∗N ) = θ + o(
√

c) as c → 0. The risk
associated with θ̂∗N is given by R(θ̂∗N ) = E(θ̂∗N − θ)2 + cE(2N) and its second
order asymptotic expansion is given below.

Theorem 3. If k > 12, then as c → 0,

R
(
θ̂∗N

)
− 4cn∗ = 3c + o(c).

We have, from Theorems 1 (ii) and 3, if k > 12, then R(θ̂∗N ) − R(θ̂N ) =
−c + o(c) as c → 0, which says that the risk of the bias-corrected procedure θ̂∗N
is asymptotically less than that of the original procedure θ̂N by one cost.

For two exponential populations Π1 and Π2, Mukhopadhyay and
Chattopadhyay (1991) considered sequential point estimation of the difference
σ1 − σ2 and showed that the regret of their sequential procedure was 4c + o(c)
as c → 0. Thus, from Theorem 1 (ii), our procedure θ̂N and the procedure by
Mukhopadhyay and Chattopadhyay (1991) are equal in the regret. Furthermore,
from Theorem 3, our bias-corrected procedure θ̂∗N is superior in the regret to the
procedure by Mukhopadhyay and Chattopadhyay (1991).



234 CHIKARA UNO

Remark 1. For the exponential one-sample problem, Starr and Woodroofe
(1972) proposed a sequential procedure for estimating the scale parameter, which
could be applied to the estimation of the normal variance. For two normal
populations, it is interesting to estimate the ratio of the variances. Our procedure
can also be applied to the estimation of the ratio of two normal variances by
means of the transformation given in Lemma 10.1 of Woodroofe (1982).

Simulation. We shall give brief simulation results for the cases when
(σ1, σ2) = (2, 1) and (1, 2). The cost c is chosen such that n∗ = θ/

√
c = 40, 80

and set the pilot sample size k = 13 for each population. The simulation results
in Table 1 are based on 1,000,000 repetitions by means of the stopping rule N
defined by (2.2). It looks from Table 1 that the bias-corrected procedure θ̂∗N
betters the regret of the original procedure θ̂N . As c → 0 (n∗ = 80), Table 1
seems to support Theorems 1 (ii) and 3.

Table 1. Comparison between θ̂N and θ̂∗N .

σ1 = 2, σ2 = 1 σ1 = 1, σ2 = 2

k = 13 θ = 2 θ = 0.5

n∗ = 40 n∗ = 80 n∗ = 40 n∗ = 80
√

c 0.05 0.025 0.0125 0.00625

4cn∗ 0.4 0.2 0.025 0.0125

E(N) 39.955470 80.039878 39.977044 80.051275

E(θ̂N ) 1.944155 1.973843 0.486314 0.493539

E(θ̂∗N ) 1.994155 1.998843 0.498814 0.499789

regret R(θ̂N ) − 4cn∗ 5.350729 c 4.649074 c 5.137294 c 4.865760 c

R(θ̂∗N ) − 4cn∗ 4.116933 c 3.556518 c 3.947593 c 3.798148 c

3. Proofs

We shall prove all results given in Section 2. Throughout this section, let
Ui = Xi/σ1 and Vi = Yi/σ2 for i = 1, 2, . . . and M be a generic positive constant.
Further, let c0 > 0 be chosen such that n∗ ≥ 1 and E(N2) < ∞ for all c ∈ (0, c0]
by Proposition 2 of Aras and Woodroofe (1993) and Lemma 4 below. We use
the following notation:

Dn =
n∑

i=1

(Ui − 1), Qn =
n∑

i=1

(Vi − 1), Un =
1
n

n∑
i=1

Ui and V n =
1
n

n∑
i=1

Vi.

The stopping variable N defined by (2.2) is written in the form

N = Nc = inf {n ≥ k (> 2) : Zn ≥ n∗} ,

where

Zn = n
V n

Un

= n − Dn + Qn + ξn(3.1)
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and by Taylor’s Theorem,

ξn ≡ Zn − (n − Dn + Qn) = −n(Un − 1)(V n − 1) + nV n(Un − 1)2η−3
n ,(3.2)

in which ηn is a random variable lying between 1 and Un. We shall give four
lemmas which are needed to prove Theorems 1 and 2.

