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Unplanned optional stopping rules have been criticized for inflating Type I error rates under
the null hypothesis significance testing (NHST) paradigm. Despite these criticisms this re-
search practice is not uncommon, probably as it appeals to researcher’s intuition to collect
more data in order to push an indecisive result into a decisive region. In this contribution we
investigate the properties of a procedure for Bayesian hypothesis testing that allows optional
stopping with unlimited multiple testing, even after each participant. In this procedure, which
we call Sequential Bayes Factors (SBF), Bayes factors are computed until an a priori defined
level of evidence is reached. This allows flexible sampling plans and is not dependent upon
correct e↵ect size guesses in an a priori power analysis. We investigated the long-term rate
of misleading evidence, the average expected sample sizes, and the biasedness of e↵ect size
estimates when an SBF design is applied to a test of mean di↵erences between two groups.
Compared to optimal NHST, the SBF design typically needs 50% to 70% smaller samples to
reach a conclusion about the presence of an e↵ect, while having the same or lower long-term
rate of wrong inference.
Manuscript accepted for publication in Psychological Methods.
doi:10.1037/met0000061
This article may not exactly replicate the final version published in the APA
journal. It is not the copy of record.

Keywords: Bayes factor, e�ciency, hypothesis testing, optional stopping, sequential designs

The goal of science is to increase knowledge about the
world. For this endeavor, scientists have to weigh the ev-
idence of competing theories and hypotheses, for example:
‘Does drug X help to cure cancer or not?’, ‘Which type of
exercise, A or B, is more e↵ective to reduce weight?’, or
‘Does maternal responsivity increase intelligence of the chil-
dren?’. How do scientist come to conclusions concerning
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such competing hypotheses?
The typical current procedure for hypothesis testing is a

hybrid between what Sir Ronald Fisher, Jerzy Neyman and
Egon Pearson have proposed in the early 20th century: The
null-hypothesis significance test (NHST; for an accessible
overview, see Dienes, 2008). It soon became the standard
model for hypothesis testing in many disciplines like psy-
chology, medicine, and most other disciplines that use statis-
tics. However, the NHST has been repeatedly criticized in
the past decades and in particular in the last years (e.g.,
Cumming, 2014; Kruschke, 2012; Rouder, Speckman, Sun,
Morey, & Iverson, 2009). Despite these critics, it is the de-
facto standard in psychology – but it is not the only possible
procedure for testing scientific hypothesis. The purpose of
this paper is to propose an alternative procedure based on
sequentially testing Bayes factors. This procedure, hence-
forward called ‘Sequential Bayes Factor (SBF) design’ pro-
poses to collect an initial sample and to compute a Bayes
factor (BF). The BF quantifies the relative evidence in the
data, with respect to whether data is better predicted by one
hypothesis (e.g., a null hypothesis, ‘there is no e↵ect in the

http://www.apa.org/pubs/journals/met/
http://psycnet.apa.org/doi/10.1037/met0000061


2 SCHÖNBRODT

population’) or a competing hypothesis (e.g., ‘there is a non-
zero e↵ect in the population’). Then, the sample size can be
optionally increased and a new BF be computed until a pre-
defined threshold of evidential strength is reached. A more
detailed introduction of the procedure will be given below.
This procedure does not presume a predefined and fixed sam-
ple size, but rather accumulates data until a su�cient cer-
tainty about the presence or absence of an e↵ect is achieved.
Hence, the SBF design applies an optional stopping rule on
the sampling plan. This procedure has been proposed several
times (e.g., Dienes, 2008; Kass & Raftery, 1995; Lindley,
1957; Wagenmakers, Wetzels, Borsboom, v. d. Maas, &
Kievit, 2012) and already has been applied in experimental
studies (Matzke et al., 2015; Wagenmakers et al., 2012; Wa-
genmakers et al., 2015).

From a Bayesian point of view the interpretation of a
study only depends on the data at hand, the priors, and the
specific model of the data-generating process (i.e., the likeli-
hood function). In contrast to frequentist approaches it does
not depend on the sampling intentions of the researcher, such
as when to stop a study, or outcomes from hypothetical other
studies that have not been conducted (e.g., Berger & Wolpert,
1988; Dienes, 2011; Kruschke, 2012).

For planning a study, however, also for Bayesians it makes
sense to investigate the outcomes from hypothetical studies
by studying the properties of a Bayesian procedure under
several conditions (Sanborn et al., 2014). The goal of this
paper is to investigate such properties of the SBF design via
Monte-Carlo simulations. Throughout the paper we will re-
fer to the scenario of testing the hypothesis of a two-group
mean di↵erence, where H0 : m1 = m2, and H1 : m1 , m2.
The true e↵ect size � expresses a standardized mean di↵er-
ence in the population.

The paper is organized as follows. In the first section, we
describe three research designs: NHST with a priori power
analysis, group sequential designs, and Sequential Bayes
Factors. In the second section, we describe three properties
of the SBF design that are investigated in our simulations: (1)
the long-term rate of misleading evidence (i.e., ‘How often
do I get strong evidence for an e↵ect although there is none,
or strong evidence for H0 although there is an e↵ect?’), (2)
the necessary sample size to get evidence of a certain strength
(i.e., a Bayesian power analysis), and (3) the biasedness of
the e↵ect size estimates (i.e., ‘Do empirical e↵ect size esti-
mates over- or underestimate the true e↵ect on average?’).
The third section reports the results of our simulations, and
shows how SBF performs on each of the three properties in
comparison to the other two research designs. The fourth
section gives some practical recommendations how to com-
pute Bayes factors and how to use the SBF design. Finally,
the fifth section discusses advantages and disadvantages of
the SBF design.

Three Research Designs

In the following sections, we will describe and discuss
three research designs: NHST with a priori power analysis,
group sequential designs, and Sequential Bayes Factors. For
illustration purposes, we introduce an empirical example to
which we apply each research design. We used open data
from the ManyLabs 1 project (Klein et al., 2014), specifically
the replication data of the retrospective gambler’s fallacy
study (Oppenheimer & Monin, 2009). The data are avail-
able at the Open Science Framework (https://osf.io/wx7ck/).
Theory predicts that participants will perceive unlikely out-
comes to have come from longer sequences than more com-
mon outcomes. The original study investigated the scenario
that participants observe a person rolling a dice and see that
two times (resp. three times) in a row the number ‘6’ comes
up. After observing three 6s in a row (‘three-6’ condition),
participants thought that the person has been rolling the dice
for a longer time than after observing two 6s in a row (‘two-
6’ condition). We chose this data set in favor of the NHST-
PA method, as the population e↵ect size (as estimated by the
full sample of 5942 participants; d = 0.60, 95% CI [0.55;
0.65]) is very close to the e↵ect size of the original study (d
= 0.69). We drew random samples from the full pool of 5942
participants to simulate a fixed-n, a group sequential, and a
SBF study.

