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SUMMARY

The evaluation of vaccine safety involves pre-clinical animal studies, pre-licensure randomized

clinical trials and post-licensure safety studies. Sequential design and analysis are of particular

interest because they allow early termination of the trial or quick detection that the vaccine

exceeds a prescribed bound on the adverse event rate. After a review of recent developments in

this area, we propose a new class of sequential generalized likelihood ratio tests for evaluating

adverse event rates in two-armed pre-licensure clinical trials and single-armed post-licensure

studies. The proposed approach is illustrated using data from the Rotavirus Efficacy and

Safety Trial (REST). Simulation studies of the performance of the proposed approach and

other methods are also given.
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1. INTRODUCTION

Despite the significant public health impact seen from the introduction of vaccines, the safety

of vaccines continues to receive considerable attention, and has raised a variety of issues.

First, the withdrawal of a rotavirus vaccine (a tetravalent rhesus-human reassortant rotavirus

vaccine, RRV-TV) in 1999 has raised public concerns on vaccine safety [1] and hence the

balance of benefit and risk of a vaccine product. Second, unlike any therapeutic products,

vaccines are typically given to healthy people and even to vulnerable populations such as

infants and young children. In addition, many vaccines are universally recommended and

mandated for schooling and some special programs (e.g., military service), where the tolerance

of vaccine risk is low. Hence, ensuring vaccine safety is important in public health activities

and policies [2, 3].

Vaccine safety evaluation involves pre-clinical animal studies, clinical trials and post-

licensure surveillance. Due to obvious limitations, findings in animal studies can only provide

biological clues on potential adverse events that may not extrapolate to humans. Pre-licensure

vaccine clinical trials usually involve selected populations who receive the vaccine according

to a protocol-defined administration method and who are followed for a limited period after

vaccination. Some commonly encountered adverse events, such as fever and injection site reac-

tion, are easily observable and documented in vaccine clinical trials; however, a small number

of extremely rare and sometimes potentially life-threatening adverse events may not be seen

in such trials in spite of their large sample size. Hence, many regulatory agencies require

post-licensure monitoring of potential safety issues after the introduction of a new vaccine or

vaccine component. Examples of post-licensure vaccine safety surveillance include the Vaccine
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Adverse Event Reporting System and Vaccine Safety Datalink in the United States [2, 4]. Se-

quential methods are increasingly used in vaccine clinical trials and post-licensure monitoring,

whose goal is quick detection of the association of adverse events that might be caused by

the vaccine. Recently, Davis et al. [5], Lieu et al. [6] and Heyse et al. [7] have proposed to

use sequential methods for testing vaccine safety. Though not offered specifically for vaccine

safety evaluation, other methods have also been suggested for sequential safety assessment of

biopharmaceutical products in clinical trial or post-licensure settings [8, 9, 10, 11, 12].

In this paper we propose a new class of sequential generalized likelihood ratio (GLR) tests

for testing the incidence rates of adverse events in vaccine clinical trials and post-licensure

surveillance studies. The paper is organized as follows. Section 2 describes typical design

considerations for vaccine safety evaluation. Section 3 reviews sequential GLR tests and other

sequential tests that have been applied to test vaccine safety. A key ingredient in our proposed

GLR tests for vaccine safety, given in Section 4, is the exponential family representation of

the rare event sequence under the commonly assumed model of Poisson arrivals of adverse

events. Simulation studies are presented in Section 5 to compare the performance of various

sequential testing methods, and Section 6 gives an illustrative example from the Rotavirus

Efficacy and Safety Trial. Concluding remarks and discussions on the closely related problem

of sequential safety surveillance are presented in Section 7.

2. DESIGN CONSIDERATIONS FOR VACCINE SAFETY EVALUATION

Safety profiles of vaccine candidates evolve throughout evaluations in laboratories, animals,

phased human clinical trials as well as post-marketing monitoring [2, 13]. It is crucial to
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recognize that vaccines are different from most pharmaceutical products in many ways; un-

derstanding these differences is important in designing safety studies of vaccines. First, the

safety standard is generally higher for vaccines than for drugs. Unlike therapeutic products,

vaccines are usually administered to healthy populations, some of whom may be vulnerable

children and infants. Some vaccines are universally recommended and as a result are admin-

istered to a large number of people. Hence, “first do no harm” is the widespread acceptable

principle in public health and a much lower risk tolerance is expected. Second, given that the

duration of observation in pre-licensure clinical trials is often less than 30 days (sometimes 42

days) after vaccination, the rarity of certain serious adverse events often necessitates a large

sample size. For example, for the REST study of a rotavirus vaccine [7], with a background

incidence rate of intussusceptions of 1 in 2000 person years and 42 days of post-vaccination

follow-up after each of 3 dose vaccinations, a sample of 60,000 subjects is required in order

to observe approximately 10 intussusceptions. Third, vaccines are biologically derived and

variations in biological activities can occur. This is further complicated by variations in bi-

ological manufacturing processes such as formulation, fermentation and virus sensitivity to

storage condition, which together contribute to the variability of biologic activities. These

factors may contribute to the adverse experience profile of the vaccine. In addition, many

vaccines are combinations of multiple active biologic agents and it is generally difficult, if not

impossible, to attribute an adverse event to a particular agent. Finally, unlike drugs for which

substitute therapies may be available, vaccines prevent significant morbidity and mortality

and usually do not have many alternative options. Hence the decision to withdraw a vaccine

should be made with extra care according to risk and benefit balance.
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Safety assessment of a vaccine is an ongoing process throughout the product’s life cycle.

