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Abstract

A subset of hippocampal neurons, known as “time cells” fire sequentially for circumscribed periods of time within a delay

interval. We investigated whether medial prefrontal cortex (mPFC) also contains time cells and whether their qualitative

properties differ from those in the hippocampus and striatum. We studied the firing correlates of neurons in the rodent

mPFC during a temporal discrimination task. On each trial, the animals waited for a few seconds in the stem of a T-maze.

A subpopulation of units fired in a sequence consistently across trials for a circumscribed period during the delay interval.

These sequentially activated time cells showed temporal accuracy that decreased as time passed as measured by both the

width of their firing fields and the number of cells that fired at a particular part of the interval. The firing dynamics of the

time cells was significantly better explained with the elapse of time than with the animals’ position and velocity. The

findings observed here in the mPFC are consistent with those previously reported in the hippocampus and striatum,

suggesting that the sequentially activated time cells are not specific to these areas, but are part of a common

representational motif across regions.
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Introduction

A variety of brain regions have been implicated in interval timing

over the scale of seconds to minutes, including the striatum (see

Buhusi and Meck 2005 for a review) and medial prefrontal cortex

(mPFC) (Mangels et al. 1998; Onoe et al. 2001; Kim et al. 2009). For

instance, Kim et al. (2013) recently showed that the ensemble

state in the mPFC changed gradually during the delay period of a

temporal discrimination task. Critically, Kim et al. (2013) found

that the discriminability of the time during the delay that could

be computed from the ensemble neuronal activity decreased

with time elapsed. Decreasing accuracy with elapsing time is a

hallmark of behavioral measures of memory and timing in both

human and nonhuman animals (Lejeune and Wearden 2006;

Wearden and Lejeune 2008; Lewis and Miall 2009).

There are many potential mechanisms that could cause

a change in accuracy at the ensemble level as time elapses.

For instance, a population of neurons whose firing rate changes

monotonically as a function of the logarithm of the time during

the delay would have this property; Kim et al. (2013) reported a

population of units exhibiting this pattern of results. However,

there are other alternatives as well. For instance, several labs

have reported “time cells” in the hippocampus that fire during

circumscribed parts of a delay period (Pastalkova et al. 2008;

Gill et al. 2011; MacDonald et al. 2011; Kraus et al. 2013; Salz

et al. 2016). Also, time cells were reported in the striatum (Adler

et al. 2012; Mello et al. 2015). Different time cells fire at different

times during the interval, enabling a population of time cells to

generate a signal that could be used in interval timing. The

width of time cells’ firing fields increases with their time of

peak firing (Kraus et al. 2013; Howard et al. 2014; Mello et al.

2015; Salz et al. 2016), suggesting that the population of time

cells is less able to distinguish times later in the interval.
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Similarly, the density of time fields decreases as a function of

time (Kraus et al. 2013; Mello et al. 2015; Salz et al. 2016), having

the same consequence on the ability to distinguish times later

in the interval.

In this paper we report the results of analyses on the dataset

initially reported in Kim et al. (2013). In particular, we study the

cells that fired during circumscribed periods of time during the

delay interval to determine if the mPFC contains a significant

population of sequentially activated time cells and to deter-

mine if these cells code time in such a way that there is

decreasing temporal accuracy as a function of time within the

delay. This would suggest a connection with the hippocampal

and striatal time code and demonstrate that sequentially acti-

vated time cells are not specific to the hippocampus and

striatum.

Materials and Methods

Behavioral Tasks

As described in Kim et al. (2009) and Kim et al. (2013), 3 young

male Sprague Dawley rats performed a temporal discrimination

task on a modified T-maze (63 × 69 cm, elevated 30 cm from the

floor; 8 cm wide track with 2.7 cm walls around the track except

the central connecting bridge; see Fig. 1A). Experiments were

performed in the dark phase of 12 h light/dark cycle. The ani-

mals were required to discriminate 6 different durations of

time intervals into short or long periods to obtain water reward.

