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Sequential generation of entangled multi-qubit states
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3Institute for Quantum Information, California Institute of Technology, CA 91125, USA
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We consider the deterministic generation of entangled multi-qubit states by the sequential coupling
of an ancillary system to initially uncorrelated qubits. We characterize all achievable states in terms
of classes of matrix product states and give a recipe for the generation on demand of any multi-qubit
state. The proposed methods are suitable for any sequential generation-scheme, though we focus on
streams of single photon time-bin qubits emitted by an atom coupled to an optical cavity. We show,
in particular, how to generate familiar quantum information states such as W, GHZ, and cluster
states, within such a framework.

PACS numbers: 03.67.-a,42.50.-p,03.65.Ud

Entangled multi-qubit states are a valuable resource
for the implementation of quantum computation and
quantum communication protocols, like distributed
quantum computing [1], quantum cryptography [2] or
quantum secret sharing [3]. Using photonic degrees of
freedom as qubits, say, polarization states or time-bins
of energy eigenstates, has the advantage that photons
propagate safely over long distances. Consequently, pho-
tonic devices are the most promising systems for quan-
tum communication tasks. For this purpose, a lot of
effort has been made in recent years to develop efficient
and deterministic single photon sources [4, 5, 6, 7, 8, 9].

Photonic multi-qubit states can be generated by let-
ting a source emit photonic qubits in a sequential manner
[10]. If we do not initialize the source after each step, the
created qubits will be in general entangled. Moreover, if
we allow for specific operations inside the source before
each photon emission, we will be able to create different
multi-qubit states at the output. In fact, this is a partic-
ular instance of a general sequential generation scheme,
where an ancillary system is coupled in turn to a number
of initially uncorrelated qubits.

It is the purpose of this paper to provide a com-
plete characterization of all multipartite quantum states
achievable within a sequential generation scheme. It
turns out that the classes of states attainable with in-
creasing resources are exactly given by the hierarchy of
so-called matrix-product states (MPS) [11, 12]. These
states typically appear in the theory of one-dimensional
spin systems [13], as they are the variational set over
which Density Matrix Renormalization Group techniques
are carried out [14]. Thus, our analysis stresses the im-
portance of MPS, since we show that they naturally ap-
pear in a completely different and relevant physical con-
text. Moreover, particular instances of low-dimensional
MPS, like cluster states [15] or GHZ states [16], are a
valuable resource in quantum information [17]. Con-
versely, we will provide a recipe for the generation on
demand of any multi-qubit state within a sequential gen-

eration scheme. Due to the general validity of these re-
sults, we will first state and prove them without refer-
ring to any particular physical system. This will be then
applicable to all sequential setups, like streams of pho-
tonic qubits emitted either by a cavity QED (CQED)
source [4, 5, 6, 7] or by a quantum dot coupled to a mi-
crocavity [8, 9].
In the second part, we will focus on the physical im-

plementation of these ideas within the realm of CQED.
The role of the ancillary system will be performed by a
D-level atom coupled to a single mode of an optical cav-
ity. The sequentially generated qubits will be time-bin
qubits |0〉 and |1〉, describing the absence and presence
of a photon emitted from the cavity in a certain time
interval (see Fig. 1).

FIG. 1: A trapped D-level atom is coupled to a cavity qubit,
determined by the energy eigenstates |0〉 and |1〉. After ar-
bitrary bipartite source-qubit operations, photonic time-bins
are sequentially and coherently emitted at the cavity output,
creating a desired entangled multi-qubit stream.

We will concentrate on setups where all intermediate
operations are arbitrary unitaries and the ancilla decou-
ples in the last step. The latter enables us to generate
pure entangled states in a deterministic manner without
the need of measurements. Let HA ≃ C

D and HB ≃ C
2

be the Hilbert spaces characterizing a D-dimensional an-
cillary system and a single qubit (e.g. a time-bin qubit)
respectively. In every step of the sequential generation of
a multi-qubit state, we consider a unitary time evolution
of the joint system HA ⊗HB. Assuming that each qubit
is initially in the state |0〉 (i.e., the time-bin is empty), we
disregard the qubit at the input and write the evolution in
the form of an isometry V : HA → HA⊗HB. Expressing
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the latter in terms of a basis V =
∑

i,α,β V
i
α,β |α, i〉〈β|, the

isometry condition reads
∑1

i=0 V
i†V i = 1l, where each V i

is a D × D matrix. We choose a basis where {|α〉, |β〉}
are any of the D ancillary levels. If we now apply suc-
cessively n, not necessarily identical, operations of this
form to an initial state |ϕI〉 ∈ HA, we obtain the state

|Ψ〉 = V[n] . . . V[2]V[1]|ϕI〉 . (1)