Statistical aspects of design and analysis play an important role in this process. The study

design, such as the choice of endpoints, sample size, and study duration, is driven by the

objectives, hypotheses, and pre-specified criteria for success, which may vary depending on

whether the vaccine is (a) the first vaccine against a particular disease or a vaccine for which a

safety issue has been identified for similar vaccine products, or (b) for vulnerable populations,

or (c) to be recommended for universal application [2]. Some typical design considerations

include the following:

• A meaningful evaluation of the risk of some rare yet serious adverse events to increase

the possibility of regulatory approval; this usually requires a large sample size.

• A continuous safety monitoring system to detect increased risk of targeted adverse events

as early as possible.

• Criteria for early trial termination due to unsafe outcomes associated with the vaccine

during interim monitoring, which would minimize the risk to study participants.

• Immediate communication with the Data and Safety Monitoring Committee when an

adverse event is reported.

An example is given in [7] for a rotavirus vaccine trial. The sequential test procedures described

in this paper incorporate these design features, as will be explained in the next two sections.

3. REVIEW OF SEQUENTIAL GENERALIZED LIKELIHOOD RATIO TESTS
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The use of likelihood ratios as test statistics in sequential analysis has a long history, dating

back to Wald’s sequential probability ratio test (SPRT) for testing a simple null hypothesis

against a simple alternative hypothesis [14]. Suppose X1, X2, . . . are independent random

variables with a common density f and one is interested in testing H0 : f = f0 versus

H1 : f = f1. Let Rn =
∏n

i=1 f1(Xi)/f0(Xi) denote the likelihood ratio based on X1, . . . , Xn.

The SPRT stops sampling at stage

T = inf
{

n ≥ 1 : Rn ≥ B or Rn ≤ A
}

, (1)

and accepts H0 (or H1) if RT ≤ A (or RT ≥ B), where A and B are chosen to satisfy the type I

and type II error probability constraints α = pr0{RT ≥ B} and α̃ = pr1{RT ≤ A}. As shown

by Wald and Wolfowitz [15], the SPRT minimizes the expected sample size at both H0 and H1

among all tests whose error probabilities satisfy pr0{accept H1} ≤ α and pr1{accept H0} ≤ α̃.

The thresholds A and B can be approximated by using Wald’s approximations to the error

probabilities: A ≈ log( α̃
1−α

), B ≈ log(1−α̃
α

). Dvoretzky, Kiefer and Wolfowitz [16] extended

the SPRT to continuous-time processes with independent increments.

To apply the SPRT to vaccine safety testing, Lieu et al. [6] assume that the number Nt of

adverse events within d days following vaccination given to m subjects in a clinical trial during

the period [0, t] follows a Poisson process with known mean µt for the population at risk. For

subjects who have received the vaccine, they assume that the mean number of adverse events

is still µt under H0 but increases to ρµt under H1 with known ρ > 1. The stopping rule of the

continuous-time SPRT in this case is of the form T = inf{t > 0 : Rt ≥ B or Rt ≤ A}, where
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the likelihood ratio Rt is the ratio of the density functions of Nt under Hi (i = 0, 1):

Rt =
e−ρµt(ρµt)

Nt/Nt!

e−µtµNt
t /Nt!

= ρNte−(ρ−1)µt . (2)

Because in practice it is often difficult to come up with an appropriate choice of ρ for the

alternative hypothesis, Lieu et al. [6] maximize (2) over ρ ≥ 1, yielding

R̂t = sup
ρ≥1

ρNte−(ρ−1)µt = exp{−(ρ̂t − 1)µt + Nt log ρ̂t}, (3)

where ρ̂t = max(1, Nt/µt) is the constrained maximum likelihood estimate (MLE) of ρ (≥ 1)

at time t. They propose to use the stopping rule

T̂ = inf{t > 0 : R̂t ≥ B} (4)

and to reject H0 if R̂T̂ ≥ B. They call the test a MaxSPRT and propose to use a truncated

version of the test, for which they use Monte Carlo simulations to determine its type I error

probability and the power at various alternatives.

For discrete-time observations X1, X2, . . . from an exponential family of densities fθ(x) =

exp{θx−ψ(θ)} with respect to some measure on the real line, more efficient extensions of the

SPRT to composite hypotheses than the MaxSPRT have been introduced in the sequential

analysis literature. Lai [17] has given a survey of these tests, which are called “sequential

generalized likelihood ratio (GLR) tests”. First consider the composite null hypothesis H0 :

θ ≤ θ0 versus the composite alternative hypothesis H1 : θ ≥ θ1, with θ0 < θ1. The sequential