A new trial began when the animal came back from either goal

location (Fig. 1A, white circles) to the central arm via the lateral

alley and broke the central photobeam (Fig. 1A, arrow). The

beginning of a time interval was signaled by a brief auditory

tone when the animal broke the central photobeam. The end

of a time interval was signaled by lowering the central bridge

that allowed the animal to navigate to either goal location. The

animals performed 164–273 (mean± standard deviation [SD],

230 ± 20) trials per session. Six time intervals of different dura-

tions, which were spaced evenly on a logarithmic scale, were

presented in equal probability in a random order. The animal

had to navigate to one designated goal (left, n = 2 animals;

right, n = 1 animal) when a short (3018, 3310, or 3629ms) inter-

val was presented, and navigate to the opposite goal when a

long (3979, 4363, or 4784ms) interval was presented to obtain

water reward. The animals were well trained in the task by the

time unit recordings began (see Kim et al. 2009 for details). As

reported in Kim et al. (2013), the animals chose the correct tar-

get in 80% of trials. In the present study, we analyzed only the

data recorded during the delay intervals.

Unit Recording

As described in Kim et al. (2013), 12 tetrodes were chronically

implanted in the left or right mPFC (2.7mm anterior and

0.7mm lateral to bregma) and unit signals were recorded from

the dorsal anterior cingulate cortex (dACC), prelimbic cortex

(PLC), and infralimbic cortex (ILC) (Fig. 1B). Each animals’ head

position was monitored by tracking a set of light-emitting

diodes mounted on the headstage at 60 Hz. After completion of

recordings, small marking lesions were made by passing an

electrolytic current (50mA, 30 s, cathodal) through one channel

of each tetrode and recording locations were verified histologi-

cally. The anatomical location of each recorded unit was deter-

mined based on the location of a marking lesion and the

advancement history of the corresponding tetrode. The record-

ed units were localized to the dACC (1.3–2.5mm ventral to the

brain surface), PLC (2.5–3.9mm), and ILC (3.9–4.7mm). A total of

993 well-isolated single units were recorded, 791 of which were

classified as putative pyramidal cells. Of these, we eliminated

260 units with mean firing rate <1 Hz during the delay intervals.

Additionally, in order to restrict our attention to units with

spike waveforms that were stable over the recording sessions

we eliminated 10 units with a difference of >10% in amplitude

from the first to the last 5min of each session. A total of 723

units contributed to the subsequent analyses.

Classification of Time Cells

Kim et al. (2013) reported a population of units that started fir-

ing prior to the initiation of the delay and decreased their firing

as the delay proceeded and another population of units that

increased their firing monotonically during the delay interval.

Both groups of units could be responding to some event that

preceded the delay interval or they could be predicting an event

that follows the delay interval. In the present analyses, we

restricted our attention to units that both increased and

decreased the firing rate within the delay interval relative to a

baseline, as defined more precisely later in this section. Unless

otherwise stated, the analysis was done on the trials in which

the animal completed the task successfully.

In order to evaluate to what extent the firing dynamics can

be accounted for by the elapse of time we computed the max-

imum likelihood fit of the spike train given Gaussian-shaped

time fields as well as behavioral correlates: position and speed.

The fit was done on a spike train that included the activity dur-

ing the delay intervals of all the trials when the longest delay

interval (4784ms) was presented. We restricted our attention to

the longest delay intervals so that we could observe the tem-

poral dynamics for as long as possible with this task. Given the

duration of the delay intervals and the temporal resolution of

1ms for each trial we had =N 4784 data points. If a spike was

observed in a particular 1ms time bin, then the corresponding

data point was set to 1, otherwise it was set to 0.

We found the maximum likelihood of a spike train given the

model with a set of parameters Θ. The model ( ⃗ ( )|Θ)p t r t, gives

the probability of a spike at any given time point t:

Figure 1. (A) Behavioral task. Rats were tested on a figure 8-shaped maze to

choose between 2 target locations (white circles) depending on the duration of

a given time interval. A time interval began when the animal broke the central

photobeam (arrow). The connecting bridge was lowered at the end of the time

interval allowing the animal to proceed to either goal location. The bridge was

elevated again when the animal broke a photobeam (arrow) at either goal loca-

tion. Scale bar, 10 cm. (B) Recording locations (shaded regions). The diagram is a

coronal section view of the brain (2.7mm anterior to bregma). Reproduced from

Kim et al. (2013).
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( ⃗ ( )|Θ) = + + + + + + +

( )

p t r t a a T a P a S a TP a TS a PS a TPS, .