Here, and in the following, indices in squared brackets
represent the steps in the generation sequence. The n
generated qubits are in general entangled with the ancilla
as well as among themselves. Assuming that in the last
step the ancilla decouples from the system, such that
|Ψ〉 = |ϕF 〉 ⊗ |ψ〉, we are left with the n-qubit state

|ψ〉 =
1

∑

i1...in=0

〈ϕF |V in
[n] . . . V

i1
[1] |ϕI〉 |in, . . . , i1〉. (2)

States of this form are called matrix-product states
(MPS) [11, 12], and play a crucial role in the theory of
one-dimensional spin systems. Equation (2) shows that
all sequentially generated multi-qubit states, arising from
a D-dimensional ancillary system HA, are instances of
MPS with D×D matrices V i and open boundary condi-
tions specified by |ϕI〉 and |ϕF 〉. We will now prove that
the converse is also true, i.e., that every MPS of the form

|ψ̃〉 = 〈ϕ̃F |Ṽ[n] . . . Ṽ[1]|ϕ̃I〉, (3)

with arbitrary maps Ṽ[k] : HA → HA ⊗HB, can be gen-
erated by isometries of the same dimension, and such
that the ancillary system decouples in the last step.
Since every state has a MPS representation, this is at
the same time a general recipe for its sequential genera-
tion. The idea of the proof is an explicit construction of
all involved isometries by subsequent application of sin-
gular value decompositions (SVD). We start by writing
〈ϕ̃F |Ṽ[n] = V ′

[n]M[n], where the 2×2 matrix V ′
[n] is the left

unitary in the SVD and M[n] is the remaining part. The
recipe for constructing the isometries is the induction

(

M[k] ⊗ 1l2
)

Ṽ[k−1] = V ′
[k−1]M[k−1], (4)

where the isometry V ′
[k−1] is constructed from the SVD of

the left hand side, and M[k−1] is always chosen to be the
remaining part. After n applications of Eq. (4) in Eq. (3),
from left to right, we set |ϕI〉 =M[1]|ϕ̃I〉, producing

|ψ̃〉 = V ′
[n] . . . V

′
[1]|ϕI〉. (5)

Simple rank considerations show that V ′
[n−k] has dimen-

sion 2min [D, 2k] × min [D, 2k+1]. In particular, every
V ′
[k] could be embedded into an isometry V[k] of dimen-

sion 2D ×D. Physically, this just means we would have

redundant ancillary levels that we need not to use. Fi-
nally, decoupling the ancilla in the last step is guaranteed
by the fact that, after the application of V[n−1], merely
two levels of HA are yet occupied, and can be mapped
entirely onto the system HB. This is precisely the action
of V[n] through its embedded unitary V ′

[n].
This proves the equivalence of two sets of n-qubit

states, which are described either as D-dimensional MPS
with open boundary conditions, or as states that are gen-
erated sequentially and isometrically via aD-dimensional
ancillary system which decouples in the last step. Mo-
tivated by current cavity QED setups, we will now pro-
vide a third equivalent characterization, namely, a set of
multi-qubit states that are sequentially generated by a
source consisting of a 2D-level atom. In contrast to the
first sequential scheme, the latter will not require arbi-
trary isometries.
Consider an atomic system with D states |ai〉 and D

states |bi〉, so that HA = Ha⊕Hb ≃ Cd⊗C2. That is, we
will write |ϕ〉|1〉 for a superposition of |ai〉 states, whereas
|ϕ〉|0〉 corresponds to a superposition of |bi〉 states. Since
the last qubit marks the atomic level, whether it belongs
to the |ai〉 or to the |bi〉 subspace, we will refer to it as the
tag-qubit and write HA = HA′ ⊗HT . Now consider the
atomic transitions from each |ai〉 state to its respective
|bi〉 state accompanied by the generation of a photon in
a certain time-bin. This is described by a unitary evolu-
tion, since now called “D-standard map”, of the form

T : |ϕ〉A′ |1〉T |0〉B 7→ |ϕ〉A′ |0〉T |1〉B ,
|ϕ〉A′ |0〉T |0〉B 7→ |ϕ〉A′ |0〉T |0〉B . (6)

Hence, T effectively interchanges the tag-qubit with the
time-bin qubit. If, additionally, arbitrary atomic uni-
taries UA are allowed at any time, we can exploit the
swap caused by T in order to generate the operation

V |ϕ〉 = 〈0|T T
(

UA

(

|ϕ〉A′ |0〉T
)

|0〉B
)