GLR test of H0 versus H1 stops sampling at stage

τ = inf
{

n ≥ 1 :
n∏

i=1

[
fθ̂n

(Xi)/fθ0(Xi)
] ≥ B(0)

n and θ̂n > θ0,
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or
n∏

i=1

[
fθ̂n

(Xi)/fθ1(Xi)
] ≥ B(1)

n and θ̂n < θ1

}
, (5)

where θ̂n is the MLE at stage n, so that the first test statistic in (5) is the GLR statistic

for testing θ0 versus alternatives larger than θ0, and the second is that for testing θ1 versus

alternatives smaller than θ1. The test rejects Hi if the GLR statistic for testing θi exceeds

the threshold B
(i)
τ (i = 0, 1). The test, with B

(0)
n = B

(1)
n = 1/c, has been shown by Schwarz

[18] and Wong [19] to be asymptotically Bayes as the cost c per observation approaches 0, for

fixed θ0 < θ1, loss l(θ) at θ of accepting the incorrect hypothesis, and a prior distribution G

on the natural parameter space Θ such that G(I) > 0 for every open interval I ⊂ Θ. This

asymptotic Bayes property of sequential GLR tests was extended by Lai [20] to the case of

testing H0 : θ ≤ θ0 versus H ′
1 : θ > θ0, without an indifference zone. The stopping rule still

has the form (5) but with θ1 = θ0 and B
(0)
n = B

(1)
n = eg(cn), i.e.,

τc = inf
{
n ≥ 1 :

n∏
i=1

[
fθ̂n

(Xi)/fθ0(Xi)
] ≥ eg(cn)

}
, (6)

and the test rejects H0 if and only if θ̂τc > θ0, where the function g is the optimal stopping

boundary for a continuous-time sequential testing problem associated with an approximating

Brownian motion. Note that unlike MaxSPRT that uses the contrained MLE and a time-

invariant threshold in (4), the sequential GLR test for testing H0 : θ ≤ θ0 versus H ′
1 : θ > θ0

(without an indifference zone) uses the usual GLR statistic (with unconstrained MLE) and a

time-varying threshold eg(cn).

Let I(θ, λ) = Eθ{log[fθ(X1)/fλ(X1)]} = (θ − λ)ψ′(θ) − [ψ(θ) − ψ(λ)] be the Kullback-

Leibler information number. In the case B
(0)
n = B

(1)
n = 1/c, the stopping rule (5) is bounded

above by n∗, where n∗ is the smallest integer such that n∗I(θ∗, θ0) ≥ 1/c and θ∗ ∈ (θ0, θ1)
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is the minimizer of max{I(θ, θ0), I(θ, θ1)}, which is given by the solution of the equation

I(θ∗, θ0) = I(θ∗, θ1). For the problem of testing H0 : θ ≤ θ0 versus H ′
1 : θ > θ0, the stopping

rule (5) with θ1 = θ0 and B
(0)
n = B

(1)
n = B does not have an upper bound when a time-

invariant threshold is used. The time-varying threshold eg(cn) in the approximation (6) to the

Bayes sequential test of H0 : θ ≤ θ0 versus H ′
1 : θ > θ0 has the property that g(t) → 0 as

t → ∞ and g(t) ∼ log t−1 as t → 0, thereby accounting for the time-varying uncertainties in

the estimate θ̂n of θ as t = cn varies from 0 to ∞.

In the context of conventional clinical trials, even when a sequential design is used to allow

early stopping for safety, there is usually an upper bound M on the sample size due to limits

on time and resources and to risk-benefit considerations (e.g., when the vaccine is strongly

efficacious or when the disease can be fatal). Lai and Shih [21] have pointed out that this

upper bound M on the sample size implicitly assumes an alternative θ1 in testing the one-sided

null hypothesis H0 : θ ≤ θ0 at significance level α. Specifically, the fixed sample test that

rejects H0 if
∑M

i=1 Xi ≥ cα has maximal power at any alternative θ > θ0, and in particular

at the alternative θ1 = θ(M) “implied” by M , in the sense that M can be derived from the

assumption that this fixed sample size test has some prescribed power 1−α̃ at θ(M). Whereas

Lai and Shih [21] have introduced a group sequential modification of (5) and compared it with

other group sequential designs in the literature, the design considerations for vaccine safety

evaluation trials are different from those for clinical trials to test treatment efficacy. As pointed

out in Section 2, vaccine clinical trials involve continuous safety monitoring and fast reporting

of adverse events. Therefore a fully sequential design such as (5) is more appropriate than

the commonly used group sequential designs for testing of treatment efficacy. In fact, Lieu et
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al. [6] even assume continuous-time rather than discrete-time data in their stopping rule (4).

In the next section we show how the continuous-time information can be represented so that

the stopping rule (5) suffices for efficient designs. Note that unlike (5), the SPRT and the

MaxSPRT do not have bounded stopping rules. Recognizing this, Lieu et al. [6] consider a

variant of (4) that stops the trial at time T̃ = min(T̂ , t∗) and rejects H0 if R̂T̃ ≥ B, accepting

H0 otherwise.

The sequential GLR test with stopping rule (5) can be readily extended to treat more

complex composite hypotheses involving multivariate parameters, as shown in Section 3.4 of

[21]. Specifically, consider a multiparameter exponential family of densities fθ(x) = exp(θT x−

ψ(θ)) with respect to some measure on IRd, in which θ and x are d×1 vectors belonging to IRd.

To test the null hypothesis H0 : u(θ) ≤ u0 against the alternative hypothesis H1 : u(θ) ≥ u1

with u0 < u1, where u is a smooth real-valued function such that I(θ, λ) is increasing in u(λ)

for every fixed θ, the sequential GLR test of H0 versus H1 stops sampling at stage

τ = inf{n ≥ 1 : Λn,0 ≥ b(0)
n and u(θ̂n) > u0, or Λn,1 ≥ b(1)

n and u(θ̂n) < u1},

where θ̂n is the MLE of θ at stage n and Λn,j are the GLR statistics at stage n:

Λn,j = n{θ̂T
n X̄n − ψ(θ̂n)} − sup

θ:u(θ)=uj

n{θT X̄n − ψ(θ)}, j = 0, 1.