The NHST Procedure With a Priori Power Analysis and
Some of Its Problems

In its current best-practice version (e.g., Cohen, 1988), the
Neyman-Pearson procedure entails the following steps:

1. Estimate the expected e↵ect size from the literature, or
define the minimal meaningful e↵ect size.

2. A priori define the tolerated long-term rate of false
positive decisions (usually ↵ = 5%) and the tolerated
long-term rate of false negative decisions (usually �
between 5% and 20%).

3. Run an a priori power analysis, which gives the neces-
sary sample size to detect an e↵ect (i.e., to reject H0)
within the limits of the defined error rates.

4. Optionally, for confirmatory research: Pre-register the
study and the statistical analysis that will be con-
ducted.

5. Run the study with the sample size that was obtained
from the a priori power analysis.

6. Do the pre-defined analysis and compute a p value.
Reject the H0 if p < ↵. Report a point estimate and
the confidence interval for the e↵ect size.

https://osf.io/wx7ck/
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Henceforward, this procedure will be called the NHST-PA
procedure (‘Null-Hypothesis Significance Test with a priori
Power Analysis’). This type of sampling plan is also called a
fixed-n design, as the sample size is predetermined and fixed.

Over the last years, psychology has seen a large debate
about problems in current research practice. Many of these
cover (intentionally or unintentionally) wrong applications of
the NHST-PA procedure, such as too much flexibility in data
analysis (Bakker, van Dijk, & Wicherts, 2012; Simmons,
Nelson, & Simonsohn, 2011), or even outright fraud (Simon-
sohn, 2013). Other papers revive a general critique of the
ritual of NHST (e.g., Cumming, 2014; Kline, 2004; Schmidt
& Hunter, 1997; Wagenmakers, 2007), which recognize that
they are to a large part a reformulation of older critiques (e.g.,
Cohen, 1994) which are a reformulation of even older articles
(Bakan, 1966; Rozeboom, 1960), which claim themselves
that they are ‘hardly original’ (Bakan, 1966, p. 423).

The many theoretical arguments against NHST are not re-
peated here. We rather focus on three interconnected, prac-
tical problems with NHST, that partly are inherent to the
method, and partly stem from an improper application of the
method: The dependence of NHST-PA’s performance on the
a priori e↵ect size estimate, the problem of ‘nearly significant
results’, and the related temptation of optionally increasing
the sample size.

Dependence of NHST-PA on the a priori e↵ect size esti-
mate. The e�ciency and the quality of NHST-PA depends
on how close the a priori e↵ect size estimate is to the true
e↵ect size. If � is smaller than the assumed e↵ect size, the
proportion of Type II errors will increase. For example, if �
is 25% smaller than expected, one has not enough power to
reliably detect the actually smaller e↵ect, and Type II errors
will rise from 5% to about 24%. This problem can be tack-
led using a safeguard power analysis (Perugini, Gallucci, &
Costantini, 2014). This procedure takes into account that the
e↵ect size point estimates are surrounded by confidence in-
tervals. Hence, if a researcher wants to run a more conclu-
sive test of whether an e↵ect can be replicated, he or she is
advised to aim for the lower end of the initial e↵ect size inter-
val in order to have enough statistical power, even when the
point estimate is biased upwards. Depending on the accuracy
of the published e↵ect size, the safeguard e↵ect size can be
considerably lower than the point estimate of the e↵ect size.

Inserting conservative e↵ect sizes into an a priori power
analysis helps against increased Type II errors, but it has its
costs. If the original point estimate indeed was correct, going
for a conservative e↵ect size would lead to sample sizes that
are bigger than strictly needed. For example, if � is 25%
larger than expected, the sample size prescribed by a safe-
guard power analysis will be about 1.5 times higher com-
pared to an optimal sample size. Under many conditions, this
represents an advantage rather than a problem. In fact, a side
benefit of using safeguard power analysis is that the parame-

ter of interest will be estimated more precisely. Nonetheless,
it can be argued to be statistically ine�cient insofar the sam-
ple size needed to reach the conclusion can be bigger than
what could have been necessary.

Optimal e�ciency can only be achieved when the a pri-
ori e↵ect size estimate exactly matches the true e↵ect size.
Henceforward, we will use the label optimal NHST-PA for
that ideal case which can represent a benchmark condition
of maximal e�ciency under the NHST paradigm. In other
words, this is how good NHST can get.

The ‘p = .08 problem’. Whereas safeguard power anal-
ysis can be a good solution for an inappropriate a priori e↵ect
size estimate, it is not a solution for the ‘almost significant’
problem. Imagine you ran a study, and obtained a p value of
.08. What do you do? Probably based on their ‘Bayesian Id’s
wishful thinking’ (Gigerenzer, Krauss, & Vitouch, 2004),
many researchers would label this finding, for example, as
‘teetering on the brink of significance’.1 By doing so, the
p value is interpreted as an indicator for the strength of ev-
idence against H0 (or for H1). This interpretation would be
incorrect from a Neyman-Pearson perspective (Gigerenzer et
al., 2004; Hubbard, 2011), but valid from a Fisherian per-
spective (Royall, 1997), which reflects the confusion in the
literature about what p values are and what they are not.

Such ‘nearly significant’ p values are not an actual prob-
lem of a proper NHST – it is just a possible result of a statis-
tical procedure. But as journals tend to reject non-significant
results, a p value of .08 can pose a real practical problem
and a conflict of interest for researchers.2 By exploiting re-
searcher degrees of freedom (Simmons et al., 2011), p values
can be tweaked (‘p-hacking’, Simonsohn, Nelson, & Sim-
mons, 2014), and the current system has incentives for p-
hacking (Bakker et al., 2012).

Optionally increasing the sample size: A typical ques-
tionable research practice. Faced with the ‘p = .08 prob-
lem’, a researcher’s intuition could suggest to increase the
sample size and to see whether the p value drops below
the .05 criterion. This intuition is correct from an accuracy
point of view: More data leads to more precise estimates
(e.g., Maxwell, Kelley, & Rausch, 2008; Schönbrodt & Pe-
rugini, 2013). According to John, Loewenstein, and Prelec
(2012), optionally increasing the sample size when the re-
sults are not significant is one of the most common (ques-
tionable) research practices. Furthermore, Yu, Sprenger,
Thomas, and Dougherty (2013) showed empirically which

1http://mchankins.wordpress.com/2013/04/21/still-not-
significant-2/

2There have been recent calls for changes in editorial policies,
in a way that studies with any p value can be published as long as
they are well-powered (van Assen, van Aert, Nuijten, & Wicherts,
2014). Furthermore, several journals started to accept registered
reports, which publish results independent of their outcome (e.g.,
Chambers, 2013; Nosek & Lakens, 2014).
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(incorrect) heuristics researchers used in their optional stop-
ping practice. Adaptively increasing the sample size can be
also framed as a framework of multiple testing – one con-
ducts an interim test, and based on the p value data collection
is either stopped (if p < .05), or the sample size is increased
if the p value is in a promising region (e.g., if .05 < p < .10;
Murayama, Pekrun, & Fiedler, 2013).

