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S E Q U E N T I A L  F U Z Z Y  SYSTEM IDENTIFICATION 

Brian R. GAINES 

Man-Machine Systems Laboratory, University of Essex, Colchester, U.K. 

The problem of deriving the structure of a non-deterministic system from its behaviour is a 

difficult one even when that behaviour is itself well-defined. When the behaviour can be 

described only in fuzzy terms structural inference may appear virtually impossible. However, a 

rigorous formulation and solution of the problem for stochastic automata has recently been 

given [1] and, in this paper, the results are extended to fuzzy stochastic automata and 
grammars. The results obtained are of interest on a number of counts. (1) They are a further 

step towards an integrated 'theory of uncertainty'; (2) They give new insights into problems of 

inductive reasoning and processes of 'precisiation'; (3) They are algorithmic and have been 

embodied in a computer program that can be applied to the modelling of sequential fuzzy data; 

(4) They demonstrate that sequential fuzzy data may be modelled naturally in terms of 

'possibility' vectors. 

Key Words: Possibility, Identification, Automata, Grammars, Modelling, Complexity, Ap- 

proximation. 

1. Introduction 

One of the system-theoretic problems that Lotfi Zadeh was studying in the 

decade before his seminal work on fuzzy systems was that of deriving the structure 
of a system from observations of its behaviour. In a 1956 paper [2] he coined the 

word identification as a generic term for ~the variety of forms of 

behaviour/structure inference problem then being studied. These varied widely, 

mainly in the forms of structure considered: from linear, continuous systems, 

through diverse weakenings of linearity and continuity, to general automata with 

no signal-space or state-space topologies or constraints. 

The next 20 years have seen the development of computer systems for on-line 

control, arid system identification has become a major area of research in its own 

fight [3] generating a continuing series of major IFAC conferences concerned 

with that topic alone. Control-theoretic interest has naturally tended to concen- 

trate on systems modelled as linear and continuous in their signal and state 

variables, and either continuous in time or uniformly sampled. However, the more 

general forms of model have also found application.,,, particularly in the study of 

biological [4-6] and human control systems [7]. 

Noam Chomsky's classic paper, Three models for the description of language 

[8], appeared in the same year as Zadeh's on identification. The link between 

automata, generative grammars, and natural languages that Chomsky proposed 

initiated a major area of research in modern linguistics, and the problem of how a 

child might acquire the grammatical structures through conversational experience 

led to Solomonoff's studies [9, 10] of inductive graramatical inference. Moore's 

classic paper, Gedanken experiments on sequential machines [ 11], that considered 
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16 Brian R. Gaines 

related problems for finite-state automata was a key stimulus in triggering off 

Zadeh's generalization of the behaviour/structure inference problem, and Sol- 

omonoff's work on inductive inference also fitted into this general framework. 

Over the next 20 years grammatical inference became a major re:~earch topic in 

its own fight [12]. The problem for finite-state automata or grammars was shown 

by Rabin and Scott [!3] to be soluble in terms of an equivalence originally defined 

by Nerode [14]. However, even in this case, the added constraint that the 

complete set of language strings is not known, but only an incomplete set of 

positive and negative instances is available, is sufficient to turn it from a deduc- 

tively decidable problem to one of inductive inference where the derived structure 

is only a hypothesis constrained by the data rather than a conclusion drawn from it. 

The problem is further compounded if the underlying structure is known to be 

probabilistic so that only a distribution over language strings is available. In these 

circumstances the inference of the structure generating the behaviour becomes a 

statistical problem with no well-defined solution. For example, the string 

A A A A B A A A  could have been generated by a Bernoulli process (1-state stochas- 

tic automaton), or by a 5-state deterministic automaton, or by some other 

stochastic automaton. The decision between these hypotheses is an inductive one 

and requires assumptions not derived from the data. These create new problems, 

e.g. Gaines [15] shows that the assumption of deterministic causality for model- 

ling data in fact from a probabilistic source does not lead to approximate models 

but in fact to meaningless ones that are just memories of the data. 

There have been developed a variety of behaviour/structure inferencing systems 

based on heuristic techniques and applied to actual data [12]. Recently Gaines 

[l ,  16, 17] gave a formulation and solution to the general system identification 

problem in terms of admissible subspaces of models ordered by complexity on tbe 

one hand, and by approximation to the observed behaviour on the other. He also 

specialized this with particular orderings appropriate to the problem of stochastic 

grammatical inference and demonstrated solutions to particular problems with 

these embodied in the computer program, ATOM. These specific results, and the 

related inferencing schemes of [18] and [19], require precise data. However, in 

real applications, e.g. animal ethology, the observations themselves may be vague 

or imprecise, and it is of interest to determine whether the inferencing techniques 

can be generalized to deal with data that are not known predsely. 