Because the signed-root likelihood ratio statistic ln,j = {sign(u(θ̂n)− uj)}(2nΛn,j)
1/2 behaves

like a normal random walk under u(θ) = uj, j = 0, 1, we can approximate ln,j by a sum

of independent standard normal random variables under u(θ) = uj and thereby determine

b
(0)
n , b

(1)
n . In single-armed post-licensure studies in which covariates such as age and vaccination

rates may substantially affect adverse event rates, we can use this kind of sequential GLR tests
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to incorporate covariate adjustments.

4. EXPONENTIAL FAMILY MODELS OF ADVERSE EVENTS AND ASSOCIATED

SEQUENTIAL GLR TESTS

4.1. Adverse events in single-armed post-licensure studies

The single-armed study described by Davis et al. [5] is a retrospective study that uses data

submitted by the HMOs to the Vaccine Safety Datalink from 1995 through 2000. The data are

first segmented into weekly cohorts of vaccinated children. The weekly data are partitioned

into a baseline period, which is defined as a period before the introduction of the new vaccine

considered in the study, and the surveillance period beginning with the introduction of the

vaccine. Each week’s dataset is used to count the number of children receiving the vaccine for

that week and the number diagnosed with adverse events within 30 days after the vaccination.

Thus Xi in this case in Binomial(ni, p), where ni is the number of children vaccinated in week

i and Xi counts how many of them experience adverse events within the 30-day window. The

null hypothesis is H0 : p = p0, where p0 is determined from the event rate in the baseline

period, and the alternative hypothesis is H1 : p = p1, where p1 is based on the effect size

that the study wants to detect, e.g., p1 = 2p0. Davis et al. [5] propose to use the SPRT

to test H0 versus H1 based on the independent binomial random variables Xi with density

function proportional to pXi(1− p)ni−Xi , which belongs to an exponential family with natural

parameter θ = log(p/(1− p)).

As described above, Lieu et al. [6] use the number Nt of adverse events in a cohort of

vaccinated subjects for sequential testing of vaccine safety. Instead of Nt, which they assume
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to be a Poisson process, we can work with the inter-arrival times Xi between successive adverse

events. These are independent exponential random variables with means ξi. First assume that

µt = λt and therefore all the ξi are equal to ξ = 1/λ. The Xi belong to the exponential family

fλ(x) = λe−λx with natural parameter θ = −λ. The SPRT for testing H0 : λ ≤ λ0 versus

H1 : λ ≥ λ1 is

T = inf{n ≥ 1 : Rn ≥ b or Rn ≤ a}, (7)

where Rn = n log(λ1/λ0) − (λ1 − λ0)Sn, Sn =
∑n

i=1 Xi. Since the MLE is λ̂n = n/Sn, the

stopping rule of the MaxSPRT is

T̂ = inf
{
n ≥ 1 : λ0Sn − n− n log(λ0Sn/n) ≥ b

}
(8)

for b > 0. The stopping rule (5), with B
(0)
n = eb0 and B

(1)
n = eb1 , can be written as

τ = inf
{
n ≥ 1 : max

j=0,1

[
λjSn − n− n log(λjSn/n)− bj

] ≥ 0
}
. (9)

The more general case in which Xi ∼ Exp(λi) have rates λi varying with i, as in [6], can be

converted back to the i.i.d. case by considering X ′
i = Xi/λi ∼ Exp(1).

4.2. Adverse events in pre-licensure randomized clinical trials

Consider a clinical trial in which patients are randomized to receiving vaccine or placebo.

Assume that the arrivals of adverse events follow a Poisson process, with rate λV for vaccine

(V) and λC for placebo (C) recipients. This assumption will be relaxed later by allowing the

rates to vary with time. When an event occurs, it is associated with either V or C and

pr( V | event occurs at time t after previous one) =
λV e−λV t · e−λCt

(λV + λC)e−(λV +λC)t
=

λV

λV + λC

. (10)
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Suppose adverse events occur at times T1 < T2 < · · · , and the event indicator at Ti is δi = 1 for

V, or 0 for C. Let τi = Ti − Ti−1. Since the Poisson interarrival times are i.i.d. exponential, it

follows from (10) that the likelihood function of (λV , λC) based on the observations (Ti, δi), 1 ≤

i ≤ n, is
n∏

i=1

[(
λV

λV + λC

)δi
(

λC

λV + λC

)1−δi

(λV + λC) e−(λV +λC)τi

]
. (11)

The goal of a pre-licensure randomized clinical trial is to show that the vaccine product is

effective and safe. The safety objective can be formulated as testing H0 : λV /λC ≤ 1 versus

H1 : λV /λC ≥ γ, where γ > 1. Let p = λV

λV +λC
. Then λV /λC ≥ γ if and only if p ≥ γ

1+γ
.

Let p0 = 1/2, p1 = γ/(1 + γ). In view of (11), the likelihood ratio statistic for testing H0

versus H1 is
∏n

i=1(
p1

p0
)δi(1−p1

1−p0
)1−δi . Hence there is no loss of information in working with the

Bernoulli distribution; that is, the actual event times contain no additional information about

λV /λC beyond that provided by the type (V or C) of the events. This argument also applies

to λV,i and λC,i that vary with i, since
∏n

i=1(λV,i + λC,i)e
−(λV,i+λC,i)τi is cancelled out in the

likelihood ratio statistic, as the δi are still independent Bernoulli random variables with means

πi = λV,i/(λV,i + λC,i).