However, this practice of unplanned multiple testing is
not allowed in the classical NHST paradigm, as it increases
Type I error rates (Armitage, McPherson, & Rowe, 1969).
Of course one can calculate statistics during data collection,
but the results of these tests must not have any influence on
optionally stopping data collection. If an interim test with
optional stopping is performed, and the first test was done
at a 5% level, already a 5% Type I error is spent. It should
be noted that the increase in Type I error is small for a sin-
gle interim test when there is a promising result (it increases
from 5% to 7.1%, cf. Murayama et al., 2013). However, the
increase depends on how many interim tests are performed
and with enough interim tests the Type I error rate can be
pushed towards 100% (Armitage et al., 1969; Proschan, Lan,
& Wittes, 2006).

The empirical example in the NHST-PA design. In
this section, we demonstrate how the NHST-PA procedure
would have been applied to the empirical example.

Method and participants. An a priori power analysis with
an expected e↵ect size of d = 0.69, Type I error rate of 5%,
and a statistical power of 95% resulted in a necessary sample
size of n = 56 in each group.

Results. A t-test for independent groups rejected H0
(t(77.68)=3.72, p < .001), indicating a significant group dif-
ference in the expected direction (two-6: M = 1.86, SD =
1.42; three-6: M = 3.54; SD = 3.05). The e↵ect size in the
sample was d = 0.70, 95% CI [0.32; 1.09].

Group Sequential Designs

Optionally increasing the sample size is considered a
questionable research practice in the fixed-n design, as it in-
creases the rate of false-positive results. If the interim tests
are planned a-priori, however, multiple testing is possible un-
der the NHST paradigm. Several extensions of the NHST
paradigm have been developed for that purpose. The most
common sequential designs are called group sequential (GS)
designs (e.g., Lai, Lavori, & Shih, 2012, Proschan et al.,
2006).3 In a GS design, the number and the sample sizes
of the interim tests (e.g., at n1=25, n2=50, and n3 = 75) and a
final test (e.g., at nmax = 100) are planned a priori. The sam-
ple size spacings of the interim tests and critical values for
the test statistic at each stage are designed in a way that the
overall Type I error rate is controlled at, say, 5%. If the test
statistic exceeds an upper boundary at an interim test, data
collection is stopped early, as the e↵ect is strong enough that
it is already reliably detected in the smaller sample (‘stopping

for e�cacy’). If the test statistic falls short of the boundary,
data collection is continued until the next interim test, or the
final test is due. Some GS designs also allow for ‘stopping
for futility’, when the test statistic falls below a lower bound-
ary. In this case it is unlikely that even with the maximal
sample size nmax an e↵ect can be detected. The more often
interim tests are performed, the higher the maximal sample
size must be in order to achieve the same power as a fixed-n
design without interim tests. But if an e↵ect exists, there is a
considerable chance of stopping earlier than at nmax. Hence,
on average, GS designs need less participants compared to
NHST-PA with the same error rates.

If done correctly, GS designs can be a partial solution to
the ‘p = .08 problem’. However, all sequential designs based
on NHST have one property in common: They have a lim-
ited number of tests, which in the case of GS designs has to
be defined a priori. But what do you do when your final test
results in p = .08? Once the final test is done, all Type I error
has been spent, and the same problem arises again.

The example in the GS design. We demonstrate below
how the GS procedure would have been applied to the em-
pirical example:

Method and participants. We employed a group sequen-
tial design with four looks (three interim looks plus the final
look), with a total Type I error rate of 5% and a statistical
power of 95%. Necessary sample sizes and critical bound-
aries were computed using the default settings of the gsDe-
sign package (Anderson, 2014). The planned sample sizes
were n = 16, 31, 46, and 61 in each group for the first to the
fourth look, with corresponding critical two-sided p-values
of .0016, .0048, .0147, and .0440.

Results. The first and the second interim test failed to re-
ject H0 at the critical level (p1 = .0304; p2 = .0052). As the
p-value fell below the critical level at the third interim test (p3
= .0003), we rejected H0 and stopped sampling. Hence, the
final sample consisted of n = 46 participants in each group
(two-6: M = 1.71, SD = 1.48; three-6: M = 3.50; SD =
2.85).

Sequential Bayes Factors: An Alternative Hypothesis
Testing Procedure

Under the NHST paradigm it is not allowed to increase
sample size after you have run your (last planned) hypoth-
esis test. This section elaborates on an alternative way of
choosing between competing hypotheses, that sets p values
and NHST completely aside and allows unlimited multiple
testing: Sequential Bayes Factors (SBF).

3An accessible introduction to GS designs is provided by Lak-
ens (2014), who also gives advice on how to plan GS designs in
practice. Beyond GS designs other sequential designs have been
proposed, such as adaptive designs (e.g., Lai et al., 2012), or a flex-
ible sequential strategy based on p-values (Frick, 1998), which are
not discussed here.
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NHST focuses on how incompatible the actual data (or
more extreme data) are with the H0. In Bayesian hypoth-
esis testing via BFs, in contrast, it is assessed whether the
data at hand are more compatible with H0 or an alternative
hypothesis H1 (Berger, 2006; Dienes, 2011; Je↵reys, 1961;
Wagenmakers, 2007). BFs provide a numerical value that
quantifies how well a hypothesis predicts the empirical data
relative to a competing hypothesis. Hence, the BF belongs
to the larger family of likelihood ratio tests, and the SBF
resembles the sequential probability ratio test proposed by
Wald and Wolfowitz (1948). Formally, BFs are defined as:

BF10 =
p(D|H1)
p(D|H0)

(1)

For example, if the BF10 is 4, this indicates: ‘These empir-
ical data D are 4 times more probable if H1 were true than if
H0 were true’. A BF10 between 0 and 1, in contrast, indicates
support for the H0.

BFs can be calculated once for a finalized data set. But it
has also repeatedly been proposed to employ BFs in sequen-
tial designs with optional stopping rules, where sample sizes
are increased until a BF of a certain size has been achieved
(Dienes, 2008; Kass & Raftery, 1995; Lindley, 1957; Wa-
genmakers et al., 2012). While unplanned optional stop-
ping is highly problematic for NHST, it is not a problem for
Bayesian statistics. For example, Edwards, Lindman, and
Savage (1963) state, ‘the rules governing when data collec-
tion stops are irrelevant to data interpretation. It is entirely
appropriate to collect data until a point has been proven or
disproven, or until the data collector runs out of time, money,
or patience’ (p. 193; see also Lindley, 1957).4

Although many authors agree about the theoretical advan-
tages of BFs, until recently it was complicated and unclear
how to compute a BF even for the simplest standard designs
(Rouder, Morey, Speckman, & Province, 2012). Fortunately,
over the last years BFs for several standard designs have been
developed (e.g., Dienes, 2014; Gönen, Johnson, Lu, & West-
fall, 2005; Kuiper, Klugkist, & Hoijtink, 2010; Morey &
Rouder, 2011; Mulder, Hoijtink, & de Leeuw, 2012; Rouder
et al., 2012, 2009). In the current simulations, we use the
default Bayes factor proposed by Rouder et al. (2009). This
BF tests H0 : m1 = m2 against H1 : � ⇠ Cauchy(r), where
r is a scale parameter that controls the width of the Cauchy
5 distribution. This prior distribution defines the plausibility
of possible e↵ect sizes under H1 (more details below).