In this paper the results of [1] are generalized to fuzzy systems in which only 

the degree of membership of a string to a language is known. The nexl section 

gives a synopsis of the results for precisely given data and the section following it 

generalizes this to fuzzy data. 

2. General system identification 

Feldman [20] pointed out that the selection of the 'best' structure for a 

particular behaviour was not well-defined even in the deterministic, complete 
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sample, case. In general many structures may equally well fit the data and we 

need to define some preference relation over them in order to make the selection. 

This requirement for such a se!ection principle is a well-known one in the 

philosophy of science literature and William of Occam is generally credited with 

the principle of choosing the simplest hypothesis. For deterministic finite-state 

automata, for example, the Nerode equivalence leads to the minimal-statt: model 

of the data. For more complex structures, e.g. phrase-structure grammars, the 

preference ordering of simplicity or complexity is less obvious. Feldman notes that 

there are a number of possible orders on such grammars and, following [21], gives 

some desirable constraints on the semantics of 'complexity'. 

When non-deterministic structures are considered also there is no longer a sense 

in which the best structure must exactly fit the data. It is reasonable only to 

suppose that the structure chosen will be a good approximation to the data. 

Homing paid particular attention to the requirements for measures of approxima- 

tion in his work on grammatical inference [18], and Wharton [22] considers a 

variety of measures. The ploblem of behaviour-structure inference can now be 

seen as that of determining those models that are as good as possible in that no 

simpler, or equal!y simple, model is a better approximation to the data. Gaines [1 ] 

terms such models admissable, and formulates the identification problem in very 

general terms. 

Suppose that we have two sets: B, of possible observed behaviours, and M, of 

possible models for behaviours; together with the pointed monoid, (OrdM, ~<) of 

all pre-order relations on M, with one specified relation, <~, sing!ed out; and a 

mapping, f:B-~OrdM, from behaviours to orders on models. The quadruple, (B, 

M, ~,  D defines an identification space: the relation ~< is one of model complexity 

such that if m ~< n, other things being equal, we should not prefer n to m; the 

mapping f is determined by further order relations of approximation that each 

behaviour induces on the set of models. We shall write ~<h for f(b) so that if 

m<<-bn then m is not a worse approximation to the behaviour b than is n. 

Now we are in a position to define a solution to the identification problem in 

terms of the product of the two pre-order relations, ~< and <~, which we shall 

define as ~<*" 

Vm, n~M,  m<~*n~--~m<~n and m<~n 

i.e. m ~<* n if and only if m is neither more complex nor a worse approximation 

than n. The minimal elements in this order are all admissible solutions to the 

identification problem because they cannot be decreased in complexity without 

worsening approximation, and cannot be improved in approximation without 

increasing complexity. They form the admissible subspace determined by b, 

Mb c M, such that: 

M b - { m ' V n  ~M, n <~* n ~'~m-<* t, 

i.e. if any model is better than one in Mb then it is equivalent to it. Ralescu [23] 

has recently given a category-theoretic formulation of this condition. 
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2.1. Stochastic automata identification 

Gaines [1] notes that the relations defining the identification problem are 

arbitrary, and recent results on computational complexity show that they are truly 

so in the sense that the Blum complexity classes can be arbitrarily ordered under 

quite strong semantic constraints [24]. However, in specializing the general result 

to specific problems intensional constraints may be applied suggesting particular 

orders, e.g. those which Zeigler considers for automata [25]. Stochastic automata 

have a natural complexity order in terms of their number of states. Regarded as 

grammars, they have an alternative natural order in terms of the number of 

possible transitions between states (which corresponds to the number of elements 

in the associated grammar). 

There is also a range of possible measures of approximation between a given 

stochastic language and a possible stochastic automaton model. Maryanski [19] 

gives one in terms of a chi-square statistic. Gaines [1] derives a number of 

possible measures from the subjective probability eliciting schemes of Savage [26] 

and de Finetti [27]. These are part of a general family [28] whose underlying 

economic foundations Pearl has recently developed [29]. For the examples in this 

paper the logarithmic scoring rule of Savage will be used, but the others are also 

readily fuzzified. 

All of the scoring rules give a measure of the diseTepancy between the 

predictions of the automaton model and the events (i.e. words in language strings) 

that are actually observed. The logarithmic rule is that, if the word wi actually 

occurs as ewmt ej and is predicted by the model to have a probability pij then the 

loss associated with the prediction is -log2 (p~j), and the total measure of approxi- 

mation of the model to the behaviour is: 

LE = -  ~ ~ A,j log2 (P,i) 
i i 

where A~i = 1 if event ei is word wi, and is 0 otherwise. The v~due of the loss at 

each prediction is a particularly interesting way of viewing the raodel's analysis of 

the data 

q = - E  Xii log2 (Pii) 
i 

goes from 0 for a perfect prediction to infinity for a totally unexpected event 

(given probability 0)~we term it the surprise at the event. 

