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SUMMARY
For the estimation of the total number of individuals in a finite

population, the capture, mark, release and recapture method and its
variants for inverse as well as sequential sampling schemes have
been extensively worked out in the literature. These are systematically
reviewed in the context of sequential (point as well as interval) estimation
of the size of a population. With special emphasis placed on appropriate
martingale constructions for suitable sequences of statistics arising in
this context, invariance principles for sequential tagging are considered,

and their role in the proposed sequential analysis is critically discussed.

1. INTRODUCTION
In estimation of animal abundance (or extinction of an endangered
species) and in various other biological, ecological or environmental
investigations, a complete census may not be operationally feasible (or
practicable), and based on suitable sampling schemes, the estimation of

the total size of a population (say, N) is of considerable importance.

In actual practice, because of migration and natural birth and death
effects, N may not remain stationary (over any period of time), so that
an estimation procedure incorporating these provisions may become more

involved. However, if the investigation is carried out in a relatively
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short interval of time, this nonstationarity can be ignored, and under a
plausible assumption of a closed population, objective sampling methods
can be effectively used to estimate N in a covenient way.

The capture, mark, release and recapture (CMRR) technique has been

quite extensively used for the estimation of the size N of a closed popula-
tion. The Petersen (1896) two sample CMRR estimator and its various mod-
ification (and extensions) are indeed very useful in a broad spectrum of
practical applications. Multi-sample, inverse as well as sequential sampling
schemes have also been considered by a host of researchers; we shall provide
a brief account of these traditional developments in Section 2.

Typically, an estimator of N based on a sample of size n, denoted
by ﬁn’ has sampling fluctuation decreasing with n, but large, for large
values of N. In many problems, N (through unknown) is a reasonably large
number, so that, to reduce the margin of error of ﬂn, at least intuitively,
one would suggest a large value of the sample size n. However, the CMRR
technique involves an operational cost (for drawing sample observations
as well as marking and releasing them), so that in choosing a suitable

sampling scheme, one needs to take into account this cost function in

conjunction with some conventional risk function (depicting the expected
level of error in the estimator). While this cost function may not

depend (sensibly) on the size of the population (but on the sample size
and the sampling design), the risk function is generally an involved
function of N and n. Since N is not known in advance, an optimal solution
(for n) may not be known a priori, and one may therefore take recourse

to sequential methods to achieve this optimality, in (at least) some
asymptotic setup. Our main interest lies in the formulation of such

sequential procedures for the estimation of the population size N.




Two basic sequential estimation problems will be considered here.
First, the sequential interval estimation problem. Typically, for a
parameter @ (in a parametric or nonparametric setup), one needs to find
out an interval In (based on a sample of size n), such that the probabiiity
that In covers 6 is equal to some prespecified 1 - o (0O<a<1) and the
width of the interval In is also bounded from above by some prefixed
number (2d , d>0). Generally, no fixed-sample size solution exists for
this problem, and the sample size is determined sequentially by using

some well-defined stopping rule. In the context of estimation of N,

‘this formulation may not be totally meaningful. Since N is a positive

integer, we need to restrict ourselves to integer values of d. For any
fixed d(>1), as N becomes large, a sequential solution may demand an
indefinitely large value of the (average) sample number, which may run
contrary to the practical considerations. In most of the cases, it may
be quite reasonable to choose d(=dN), such that the width of the interval
is bounded from above by 2Ne, for some prefixed e(0<e<1), where ¢ is

usually taken small. This may be termed a fixed percentage width (sequential)

confidence interval. We shall mainly study such intervals. Secondly,

we shall ‘consider the problem of mimimum risk point estimation of N.
Here also, the risk function depends on the cost function as well as
another function (depicting the expected level of error) involving the
unknown size N, and hence, a fixed-sample size solution generally does
not exist. Under an appropriate asymptotic setup, we shall consider
a sequential procedure and study its properties.

Following the treatment of the classical estimators of N in Section 2,

we shall discuss some general martingale characterizations relating



to estimates and estimating functions in Section 3. Section 4 deals
with the confidence interval problem, while the point estimation problem
is treated in the concluding section.
2. ESTIMATION OF N BASED ON THE CMRR TECHNIQUE

Consider first the simple two-sample model. A sample of n, units
are drawn from the population of N (unknown) units, these are marked
conveniently and released subsequently, so that they mingle freely
with the rest. A second random sample of n, observations is then drawn
from the same population, and let there be n (random) units which are
observed to be marked before (so that 0 < < "2)° Then, given N, n, and

n,, the probability function of n is given by

" N-n] N
p(n|Nsnyeny) = () )("2"‘)/("2)’ O<ren,An,. (2.1)
Therefore,
p(’Llen];nz)/p(’LIN'l sNy 9"2) = (N“n])(N'nz)/N(N'n]'nz'HL) (2.2)