The SBF procedure can be outlined as following:

1. Define a priori a threshold which indicates the re-
quested decisiveness of evidence, for example a BF10
of 10 for H1 and the reciprocal value of 1/10 for H0
(e.g., ‘When data indicate that data are 10 times more
likely under the H1 than under H0, or vice versa, I
stop sampling.’). Henceforward, these thresholds are
referred to as ‘H0 boundary’ and ‘H1 boundary’.

2. Choose a prior distribution for the e↵ect sizes under
H1. This distribution describes the plausibility that ef-
fects of certain sizes exist.

3. Optionally, for confirmatory research: Pre-register the
study along with the predefined threshold and prior ef-
fect size distribution.

4. Run a minimal number of participants (e.g., nmin = 20
per group), increase sample size as often as desired
and compute a BF at each stage (even after each par-
ticipant).

5. As soon as one of the thresholds defined in step 1 is
reached or exceeded (either the H0 boundary or the H1
boundary), stop sampling and report the final BF. As a
Bayesian e↵ect size estimate, report the mean and the
highest posterior density (HPD) interval of the poste-
rior distribution of the e↵ect size estimate, or plot the
entire posterior distribution.

Figure 1 shows some exemplary trajectories of how a BF10
could evolve with increasing sample size. The true e↵ect size
was � = 0.4, and the threshold was set to 30, resp. 1/30.

Selecting a threshold. As a guideline, verbal labels for
BFs (‘grades of evidence’; Je↵reys, 1961, p. 432) have been
suggested (Je↵reys, 1961, Kass & Raftery, 1995; see also
Lee & Wagenmakers, 2013). If 1 < BF < 3, the BF indicates
anecdotal evidence, 3 < BF < 10 moderate evidence, 10 <
BF < 30 strong evidence, and BF > 30 very strong evidence.
(Kass & Raftery, 1995, suggest 20 as threshold for ‘strong
evidence’).

Selecting an e↵ect size prior for H1. For the calcula-
tion of the BF prior distributions must be specified, which
quantify the plausibility of parameter values. In the default
BF for t tests (Morey & Rouder, 2011, 2015; Rouder et al.,
2009) which we employ here, the plausibility of e↵ect sizes
(expressed as Cohen’s d) is modeled as a Cauchy distribu-
tion, which is called a JZS prior. The spread of the distri-
bution can be adjusted with the scale parameter r. Figure 2
shows the Cauchy distributions for the three default values
provided in the BayesFactor package (r =

p
2/2, 1, and

p
2).

Higher r values lead to fatter tails, which corresponds to a
higher plausibility of large e↵ect sizes under the H1.

The family of JZS priors was constructed based on general
desiderata (ly_harold_inpress; e.g., Bayarri, Berger, Forte,
& García-Donato, 2012; Je↵reys, 1961), without recourse to
substantive knowledge about the specifics of the problem at
hand, and in this sense it is an objective prior (Rouder et al.,

4Recently, it has been debated whether BF are also biased by
optional stopping rules (Sanborn & Hills, 2013; Yu et al., 2013).
For a rebuttal of these positions, see Rouder (2014), and also the
reply by Sanborn et al. (2014).

5The Cauchy distribution is a t-distribution with one degree of
freedom.
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Figure 1. Exemplary trajectories of the BF10 for a two-group mean di↵erence with a true e↵ect size of � = 0.4 and scale
parameter r = 1. The density curve on the top shows the distribution of sample sizes at the termination point at BF10 >= 30.
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2009). Consequently, the default JZS priors can be used as a
non-informative reference-style analysis. However, Rouder

et al. (2009) recommend to incorporate prior knowledge if
available, either by tuning the width of the Cauchy prior (see
Figure 2), or by choosing a di↵erent distribution for the prior.
For example, Dienes, 2014 suggests to use a (half-)normal
or a bounded uniform prior distribution which is tuned to
prior knowledge about the underlying parameter (see also
Hoijtink, 2012, for a data-based choice of prior scales).

One of the most often-heard critiques of Bayesian ap-
proaches is about the necessity to choose a prior distribu-
tion of the parameters (e.g., Simmons et al., 2011). While
the prior only has a relatively modest impact on Bayesian
parameter estimation (any reasonable prior is quickly over-
whelmed by the data; e.g., wetzels_bayesian_inpress), it ex-
erts a lasting influence on BFs (e.g., Sinharay & Stern, 2002).
Hence, the resulting strength of evidence partly depends on
the specification of the model through the choice of the prior.
For this reason, Je↵reys (1961) already pointed out the in-
evitability of an informed choice of priors for the purpose of
hypothesis testing: Di↵erent questions, formalized as di↵er-
ent specifications of H1, lead to di↵erent answers (see also
ly_harold_inpress).

However, similar and sensible questions will lead to sim-
ilar and sensible answers. Furthermore, the influence of the
prior is not unlimited when justifiable priors are used, and it
would be deceiving to claim that any BF result can be crafted
just by choosing the ‘right’ prior. For example, changing the
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scale parameter r from the lowest (
p

2/2) to the highest (
p

2)
default value of the BayesFactor package maximally changes
the BF by a factor of 2 (Schönbrodt, 2014). In the rare cases
where one prior leads to a BF favoring H1 and another prior
to favoring H0, BFs typically are in the ‘anecdotal’ region
of evidence and do not provide strong evidence for either
hypothesis.

Practically, we see three possibilities to tackle the impact
of priors on the SBF design and to forestall objections of a
skeptical audience. First, without strong prior evidence for
the expected e↵ect size, we recommend to stick to a default
setting (e.g., the JZS prior with r = 1) to avoid suspicion of
cherry-picking a ‘favorable’ prior. Second, one should do
a sensitivity analysis, which calculates a BF for a range of
priors (Kass & Raftery, 1995; Spiegelhalter & Rice, 2009).
If the conclusion of the BF is invariant to reasonable changes
in the prior, then the results are said to be robust. Third, one
could even include a sensitivity threshold within the SBF de-
sign: Only stop, when all BFs from a predefined set of priors
exceed the threshold.

The example in the SBF design. Here we demonstrate
how the SBF procedure would have been applied to the em-
pirical example. (For other applications of the SBF design to
real data, see Matzke et al., 2015, Wagenmakers et al., 2012.)

Method and participants. We employed a Sequential
Bayes Factor design, where Bayes factors (BFs) are com-
puted repeatedly during data collection, until the BF exceeds
an a priori defined grade of evidence. The minimum sam-
ple size was set to nmin = 20 in each group, and the critical
BF10 for stopping the sequential sampling was set to 10 (resp.
1/10). We used the JZS default BF (Rouder et al., 2009)
implemented in the BayesFactor package for R (Morey &
Rouder, 2015) with a scale parameter of r = 1 for the e↵ect
size prior. We computed the BF after each new participant,
and the critical upper boundary was exceeded with a sample
of 32 participants in each condition.