Lemma 1. Let q > 0. Then supc>0 E(UN )q ≤ E
{
supn≥1(Un)q

}
≤ M , and

if k > q then supc>0 E(UN )−q ≤ E
{
supn≥k(Un)−q

}
≤ M . These assertions hold

for V N instead of UN .

Proof. From (1.1), U1 is according to a standard exponential distribution
with pdf f1(x). Hence, for a real number s,

E
(
Uk

)s =
Γ(k + s)
ksΓ(k)

< ∞ if k > −s,(3.3)

where Γ(x) is the gamma function. For q > 1, from the Doob’s maximal inequal-
ity,

sup
c>0

E
(
UN

)q ≤ E

{
sup
n≥1

(
Un

)q
}

≤
(

q

q − 1

)q

E(U1)q < ∞.(3.4)

For 0 < q ≤ 1, we have from the Hölder inequality, for q′ > 1, E(UN )q ≤
{E(UN )q′}q/q′ which is finite from (3.4). Thus, the first assertion holds. We
shall show the second assertion. For q > 1, from the Doob’s maximal inequality
and (3.3),

sup
c>0

E
(
UN

)−q ≤ E

{
sup
n≥k

(
Un

)−q

}
≤

(
q

q − 1

)q

E
(
Uk

)−q(3.5)

< ∞ if k > q.

For 0 < q ≤ 1, it follows from the Hölder inequality and (3.5) that for 1 < q′ < 2,
E(UN )−q ≤ {E(UN )−q′}q/q′ < ∞ if k > q′, for which k > 2 is sufficient. Hence,
the second assertion holds. The last assertion is clear because Ui and Vi are the
same in distribution.

Lemma 2. Let q ≥ 1.
(i) {(N/n∗)−q, c > 0} is uniformly integrable if k > q.
(ii) {(N/n∗)q, 0 < c ≤ c0} is uniformly integrable if k > q.

Proof. From the definition (3.1) of N , we have (N/n∗)−q ≤ (V N/UN )q.
Thus, for a > 1, from the Hölder inequality with u > 1 and u−1 + v−1 = 1,

E(N/n∗)−aq ≤
{
E

(
V N

)aqu}1/u
{

E
(
UN

)−aqv
}1/v

.



236 CHIKARA UNO

Hence, from Lemma 1, {(N/n∗)−q, c > 0} is uniformly integrable if k > q. So
(i) holds. For (ii), observe that (N − 1)V N−1/UN−1 < n∗ on {N > k}, so that
for c0,

N/n∗ ≤
{(

UN−1/V N−1

)
+ (1/n∗)

}
I{N>k} + (k/n∗)I{N=k}

≤
(
UN−1/V N−1

)
I{N>k} + (k + 1),

where I{ · } denotes the indicator function. Therefore, by cr-inequality (see Loève
(1977), p. 157), for 0 < c ≤ c0,

(N/n∗)q ≤
{(

UN−1/V N−1

)
I{N>k} + (k + 1)

}q

≤ M
{(

UN−1/V N−1

)q
I{N>k} + (k + 1)q

}
.

For a > 1, from the Hölder inequality with u > 1 and u−1 + v−1 = 1,

E
{(

UN−1/V N−1

)q
I{N>k}

}a ≤
{
E

(
UN−1

)aqu
I{N>k}

}1/u

×
{

E
(
V N−1

)−aqv
I{N>k}

}1/v

≤
[
E

{
sup
n≥k

(
Un

)aqu

}]1/u [
E

{
sup
n≥k

(
V n

)−aqv

}]1/v

,

which, together with Lemma 1, proves (ii).

From Theorem 2 of Chow et al. (1979), we have the next lemma.

Lemma 3. For q ≥ 1, if {(N/n∗)q, 0 < c ≤ c0} is uniformly integrable for
some c0 > 0, then { (n∗− 1

2 |DN |)q, 0 < c ≤ c0 } and { (n∗− 1
2 |QN |)q, 0 < c ≤ c0 }

are uniformly integrable.