A

Thus, NP’ the maximum likelihood estimator (MLE) of N, satisfies the

inequalities n]nz/n -1« Np < n]nz/a, and noting that N is a positive

integer, we may take
ﬁp= [n]nz/n] = largest integer < nyn,/x. (2.3)

This is the classical Petersen (1896) estimator of N. We may remark
L N-ny N

that for every finite N, n and Ny p(OlN,n],nz) = ( n )/("2) > 0,

so that N, = + = with a positive probability, and further, Np does not

have finite moment of any positive order. A modification of ﬂP' to

eliminate this problem, due to Chapman (1951), is the following:




N€= [(ny#1)(ny#1)/(2#1) - 1]. (2.4)

Also, another suggestion is to use inverse sampling on the second occasion,

so that units may be drawn one by one until a prespecified member (say,
m(>1)) of marked units are observed. In this setup, n,, the number of
units required to be drawn on the second occasion to yield exactly m

marked units is itself a positive integer valued random variable and

we have
N o -Tn  N-my
p(n,[N,ny,m) = (“2“) (m-1)(nz-m)("l'm“])/(N'"z”)’ (2.5)
for n, 2 m Again,
p(n, [N,ny,m) (N-ny)(N-ny) (2.6)

p(n, [N-T,ny,m) ~ N(N=n =ny+m]

so that the MLE of N, as in (2.3) is given by

"~

N = [nyny/ml (2.7)

Note, however, that m (>1) is prefixed: while n, is a random variable,
end using (2.5), it can be shown that %:< = with probability one, and
ﬂc has alfinite moment of any (finite) positive order.

The Petersen (1896) estimator has also been extended to the
multi-sample case by a host of workers [led by Schnabel (1938)]. In
this case, each sample captured (commencing from the second) is examined
for marked members and then every member of the sample is given another

mark before being released to the population. Let 5(32) be the number of

samples (of sizes s s e e Ngs respectively), and let m, be the number



of marked units found in the ith sample, Uy=n,-m., for i=2, . . . ,S.

Also, let Uy=nq, m]=0 and let NH=2 for i=1, . . . ,s+]

j<i-1 Y5
(M]=0). Then, we obtain that

( | W =TF Che (2.8)
p(myy...om_|ny,....n_,N) = s .
2 sl s je2 My itne- 1)(ni
s0 that
p(mz,...,ms|n],...,nS,N) _ s (N-Mi)(N-ni)
p(mz,...,msln],...,nS,N-T) 322 N(N-ni-Mi+mi)
S
.7 (N-M)(N-ng)  _ y-s+T gy AT (Nen ) (N-). (2.9)
RO ) s =2 12

Thus, for the MLE ﬁs’ we have

(-2, ) < =Rzt L -RTTng), (2.10)

while the opposite inequality holds when NS is replaced by Ns+]‘ For
s>2, this non-linear equation generally calls for an iterative solution.
Alternatively, at the ith stage (i=2, . . .,s), one may consider the
usual two sample Petersen estimator n;M;/m,, and combine these s-1
estimators by an weighted average. Generally, such Schumacher and
Eschmeyer type alternative estimators entails some loss of efficiency,

and detailed study of some related results is due to Sen and Sen (1981).

Sequential sampling tagging for the estimation of N has been

considered by Chapman, (1952), Goodman (1953), Darroch (1958) and

Sen (1982a,b), among others. Individuals are drawn randomly one by one
marked and released before the next drawing is made. Let Mk be the
number of marked individuals in the population just before the kth

drawal, for k>], We may write




Mepp = M + (=X ), k21 : (2.11)

where
1, if the kth drawal yields a marked individuals

X~ {0, otherwise. (2.12)

Thus, the likelihood function at the nth stage (n>2), is given by

n Xk ]-Xk -]
L,(N) ='II% M. (N-M) NY, (2.13)

so that, we have
n

_ “1un-1 07X,
L /- = (-hY T (e (2.14)
and the MLE Nn satisfies the condition that
n 1-X R
: -1 k _n-Tyn-1
ilz {1- (Nn'Mk) } < (1 Nn ) . (2.15)