Results. The final BF10 was 11.3 in favor of H1, providing
strong support for the existence of a group di↵erence in the
expected direction (two-6: M = 1.90, SD = 1.64; three-6: M
= 3.88; SD = 3.24). The evolution of the BF10 can be seen in
Figure 3. As an additional sensitivity analysis, we computed
the BF for the other two default priors of the BayesFactor
package (r = sqrt(2)/2: BF10 = 12.1; r = sqrt(2): BF10 =
9.6). Hence, the conclusion is robust with respect to reason-
able variations of the e↵ect size prior. The mean posterior
e↵ect size in the final sample was Cohen’s d = 0.72, with a
95% highest posterior density (HPD) interval of [0.22; 1.21].

Method

Three research designs have been introduced (NHST-PA,
GS, and SBF). If these research designs are employed on
a regular basis, they have several long-term properties, of
which three will be investigated: (1) the long-term rate of
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Figure 3. Evolution of the Bayes factor for the comparison
of the two experimental groups in the empirical example.

misleading evidence, (2) the average necessary sample size
to get evidence of a certain strength, and (3) the biasedness
of the e↵ect size estimates. The following sections will in-
troduce each property with respect to the SBF design, as well
as the specific settings of the simulations.

Property 1: False Positive Evidence and False Negative
Evidence in the SBF Design

In the asymptotic case (i.e., with large enough samples),
the BF10 converges either to zero (if H0 is true) or to infinity
(if an e↵ect is present; Morey & Rouder, 2011, Rouder et al.,
2012), a property called consistency (Berger, 2006). Hence,
with increasing sample size every SBF will converge towards
(and across) the correct boundary.

However, before the asymptotic case is reached any ran-
dom sample can contain misleading evidence (Royall, 2000).
In the case of the SBF design this would mean that the BF
hits the incorrect boundary. For example, all displayed tra-
jectories of Figure 1 hit the correct H1 boundary, but it can
be seen that one of these trajectories would have prematurely
hit the wrong H0 boundary if the boundary had been set to
1/10 instead of 1/30.

Consequently, wrong inference is not unique to NHST
– every inference procedure can produce ‘false positives’
and ‘false negatives’: False positive evidence (FPE) happens
when the H1 boundary is hit although in reality H0 is true,
false negative evidence (FNE) happens when the H0 bound-
ary is hit although in reality H1 is true. It is important to
note that in the cases of misleading evidence the proper in-
terpretation of the result has been made (although it leads
to an incorrect conclusion): ‘It is the evidence itself that is
misleading’ (Royall, 2004, p. 124).

To be very clear: The SBF is not a ‘fusion’ of Bayesian
and frequentist methods, but both can provide false positive
evidence (or Type I errors) and false negative evidence (or
Type II errors). A major di↵erence of the SBF approach,
compared to the NHST variants, is that the long-term rate
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of wrong inference is not controlled by the researcher. As
will be shown in the results of the simulation study, an SBF
design has an expected long-term rate of FPE and FNE. This
long-term rate, however, depends on the chosen H1 prior, the
chosen threshold, and the e↵ect size in the population. With
appropriate settings, the long-term rates of misleading evi-
dence can be kept well below 5%, but they cannot be fixed to
a certain value as in NHST.

Property 2: Expected Sample Sizes

At what sample size can a researcher expect to hit one of
both boundaries? Even when sampled from the same popu-
lation, due to sampling variation some SBF studies will stop
earlier and some later (see Figure 1). Hence, in contrast to
NHST-PA, the final sample size is not predetermined in an
SBF design. But it is possible to look at the distribution of
stopping-ns and to derive the average sample number (ASN)
or quantiles from it. The stopping-n distribution depends on
the chosen H1 e↵ect size prior, the chosen threshold, and the
e↵ect size in the population.

Property 3: Biasedness of E↵ect Size Estimates

Any random process can produce inaccurate individual es-
timates which over- or underestimate the population value.
From a frequentist perspective this is not so much a problem
as long as the average of all individual deviations from the
true value is (close to) zero. Then the estimator is said to be
unbiased.

In a fixed-n design, Cohen’s dunbiased = d(1�(3/(4 df �1)))
yields an unbiased estimator for the population ES (Boren-
stein, Hedges, Higgins, & Rothstein, 2011). If optional stop-
ping rules depending on the e↵ect size are introduced in a se-
quential design, however, things get more complicated. The
design goal for GS designs, for example, is the control of
Type I errors, not an unbiased estimation of the e↵ect. For
these designs it is well-known that a naive calculation of ef-
fect sizes at the termination point will overestimate the true
e↵ect for studies that are stopped early for e�cacy (Emer-
son, Kittelson, & Gillen, 2007; Proschan et al., 2006; White-
head, 1986; Zhang et al., 2012). When judging the bias of
a sequential procedure, however, it is important to consider
all studies, not just the early terminations (Goodman, 2007).
When all studies are considered (i.e., early and late termina-
tions), the bias in GS designs is only small (Fan, DeMets, &
Lan, 2004; Schou & Marschner, 2013).

For the assessment of the bias in an SBF design, we
used the mean of the posterior e↵ect size distribution as a
Bayesian e↵ect size estimate. Furthermore, we consider both
an unconditional perspective, where the bias is investigated
across all SBF studies, and a conditional perspective, where
the bias is investigated conditional on early or late termina-
tion.

Settings of the Simulation

For our simulation we focus on one specific scenario of
hypothesis testing: the test for mean di↵erences between two
independent groups. In the NHST tradition this is usually
done by a t test. As this test arguably is (one of) the most fre-
quently employed tests in psychology, we decided to assess
the properties of the SBF design based on this scenario as a
first step.

For simulating the two-sample mean di↵erences, two pop-
ulations (N = 1,000,000) with a normal distribution, a stan-
dard deviation of 1, and several mean di↵erences were sim-
ulated. Random samples with increasing sample sizes were
drawn from these populations (group sizes always were equal
in both groups), starting from nmin = 20 for each group, and
increasing the sample size in each group, until the BF ex-
ceeded the strongest boundary of 30, resp. 1/30, or nmax was
reached.6 A BF for the mean di↵erence was computed using
the BayesFactor package (Morey & Rouder, 2015), with a
JZS e↵ect size prior under H1. The following experimental
conditions were varied systematically in the simulations:

• The population mean di↵erence was varied corre-
sponding to the standardized mean di↵erence � = 0,
0.10, 0.20, 0.30, ..., 1.40, and 1.50.

• The scale parameter r for the JZS H1 e↵ect size prior
was varied along the default settings of the BayesFac-
tor package: r =

p
2/2, 1, and

p
2. These values cor-

respond to the expectation of small, medium, or large
e↵ects.