Let W = (ζ1, ζ2) be distributed according to a bivariate normal distribution
with mean vector (0, 0) and covariance matrix Σ = ( 1 0

0 1 ) . In the notation of
Aras and Woodroofe (1993), letting

Xi = (Ui − 1, Vi − 1), Sn = (Dn, Qn) and c = (−1, 1),(3.6)

we have the following lemma.

Lemma 4. If k > 3, then the conditions (C1)–(C6) of Aras and Woodroofe
(1993) are satisfied with p = 3.

Proof. Clearly, (C1) holds for p = 3. From Proposition 4 of Aras and
Woodroofe (1993), (C4) is satisfied, (C5) holds for all α ≥ 3/2 and (C6) holds
with ξ = ζ2

1 − ζ1ζ2. We shall show (C2) with p = 3. Let 0 < ε < 1
2 . Since

Zn − (n/ε) = n{(V n/Un) − ε−1} ≤ 0 on {V n/Un ≤ 1/ε}, we have for some
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s > 3,

E

{(
Zn − n

ε

)+
}s

= E
[(

Zn − n

ε

)s
I{V n/Un>1/ε}

]
≤ ns E

[(
V n/Un

)s
I{V n/Un>1/ε}

]
= ns E

[(
V n/Un

)s
I{V n/Un>1/ε, Un<1−ε}

]
+ ns E

[(
V n/Un

)s
I{V n/Un>1/ε, Un≥1−ε}

]
= J1(n) + J2(n), say.

By the independency of Un and V n and Lemma 1, we have, for u > 1 and
u−1 + v−1 = 1,

J1(n) ≤ ns E
[(

V n/Un

)s
I{Un<1−ε}

]
≤ ns

{
E

(
V n

)s} {
E

(
Un

)−su
}1/u {

P
(
Un < 1 − ε

)}1/v

≤ M ns
{
P

(
Un − 1 < −ε

)}1/v if k > su.

Since by Tchebichev’s inequality and the Marcinkiewicz-Zygmund inequality, for
n ≥ 1,

P
(
Un − 1 < −ε

)
≤ (εn)−qE|Dn|q = O(n−q/2) for q ≥ 2,(3.7)

we obtain J1(n) ≤ Mns−q/(2v) for n ≥ k. If k > 3, then we can choose s > 3,
q ≥ 2 and (u, v) such that k > su and s − q/(2v) ≤ 0, so that J1(n) ≤ M for
n ≥ k. For J2(n), since {V n/Un > 1/ε, Un ≥ 1 − ε} ⊂ {V n − 1 > δ} where
δ = (1 − 2ε)/ε > 0, we have, from Lemma 1, for u > 1 with u−1 + v−1 = 1 and
the above s > 3,

J2(n) ≤ (1 − ε)−sns E
[(

V n

)s
I{V n/Un>1/ε, Un≥1−ε}

]
≤ M ns

{
E

(
V n

)su}1/u {
P

(
V n − 1 > δ

)}1/v

≤ M ns
{
P

(
V n − 1 > δ

)}1/v
.

By (3.7), P (V n − 1 > δ) = O(n−q/2) for q ≥ 2, so that J2(n) ≤ Mns−q/(2v)

for n ≥ k. Choosing q such that s − q/(2v) ≤ 0, we have J2(n) ≤ M for
n ≥ k. Therefore, {[(Zn − n

ε )+]3, n ≥ k} is uniformly integrable, that is, (C2)
holds. Finally, we shall show (C3). From (3.2), Tchebichev’s inequality, the
independency of Un and V n and the Marcinkiewicz-Zygmund inequality, we have,
for 0 < ε < 1,

P{ξn < −εn} = P
{(

Un − 1
) (

V n − 1
)
− V n

(
Un − 1

)2
η−3

n > ε
}

≤ P
{(

Un − 1
) (

V n − 1
)

> ε
}

≤ ε−3E|Un − 1|3E|V n − 1|3 = O(n−3),
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which implies
∑∞

n=1 n P{ξn < −εn} < ∞, so that (C3) holds.