While the above treatment holds for non-stochastic n, in the context of
the two sequential estimation problems (referred to in Section 1), we
would have generally a stochastic n (assuming positive integer values),
for which study of the properties of the MLE would require knowledge on
the natuhe of the stopping rules as well as some deeper asymptotic
results on the sequence {Ln(N),nzl}. Some of these were studied in
Sen (1982 a,b) and we shall find it convenient to extend these results
further in the current investigation. Towards this study, we consider
first (in Section 3) some asymptotic results on the CMRR estimators,
which will be needed in the sequel.
3. CMRR ESTIMATES: ASYMPTOTIC THEORY
We consider first the Petersen estimator. Assume that N is large

and for some positive a, 8,



ny/N =+ a and no/N + 8 ! O<a, B< 1. (3.1)
Then, using the normal approximation to the hypergeometric law along with
the Slutzky theorem, we obtain from (2.3) that as N increases

N2 (lp=N) = N (0, (1-a)(1-8)/a8). (3.2)

-~

The same asymptotic distribution pertains to the estimator N in (2.7) when
we let M"Nap (so that the expected value of n, will be close to NB and
comparable to (3.1)). For the multi-sample CMRR estimator in (2.9)-(2.10),

we allow N to be large, subject to

/N » a; (0<a;<1), for i = T, . . . ,S. (3.3)
Also, we let

B; = (l-al) . e (1-a1) , fori=1, .. ., s. (3.4)

Then, proceeding as in Sen and Sen (1981), we obtain that for large values

of N, under (3.3)

N2 (-N) - N(0,0,2), (3.5)

where
o= 25, 87 (-8 )3 (3.6)
Note that og = (a2821(]-81))-] = (1-a])(1-a2)/a]a2 and this agrees with

2

s with og (for s>2), first, we consider

(3.2) if we let B=a,. To compare ¢

the case of s=3. Let us write then
a1=a, a2+a3=8 s n2+n3=n'2 . (3.7)

Thus, we need to compare (3.2) with (3.6), under (3.7)(which relates to

the equality of the total sample sizes n]+né and n]+.n2+n3 for the two




and three sample models). It is then easy to verify that

a2851(1-81)+a383](]-82) > ay(aytag)/(1-a7) (1-0p-a5),  (3.8)

for all 0<a], @ys Qg < ] (a2+a3 < 1), so that °§.Z.°§- A similar

case hold when a=a,+a, and B=a By induction, the proof can easily be

3
extended to any s>2. This shows that the multi-sample estimators

ﬁs have smaller (asymptotic) variances than the classical Petersen
estimator (based on comparable total sample sizes). Further, looking
at (3.2), we observed that (1-a)(1-8)/aB is a mimimum (for a given
a+8=Y>0) when a=g=Y/2. Thus, for the two-sample model, ideally, the
two samples sizes n, and n, should be close to each other (if not,
equal). For some related (asymptotic) variance inequalities in the
multi-sample case, we may refer to Sen and Sen (1981).

Let us consider next the case of sequential tagging. Note that

[viz., Sen (1982b)] for every k>1,

M = E(M,) = MI-(1-N Ky, (3.9)

Further, if we let n=Na, >0 (here a need not be less than 1, although,

in practice, o« is small compared to 1), then

1

NM 1-e™®, in probability, as n+e, (3.10)

Proceeding as in Sen (1982b), we observe that as N increases,
-;ﬁ ‘N - o -1
N ‘Nn'N) N(0,(e%*-a-1)""). (3.11)

Thus, if we let n=ny+n, ~ N(a] +a2) i.e., a=aq+a,, and compare

Ug with (e%-0-1)"1, we have the asymptotic relative efficiency (ARE)
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of the estimator ﬁn with respect to the Petersen estimator:

(1-07)(1-a,) arta
o3 (%-a-1) = —— P (e % g ma,1) (3.12)

®1%2

and, for a given a(=a]+a2), (3.12) is a minimum for a]=a2=a/2. and this

minimum value is given by

(2-a)2a"2(e%-a-1). (3.13)

As a + 0, (3.13) converges to 2. Further, for all a < 0.793, (3.13) is
greater than 1, but as a goes beyond 0.793 (up to the upper bound 2),
the ARE in (3.13) remains less than 1 and converges to 0 as a + 2.

This clearly exhibits the superiority of sequential CMRR to the
conventional two-sample CMRR, when a is less than 0.793 (i.e., each

sample size ny=n, < 0.395N). In actual practice, generally n1/N and

n2/N are both small, and hence, whenever practicable, the sequential
tagging seems to be more efficient than the classical CMRR scheme. On
the other hand, operationally, the sequential tagging may be less
adaptable (because of trap-shyness or other factors), and the
consequences of such effects should be given due consideration in -
choosing‘a sequential tagging model over a conventional CMRR model.