1

1 2 3 4 5 6 7 8

The model takes into account the time ( σ μ )T t; ,t t , the cur-

rent position of the animal ( ⃗ ( ) σ⃗ μ⃗ θ)P r t ; , , and speed S, as well

as their cross terms. Factors a1 to a8 determine the contribution

of each of the terms, with a1 being the constant term. The time

term ( σ μ )T t; ,t t is a Gaussian-shaped time field defined as:

( )

( σ μ ) = ( )

− −μ

σT t; , e , 2t t

t t

t

2

2 2

where μt is the temporal shift of the peak of the time field and

σt is the standard deviation of the time field. The position

term ( ⃗ ( ) σ⃗ μ⃗ θ)P r t ; , , is a Gaussian-shaped elliptical place field

defined as:

( ⃗ ( ) σ⃗ μ⃗ θ) = ( )−(α( −μ ) − β( −μ )( −μ )+γ( −μ ) )P r t ; , , e . 3x x y y2x x y y
2 2

In the above equation P is a function of ⃗ ( ) = { ( ) ( )}r t x t y t, ,

σ⃗ = {σ σ },x y and μ⃗ = {μ μ },x y . α, β, and γ are functions of θ, σ⃗, and

μ⃗ as follows: α = (θ) σ + (θ) σcos /2 sin /2x y
2 2 2 2, β = − ( θ) σ +sin 2 /4 x

2

( θ) σsin 2 /4 y
2 , and γ = (θ) σ + (θ) σsin /2 cos /2x y

2 2 2 2. x(t) and y(t) are

the spatial coordinates of the animal’s position as a function of

time, μx and μy are the spatial shifts of the peak of the place

field in the x and y direction, respectively, σx and σy are the

standard deviations of the place field, also in the x and y direc-

tion, respectively, and θ is the angle of the place field.

The mean of the time term μt was allowed to vary between

−100ms and 4884ms and the standard deviation σt varied

between 0 and 10 s. The upper bounds of the spatial parameters

were chosen such that they go well beyond the dimensions of

the waiting area. In order to obtain a probability of a spike at

any time bin we had to ensure that the values of ( ⃗ ( )|Θ)p t r t, are

bounded between 0 and 1. Therefore, the coefficients were

bounded such that ∑ ≤
=

a 1
i i1
8 . The likelihood of the fit is

defined as a product of these probabilities across all =N 4784

time bins within each trial and across M trials. We expressed

the likelihood in terms of the negative log-likelihood (nLL),

therefore instead of a product, a sum of the probabilities was

computed:

⎡
⎣

⎤
⎦( ) ( ) ( )∑ ∑= − + − − ( )

Θ

f p f parg min nLL log 1 log 1 . 4
t

t t t t
trial

To find the best fitting model, the parameter space was

iteratively searched using a combination of particle swarming

and the Quasi-Newton method. Particle swarming was per-

formed first (with the swarm size equal to 50) and its output

was used to initialize the Quasi-Newton method which was

performed second (the number of maximum function evalua-

tions was set to 10 000). The computations were implemented

in Matlab 2015b. To avoid solutions that converge to a local

minimum, the fitting procedure was repeated until the algo-

rithm did not result in better likelihood for at least 20 consecu-

tive runs.

In order to quantify whether the contribution of the terms

that contained time was significant, the maximum log-likelihood

was computed again, but this time by setting the 4 time-related

terms (a2, a5, a6, a8) to zero. So only: a1, a3, a4, a7, σ, μ and θ had to

be estimated. Since the models with and without time are

nested, the likelihood-ratio test was used to assess the probabil-

ity that adding the time terms significantly improves the fit. The

test is based on the ratio of the likelihoods of 2 different models

and expresses how many times the data are more likely under

one model than the other. For example, if the ratio of the likeli-

hoods is 20, it means that one model is 20 times more likely

than the other. Since the maximum likelihood fitting procedure

gives us goodness of fit for different models in terms of likeli-

hood, the likelihood ratio test was suitable to compare the mod-

els and assess statistical significance. To assure that a cell will

not be classified as a time cell only due to its activity in a single

trial, the analysis was done separately on even and odd trials.