Let

Hc = ZN − n∗ = N − n∗ − DN + QN + ξN .(3.8)

It follows from Propositions 2 and 3 of Aras and Woodroofe (1993) that as c → 0,

N

n∗
a.s.−→ 1 and

(
SN√

N
, ξN , Hc

)
d−→ (W , ξ, H)(3.9)

with ξ = ζ2
1 −ζ1ζ2, where ‘ a.s.−→ ’ and ‘ d−→ ’ stand for almost sure convergence and

convergence in distribution, respectively and H is a certain random variable with
ρ = E(H) which is given in (3.11). From Proposition 7 of Aras and Woodroofe
(1993),

{|ξN − Hc|2, 0 < c ≤ c0} is uniformly integrable.(3.10)

Now we are in a position to prove Theorems 1–3.

Proof of Theorem 1. Using the notation (3.6), N = inf{n ≥ k : n +
〈c, Sn〉 + ξn ≥ n∗}, where 〈 · , · 〉 denotes inner product. Let

t = inf {n ≥ 1 : n + 〈c, Sn〉 > 0} and ρ =
E{(t + 〈c, St〉)2}
2 E(t + 〈c, St〉)

.(3.11)

It follows from Theorem 1 and Proposition 3 of Aras and Woodroofe (1993),
Corollary 2.2 of Woodroofe (1982) and Lemma 4 that if k > 3, then

E(N) = n∗ + ρ − E(ξ) + o(1) = n∗ + ρ − 1 + o(1) as c → 0.

From Corollary 2.7 of Woodroofe (1982), ρ = 3
2 −

∑∞
n=1

1
nE{(n − Dn + Qn)−},

where ( · )− denotes negative part such that x− ≡ max(−x, 0), and so 0 ≤ ρ ≤ 3
2 .

Thus, the first assertion holds. We shall prove (ii). Observe that

R
(
θ̂N

)
− 4cn∗ = θ2E

(
UN/V N − 1

)2 + 2cE(N) − 4cn∗

and by Taylor’s theorem,(
UN/V N − 1

)2 =
{
UN − 1 −

(
V N − 1

)}2 (
V N

)−2

=
{
UN − 1 −

(
V N − 1

)}2
{

1 − 2
(
V N − 1

)
+ 3

(
V N − 1

)2
ϕ−4

}
,

where ϕ is a random variable lying between 1 and V N . Hence,

R
(
θ̂N

)
− 4cn∗ = θ2E

{
UN − 1 −

(
V N − 1

)}2 + 2cE(N) − 4cn∗(3.12)

− 2θ2E
[{

UN − 1 −
(
V N − 1

)}2 (
V N − 1

)]
+ 3θ2E

[{
UN − 1 −

(
V N − 1

)}2 (
V N − 1

)2
ϕ−4

]
= K1 + K2 + K3, say.
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Since from (2.1), K1 = 2c[ 1
2(n∗)2E{UN − 1− (V N − 1)}2 + E(N)− 2n∗ ], we get

from Corollary 1 of Theorem 2 of Aras and Woodroofe (1993) with b = ( 1√
2
, − 1√

2
)

and Lemma 4,

K1/(2c) = E{ξ(ζ1 − ζ2)2} − 2E(ξ) + 2 + 4 − E{U1 − 1 − (V1 − 1)}3 + o(1)

= E{ζ1(ζ1 − ζ2)3} + 4 + o(1) = 10 + o(1),

which implies

K1 = 20c + o(c) as c → 0.(3.13)

Observe from (2.1) that K3 = 3c E[ (n∗)2{(UN − 1)− (V N − 1)}2(V N − 1)2ϕ−4 ].
We shall show the uniform integrability of {(n∗)2{(UN − 1) − (V N − 1)}2 ×
(V N − 1)2ϕ−4, c ≤ c0}. Clearly,

(n∗)2
{(

UN − 1
)
−

(
V N − 1

)}2 (
V N − 1

)2
ϕ−4

= (n∗)2
(
UN − 1

)2 (
V N − 1

)2
ϕ−4

− 2(n∗)2
(
UN − 1

) (
V N − 1

)3
ϕ−4 + (n∗)2

(
V N − 1

)4
ϕ−4

= J31 − 2J32 + J33, say.