In (3.11), we have considered the case where the sample size n
is a non-stochastic and n/N -+ o for some a > 0. For both the sequential
estimation problems (to be studied in Sections 4 and 5), we have a well-

defined stopping rule which yields a stochastic sample size n

(assuming non-negative integer values). To cover this more general
situation, we need some deeper asymptotic results (mostly, studied

in Sen (1982a,b)), and to incorporate them in our main (sequential) analysis. .
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. The probability law in (2.13) may also be conveniently described
in terms of a simple urn model. Suppose that in an urn there are N balls,
all white, were N is not known. We repeatedly draw a ball at random,
observe its color and replace it by a black ball, so that before each
draw, there are N balls in the urn. Llet Nn be the number of white balls
observed in the first n draws, ny1. Note that W <n for every n>1 and

w]=1. Also, W_ is nondecreasing in n (3]). We may then define the Mk

n
as in (2.11)-(2.12), and note that

W for every k>1. (3.13)

K = M1
Also, note that for every k (31), k-wk refers to the number of trials
(in the first k draws) in which a black ball appeared in the draw. The
sequential tagging scheme can be equivalently described in terms of the
sequence {wk, k>1}. Indeed, in the context of sequential estimation

of N, Samuel (1968) considered the stopping variable
tc= inf {n: n:(c+1)wn}
= inf {n: (n-W )/W >c}, c>0, (3.15)

where tc-can take on only the values [k(c+1)], k=1,2, . . . , and

W, =m whenever tc=[m(c+l)], m>1. Here [s] denotes the largest integer

t
c
<s. Then, for every N (>1) and k(O<k<=), we may consider a stochastic process
: Zn= {Zn(t), O<t<k} (3.16)
where .
2,(t) = N7 /200 o - N(--8- DDy ¢ crookd. (3.17)

[Note that (3.15) and (3.9) provide the appropriate centering sequence
in (3.17)]. Then Zn~belongs to the D[0,k] space, endowed with the
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Skorokhod J,-topology. Also, let Z={Z(t), te[0,k]} be a Gaussian function .

(belonging to the C[0,k]space) with zero drift and covariance function

EZ(s)Z(t) = e"t{1-(1+s)e”S}, for O<s<t<k. (3.18)

Then, through a suitable martingale construction, the following result
was established in Sen (1982a):

For every k:0<k<=, as No=,

Z, 9 Z, in the J]-tOpology on D[0,k]. (3.19)

Next, we may recall that (1-(1-n'1)") - ]-e'n/N, so that for
N[Nt] in (3.17), the centering constant may also be taken as N(]-e't).
For the asymptotic behavior of tC in (3.16), we consider a sub-interval
I* = [a,b] of [0,1], where O<a<b<l. For every mel*, define t. by the

solution of the equation

-t

m= (1-e )/tm, mel* (3.20)
Note that mt_ <1, ¥ me[0,1]; t]=0 and as m moves from 1 to O, t monotonically
goes to + ». Then for every N( >1), we consider a stochastic process
UN = {UN(m), meI*} by letting

- 1

Ty = ANF 213, Uy(m)=NT /200, Nt 3, mel*, (3.21)
Also, let U = {U(m), meI*} be a Gaussian function with zero drift and
covariance function

EU(m)U(m') = e’tm{1+(1+tm.)e'tm'}/{(m-e'tm)(m'-e'tm')}, (3.22)

for m<m‘. Then, the following invariance principle has been established

in Sen (1982a).
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For every 0O<a<b<l, as N increases

Uyp U in the J]-topology on D[a,b]. (3.
Let us now go back to (2.13) and note that for every n>1,
1
2 (n) = N/2(a/8M) Tog L (W)
1
= N /2i22(1-xk)/(N-Mk)-(n-1)/N}; (3.
282)(n) = -N(2Z/3W%) og L (N)
= N3 (1-xk)/(N-Mk)2 - (n-T)/N. (3.
k=2
We also define
Z%(n) = 2" (N-M)71 - (n-1)/N, n > 2. (3.
n - k -
k=2
Then, it follows from Sen (1982b) that for every a:0<a<k<=,
P
/N e = | ZA(N) - (e®-a-1)| > 0, as Now, (3.

Further, if we consider a stochastic process VNn = {VNn(t). te [0,1]}

by letting
Va(t) = 2800 0 /azany/2; (3.
n(t) = man {k: Z,(N) < t ZA(N)3, te [0,11, (3.
then for every ae(0,k), n/N+a, ensures that
Vyn = Vs in the t]-topology on D[0,1], (3.