The SPRT for testing H0 : πi ≤ p0 versus H1 : πi ≥ p1 (for all i) is

T = inf{n ≥ 1 : ln ≥ b or ln ≤ a}, (12)

where ln =
∑n

i=1{δi log(p1

p0
) + (1 − δi) log(1−p1

1−p0
)} and a < 0 < b. The SPRT does not have a

bounded stopping rule. The GLR statistic for testing pj (j = 0, 1) has logarithm

ln,j =
n∑

i=1

{
δi log(p̂n/pj) + (1− δi) log

[
(1− p̂n)/(1− pj)

]}
,
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where p̂n = (
∑n

i=1 δi)/n. The truncated MaxSPRT has stopping rule T̃ = min{T̂ , n∗}, where

T̂ = inf
{

n ≥ 1 : ln,0 ≥ b and p̂n > p0

}
, (13)

and rejects H0 if lT̃ ,0 ≥ b. The stopping rule (5) of the sequential GLR test is

τ = inf{n ≥ 1 : ln,0 ≥ b0 and p̂n > p0, or ln,1 ≥ b1 and p̂n < p1}. (14)

The stopping rule (14) is bounded above by n∗, where n∗ is the smallest integer n such that

nI(p∗) ≥ max(b0, b1) and p∗ ∈ (p0, p1) is the solution of the equation

p∗ log(
p∗

p0

) + (1− p∗) log(
1− p∗

1− p0

) = p∗ log(
p∗

p1

) + (1− p∗) log(
1− p∗

1− p1

),

whose common value is denoted by I(p∗). Note that (14) introduces a lower boundary into

(13) to allow early stopping for “futility” in the sense that the vaccine is unlikely to be shown

unsafe by the prescheduled end of the trial (after observing n∗ adverse events).

5. IMPLEMENTATION AND SIMULATION STUDIES

For a given type I error probability α and type II error probability α̃, the thresholds in the

stopping rule of the SPRT can be approximated by using Wald’s approximations reviewed

in the first paragraph of Section 3. The thresholds of the truncated MaxSPRT test and

the sequential GLR test can be obtained by solving for the largest positive constants that

satisfy the error probability constraints. For example, if Xi ∼ Exp(λ), the threshold b of the

MaxSPRT truncated at t∗ is the solution of prλ0
(lT̃ ,0 ≥ b) = α, where T̃ = min(T̂ , t∗) and T̂

is given by (8); the thresholds b0, b1 of the stopping rule (9) of the sequential GLR test are
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the solutions of prλ0
(lτ,0 ≥ b0) = α and prλ1

(lτ,1 ≥ b1) = α̃. Because the Xi are independent,

these error probabilities can be computed by recursive numerical integration using the Markov

property of the random walk ln or ln,j. If Xi is discrete, the integration is replaced with

summation. When t∗ is large, it is more convenient to use Monte Carlo simulations instead of

recursive numerical integration to compute the error probabilities. The Appendix describes

an algorithm to implement the GLR test in Section 4.2, for which a software package has been

developed using R and is available at the website

http://med.stanford.edu/biostatistics/ClinicalTrialMethodology.html

Example 1. Single-armed post-licensure study.

Consider a single-armed post-licensure study in which the adverse events follow a Poisson

process with rate λV . Suppose we want to test H0 : λV /λC = 1 versus H1 : λV /λC ≥ 3, with

known λC = 1, Type I error probability α = 0.05 and Type II error probability α̃ = 0.1 at

λV /λC = 3. Table I gives the expected number of adverse events and power for the SPRT,

MaxSPRT and the sequential GLR test, whose stopping rules are given by (7)–(9). The SPRT

and MaxSPRT are truncated at 1000 events. To determine the thresholds of the stopping rules,

the boundary crossing probabilities of the SPRT are obtained by Wald’s approximations, and

those of MaxSPRT and the sequential GLR test are computed by Monte Carlo using 100,000

simulations. Each result in Table I is based on 50,000 simulations. The SPRT is optimal

when the assumed alternative value γ in the likelihood ratio statistic is equal to the actual

λV /λC ; recall that p1 = γ/(1+γ). The sequential GLR test has comparable expected number

of events and power at these values of λV /λC , except for the case λV /λC = 2, where the
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sequential GLR test has half the expected number of events but also much less power since

λV /λC falls substantially below the lower bound 3 specified by H1. In contrast, MaxSPRT

requires substantially larger expected number of events at λV /λC = 1 or 2. The maximum

number of events is 28 for the sequential GLR test, which is much smaller than 1000 for the

truncated SPRT or MaxSPRT.

INSERT TABLE I ABOUT HERE

Example 2. Two-armed pre-licensure randomized clinical trial.

Consider a two-armed pre-licensure randomized study to test H0 : λV /λC = 1 versus H1 :

λV /λC ≥ 3, with prescribed Type I error probability α = 0.05 and Type II error probability

α̃ = 0.1 at λV /λC = 3. Table II gives the expected number of events and power for the

SPRT, MaxSPRT and the sequential GLR test, whose stopping rules are given by (12)–(14).