For a cell to be classified as a time cell, it was required that the

likelihood-ratio test was significant ( <P 0.05) for both even and

odd trials. In order to eliminate cells with ramping or decaying

firing rate during a delay interval, μt was required to be within

the delay interval and at least one σt away from either the begin-

ning or the end of the interval. Also, to eliminate cells with

overly flat firing rate, σt was required to be at most equal to the

length of the delay interval. To ensure reproducibility, the entire

fitting procedure was done twice and exactly the same set of

cells was classified as time cells in both runs.

Results

Sequentially Activated Time Cells Exist in mPFC

We identified a subpopulation of sequentially activated cells

that fired at a consistent, circumscribed time during delay

intervals (Fig. 2). These mPFC units appear to have firing corre-

lates that resemble time cells observed in the hippocampus

(Pastalkova et al. 2008; Gill et al. 2011; MacDonald et al. 2011;

Kraus et al. 2013; Modi et al. 2014) and striatum (Adler et al.

2012; Mello et al. 2015). A total of 73/723 units were classified as

time cells.

First, we note informally that the population of time cells

decreased in its temporal accuracy as time during the interval

proceeds. Figure 4A,C shows the ensemble similarity (cosine of

the normalized firing rate vectors) of the population of time

cells between all pairs of time points during the delay period

(in Fig. 4C the firing that could be explained with position and

speed was subtracted from the overall firing rate). This finding

replicates the conclusions of Kim et al. (2013) but restricting

attention to the population of time cells. Further analyses

revealed 2 causes for the decrease in temporal accuracy. These

can be read off from Figure 4B which shows the temporal pro-

file of all 73 units classified as time cells, sorted by the peak

time of the estimated Gaussian-shaped time field (μt), Again,

similar results were obtained with only the firing that could not

be explained by position and speed (Fig. 4D).

The Width of Firing Fields Increased with the Passage of Time

The width of the central ridge in Figure 4B,D increases from the

left of the plot to the right of the plot. This suggests that units

that had elevated firing rate earlier in the delay interval tend to

have narrower time fields than the units that fire later in the

delay interval. This impression was confirmed by analyses of

the across-units relationship between the peak time (μt) and

the standard deviation (σt) of the estimated Gaussian-shaped

time fields across time cells (Fig. 3A). The correlation between

the peak time and the width was significant (Pearson’s correl-

ation 0.52, < −P 10 5). Linear regression model linking the peak

time (independent variable) and the width (dependent variable)

resulted in a significant intercept equal to 0.27 ± 0.07 (SE) with

<P 0.001 and a significant slope equal to 0.18 ± 0.04 (SE) with

< −P 10 5.

Temporal coding in the PFC Tiganj et al. | 5665
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Increase of the Width of the Time Fields with the Peak Time Was

Not an Artifact of Trial Averaging

The property of spreading time fields seen in Figure 4 could be

an averaging artifact caused by trial to trial variability. To show

that this was unlikely to be the case we found the maximum

likelihood fit for each trial independently. Prior to the fitting pro-

cedure all the parameters except μt and σt were fixed to the

values found through the fit of the entire spike train spanning all

the trials. The trial-averaged μt and σt were still significantly cor-

related (Pearson’s correlation 0.42, < −P 10 3). This suggests that

the dynamics of the spreading time fields is noticeable on a trial

level as well. The trial-averaged and global (used in the previous

analysis) μt and σt were significantly correlated (Pearson’s correl-

ation 0.80, < −P 10 16 for μt and 0.83, < −P 10 18 for σt).

Later Times Are Represented by Fewer Cells than Earlier Times

The population of cells covered the entire delay interval, but

not evenly. The number of cells with peak firing later in the

interval was smaller than the number of cells with peak firing

earlier in the interval. This can be seen from the fact that the

central ridge does not follow a straight line, as would have

been expected of a uniform distribution of peak times (μt), but

flattens as the interval proceeds. To quantify this, we examined
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Figure 2. Firing properties of several time-modulated mPFC cells during the longest delay interval and the model fits with and without the temporal terms. Top 2

rows (A–F): examples of cells classified as time cells. The model that includes time component fits the spike train significantly better than the model that includes

only position and speed. Bottom row (G–I): examples of cells that were not classified as time cells because behavioral correlates could account for the temporally

modulated firing. Adding the time component to the model did not improve the fit significantly as compared with the model that contained only position and speed,