, (7)

which is the most general isometry V : HA′ → HA′ ⊗
HB. Therefore, the so generated n-qubit states include
all possible states arising from subsequent applications of
2D×D-dimensional isometries. On the other hand, they
are a subset of the MPS in Eq. (3) with arbitrary 2D×D-
dimensional maps, assuming that the atom decouples at
the end. Hence, these three sets are all equivalent.
Now, we show how these results can be applied in the

realm of cavity QED, where an atom is trapped inside a
high-Q optical cavity, and we aim at generating multi-
photon entangled states. A laser may excite the atom,
producing subsequently a photon in the cavity mode,
which, after some time, is emitted outside the cavity (Fig.
1). We consider two different scenarios, corresponding to
the two families of states considered above. First, we may
have fast and complete access to the atom-cavity system.
In consequence, after the implementation of the desired
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isometry in each step, we should wait until the photon
leaks out of the cavity before starting the next step. In
this case, according to the analysis above, we will be able
to produce arbitrary D-dimensional MPS with D equal
to the number of involved atomic levels. Second, we may
have a 2D–level atom (D |ai〉 levels and D |bi〉 levels)
and two kind of operations: (i) fast arbitrary operations
which allow us to manipulate at will all atomic levels;
(ii) an operation which maps each |ai〉 state to its corre-
sponding |bi〉 state while creating a single cavity photon,
allowing a taylored output. Here, we will also be able to
produce arbitrary D-dimensional MPS.

In the following, we will illustrate the above statements
with a specific example which is based on present cav-
ity QED experiments [5, 6, 7]. We consider a three–
level atom coupled to a single cavity mode in the strong-
coupling regime. An external laser field drives the tran-
sition from level |a〉 to the upper level |u〉 with coupling
strength Ω0, and the cavity mode drives the transition
between |u〉 and level |b〉 with coupling strength g, in a
typical Λ configuration [see Fig. 2(a)]. We choose the
detunings ∆, with |∆| ≫ {g,Ω0}, and assume that the
cavity decay rate κ is smaller than any other frequency in
the problem, so that we can ignore cavity damping dur-
ing the atom-cavity manipulations. By eliminating level
|u〉, we remain with an effective D = 2 atomic system
plus the cavity mode. We will show how, by control-
ling the laser frequency and intensity, it is possible to
generate arbitrary 2-dimensional MPS. Note that, by al-
lowing the manipulation of D effective atomic levels, it is
straightforward to extend these results to the generation
of D-dimensional MPS.

According to the results presented above, we just have
to show that we can implement any isometry V : HA →
HA⊗HB. In fact, we will show how it is possible to imple-
ment arbitrary operations on the atomic qubit and the√
SWAP operation on the atom-cavity system, which

suffice to generate any isometry V (since they give rise
to a universal set of gates for the two qubit system [18]).
The atomic qubit can be manipulated at will using a
Raman laser system, as it is normally done with trapped
ions [19, 20]. In order to implement the

√
SWAP , we no-

tice that the atom-cavity coupling is described in terms of
the Jaynes–Cummings model [see Fig. 2(b)], where the
coupling constant Ω0 is controlled by the laser. Thus,
application of laser pulses with the appropriate duration
and phase [20, 21] will implement the unitary operation
U = e−iG, where generator G = (|a, 0〉〈b, 1| + H.c.)π/4,
which corresponds to the desired

√
SWAP operation. In

order to generalize this scheme to an arbitrary D-level
system, we notice that we can view the atom as a set
of M qubits (with D ≤ 2M ). Thus, if we are able to
perform arbitrary atomic operations, together with the√
SWAP operation on two specific atomic levels as ex-

plained above, we can then implement a universal set of
gates and, in consequence, any arbitrary isometry.

FIG. 2: (a) Atomic level structure: levels |a〉 (|b〉) and |u〉
are coupled by a laser (cavity mode) off resonance. (b) After
adiabatic elimination of the upper state |u〉, we are left with
a Jaynes–Cummings type of Hamiltonian, where states |a, n〉
and |b, n + 1〉 are coupled. Both, the energy difference of
those levels and the corresponding Rabi frequency depends
on n. The reason for the first is the AC–Stark shift, whereas
the second is due to the Jaynes–Cummings coupling.