From the Hölder inequality, for a > 1,

E|J31|a = E
∣∣∣(n∗/N)4 {(n∗)−1/2DN}2{(n∗)−1/2QN}2ϕ−4

∣∣∣a
≤ {E(n∗/N)12a}1/3{E|(n∗)−1/2DN |12a}1/6

× {E|(n∗)−1/2QN |12a}1/6{E(ϕ−12a)}1/3

and by the convexity, E(ϕ−12a) ≤ 1 + E(V N )−12a. Thus, from Lemmas 1–3, if
k > 12, then {|J31|, c ≤ c0} is uniformly integrable. Similarly, we can show the
uniform integrabilities of {|J32|, c ≤ c0} and {|J33|, c ≤ c0} provided k > 12,
so that we obtain the uniform integrability of {(n∗)2{(UN − 1) − (V N − 1)}2 ×
(V N − 1)2ϕ−4, c ≤ c0}. From (3.9) and the fact that ϕ

a.s.−→ 1 as c → 0,

(n∗)2
{(

UN − 1
)
−

(
V N − 1

)}2 (
V N − 1

)2
ϕ−4 d−→ (ζ1 − ζ2)2ζ2

2 as c → 0,

which yields

K3 = 3cE
{
(ζ1 − ζ2)2ζ2

2

}
+ o(c) = 12c + o(c).(3.14)

Finally, we shall calculate K2. From (2.1),

K2 = −2c E
{
(n∗)2N−3(DN − QN )2QN

}(3.15)

= −2c E
{
(n∗)−1

(
(n∗/N)3 − 1

)
(DN − QN )2QN + (n∗)−1(DN − QN )2QN

}
= −2c E { J21 + J22 } , say.
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Observe from (3.8) that

J21 = (n∗)−1
(
(n∗/N)3 − 1

)
(DN − QN )2QN

=
(n∗)2 + n∗N + N2

n∗N3
(n∗ − N)(DN − QN )2QN

= −(n∗)2 + n∗N + N2

n∗N3
(DN − QN )3QN

+
(n∗)2 + n∗N + N2

n∗N3
(DN − QN )2QN (ξN − Hc)

= J211 + J212, say.

For a > 1, by the Hölder inequality,

E|J211|a = E

∣∣∣∣(n∗)3 + (n∗)2N + n∗N2

N3

(DN − QN )3QN

(n∗)2

∣∣∣∣
a

≤
{

E

(
(n∗)3

N3
+

(n∗)2

N2
+

n∗

N

)7a/3
}3/7 {

E

∣∣∣∣(DN − QN )3QN

(n∗)2

∣∣∣∣
7a/4

}4/7

,

so that from Lemmas 2 and 3, {|J211|, 0 < c ≤ c0} is uniformly integrable
provided k > 7. Similarly, for a > 1, s > 1, s−1 + u−1 = 1 and v > 1,
v−1 + w−1 = 1,

E|J212|a = E

∣∣∣∣(n∗)2 + n∗N + N2

N2

(DN − QN )2

n∗
(
V N − 1

)
(ξN − Hc)

∣∣∣∣
a

≤
{

E

(
(n∗)2

N2
+

n∗

N
+ 1

)2as
}1/2s {

E

∣∣∣∣(DN − QN )2

n∗

∣∣∣∣
2as

}1/2s

×
{
E|V N − 1|auv

}1/uv {E|ξN − Hc|auw}1/uw ,

whence, taking (s, u) = (11
5 , 11

6 ) and (v, w) = (23, 23
22), from Lemmas 1–3 and

(3.10), {|J212|, 0 < c ≤ c0} is uniformly integrable provided k > 8. Since from
(3.9), J21

d−→ −3(ζ1 − ζ2)3ζ2 as c → 0, we obtain

E(J21) = −3E
{
(ζ1 − ζ2)3ζ2

}
+ o(1) = 18 + o(1).(3.16)

For J22,

J22 = (n∗)−1D2
NQN − 2(n∗)−1DNQ2

N + (n∗)−1Q3
N(3.17)

= J221 − 2 J222 + J223, say.