despite the temporal modulation of the cell’s activity. Each of the 9 plots (A–I) displays activity of a single cell. On each plot, the top row shows raster plot where each

dot denotes a spike and the bottom row shows the averaged trial activity (solid line). Only trials when the animal made a correct choice are shown. The onset of

the delay interval is at zero and the end at 4.784 s. The cells (A–F) are ordered such that the estimated peak time (μt ) increases progressively from the first to the

sixth cell.
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angle between normalized firing rate population vectors. The angle is computed at all pairs of time points during the delay period. The bins along the diagonal are

necessarily one (warmest color). The similarity spreads out indicating that the representation changes more slowly later in the delay period than it does earlier in the

delay period. (B) Activity of all 73 time cells during the longest delay interval. Each row on the heatplot corresponds to a single cell and displays the firing rate (nor-
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that can be seen from examination of this plot. First, time fields later in the delay are more broad than time fields earlier in the delay. This can be seen as the widen-

ing of the central ridge as the peak moves to the right. In addition, the peak times of the time cells were not evenly distributed across the delay, with later time peri-

ods represented by fewer cells than early time periods. This can be seen in the curvature of the central ridge; a uniform distribution of time fields would manifest as

a straight line. (C,D) Same as (A) and (B) respectively, but only a part of the firing rate that was not accounted for by the behavioral correlates (position and speed) was

used. (E) Same as (B), but for all the delay intervals when the animals made a correct choice (top row) or incorrect choice (bottom row). Vertical black lines mark the

beginning (at time 0) and the end of a delay interval. Title of each heatplot contains a number of trials that the animals made in a particular condition. End of the

delay interval seems to cause an abrupt change in the firing properties among the cells that were active at the time. Apart from that, there is no apparent qualitative

difference among the 12 cases that could be attributed either to duration of the delay interval or to the correct or incorrect performance.

0

Peak time [s]

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6A B

S
ta

n
d
a
rd

 d
e
v
ia

ti
o
n
 [
s
]

Time [s]

0

0.2

0.4

0.6

0.8

1

C
D

F

data

uniform

4321 0 4321

Figure 3. Sequentially activated time cells in mPFC encode time in a gradually decreasing fashion: 1) width of the time fields increases with the peak time (plot A,

each dot represents a single time cell and the line is a least square fit linear fit without a constant term) and 2) peak times of the time fields are nonuniformly distrib-

uted along the delay interval; more cells had time fields earlier in the delay interval than later in the delay interval (plot B).
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the distribution of the peak times across time cells (Fig. 3B).

The KS test rejected the hypothesis that the distribution of the

peak times is uniform (KS test ( ) =D 73 0.63, < −P 10 12).

Comparing Time Cells in Different Subregions of the mPFC

We compared the time cells based on the subregion of the mPFC

where they were recorded. The subregions that were considered

were dACC, PLC, and ILC. The number of cells classified as time

cells in dACC was 19 out of 120, in PLC 47 out of 426 and in ILC 7

out of 187. The proportion of time cells was not significantly dif-

ferent between dACC and PLC (Fisher’s exact test >P 0.15, two-

tailed), but it was significantly smaller in ILC with respect to both

dACC (Fisher’s exact test <P 0.001, two-tailed) and PLC (Fisher’s

exact test <P 0.01, two-tailed). Distributions of μt and σt did not

significantly differ across the 3 subregions (Kruskal–Wallis test,

for μt: H = 1.86, d.f. = 2, P = 0.39; for σt: H = 2.31, d.f. = 2, P = 0.31).

The Firing Fields Share Qualitative Properties Across the Delay

Intervals of Different Duration

The animals were presented with 6 different delay intervals. In

Figure 4E, the same type of a heatplot as on Figure 4B is shown,

but for all 6 delay intervals when the animal made a correct

choice (top row) and when the animal made an incorrect choice

(bottom row). The cells are ordered in the same way as in

Figure 4B. In general, the firing dynamics appeared to be

abruptly interrupted once the end of the delay interval was sig-

naled. The firing fields appear qualitatively similar regardless of

the length of the delay interval or whether the animal made a

correct or incorrect choice. Not enough error trials were available

for a statistical comparison, especially at the extreme intervals.