D
where Vis a standard Wiener process on [0,1]. The proof of (3.30) is
again based on suitable martingale constructions. It was actually

shown in Sen (1982b) that for every N(>1), {Zél)(N), k>1} and

23)

24)

25)

26)

27)

28)

29)

30)
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{Zéz)(N) > Zi (N), k>1} are both (zero mean) martingales, and this basic
result paved the way for a simple proof of (3.30). Actually, it was

shown there that for every e>0, whenever n/N»>a:0<a<k(<=),

oA p
e | V5 em) - 2800 7 2B < o, (3.31)

so that defining n(t) as in (3.29) and letting

-l
V* 2

Nn(t) =N

(Ry(g)-M (3-a1)2), ectal, (3.32)

V;n = {Van(t), e<t<1} and V: = (V7(t) = V(t)/t, ect<l), we arrive at the
following:

For every e>0, whenever n/N+a:0<a<k(<=),

*e

an

> v:, in the J,-topology on D[e,1]. (3.33)
D
A direct corollary to (3.33) is the following:

If {vn} is any sequence of positive integer valued random variables,

such that as n increases, n'] v, * 1, in probability, then whenever
n/N + a(0<a<k<=)
NTHRS - N) N0, (e%-a -1)7). (3.34)

n
In the development sketched above, we have tacitly assumed that
n/N>o for some a>0. As we shall see in the next two sections, this
condition may not hold for the sequential problems under considerations.
What we would have more generally is that as N increases n(an)»+A+ ®
but N-]"N may converge to 0. The martingale characterization based
proof, considered in Sen (1982b), remains intact under this condition

too, and parallel to (3.34), we have the following result (whose

proof is omitted):
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If {vn} is any sequence of positive integer valued random

variables, such that n~! v P 3, as m=, and n{= ny? is such that
1

N']na-*w as we (but N n, may not converge to a positive number) -
then in the limiting degenerate case: N‘]nN—a 0,
N5 (TR 1) - N(0,2) (3.35)

n
In passing, we may also remark that for the Petersen two-sample

estimator, whenever n =n/2 , and n(=nN)increases but N n,+> 0 as

17 "2 N

N»=, we have, paraliel to (3.2),
N2 n(N"TR-1) - N(0,4). (3.36)

Again, the proof follows by the convergence of the hypergeometric
law to a normal law (when n is large). A similar modification of the
asymptotic normality result in (3.5) for N° nﬁ + 0 follows. We shall
find these results very convenient for our (proposed) sequential
analysis.

4. FIXED PERCENTAGE WIDTH CONFIDENCE INTERVAL FOR N

As has been discussed in Section 1, our goal is to construct a
confidence interval In’ based on n units drawn from a population of
size N, guch that for some predetermined 1-o (the confidence

coefficient, O<a<1) and d(>0),
(i) P{NeI } > 1 - @, (4.1)
(ii) The width of Irl < 2dN., (4.2)

We are naturally tempted to use suitable estimates of N to provide such
a solution to (4.1)-(4.2). For some solutions to this problem, we may

refer to Darling and Robbins (1967) and Samuel (1968). We shall be
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mainly concerned here with the asymptotic case, where d is chosen
small, and in this case, the results in the preceding sections can
be incorporated with advantage to provide simpler solutions.

If we are able to use the asymptotic normality (of the standardized
form) of an estimator N of N, then thg solution for n can be derived in
terms of d and the asymptotic variance function. However, such an
asymptotic variance function, generally, depends on the unknown N, and
hence, no fixed smaple size solution may exist for all N. For this
reason, we take recourse to plausible sequential procedures which
provide such a solution, at least, in the asymptotic case where di0,
and possess some other desirable properties too. To motivate such a
sequential procedure, first, we consider an asymptotically optimal
fixed-sample size procedure, where the sample size nd(=ndN) depends

on N as well.
For every d(>0), we may consider a d'(>0), such that
2d = (1-d')"1 = (1+d*)77, (4.3)

Then, we .define Ny by letting

Nng=infln>2:n 3_(2N)!‘.(d')'11a/2 }, d >0 (4.4)
where Tu/z js the upper 50 o« °/. point of the standard normal
distribution. Note that N4 in (4.4) depends on N as well. Note that
be (3.35), for large N, P{ N—’fndln“ﬁnd 1 Tt *1 -, s0
that P{|N']ﬂnd-115/5 ra/z‘/ﬁynd (<d")} + 1-a, and hence,
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In, ® [ﬂnd(1+d')“, ﬁnd(l-d')"] (4.5)

provides a confidence interval for which (4.1) and (4.2) hold, at least,
for d+0. Since g depends on d as well as the unknown N, we may estimate
Ny in a sequential setup where we use the sequential tagging scheme along
with the Chow and Robbins (1965) general approach. The necessary
adjustments can easily be based on the results in Section 3.