The SPRT and MaxSPRT are truncated at 1000 or 100 events (2 cases); 100 is the maximum

number of events for the sequential GLR test. To determine the thresholds of the stopping

rules, the boundary crossing probabilities of the SPRT are obtained by Wald’s approximations,

and those of MaxSPRT and the sequential GLR test are computed by using a recursive

numerical algorithm described in the Appendix. Table II, whose results are computed by the

recursive numerical algorithm, shows the superior performance of the sequential GLR test in

two-armed randomized trials, similar to the results in Table I for single-armed post-licensure

studies.

INSERT TABLE II ABOUT HERE
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6. AN ILLUSTRATIVE EXAMPLE

The Rotavirus Efficacy and Safety Trial (REST) is a blinded, placebo-controlled clinical trial

conducted in 11 countries between 2001 and 2004, to assess the efficacy and safety of a pentava-

lent human-bovine reassortant rotavirus vaccine (RV5). Infants between 6 and 12 weeks of age

were randomized at a 1:1 ratio to receive either three doses of RV5 or placebo. All infants were

monitored for adverse events during the entire trial duration. The primary safety hypothesis

was that RV5 would not increase the risk of intussusception, relative to placebo, within 42 days

after any dose. This concern of potential increased risk of intussusception, which is a serious

yet uncommon illness with a background incidence rate of 18–56 cases per 100,000 infant years

during the first year of life, stems from the withdrawal of a tetravalent rhesus-human reassor-

tant rotavirus vaccine (RRV-TV) in October 1999 when the post-licensure safety surveillance

revealed a substantial short-term increase in the risk of intussusception among RRV-TV re-

cipients, primarily in the exposure window 3 - 14 days after the first dose [1, 22]. Details of

the REST study design are given in [7] and [23].

Assuming that intussusception occurrences follow a Poisson process, with rate λV for

vaccine recipients and λC for placebo recipients, as in Section 4.2, Heyse et al. [7] made

use of the fact that conditional on the total number n of intussusception cases from both

groups, the number of intussusception cases in the vaccine group is Binomial(n, p), where

p = λV /(λV + λC). They therefore applied a repeated significance test that terminates the

study after observing a total of n intussusception cases from both groups and declares the

vaccine to be unsafe if

pr{Binomial(n, p0) ≥ #n(V )} ≤ 0.025, (15)
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where #n(V ) denotes the number of intussusception cases in the vaccine group among the

n intussusception cases. The study is also terminated and declares the vaccine to have a

clinically acceptable safety profile if

pr{Binomial(n, p1) ≤ #n(V )} ≤ 0.025, (16)

where p1 = 10/11, corresponding to a 10-fold increase in risk for the vaccine group. Although

the nominal significance level of 0.025 in (15) or (16) does not adjust for repeated analysis of

the accumulated data, Monte Carlo simulations (involving 10000 random sequences) showed

that the probability for the study to stop with a positive conclusion regarding vaccine safety

is 0.94 for a vaccine with no increased risk of intussusception, and the probability for the

study to declare the vaccine to be unsafe is almost 1 for relative risks of 6 or greater [7]. This

conservative approach is appropriate given the nature of the safety evaluation. Section 4.2

provides a methodological innovation that leads to independent Bernoulli random variables

without conditioning on the total number of events, thereby making conventional sequential

tests directly applicable (to these independent Bernoulli observations).

During the study, all suspected cases of intussusception were promptly reported to, and ad-

judicated by, an independent, blinded adjudication committee. The study stopped enrollment

upon the recommendation of the Data and Safety Monitoring Board (DSMB) when about

70,000 infants had completed their follow-up. At that time, there were 11 confirmed cases

of intussusception, 6 in the vaccine group and 5 in the placebo group. Figure 1 summarizes

the sequentially accumulated data and the boundaries of (a) the repeated significance test

(15)-(16) and (b) the sequential GLR test (14). Here p0 = 1/2 and p1 = 10/11. The lower
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boundary of the repeated significance test was crossed and the DSMB recommended to stop

the study. If the sequential GLR test (14) had been used instead, the lower boundary would

also have been crossed at the same time.

INSERT FIGURE 1 ABOUT HERE

In the REST study, the lower “safe” boundary actually used a group sequential design

for the DSMB to conduct interim analysis, starting with a minimum of 60,000 infants and

subsequent groups of 10,000 infants. Therefore stopping at the lower boundary involves the

total number of intussusception cases of the vaccine and placebo recipients up to the time

of each interim analysis. The implementation methods described in Section 5 can be easily

modified to handle this situation.

7. DISCUSSION

As noted by Lai [24, p.311], although refinements and modifications of Wald’s SPRT for the

design of clinical trials had been developed in the 1950s, they received little attention from the

biomedical community until the Beta-Blocker Heart Attack Trial (BHAT). The main reason

for this lack of interest is that the sample size for a typical trial is too small to allow further

reduction while still maintaining reasonable power at the alternatives of interest. BHAT,

whose endpoint is time to failure, drew immediate attention to the benefits of sequential

methods not because it reduced the number of subjects but because it shortened a four-year

study by 8 months in periodic reviews of the patients accrued. The success of BHAT led to

the development and increasing use of group sequential designs in phase III clinical trials,
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beginning with the influential work of Lan and DeMets [25] that introduced a “type I error

spending function” to modify a truncated, fully sequential procedure into a group sequential

procedure. The development of vaccine safety tests in the past few years seems to have given

fully sequential methods a surge of interest that had been lacking in clinical trials since the

1950s.