It follows from Theorem 9 of Chow et al. (1965), Lemma 2 and (3.9) that

E(J223) = (n∗)−1 {2E(N) + 3E(NQN )}
= 2 + 3E {(N/n∗)QN} + o(1) as c → 0,
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where by Wald’s lemma and (3.8),

E {(N/n∗)QN} = E

{(
N

n∗ − 1
)

QN

}
= E

{
DN − QN − ξN + Hc

n∗ QN

}
.

From (3.10) and Lemmas 2 and 3, for a > 1, if k > 3, then

E

∣∣∣∣DN − QN − ξN + Hc

n∗ QN

∣∣∣∣
a

≤ M

[
E

∣∣∣∣(DN − QN )QN

n∗

∣∣∣∣
a

+
{

E|ξN − Hc|3a/2
}2/3

{
E

∣∣∣(n∗)−1/2QN

∣∣∣3a
}1/3

]

≤ M,

and from (3.9), (n∗)−1(DN − QN − ξN + Hc)QN
d−→ (ζ1−ζ2)ζ2 as c → 0. There-

fore,

E {(N/n∗)QN} = E{(ζ1 − ζ2)ζ2} + o(1) = −1 + o(1) as c → 0,(3.18)

which yields

E(J223) = 2 + 3{−1 + o(1)} + o(1) = −1 + o(1).(3.19)

From (3.18), as c → 0,

E(J221) = (n∗)−1E{(D2
N − N)QN} + E{(N/n∗)QN}(3.20)

= (n∗)−1E{(D2
N − N)QN} − 1 + o(1)

and we have

E{(D2
N − N)QN} =

1
2

{
E(D2

N − N + QN )2 − E(D2
N − N)2 − E(Q2

N )
}

.(3.21)

We shall give the following lemma which will be proved later on.

Lemma 5. For every c ∈ (0, c0], E{(D2
N−N)QN} = E{(Q2

N−N)DN} = 0.

It follows from (3.20) and Lemma 5, we obtain

E(J221) = −1 + o(1) as c → 0.(3.22)

By the same argument as (3.22), we have that E(J222) = 1+o(1), which, together
with (3.17), (3.19) and (3.22), yields E(J22) = −4 + o(1). Therefore, from (3.15)
and (3.16),

K2 = −2c(18 − 4) + o(c) = −28c + o(c) as c → 0,

from which, together with (3.12)–(3.14), we get R(θ̂N )− 4cn∗ = 4c+ o(c). Thus,
the proof is complete.
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Proof of Lemma 5. For Xi = (Ui − 1, Vi − 1), i = 1, 2, . . . , let Fn =
σ(X1, . . . ,Xn) for n ≥ 1 be the σ-algebra generated by X1, . . . ,Xn with F0 =
{φ, Ω}, and let xi = 2Di−1(Ui − 1) + (Ui − 1)2 − 1 for i ≥ 1 with D0 = 0. By the
same argument as (2.14) of Chow and Martinsek (1982), it follows from Lemma
2 (ii) and E(N2) < ∞ that for fixed c ∈ (0, c0],∫

{N>n}
|D2

n − n|dP = o(1) as n → ∞.

Therefore, from Lemmas 3 and 6 of Chow et al. (1965),

E
(
D2

N − N
)2 = E

(
N∑

i=1

x2
i

)
= E

{
N∑

i=1

E
(
x2

i |Fi−1

)}
(3.23)

= E

{
N∑

i=1

(
4D2

i−1 + 8Di−1 + 8
)}

.

At the notation of (20) of Chow et al. (1965), letting ur,i = E(Ui − 1)r and
Ur,n =

∑n
i=1 ur,i, since E(NU4,N ) = E(U1 − 1)4 · E(N2) < ∞, we have from

Lemma 8 of Chow et al. (1965), E(DNU3,N ) = E(
∑N

i=2 Di−1u3,i), which, together
with U3,N = 2N , u3,i = 2 and D0 = 0, implies E(NDN ) = E(

∑N
i=1 Di−1).