mPFC Time Cells and Ramping Cells Convey Comparable Amount of

Temporal Information

We quantified how well the mPFC neuronal ensemble kept

track of time. The longest time interval (4784ms) was divided

into 10 equal-duration bins and the order of the middle 8 bins

was decoded based on neural activity within each bin using lin-

ear discriminant analysis (Kim et al. 2013). We compared the

results on different populations of cells: all 723 cells (Fig. 5A),

all 73 time cells (Fig. 5B) and 73 ramping cells (selected ran-

domly from a total of 228 cells that exhibit ramping firing rate

by the criteria used in Kim et al. 2013, Fig. 5C). The mean error

A B C

Figure 5. Time cells and ramping cells carried similar amounts of temporal information. Decoded bin number versus actual bin number. Open gray circles denote the

trial-by-trial decoding results for each bin. Filled black circles and error bars denote their means and standard error of the mean (SEM) across trials. (A) Temporal

decoding based on all 723 reported units. Mean error: 0.71 bins. (B) Temporal decoding based on all 73 time cells. Mean error: 0.74 bins. (C) Temporal decoding based

on the randomly chosen 73 ramping cells. Mean error: 0.81 bins.
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Figure 4. Continued.
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in the prediction of elapsed time was similar for all 3 popula-

tions. This suggests that populations of time cells and ramping

cells can convey roughly the same amount of information

about the elapse of time.

Discussion

This study shows that mPFC contains sequentially activated

time cells, similar to those previously reported in the hippo-

campus and striatum. As evaluated through ML fit, the findings

were not attributable to confounds with position nor speed dur-

ing the delay. The time fields of these units spanned the entire

5-s delay interval, but with temporal accuracy that decreased

as time elapsed. The width of the time fields increased with

temporal distance from the onset of the delay period and the

distribution of the firing rate peaks strongly deviated from the

uniform such that more units represented time periods early in

the delay than later in the delay. These findings were not a

result of a trial averaging artifact; rather the relationship

between width and time was observed within single trials.

A Common Representational Motif for Time in the

mPFC, Hippocampus, and Striatum

Our findings add to a literature on temporally modulated firing.

Over longer scales, extensive evidence shows that the pattern

of firing changes gradually over long periods of time in the

hippocampus (Manns et al. 2007; Mankin et al. 2012, 2015) and

mPFC (Hyman et al. 2012). This paper reports that mPFC con-

tained sequentially activated time cells with decreasing tem-

poral accuracy over shorter time scale. Several previous studies

have found cells that fire for circumscribed periods of time dur-

ing delay intervals in the hippocampus (Pastalkova et al. 2008;

Gill et al. 2011; MacDonald et al. 2011; Naya and Suzuki 2011;

Kraus et al. 2013; MacDonald et al. 2013; Modi et al. 2014; Salz

et al. 2016) and the striatum (Adler et al. 2012; Mello et al. 2015).

Many of these studies have observed decreasing temporal

accuracy as a function of delay, due to spread in time field

width (Adler et al. 2012; Kraus et al. 2013; Howard et al. 2014;

Mello et al. 2015; Salz et al. 2016) and/or due to a nonuniform

distribution of time field locations (Kraus et al. 2013; Mello et al.

2015; Salz et al. 2016). Despite differences in the procedures of

the experiments, including variations in the behavioral task,

the species, and the recording techniques, these remarkably

consistent qualitative properties suggest a common motif for

representation of time across these regions. In particular, reso-

lution for the time of past events decreases with the passage of

time. Notably, decreasing temporal resolution with the passage

of time is a hallmark of behavioral findings from both timing

tasks (Gibbon 1977; Wearden and Lejeune 2008; Lewis and Miall

2009) and a wide range of memory tasks across species

(Gallistel and Gibbon 2000; Howard et al. 2015).

In addition to its hypothesized role in timing, the mPFC is

known for its role in cognitive control (see for instance Miller

and Cohen 2001) and working memory (see for instance

Goldman-Rakic 1991, Miller et al. 1996, Euston et al. 2012). Time

cells could be important in supporting these roles of the mPFC.

If time cells were stimulus specific, they could maintain a

dynamical representation of working memory in the form of a

neural timeline, allowing construction of temporally structured

associations (Howard et al. 2014). Such timeline would enable a

direct readout of what happened when in the recent past, and

potentially plays an important role in cognitive control. In par-

ticular, temporal associations across the stimulus space could

be useful for learning rules that depend on the temporal spa-

cing of the stimuli which could be used to exert causal control.