The design considerations for vaccine safety evaluation described in Section 2 pave the way

for adopting fully sequential tests, beginning with the application of the SPRT by Davis et al.

[5] described at the end of Section 4.1. Subsequently Lieu et al. [6] introduced the MaxSPRT.

In Section 3 we have provided an overview of sequential tests of composite hypotheses, showing

in particular that the truncated version of MaxSPRT, which has been applied in [6] to post-

licensure vaccine safety monitoring, is in fact a sequential GLR test without a lower boundary.

As noted in [21] and illustrated in Examples 1 and 2, when a sequential test is truncated,

introducing a suitable lower boundary can lead to substantial savings in sample size with

little loss of power.

For rare adverse events following vaccination (V) or placebo (C) injection, the effective

sample size is the total number of adverse events in the sample of a large number of subjects

accrued over a number of years. In Section 4.2 we have shown how this effective sample size

can be used to develop an efficient sequential test comparing the event rates of the V and

C treatments in a pre-licensure randomized clinical trial. Since the design is information-

based, one can adjust, without altering the type I and II error probabilities, the total number

of subjects accrued per year and the number of years as the trial progresses, based on the

observed adverse event rate of the combined V and C groups as the trial progresses.
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The sequential post-licensure studies considered in this paper are either of the type con-

sidered by Davis et al. [5] or in Phase IV studies, for which the study design typically has a

maximum sample size and aims at testing the null hypothesis that the adverse event rate for

the vaccinated subjects does not exceed the baseline rate. Another approach to post-licensure

vaccine safety monitoring is sequential surveillance, which does not have a maximum sample

size and continues until the vaccine is no longer used because of safety or efficacy issues. The

analog of the type I error probability of a sequential test is the false alarm rate of a sequential

surveillance procedure. One such procedure that has been considered for surveillance in public

health is Page’s [26] CUSUM (cumulative sum) method; see [27, 28]. Because the CUSUM rule

originated from applications to quality control, there are serious limitations in its application

to post-licensure vaccine safety surveillance. For example, quality control charts use average

run lengths (ARL), which are the expected durations to giving an alarm, for their operat-

ing characteristics, and the threshold of a CUSUM chart is determined by the ARL to false

alarm. The past two decades have witnessed important breakthroughs and major advances in

sequential surveillance that has moved far beyond the CUSUM method; see [29, 30, 31] and

the references therein. In particular, the ARL to false alarm is replaced by a more flexible

false alarm rate in [29], in which more versatile sequential detection and surveillance methods

are introduced to replace the CUSUM rule, which like the SPRT, requires complete speci-

fication of the baseline and post-change parameters. These methods include the sequential

GLR detection rules, which have been extended in [31] to tackle the case where both the

baseline and post-change parameters are unknown. Moreover, a theory of sequential surveil-

lance, comparable to the relatively complete theory of sequential detection, is introduced in
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[30] for exponential families. While sequential testing can be used to test if the adverse event

rate of a large cohort of vaccinated subjects in a post-licensure study differs from the baseline

rate, sequential surveillance can be used to detect elevated risks due to environmental, viral

or other changes that have affected the approved vaccine’s safety and efficacy, or for certain

sub-populations with previously undetected risk factors.
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Appendix: Algorithms for pre-licensure sequential GLR tests

Using the same notation as in §4.2, the sequential GLR test of H0 : p ≤ 1
2
(= p0) versus

H1 : p ≥ p1(=
γ

1+γ
) has stopping rule (14), in which ln,j = gn,j(Sn), where Sn =

∑n
i=1 δi with

δi ∼ Bernoulli(p), and

gn,j(s) = s
{

log
(s/n

pj

)
− log

(1− s/n

1− pj

)}
+ n log

(1− s/n

1− pj

)
.
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Find the solution p∗ ∈ (p0, p1) of the equation

p∗ log(
p∗

p0

) + (1− p∗) log(
1− p∗

1− p0

) = p∗ log(
p∗

p1

) + (1− p∗) log(
1− p∗

1− p1

),

and let I∗ denote the common value on either side of the equation. The type I and type II error

probabilities can be expressed as prp0
(lτ,0 ≥ b0) =

∑
1≤n≤n∗ prp0

(τ = n, ln,0 ≥ b0, Sn/n > p0)

and prp1
(lτ,1 ≥ b1) =

∑
1≤n≤n∗ prp1

(τ = n, ln,1 ≥ b1, Sn/n < p1), respectively, where n∗ is the

smallest integer n such that nI∗ ≥ max(b0, b1). We use the following recursive algorithm to

compute πn,j(s) = prpj
(τ > n, Sn = s) for j = 0, 1. Initializing with π1,j(s) = prpj

(δ1 = s) =

ps
j(1− pj)

1−s for s = 0, 1, let

πn+1,j(s) =





pjπn,j(s− 1) + (1− pj)πn,j(s) if gn+1,0(s) < b0 and gn+1,1(s) < b1,

0 otherwise.