Hence, from (3.23), we have

E
(
D2

N − N
)2 = 4E

(
N∑

i=1

D2
i−1

)
+ 8E(NDN ) + 8E(N),

which is finite because from Theorems 2, 7 and Lemma 9 of Chow et al. (1965),

E|NDN | ≤
{
E

(
N2

)}1/2 {
E

(
D2

N

)}1/2
< ∞ and

E

(
N∑

i=1

D2
i−1

)
≤ E

(
N∑

i=1

D2
i

)
≤ E

(
ND2

N

)
≤

{
E

(
N2

)}1/2 {
E

(
D4

N

)}1/2
< ∞.

Similarly, we get

E
(
D2

N − N + QN

)2

= E

{
N∑

i=1

(xi + Vi − 1)2
}

= E

[
N∑

i=1

E
{
(xi + Vi − 1)2 |Fi−1

}]

= E

[
N∑

i=1

E
{
x2

i + 2xi(Vi − 1) + (Vi − 1)2 |Fi−1

}]

= E
(
D2

N − N
)2 + E(N) < ∞,

which, together with (3.21) and E(Q2
N ) = E(N), yields E{(D2

N − N)QN} = 0.
By the same argument as above, we obtain E{(Q2

N − N)DN} = 0. Thus, the
lemma holds.
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Proof of Theorem 2. From (2.1) and Taylor’s theorem,

E(θ̂N ) − θ√
c

= n∗E

{
UN − 1 −

(
V N − 1

)
V N

}(3.24)

= n∗E
{
UN − 1 −

(
V N − 1

)}
− n∗E

[{
UN − 1 −

(
V N − 1

)} (
V N − 1

)
ϕ−2

]
= J1 − J2, say,

where ϕ is a random variable lying between 1 and V N . By Wald’s lemma, (3.8)
and (3.9),

J1 = E

{
n∗ − N

N
(DN − QN )

}
= E

{−(DN − QN ) + ξN − Hc

N
(DN − QN )

}(3.25)

= −E (ζ1 − ζ2)
2 + o(1) = −2 + o(1) as c → 0

because for a > 1,

E

∣∣∣∣−(DN − QN ) + ξN − Hc

N
(DN − QN )

∣∣∣∣
a

≤ M

[
E

(
(DN − QN )2

N

)a

+ E
∣∣(ξN − Hc)

(
UN − V N

)∣∣a]

≤ M

{
E

(
n∗

N

)3a
}1/3 {

E

∣∣∣∣DN − QN

(n∗)1/2

∣∣∣∣
3a

}2/3

+ M
{

E|ξN − Hc|3a/2
}2/3 {

E|UN − V N |3a
}1/3

,

which is bounded, that is, {n∗−N
N (DN −QN ), 0 < c ≤ c0} is uniformly integrable

by Lemmas 1–3 and (3.10), provided k > 3. Since for a > 1,

E
∣∣n∗ {

UN − 1 −
(
V N − 1

)} (
V N − 1

)
ϕ−2

∣∣a
≤

{
E

(
n∗

N

)6a
}1/3 {

E

∣∣∣∣(DN − QN )QN

n∗

∣∣∣∣
3a

}1/3 {
E

(
ϕ−6a

)}1/3

and E(ϕ−6a) ≤ 1 + E(V N )−6a, it follows from Lemmas 1–3 that if k > 6, then
{n∗{UN −1− (V N −1)}(V N −1)ϕ−2, 0 < c ≤ c0} is uniformly integrable. Thus,
from (3.9) and the fact that ϕ

a.s.−→ 1 as c → 0,

J2 = E{(ζ1 − ζ2)ζ2} + o(1) = −1 + o(1),

which, together with (3.24) and (3.25), yields E(θ̂N ) − θ = −√
c + o(

√
c). The

theorem holds.
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Proof of Theorem 3. It follows from Theorems 1 and 2 that as c → 0,

R
(
θ̂∗N

)
= R

(
θ̂N

)
+ 2

√
c E

(
θ̂N − θ

)
+ c = R

(
θ̂N

)
+ 2

√
c

{
−
√

c + o
(√

c
)}

+ c

= R
(
θ̂N

)
− c + o(c) = 4cn∗ + 3c + o(c),

proving Theorem 3.
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