Let {ﬁn, n>2} be the sequence of estimators of N, based on the
sequential tagging scheme in Section 2. Keeping (4.4) in mind, define

a stopping variable {vd;d>0} by letting

A

vq = inf{ngnO:N;'%-d'n >/, Ta/z}’ d>0, (4.6)

where d' is defined by (4.3) and ng is a suitable positive integer
(>2). Based on this stopping variable, the proposed (sequential)

confidence interval for N is
I = [(1+d') R (1-d) TR g (4.7)
Vd V4 ’ V4 * *

Thus, the width of the interval I s equal to 2dN =(2dN)(N']ﬂ )s
Vd Vd Vd
so that for (4.2) to hold for small d(>0), we need to show that

NI, 1, in probability, as dv0. (4.8)
d
Further, if we are able to show that

va/Ng > 1, in probability, as d+0, (4.9)

then, by an appeal to (3.35), we are able to claim that (4.1) holds
for dv0. Verification of (4.8) is also facilitated by (4.9) and (3.35).
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Thus, (4.9) is the key to our solutions to (4.1) and (4.2). To establish
(4.9), we need to strengthen some of the asymptotic results in Sen
(1982a,b), and these are considered first.

Note that M <k-1, for every k>1, so that by (3.26), for every n>2
0§Z;(N)§ z§=2(N-k+1)'] - (n-1)/N
~ log (N-1) - log (N-n+1) - (n-1)/N (4.10)
~ %(n/N)Z, whenever n/N is small.

Further, if we let n®.eN for some e>0, then proceeding as in Sen (1982b),

we have

12, (V) - 1/,(n%/N)3 = op((n°/N)2). (4.11)
Therefore, for every k:2§k5n° and n (O<n<1/2);

2y /z, YT < (km®)E (10(1)), (4.12)
with a probability converging to 1, as N»=. Next, by virtue of the

martingale property of {Zé1)(N);k31}, we may extend Theorem 3.2 of

Sen (1982b) wherein the Skorokhod J,-topology may be strengthened to

1
the dq-metric defined by

‘ dq(x,y) = sup{|x(t)-y(t)|/q(t):0<t<1} (4.13)
where q={q(t),te[0,1]} may be taken as
1. -
q(t) =t? ™, for some n>0; t>0; (4.14)

See Theorem 2.4.8 of Sen (1981) in this respect. This yields that for

every (fixed >0, n°~eN,
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b 12 o010 = 0,z () /2)
0y (n°/N), (4.15)

so that with probability approaching to unity(as No=),
1Z0m] < v (021 K1), v < e, (4.16)

where C(<») is a suitable constant. In a similar manner, Theorem 3.3 of

Sen (1982b) can also be extended under the dq-metric and this yields that

ken? o7k 120 zB ) - Zy (N3] = 0 (noN~2). (4.17)

We use these results to derive some (crude ) a.s. lower bounds

for the ﬁn which will be needed, in turn, for the verification of (4.9).

For this, we consider the following estimating'function:

1 - I3 3 -
WNn(L) =N /zzkfn{(1-Xk)L(L-Mk) 113, n>2, L positive integer.

4.18
Note that wnN(L) is yin L (where L:Mn) and wNn(L)=0 provides the ( )
MLE ﬂn. Side by side, we let
WialL) = (L) N2 M (LM 02, Lot (4.19)
Then, it is easy to verify that for every N and L,
| {WNn(L)-w;n(L);n32} is a zero-mean martingale. (4.20)

Using the Héjek-Rényi-Chow inequality (for submartingales), we obtain
that for every n>0 (and n°~Ne), there exists a finite positive c(n),

such that

-1- *
p(m™! nIWNm(L)-WNm(L)Iﬂ, for some m:n<m<n°}

< c(n)n'zn, where () does not depend on n. (4.21)
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Also, note that for every k>2, Mk(L-Mk)'] = L(L-Mk)'] -1 = (I-L']Mk)']-l,
where M, <k-1, with probability 1. Hence, proceeding as in Sen (1982a,b),

it can be shown that for L<N

We (L) = 1,0-LMN 72078, v < e, (4.22)

with a probability converging to 1 as N»=. Further, note that wNn(L)
1 -
s E 0 according as Nn % L. Hence, on letting L =N /2p1-" or p°
- 1
according as ni-n is less than n%/N /2 gp not, we obtain from (4.21)

and (4.22) that

~ 1l -
2N >{N 201=Myp n°, for every m: n<m<n®, (4.23)

with probability converging to 1, as no.
Now, looking at (4.6), we note that Vo1 o/ /d'+= as d+0. So using
(4.23), we conclude that in (4.6), we may replace n, by N Yy (a.s.

for d+0), and this immediately leads us to

vy 2 (ralz(d')'])N(3'")/8 a.s., as di0 (4.24)