• After data simulation, the trajectory of each simulated
study was analyzed with regard to the stopping-n, at
which each trajectory hits one of both boundaries. The
boundaries were set to 3, 4, 5, 6, 7, ..., 28, 29, and 30,
and their respective reciprocal values. In this simula-
tion we only used symmetric boundaries. Hencefor-
ward, when we mention a boundary of, say, 10, this
implies that the lower boundary was set to the recipro-
cal value of 1/10.

At each boundary hit, the Bayesian e↵ect size estimate
was computed as the mean of the e↵ect size posterior along
with the 95% HPD interval (see Appendix B). In each exper-
imental condition, 50,000 replications were simulated.

When we discuss the results, we will refer to the typical
situation in psychology. What e↵ect size can be expected in

6nmax was set to 45,000 in our simulations. In order to keep
simulation time manageable, we increased the sample in several
step sizes: +1 participant until n = 100, +5 participants until n =
1000, +10 participants until n = 2500, +20 participants until n =
5000, and +50 participants from that point on. In the �=0 condi-
tion, 0.12% of trajectories did not hit one of the boundaries before
nmax was reached.
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psychology if no prior knowledge is available? Large scale
meta-meta-analyses showed that the average published e↵ect
size is around 0.5 (Bakker et al., 2012), and only 5% of pub-
lished e↵ects are larger than 1.15 (Richard, Bond, & Stokes-
Zoota, 2003). Hence, we discuss � = 0.5 as the typical sce-
nario in psychology.

Results

In the simulations, we varied true e↵ects and boundaries
on a fine-grained level. In the tables of the results section,
we only present a selection of the parameter space. The full
results can be seen in the Supplementary Material, and re-
producible analysis scripts are available at the Open Science
Framework (https://osf.io/qny5x/).

Property 1: Long-term Rates of False Positive and False
Negative Evidence

Table 1 summarizes the long-term rates of FPE and FNE
for the SBF design, which indicate how often one can expect
to end up with misleading evidence. While the long-term rate
of FNE quickly approaches zero with more extreme bound-
aries, there is a low but persistent long-term rate of FPE.

As the BF converges towards and across the correct
boundary, most incorrect boundary hits occur at small sam-
ple sizes. For example, at r = 1 and a boundary of 6, there
is a FPE rate of 4.7%. 50% of this FPE occurs at early stop-
ping studies with n <= 38. Hence, the choice of the minimal
sample size before the optional stopping procedure is started
is another parameter for fine-tuning the expected rate of mis-
leading evidence.

With appropriate choices of r and boundary separation,
the FPE rate can be kept below 5%, and the FNE rate well
below 1%. Hence, depending on the settings, the SBF design
can have a lower long-term rate of misleading evidence than
the ‘canonical’ NHST-procedure with 5% Type I and 20%
Type II error rates. More conservative boundaries lead to a
lower long-term rate of misleading evidence, but this comes
at the cost of higher expected sample sizes, as will be shown
in the next section.

Property 2: Expected Sample Size At Boundary Hit

Table 1 provides the average sample number (ASN) in
each condition. For example, the ASN for a boundary of
10 and r = 1 under a H1 with � = 0.5 is 73. That means,
if a researcher runs many studies within that condition, the
average sample size would be 73 in each group.

If researchers plan for a single study, the ASN is not the
only relevant number – a low sample size on average is nice,
but one should also take into account the risk that a single
study is considerably larger than the ASN. Hence, another
way to look at the stopping-n distribution is to examine the
quantiles. Table A1 provides the 50th, 80th, 90th, and 95th

quantile of the stopping-n distributions. These quantiles can
be interpreted as the risk that an SBF design needs samples
of a certain size. In the previous example, the median n is
60, and the 95th quantile is at 170. That means, 50% of all
SBF studies in this scenario terminate with less than 60 par-
ticipants, and only 5% terminate with more than 170 partici-
pants. Hence, although the SBF in principle is an open-ended
procedure, reasonable estimates for the expected sample size
can be obtained.

When at least a medium-sized e↵ect is present, evidence
accumulates quite quickly. For example, when increasing
the boundary at � = 0.50 (r = 1) from 10 to 20, the ASN
increases only from n = 73 to n = 85 (+16%) . Under the H0,
in contrast, increasing boundaries can become quite costly in
terms of sample size. If in reality no e↵ect is present, the
ASN to reach the H0 boundary increases from n = 225 at a
boundary of 1/10 to n = 927 at a boundary of 1/20 (+312%).
This asymmetry in expected sample sizes could be tackled
by defining asymmetric boundaries for H0 and H1.

A comparison of the e�ciency of the SBF, GS, and
NHST-PA design to detect an e↵ect. Assumed that two
procedures have the same long-term rate of wrong inference,
one procedure could be more e�cient, in a sense that the
same quality of inference can be reached with smaller sam-
ples. Using the FPE and FNE rates of each SBF condition
reported in Table 1, we computed the fixed-n sample size
that would be needed in the NHST-PA paradigm to achieve
the same long-term Type I and Type II error rates.

For example, focusing on the cell with � = 0.5, r = 1,
and boundary = 6, one can see that the SBF design has a
4.6% FNE rate under the H1 and a 4.7% FPE rate under the
H0. The ASN is 59 under the H1. The corresponding fixed-
n sample size for this situation would be 110. Hence, the
expected SBF sample size is 46.4% smaller than its fixed-n
counterpart with the same long-term rate of wrong inference.

Correspondingly, we used the gsDesign function from
the gsDesign package (Anderson, 2014) with the default
settings to compute the expected sample sizes for a GS de-
sign with 4 looks (3 interim tests + final test) and the match-
ing FPE and FNE rates. Figure 4 systematically applies this
comparison between the (expected) sample sizes of all three
designs to all conditions of the simulation and shows the rel-
ative e�ciency gain of the SBF sample size compared to the
NHST-PA fixed-n benchmark and the typical GS design. A
value of 75%, for example, means that the average sample
size is 75% smaller than the optimal NHST-PA fixed-n.

As can be seen in Figure 4, the GS design has considerable
e�ciency gains compared to NHST-PA. Averaged over all
investigated conditions, the GS design has an expected sam-
ple size that is 49.9% smaller than the NHST-PA benchmark.
Remarkably, the SBF design has even higher e�ciency: Its
expected sample size is on average 62.7% smaller than the
benchmark. At large e↵ect sizes with � >= 1.2, the GS de-

https://osf.io/qny5x/
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Table 1
Percentages of wrong inference and average sample number (ASN) for the SBF design.