Given the definitions of complexity and approximation, an enumerative infer- 

encer may be designed which generates all models of lowest complexity, evaluates 

each in turn for approximation to the given behaviour, and outputs the model 

with best fit, then generates models of next higher complexity, and so on. The 

output of such an infereneer is the admissible sub-space of models in order of 

increasing complexity. The key design problem with such inferencers is to 

generate no models unnecessarily. Wharton [30] has given efficient generation 

schemes for a variety of grammars and complexity orderings. 
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ATOM, the stochastic structural inferencer described in [ 1], [ 16] and [ 17], uses 

an optimal enumeration procedure that generates models in terms of complexity 

(measured either by states or by transitions between them) in such a way that only 

possible models are generated and each is generated only once. ATOM allows a 

choice of measures of approximation including: maximum likelihood errors; 

Savage's logarithmic error defined above; Finetti's square error; Maryanski's 

chi-square; and total probability not accounted for. The measure used in this 

paper is LE as defined with an additional term to allow for the derivational 
complexity of the model: 

TLE = LE + log2 (Nc) 

where Nc is the total number of models enumerated up to and including the 

complexity class of the model concerned. If 1/Nc is regarded as the probability of 

the model itself, since 2 -LE is the conditional probability of the model generating 

the behaviour, we have that the joint probability of model and behaviour is then 

2 -rLE, so that the probability of the model given the behaviour is maximized 

when the TLE is minimized. Horning uses a similar measure but derives a 

probability for the model from a 'grammar-grammar' [18]. 

A typical result from ATOM is the derivation of a grammar for the sentences 

used by Feldman [31] and Evans [32]: 

CAAAB, BBAAB, CAAB, BBAB, CAB, BBB, CB. 

Thi:; is entered to ATOM as the sequence: 

CAAAB/BBAAB/CAAB/BBAB/CAB/BBB/CB/ 

With the word / noted to be a "delimiter" such that it returns the model to its 

initial state. The resulting plot of minimal TLE against number of elements is 

shown in Fig. 1. 

The derived 6-element grammar is: 

a ~ B / 3 I C v  / 3 ~ B v  v - ~ A v I B 8  8-- , /  

Note that even on this small sample the "best" grammar is well-defined and is an 

2.0 

/ 0  

0.0 
4 5 6 7 8 9 /0 / /  

Elemen ts 

Fig. 1. 
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"'inductive" one predicting sentences not yet obse~ed,  rather than the "deduc- 

tive" I 1-element one that produces just the actual sample. 

3. Fuzzilied general identilica~on 

The "fuzzification" [33, 34] of the formulation <ff general system identification 

given in Section 2 is fairly straightforward. Assume now that the behaviour is not 

observed precisely but is instead a "fuzzy restriction" [35] on the set of possible 

behaviours. More explicitly an observed behaviour is now a mapping, iz, from B 

to a "truth-set" V,/z : B ~ V. The truth-set is generally an ordered semiring [36], 

e.g. a lattice or the interval [0, 1] with max/min, add/multiply, or logical opera- 

tions. Goguen [37] calls a mapping such as/~ a V-set with B as carrier. 

The mapping ~ from B to V can dearly be extended in the usual way to Mb, 

the admissible ~ubspaces, and hence to the models themselves. We may write: 

/x*(m) = V (Mb(m)Ap,(b))  
13 

where Mb (m) is the characteristic function of M~ having as its value the maximum 

element in V if m s Mb and the minimum element otherwise, and v and A are the 

semigroup operations on V, e.g. min and max respectively. The mapping Iz* :M 

V defines the fuzzy admissible subspace of models induced by the fuzzy behaviour 

tt : M---~ V. 

This simple extension does not take into account the relative degrees of 

approximation of the same model to differing behaviours. In general it may not be 

possible to make such a comparison. However, if there is a uniform measure c,f 

approximation such that one can say that a model is a better approximation to 

one behaviour than to another, then the admissible subspace becomes a fuzzy 

restriction on the product of model and approximation spaces. 

3.1. Fuzzy  stochastic automata identification 

ATOM, the specific stochastic automaton identifier described in Section 2.1. 

readily extends to the case where the data is a fuzzy language. Usually such a 

language will be generated by uncertainty about specific events so that it is 

convenient to generalize the Ai~ already defined to be the degree of membership 

of the event e~ to the word wi. This generates a fuzzy restriction on the free 

semigroup of words, W*, Ix : W * ~  V, such that if x s W* 

= A (x,j ^ 
i , i  

where ~ii is max of V if the event e i can be made equal to the corresponding word 

w, in x, and min of V otherwise. 