Then prp0
(τ = n + 1, lτ,0 ≥ b0, Sτ/τ > p0) = p0πn,0(s

′ − 1) + (1 − p0)πn,0(s
′), where s ′ is the

smallest integer s with s/(n + 1) > p0 and gn+1,0(s) ≥ b0. Similarly, prp1
(τ = n + 1, lτ,1 ≥

b1, Sτ/τ < p1) = p1πn,1(s
′′ − 1) + (1 − p1)πn,1(s

′′), where s ′′ is the largest integer s with

s/(n + 1) < p1 and gn+1,1(s) ≥ b1.

To solve for smallest b0 and b1 such that prp0
(lτ,0 ≥ b0) ≤ α and prp1

(lτ,1 ≥ b1) ≤ α̃ for

given α and α̃, we can use the following iterative algorithm, initializing with b0 = log(1/α),

b1 = log(1/α̃). Let α0 = α and α1 = α̃. If prpj
(lτ,j ≥ bold

j ) > αj, increase bold
j , say with step

size δ, and use it as bnew
j , for j = 0, 1. Stop the iterations when prpj

(lτ,j ≥ bold
j ) ≤ αj. This

search for (b0, b1) generates a grid of values (bi
0, b

i
1). We can enlarge or shift the grid into a

rectangle that brackets the solution; a rectangle is said to be a bracket if (a) its upper right

vertex satisfies prp0
(lτ,0 ≥ bi

0) ≤ α and prp1
(lτ,1 ≥ bi

1) ≤ α̃, in which case the vertex is denoted
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by (+, +), (b) its lower left vertex satisfies prp0
(lτ,0 ≥ bi

0) > α and prp1
(lτ,1 ≥ bi

1) > α̃, and

(c) none of the other two vertices is (+, +). After finding a bracketing rectangle, the solution

can be computed by a fine grid search within the rectangle.
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Table I. Power and expected number of events for various sequential tests of H0 : λV /λC = 1

versus H1 : λV /λC ≥ 3 in a single-armed post-licensure study.

λV /λC GLR§ SPRT† MaxSPRT‡

γ = 2.0 3.0 5.0

(a) Expected total number of events
1.0 3.6 9.7 4.4 2.5 957.9
2.0 7.4 14.7 9.8 4.9 20.4
3.0 6.7 8.7 7.1 5.7 9.6
4.0 5.2 7.1 5.5 4.9 6.7
5.0 4.2 6.4 4.8 4.2 5.4

(b) Probability of rejecting H0

1.0 0.049 0.041 0.038 0.030 0.049
2.0 0.523 0.949 0.648 0.305 1.000
3.0 0.900 1.000 0.966 0.734 1.000
4.0 0.956 1.000 0.997 0.925 1.000
5.0 0.957 1.000 1.000 0.980 1.000

§ The thresholds b0 = 3.435, b1 = 1.822 are chosen such that pλV /λC=1( reject H0) ≤ 0.05,
pλV /λC=3( accept H0) ≤ 0.10.

† Truncated at n∗ = 1000; γ is the assumed alternative value of λV /λC in the likelihood ratio statistic.

‡ Truncated at n∗ = 1000; the threshold b = 4.306 is chosen such that pλV /λC=1( reject H0) ≤ 0.05.
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Table II. Power and expected number of events for various sequential tests of

H0 : λV /λC = 1 versus H1 : λV /λC ≥ 3 in a two-armed pre-licensure clinical trial.

λV /λC GLR§ SPRT†1 SPRT†2 MaxSPRT‡1 MaxSPRT‡2
γ = 2.0 3.0 5.0 γ = 2.0 3.0 5.0

(a) Expected total number of events
1.0 17.4 37.0 16.2 8.3 35.8 16.2 8.3 957.4 96.5
2.0 29.4 45.2 27.6 14.4 43.4 27.4 14.4 63.8 49.2
3.0 21.8 26.2 20.3 14.2 26.2 20.3 14.2 28.2 24.5
4.0 16.5 20.3 15.9 12.4 20.3 15.9 12.4 19.3 17.1
5.0 13.6 17.6 13.7 11.0 17.6 13.7 11.0 15.4 13.9

(b) Probability of rejecting H0

1.0 0.041 0.044 0.043 0.044 0.042 0.043 0.044 0.050 0.048
2.0 0.642 0.914 0.647 0.398 0.860 0.639 0.398 1.000 0.865
3.0 0.931 0.994 0.926 0.729 0.993 0.925 0.730 1.000 0.998
4.0 0.979 0.999 0.978 0.873 0.999 0.978 0.873 1.000 1.000
5.0 0.991 1.000 0.992 0.932 1.000 0.992 0.932 1.000 1.000

§ The thresholds b0 = 3.466, b1 = 2.773 are chosen such that pλV /λC=1( reject H0) ≤ 0.05,
pλV /λC=3( accept H0) ≤ 0.10.

† Truncated at n∗ = 1000 (SPRT1) or n∗ = 100 (SPRT2); γ is the assumed alternative value of
λV /λC in the likelihood ratio statistic. The thresholds b = −2.251, a = 2.890 are obtained by using
Wald’s approximations to boundary crossing probabilities.

‡ Truncated at n∗ = 1000 (MaxSPRT1, b = 4.130) or n∗ = 100 (MaxSPRT2, b = 3.466). The
threshold b is chosen such that pλV /λC=1( reject H0) ≤ 0.05.
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Figure 1. Stopping boundaries of the repeated significance tests (left panel) and sequential

GLR test (right panel) for the REST study, where the unsafe boundaries are in dashed lines

and the safe boundaries in dotted lines. Also given are the observed data (solid lines).
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