At this stage, we note that for.(4.1)-(4.2), we consider an asymptotic setup
where N is large and d(or d') is small. To combine these two features into
a single one, we let for an arbitrarily small vy (>0),

d=d, =N, (4.25)
so that we may take the 1imit N+=, treating y as an (unknown) constant. We
shall restrict ourselves to y € (0, % ), as fory > %, vq 2 n° a.s., as d+0
so that the results would follow more easily from Sen (1982a,b). Then, in

(4.23), on choosing n~N”+(3'")/8 along with (4.26) and (4.25), we obtain that

. 2
vd 2(21a/2)N7/16+?Y/2'nV“*“ li6a.s., as d+0.. (4.26)
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In the next step, in (4.23), we choose n*N.i/“‘*'s\Yt/z"“/‘*";‘”:z/16 and

and reiterate the process, leading to a sharper bound for 7 where

in (4.26), we may replace the exponent of N by 15/5,47Y/4-n/g+n?/1¢
-n(7/32+3Y/5-n/4*n2/1¢). Depending on the choice of n(>0) and y(>0),
this chain can be repeated a (finite) number of times, until in (4.23),

we have Nm > n° (a.s.), and this leads us to
1
vg 2 Yaer,, N2 Y a.s., as dv0. (4.27)
Note that by (4.4) and (4.25),
1
ng ~ Yzt N 2 Y, as dvo (o). (4.28)

Next, we agaan appeal to (4.21)-4.22), where we choose L=N(1-¢),

e>0and n ~ v N 27, This leads us to that with probability -1
1

Nm > (1-¢)N, for every m:ven2 *Y <m<n°. (4.29)
[Note that this choice of L is different from that in (4.23), but is
consistent with the sysggm in (4.21)-(4.22).] Similarly, letting

L = N(1+¢) and n ~ ven 2*Y, €50, we have by (4.21)-(4.22),
- 1
N < (14¢)N, for every m:veN 2 oo < n°. (4.30)

For m>n®, we use (3.31)(with a>1). and obtain that

max RN = Op(N'I/Z) 20, as Mo, (4.31)

n°<n<na
Thus, using (4.6), (4.29), (4.30) and (4.31), we claim that (for y< | )

va/Ng < 14€ a.s. as d+0, (4.32)
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and further,

max R p .
eng<n<(1+e)ny [N /N-1]+ 0, as dv0. (4.33)
Then (4.27), (4.32) and (4.33) ensure (4.8). Further, note that by
definition in (4.6),

-1a
2 (4.38)

RN

va/ng 2 (VTR )/25 (o) /mg < (N

As such, (4.27), (4.32), (4.33) and (4.36) ensure that (4.9) holds. This

completes the proof of (4.1)-(4.2). Note that in this context, the choice
of n in (4.21) and y in (4.25) are quite arbitrary. In the literature,

(4.1) is termed the asymptotic consistency and (4.9) as the asymptotic

efficiency, although, for the later, usually one uses the stronger form

that Evd/nd + 1 as dv0. The later result can also be deduced by more
elaborate analysis, but we shall not do it. For the statistical inter-
pretations, (4.1), (4.2) and (4.9) suffices.
5. ASYMPTOTICALLY OPTIMAL POINT ESTIMATION OF N.
As explained in Section 1, we want to estimate N incorporating a
cost-function as well as a risk-function in this formulation. Towérds

this, we consider the simple cost function

c(n) = Cg * €Ny n>2, c0>0, c>0, (5.1)

where o denotes the overall management cost and ¢ is the cost per unit
sample (for capture, mark and release operations). Also, for the risk

functions we consider the coefficient of variation measure of the loss

functions (this is comparable to the percent width problem treated in

Section 4.) Thus, the compound risk function of an estimator N: (of N)
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based on n units is

N‘Zl—:(N:.N)2 + Co + CN» n>2. (5.2)

Our goal is to choose n in such a way that (5.2) is a minimum. This may

be termed the minimum risk point estimation of N. Since E(N:-N)Z/N2

depends on the the unknown N, an optimal n in this respect also depends
on N. As such, we may again take recourse to a sequential scheme to
achieve such an optimal solution in (at least) an asymptotic setup
where N is large and ¢ is small. In this context, we may not have a
finite second moment [See for example, (2.3)], and hence, employing

the second .moment may induce some necessary changes in the estimators,
such that they would have finite second moments to qualify for study.
These complications may easily be avoided by working with the

asymptotic distributional risk (ADR) where the second moment 1is

computed from the asymptotic distribution of a normalized version of
N:. This concept works out well for small c(>0) and has certain
advantages too [viz. Sen (1986)].