The existing empirical evidence supports the hypothesis that

the same population of neurons might be carrying information

about both the elapsed time and stimulus identity (Romo et al.

1999; Matell et al. 2005). This has motivated the development of

dynamical neural models that can account for this type of

memory (Miller et al. 2003; Singh and Eliasmith 2006; Machens

et al. 2010). In the present study, we could not test the stimulus

specificity since the delay intervals always started with the

same stimulus, thus finding empirical evidence for stimulus-

specific time cells remains a challenge for future studies.

Mechanisms that Could Generate Time Cells

Time of the peak firing rate of the time cells typically exceeds the

time constants of ion channels and neural processes, such as cal-

cium clearance, which are both in general below 1 s. Several stud-

ies have proposed that neural firing with long time constants

could be a result of feedback mechanisms at the single neuron

level (Shouval and Gavornik 2011; Tiganj et al. 2015). For instance,

one action potential could trigger the next through neuron-level

processes that occur during action potential generation, such as

calcium influx. Network-based mechanisms that can result in

long time constants were also proposed (e.g., Bernacchia et al.

2011; Gavornik and Shouval 2011; Simen et al. 2011; Brody et al.

2003; Major and Tank 2004). Gradually changing firing rates with

long time constants can be converted into time fields through a

mechanism that resembles lateral inhibition (Howard et al. 2014).

The mechanism would require 2 layer feed-forward network to

construct time cells, which are not mutually connected. Alterna-

tively, sequential activation (Jensen and Lisman 1996; Tieu et al.

1999; Hasselmo 2009; Itskov et al. 2011) could as well give rise to

time cells. Spectral timing could also give rise to time cells (Gross-

berg and Schmajuk 1989; Grossberg and Merrill 1992). In general,

proposed mechanisms should account for the qualitative proper-

ties observed here and in other studies: nonuniform distribution

of the times of the peak firing rate and spread of the firing fields.

Relevance of Time Cells in Extracting Temporal

Information

Time cells provide direct readout of the elapsed time, without

the need for a decoding mechanism as in the case of other tem-

porally modulated firing. An analogy for this type of coding

could be found in the well known place code. Spatial position

could be encoded through the firing rate of only 2 cells (if the

firing rate would be proportional to the x and y position).

However, place fields seem to cover the entire space providing

a direct readout, such that spatial information is encoded

through the identity of cells that are active at a given time.

Similarly, time cells may provide information about the elapsed

time through the identity of the currently active cells, rather

than through a scalar value of the firing rate. This in turn can

account for building temporal associations across the stimulus

space as illustrated in Howard et al. (2014). Time cells and

ramping cells convey comparable amounts of temporal infor-

mation. It might be that the 2 populations encode the temporal

information for different purposes. For instance, the purpose of

time cells could be to construct a dynamical memory represen-

tation of what happened when, while ramping cells could play

a role in decision making (Simen et al. 2011). Alternatively, a

population of ramping cells with a spectrum of time constants

Temporal coding in the PFC Tiganj et al. | 5669

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/c
e
rc

o
r/a

rtic
le

/2
7
/1

2
/5

6
6
3
/2

5
5
7
3
3
9
 b

y
 g

u
e
s
t o

n
 2

0
 A

u
g
u
s
t 2

0
2
2



might be needed for the emergence of sequentially activated

time cells (Howard et al. 2014).

Concluding Remarks

Previous work has shown that neural ensembles in the rodent

mPFC code time with decreasing temporal accuracy (Kim et al.

2013). This paper extends these findings and reports that a sub-

population of units in the mPFC fired like sequentially activated

time cells, firing for circumscribed periods of time during the

delay of an interval discrimination task. These time cells exhib-

ited decreasing temporal accuracy in 2 ways. First, time cells

that fired later in the delay interval had wider temporal recep-

tive fields than time cells that fired earlier in the delay. Second,

the distribution of time fields was not uniform. More cells had

time fields earlier in the delay period than later in the delay

period. Taken together, these findings are consistent with the

hypothesis that the mPFC is part of a system that represents

time with decreasing accuracy over a scale of seconds.
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