BF = 3 BF = 5 BF = 6 BF = 7 BF = 10 BF = 20 BF = 30
r/E↵ect size % err ASN % err ASN % err ASN % err ASN % err ASN % err ASN % err ASN

� = 0 (% err relates to false positive evidence)
r =
p

2/2 7.5 30 6.6 96 6.0 146 5.5 205 4.3 435 2.4 1825 1.7 4057
r = 1 5.6 24 5.1 50 4.7 75 4.3 105 3.4 225 2.0 927 1.4 2107
r =
p

2 4.2 22 3.4 30 3.3 39 3.2 54 2.6 115 1.6 472 1.1 1070
� > 0 (% err relates to false negative evidence)

r =
p

2/2
� = 0.20 77.9 34 50.6 133 35.9 203 24.1 269 5.6 407 0.0 526 0.0 571
� = 0.30 60.9 36 21.7 108 10.4 140 4.4 162 0.2 192 0.0 228 0.0 248
� = 0.40 42.8 35 7.0 79 1.9 91 0.4 97 0.0 108 0.0 128 0.0 139
� = 0.50 26.8 33 1.7 57 0.2 61 0.0 64 0.0 70 0.0 82 0.0 89
� = 0.60 15.2 30 0.3 42 0.0 45 0.0 46 0.0 50 0.0 58 0.0 63
� = 0.70 7.9 27 0.0 34 0.0 35 0.0 36 0.0 39 0.0 45 0.0 48
� = 0.80 3.7 25 0.0 28 0.0 29 0.0 30 0.0 32 0.0 36 0.0 39
� = 1.00 0.6 22 0.0 23 0.0 24 0.0 24 0.0 25 0.0 27 0.0 28
� = 1.20 0.1 21 0.0 21 0.0 21 0.0 22 0.0 22 0.0 23 0.0 23

r = 1
� = 0.20 84.5 27 71.5 71 61.4 114 50.4 167 22.7 331 0.3 552 0.0 603
� = 0.30 71.8 28 46.6 70 32.0 102 20.7 132 3.9 191 0.0 239 0.0 260
� = 0.40 56.4 29 26.2 61 13.7 79 6.4 93 0.3 113 0.0 133 0.0 144
� = 0.50 40.0 28 12.4 50 4.6 59 1.4 65 0.0 73 0.0 85 0.0 92
� = 0.60 26.5 27 5.2 41 1.3 45 0.3 48 0.0 52 0.0 60 0.0 65
� = 0.70 15.7 26 1.7 34 0.3 36 0.0 37 0.0 40 0.0 45 0.0 49
� = 0.80 8.4 24 0.5 29 0.0 30 0.0 31 0.0 32 0.0 36 0.0 39
� = 1.00 1.8 22 0.0 23 0.0 24 0.0 24 0.0 25 0.0 27 0.0 28
� = 1.20 0.3 21 0.0 21 0.0 21 0.0 22 0.0 22 0.0 23 0.0 23

r =
p

2
� = 0.20 88.6 24 83.9 39 79.1 59 72.3 89 49.3 211 5.3 545 0.2 636
� = 0.30 78.9 25 67.1 43 57.3 62 46.0 87 19.5 160 0.2 252 0.0 273
� = 0.40 65.7 26 48.5 42 36.9 56 25.2 73 5.7 110 0.0 140 0.0 151
� = 0.50 50.2 26 31.1 40 20.8 49 11.6 59 1.2 75 0.0 89 0.0 96
� = 0.60 35.8 26 18.4 36 10.4 41 4.6 46 0.2 54 0.0 62 0.0 67
� = 0.70 23.3 25 9.9 32 4.7 35 1.4 38 0.0 41 0.0 47 0.0 50
� = 0.80 13.8 24 4.8 28 1.8 30 0.4 31 0.0 33 0.0 37 0.0 40
� = 1.00 3.6 22 0.8 23 0.2 24 0.0 24 0.0 25 0.0 27 0.0 29
� = 1.20 0.7 21 0.1 21 0.0 22 0.0 22 0.0 22 0.0 23 0.0 24

Note. � = population e↵ect size. r = scale parameter of H1 JZS prior. ASN = average sample number in each group.
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Figure 4. E�ciency gain of SBF and GS designs (4 looks) compared to a fixed-n design with the same long-term rate of wrong
inference. A value of 75% means that the average sample size is 75% smaller than the optimal NHST-PA fixed-n.

sign seems to be on par or even more e�cient than the SBF.
This, however, is an artifact. The ASN of the GS design
falls below 20, but nmin for the SBF design was set to 20 in
our simulations. If nmin is set to 10, the SBF again is more
e�cient than the GS design.

Property 3: Biasedness of E↵ect Size Estimates

For each simulated study, we computed the mean of the
e↵ect size posterior as a Bayesian e↵ect size estimate. Fig-
ure 5 focuses on a specific condition of the simulations (� =
0.6, boundary = 4, and r = 1) and shows several perspectives
on the 50,000 simulated SBF studies in that condition. Panel

A shows the distribution of e↵ect sizes across all studies.
In a fixed-n design, this distribution is a symmetric normal-
shaped distribution centered around the true e↵ect size. The
optional stopping of the SBF design reshapes the distribution
of empirical e↵ect sizes to a bimodal distribution: The left
peak of the distribution are all studies that hit the H0 bound-
ary (i.e., false negative evidence), the right peak are all stud-
ies that hit the H1 boundary (i.e., true positive evidence). All
studies which terminated at the H0 boundary underestimated
the true e↵ect, and the majority of studies which terminated
at the H1 boundary overestimated the true e↵ect.

The specific shape of the e↵ect size distribution depends
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on the prior, the boundary separation, and the true e↵ect size.
For example, at high e↵ect sizes and/or conservative bound-
aries, the FNE rate goes towards zero and consequently the
left peak disappears.

The unconditional meta-analytic perspective. A
naive pooling of SBF studies with equal weights would
ignore the fact that early stops have a smaller sample
size, and therefore a smaller precision, than later stops
(Goodman, 2007; Schou & Marschner, 2013; Senn, 2014).
This variation in precision should be taken into account,
and when the resulting e↵ect sizes and their sample sizes
are submitted to a proper meta-analysis, the estimates are
slightly underestimated (see Panel B)7. Depending on the
e↵ect size, the posterior mean underestimates the true e↵ect
by 5 to 9%. For the typical case of � = 0.50, for example,
the meta-analytic estimate would be 0.47. Hence, averaged
across all studies, the Bayesian e↵ect size estimate shows a
slight downward bias.

The conditional perspective. Panel C of Figure 5
shows the distribution of empirical e↵ect sizes conditional on
the stopping-n. The first subpanel, for example, shows the
distribution for all studies that directly terminated at n=20.
If the H1 boundary is hit very early, the e↵ect size point
estimate overestimates quite strongly. But we also mention
that in early hits the posterior distribution is relatively wide,
which suggests to interpret the point estimate with caution
anyway. The late H1 boundary hits (see second row of Panel
C), in contrast, underestimate the true e↵ect size. This hap-
pens because just these trajectories which have a randomly
low e↵ect size in the sample take longer to accumulate the
existing evidence for H1. Hence, from a conditional per-
spective (i.e., conditional upon early or late termination), the
SBF e↵ect size estimate can show a bias in both directions.

Practical Recommendations

The following sections summarize the practical steps that
are necessary to compute a sequential BF, and give some rec-
ommendations for setting boundaries and prior scales in the
case of two-group t-tests.