In the rest of the paper, we will use another setup
which is closely related to current experiments [5, 6, 7]
and optimizes our second method for MPS generation.
In this frame, we will show how to generate familiar
multi-qubit states like W [22], GHZ [16], and cluster
states [15], which are all MPS with D = 2 [17].
For the purpose, we consider an atom with three effec-

tive levels {|a〉, |b1〉, |b2〉} trapped inside an optical cavity.
With the help of a laser beam, state |a〉 is mapped to the
internal state |b1〉, and a photon is generated, whereas the
other states remain unchanged. This physical process is
described by the map

MAB : |a〉 7→ |b1〉|1〉 ,
|b1〉 7→ |b1〉|0〉 ,
|b2〉 7→ |b2〉|0〉 , (8)

and can be realized with the techniques used in [5, 6, 7].
After the application of this process, an arbitrary opera-
tion is applied to the atom, which can be performed by
using Raman lasers. The photonic states that are gener-
ated after several applications are those MPS where the

isometries are given by V[i] =MABU
[i]
A , with i = 1, . . . , n,

U
[i]
A being arbitrary unitary atomic operators.
For example, to generate a W-type state of the form

|ψW〉 = eiΦ1 sinΘ1|0...01〉+ cosΘ1e
iΦ2 sinΘ2|0...010〉

+...+ cosΘ1... cosΘn−2e
iΦn−1 sinΘn−1|010...0〉

+cosΘ1... cosΘn−1|10...0〉, (9)

we choose the initial atomic state |ϕI〉 = |b2〉 and opera-

tions U
[i]
A = U b1

ab2
(Φi,Θi), with i = 1, . . . , n− 1, where

Um
kl (Φi,Θi)= cosΘi|k〉〈k|+ cosΘi|l〉〈l|+ eiΦisinΘi|k〉〈l|

−e−iΦi sinΘi|l〉〈k|+ |m〉〈m|, (10)

and {k, l,m} = {a, b1, b2}. To decouple the atom from
the photon state, we choose the last atomic operation
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U
[n]
A = U b1

ab2
(0, π/2) and, after the last map MAB, the

decoupled atom will be in state |b1〉.
To produce a GHZ-type state in similar way, we choose

|ϕI〉 = |a〉, U [1]
A = U b1

ab2
(Φ1,Θ1), U

[i]
A = U b2

ab1
(0, π/2), with

i = 2, . . . , n− 1, and U
[n]
A = Ua

b1b2
(0, π/2)U b2

ab1
(0, π/2).

For generating cluster states, we choose |ϕI〉 = |b2〉,
U

[i]
A = U b1

ab2
(Φi,Θi)U

b2
ab1

(0, π/2), with i = 1, . . . , n−1, and

U
[n]
A = U b2

ab1
(Φn,Θn)U

a
b1b2

(0, π/2)U b2
ab1

(0, π/2), obtaining

|ψ〉 =
n

⊗

i=1

(

O0
i−1|0〉i +O1

i−1|1〉i
)

, (11)

where O0
i−1 = cosΘi|0〉i−1〈0| − e−iΦi sinΘi|1〉i−1〈1|

and O1
i−1 = eiΦi sinΘi|0〉i−1〈0| + cosΘi|1〉i−1〈1|, with

i = 2, . . . , n− 1. Operators O0
i−1 and O1

i−1 act on the
nearest neighbor-qubit i− 1 under the assumption O0

0 ≡
cosΘ1 and O1

0 ≡ eiΦ1 sinΘ1. If one chooses Φi = 0 and
Θi = π/4 this leads to the cluster states defined by

|ψcl〉 =
1

2n/2

n
⊗

i=1

(

σz
i−1|0〉i + |1〉i

)

, with σz
0 ≡ 1. (12)

The formalism presented here is also valid for other
types of single-photon sources, in the context of cavity
QED or quantum dots. For example, it could be ex-
tended to characterize the polarization-entangled multi-
qubit photon states generated by an analogous cavity
QED photon source [10]. In fact, the presented ideas
and proofs apply to any multi-qudit state with HB ≃ Cd

that is generated sequentially by a D-dimensional source.

In a wider scope, we have established a formalism de-
scribing a general sequential quantum factory, where the
source is able to perform arbitrary unitary source-qudit
operations before each qudit leaves. Apart from the mul-
tiphoton states, the present formalism applies also to
many other physical scenarios: (a) to coherent microwave
cavity QED experiments [23], where atoms sequentially
cross a cavity, and thus the outcoming atoms end up in
a MPS with the dimensions given by the effective num-
ber of states used in the cavity mode; (b) a light pulse
crossing several atomic ensembles [24], which will be left
in a matrix product Gaussian state [25]; (c) trapped ion
experiments where each ion interacts sequentially with
a collective mode of the motion [19, 20, 26]. Note also
that one can include dissipation in the present formalism,
by replacing MPS by matrix product density operators
[12, 27]. This description applies, for example, to the
micromaser setup [28] and other realistic scenarios.

C.S. wants to thank K. Hammerer for useful discus-
sions. This work was supported by EU through RESQ
project and the ”Kompetenznetzwerk Quanteninforma-
tionsverarbeitung der Bayerischen Staatsregierung”.
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