As described above the fuzzy restriction on data sentences (behaviours) may be 

used to derive a fuzzy restriction on models by considering the admissible set for 
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each possible data sentence. This is best seen through an examplemsuppose the 

observed behaviour is: A B A B - - - B A B w h e r e  the dashes represent uncertainty 

about the event which occurred; it might have been an A or B. This sequence 

might be represented by a series of degrees of membership: 

A: 1 0 1 0 0.6 0.8 0.7 0 1 0 

B: 0 1 0 1 1 1 1 1 0 1 

a sequence of normalized fuzzy distributions [36]--complete  uncertainty about A 

or B would result in them both being assigned degrees of membership 1. 

This data generates the fuzzy language: 

0.6: A B A B A A A B A B  

0.6: A B A B A B A B A B  

0.7: A B A B B A A B  AB 

0.7: A B A B B B A B A B  

0.6: A B A B A A B B A B  

0.6: A B A B A B B B A B  

0.8: A B A B B A B B A B  

1 : A B A B B B B B A B  

ATOM  may be envisaged as generating the admissible models for each sentence 

and giving them the associated degrees of membership. However, for this problem 

the TLE measures of approximation are comparable across the sentences and the 

procedure can also discard models whose degree of membership is exceeded by 

another of better approximation. 

The results on this data are an admissible subspace of 3 probabilistic grammars: 

G !(~1,* - -  0.6, TLE = 0.300) 

et---~A/3 ( p =  1) /3---~Ba (p=  i) 

G2 (/~* = 0.7, TLE = 0.693) 

a ~ A/3 (p = 0.8) [ B/3 (p = 0.2) 

G3 ( ~ * =  1, T L E = 0 . 8 1 7 )  

ot--~ A/3 (p = 0.6) I B/3 (p = 0.4) 

/ 3 -+Ba  (p = 1) 

/3---~Bt~ (p = 1) 

There are some interesting choices open in interpreting this data. If we precisify 

our data by only accepting a unity degree of membership then we have to adopt 

G3 which ascribes the uncertainty in the data to a probabilistic source. If, 

however, we allow for imprecision in our observations by accepting a degree of 

membership 0.6 to admissible models we obtain G~ as a deterministic model of 

our data. Note that the acceptance c;f G! takes advantage of the uncertainty in the 

data to simplify the model. It may be regarded as precisiation in Carnap's sense 

[38], i.e. removing vagueness in such a way as to promote the discovery of 

universal laws. In selecting G~ we are saying: "What  you actually observed as 

elements 5 through 7 was ABA,  since this interpretation of your vague data 

enables me to tell you that there is a sunpl_, process of alternating A's  and B's". 

This procedure of generating probabiiistic models of a fuzzy language is clearly 

very di~erent from inferring fuzzy grammars [39]. We are not trying to model the 

imprecision in the (a, ta'~ but ~re using it to precisiate the data to the best 
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theoretical advantage. Such a process does seem very much akin to what is done 

in real-life research, and the fuzzy version of ATOM described brings us nearer 

an automated confirmation machine [40]. 

However, there is an alternative view that is also of interest. Consider the event 

by event predictions of the 3 models. They all agree that every second event is 

quite definitely B. However, they assign different probabilities to words at the 

intervening events, e.g. to the third event: 

GI: ~ * = 0 . 6  PA = 1 PB=0 

G2: tL* = 0.7 PA = 0.8 PB = 0.2 

G3: /x* = 1 PA = 0.6 Pa = 0.4 

Following Zadeh [41] we may describe this event as giving a possibility vector to: 

A of (1/0.6, 0.8/0.7, 0.6/1) and to 

B of (0/0.6, 0.2/0.7, 0.4/1) 

which might have linguistic approximations: A is very likely and B is rather 
unlikely. Thus/abe fuzzy ATOM procedure may be regarded as deriving possibilis- 
tic models of fuzzy sequential systems. 

Thus the modelling schema described in this paper is itself neutral in that the 

models derived may be further restricted by criteria of precisiation, or may be 

interpreted without such restriction in possibilistic, and hence fuzzy linguistic, 

terms. In terms of the data itself no resolution between these views is possible-- 

they represent legitimate, related, but essentially differing, views of the world. 

4. Conclusions 

This note is intended as a further step towards a unified theory of uncertainty 

for general systems. It demonstrates that Zadeh's theory of possibilistic systems, 

combining probability and fuzziness, may be developed operationally through 

computational algorithms for fuzzy sequential system identification. The model- 

ling technique also throws light on the role of precisiation in scientific inductive 

inference. 
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