Using the results of Sections 2,3, and 4, for the MLE, the ADR

version of (5.2) for n (large but) <n®.eN is given by

2N
'n_z + Co + Cn, C>0, CO>0, (5-3)

while, for n>n°, we have the parallel expression

N'](e"/N-n/N-l)'] +cg + cn. (5.4)

Thus, if N were known (but large), an optimal n (minimizing the ADR)

is given by
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1
n, - N3 M3, 60 (5.5)

and the corresponding minimum ADR is given by

1
co * 3c2/3 N3, (5.6)

Our goal is to consider a sequential procedure, for which (5.5)-(5.6) are
attained for small values of c(>0). Keeping (5.5) in mind, we define

a stopping number by

. 1
Vc =inf {n>ny: n > (Nnc']) /3 }, ¢>0. (5.7)

Note that as in the case of vy in Section 4, Ve is Win ¢ and

11mc+0 Ve = +o a.s.. Then, our proposed sequential point estimator

of N is ﬂv , where for every n, ﬁn is defined as in Section 2. The ADR

c
of this sequential estimator is

N'2 E(N - N)2 +cC
Ve

where E stands for the expectation computed from the appropriate

o* ct Ves (5.8)

asymptotic distribution. Then, our basic goal is to show that as
c+0, (5.8) approaches (5.6), and, moreover, ve/Ne D1, as cv0. As
in Section 4, here also, to tackle simultaneously the operations of

two 1imits N+« and c+0, we let
c=cy= N7Y, for some y(>0). (5.9)
By virtue of (5.5) and (5.9), we have

ne ~ c'(]+Y)/3Y as c+0. (5.10)

In the classical minimum risk (sequential) estimation problem [See

for example, Sen and Ghosh (1981)] | ysyally» we have .~ c & >




25

which, in (5.10), leads to y = 2. However, in our case, we do not have
to restrict ourselves, to y = 2. HWe assume that

c=cy* N"Y, for some y> % . 1 (5.1i)
In that case, we have n_~ N1/3 NY/3 = N(HY)/3 =NZ* ¢ , for some &
> 0. As such, we may virtually repeat the steps in Section 4 and

conclude that
vc/nC + 1, in probability, as c+0. (5.12)

Thus, to show that (5.8) and (5.6) are convergent equivalent (for c+0),
if suffices to show that
NZEN - N2 - 2d2v-W3Y | 55 cv0. (5.13)
c
Towards this, we note that by (3.35) and (5.12), as c+0,

n N 2T - 1) < N(0,2), (5.14)
C \’c

so that the mean square computed form this asymptotic distribution

is equal to

N n;Z N F I P - D VS (5.15)

This coﬁp1etes the proof of (5.13), and hence the asymptotic (as cs0)
equivalence of (5.8) and (5.6) is established.

Looking at (5.15), we may observe thét for y<§ , (5.13) blows up
as c+0, so that the risk of the estimator ﬁ“c (or even ﬁ“c) can not
be made to converge to O when c+0. This runs contrary to the normal
phenomenon that as c+0, n_ ++= and the risk of the MLE ﬁn (or ﬁv )

c c
should converge to 0 (presumably at the rate of some positive power
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of ¢). This apparent anomaly is due to the restraint of y in (5.9),
where a very small y(<;) induces a rather slow rate of decay of ¢

(i.e., ne= o(Nlﬁ )), and for n < eN% , €50, the asymptotic distributional
results on ﬂn are not that strong to ensure a small ADR. Critically,

we need that N~ 1n2 becomes large as c+0 (so that ﬁv /N = 1, in probability),

c
- n
as otherwise the stochastic convergence of N'le (to 1) may not hold and
n
this, in turn, may distort the basic requirement that vc/nc.» 1 in
probability, as c+0. If (5.9) holds for some v < i,one possibility is to

consider a somewhat more general form of the risk function:

aE(f\\ln/N-'l)2 + <o + cn, n>1, a>0, c0>0, c>0, (5.16)

where a(=aN) js large compared to c,(=cN), in the sense that cN/aN ~NY
for some y > 2. This would then ensure that vc/nC +1, in probability,
as c+0, although the asymptotic risk (c0 + 3a(c/a)(2Y'])/3Y) still may
not converge when c/a+0 (but a 4=), as c+0. This means that in such a
_case, the asymptotic minimum risk property can be attained, but the
asymptotic risk may not be finite. This can further be modified by
using a preliminary estimator of N based on a pilot sample of size o

(which méy even be drawn sequentially, so that n. = inf {k>2: k-wkzm}

0
for some specified m(:])), and having such a rough estimate of N, to
consider an (adaptive) risk function for which the prescribed solutions
workout well. In many practical problems, a (cpyde ) estimate of N

can be obtained from previous surveys, so that such a formulation of

an adaptive risk function may be done effectively.

This work was supported by the Office of Naval Research, Contract

No. NOOO14-83-K0387.
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