How to Compute a Sequential Bayes Factor

A BF can easily be computed by online calculators8, the
BayesFactor package (Morey & Rouder, 2015) for the R
Statistical Environment (R Core Team, 2014), or by the
open source software JASP (Love et al., 2015). With the
BayesFactor package, for example, a BF can be calculated
for many common designs (e.g., one-sample designs, multi-
ple linear regression, ANOVA designs, contingency tables,
proportions). For the computation of the Bayesian e↵ect
size estimates and the 95% HPD interval, we recommend
the BayesFactor package or JASP (See Appendix B for an
example how to compute these in R). The ‘sequential’ part
simply means that researchers can compute the BF as often

as they want – even after each single participant – and stop
when the BF exceeds one of the a priori defined boundaries.

Recommended Settings for E↵ect Size Prior and Bound-
ary in the Two-Group t-Test

If a researcher wants to employ the SBF design, the
boundaries and priors have to be chosen in advance. The
boundaries and the priors have an inherent meaning them-
selves, which should be respected. Beyond that, researchers
can use the expected long-term rates for misleading evidence
and the expected sample sizes as additional information for
an informed choice of sensible boundaries and priors. Based
on the results of the simulations, we can sketch some general
recommendations for testing mean di↵erences between two
groups.

First, concerning the e↵ect size prior distribution, we rec-
ommend to set the scale parameter r to 1 as suggested by
Rouder et al. (2009), unless there is a compelling reason to
do otherwise. Smaller values of r increase the rate of FPE
and make it rather di�cult to reach the H0 boundary with
a reasonable sample size (see Table 1). Furthermore, after
reaching a boundary it might be compelling to perform a sen-
sitivity analysis over reasonable r scale parameters to show
that the results are robust to the choice of the prior.

Second, we recommend to define a boundary of at least
5, because under typical conditions only then FPE and FNE
rates tend to be low. In fact, we can hardly imagine a reason-
able scenario that warrants a boundary of 3 in a sequential
design, because the long-term rate for misleading evidence
simply is too high. Although that reflects the current situa-
tion in psychological studies, which have an average Type II
error rate of 65% (Bakker et al., 2012), the detrimental conse-
quences of low power are well documented (e.g., Colquhoun,
2014).

Third, most misleading evidence and the largest condi-
tional bias of the estimated e↵ect size happens at early ter-
minations. Both can be reduced when a minimum sample is
collected before the optional stopping rule is activated. Un-
der typical conditions we recommend to collect at least 20
participants per group.

Beyond these general guidelines, we want to suggest plau-
sible choices for prototypical scenarios where the mean be-
tween two groups is compared. A reasonable setting for early
lines of research could a boundary of 6 and a scale parameter
of r = 1. Given a typical e↵ect size of � = 0.5, this setting has
balanced FPE and FNE rates (4.7% and 4.6%) and has on av-
erage 46% smaller samples than optimal NHST-PA with the
same error rates. In mature lines of research, confirmatory

7We used the metafor package (Viechtbauer, 2010) and com-
puted fixed-e↵ect models.

8http://pcl.missouri.edu/bayesfactor, http://www.lifesci.sussex.
ac.uk/home/Zoltan_Dienes/inference/Bayes.htm

http://pcl.missouri.edu/bayesfactor
http://www.lifesci.sussex.ac.uk/home/Zoltan_Dienes/inference/Bayes.htm
http://www.lifesci.sussex.ac.uk/home/Zoltan_Dienes/inference/Bayes.htm
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studies may seek to gather more compelling evidence for the
presence or absence of an e↵ect. Here, the boundary should
be set at least to 10. This almost guarantees to detect an
existing e↵ect (for example, for � = 0.5 the rate of FNE is
< 0.1%). If the BF does not reach such a strong boundary
within practical limits (e.g., one has to stop data collection
because of running out of money), one can still interpret the
final BF of, say, 8 as ‘moderate evidence’.

We want to emphasize again that the simulations and rec-
ommendations given here only apply to the two-tailed, two-
group t test. BFs for other designs (e.g., for multiple regres-
sion) have di↵erent prior specifications, which might have a
di↵erent impact on the expected sample size and long-term

rate of misleading evidence. Furthermore, if prior knowledge
is available, this should be incorporated in the settings of the
SBF study.

Discussion

We investigated Sequential Bayes Factors (SBF) as an al-
ternative strategy for hypothesis testing. By means of sim-
ulations we explored three properties of such a hypothesis
testing strategy and compared it to an optimal NHST strat-
egy and a group sequential design in the scenario of testing
a mean di↵erence between two groups. In the following sec-
tions we will discuss the advantages and drawbacks of the
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SBF design, and compare the hypothesis testing approach of
the current paper with recent calls for a focus on accuracy in
parameter estimation.

Advantages of the SBF Design, Compared to NHST-PA
and GS Designs

Based on theoretical accounts and on the simulation re-
sults, several advantages of the SBF can be identified com-
pared to the classical NHST-PA approach. First, with SBF
(as with BF in general) it is possible to provide evidence for
the H0 (Kass & Raftery, 1995). Conventional significance
tests from the NHST paradigm, in contrast, do not allow to
state evidence for the null. This has important implications
for our understanding of science in general. According to
Popper (1935, 1963) the defining property of science (in con-
trast to pseudo-science) is the falsifiability of theories. But,
without a tool to accept the H0, how could we ever falsify a
theory that predicts an e↵ect? If only NHST is used as our
scientific tool, this would limit us to the possibility to falsify
a predicted null e↵ect, and we could not scrutinize our theo-
ries in the critical way Popper suggested (see also Gallistel,
2009). With the SBF support for the H0 is possible and we
could finally bury some undead theories (Ferguson & Heene,
2012).

Second, it has been shown that the SBF design necessarily
converges to zero or infinity (Berger, 2006; Morey & Rouder,
2011; Rouder et al., 2012). The goal for planning a study, for
example via a priori power analyses, is to avoid inconclusive
evidence. With an SBF design, the long-term rate of weak
evidence can be pushed to zero and no study will end up
with an inconclusive result, as long as researchers don’t run
out of participants.

Third, the BF provides a continuous measure of evidence.
But does the SBF revive the black-and-white-dichotomy of
the NHST, which we seek to overcome? No. The ‘sequen-
tial’ part of the SBF does include a binary decision: Should
I continue sampling, or should I stop? But this dichotomy
should not be mixed up with the binary decision, ‘Is there an
e↵ect, or not?’. The BF is a continuous measure that tells
researchers how to update their prior beliefs about H0 and
H1, and it stays continuous in the SBF design. Furthermore,
nothing prevents the researcher to continue sampling after
a first threshold is reached, or to stop before a threshold is
reached – these sampling decisions do not change the mean-
ing of the resulting BF (Rouder, 2014). It is important to
emphasize that, in contrast to NHST, the SBF stopping rule
is more a suggestion, not a prescription. The presented sim-
ulations show what sample sizes and long-term rates of mis-
leading evidence a researcher can expect if s/he sticks to the
stopping rule. Hence, the predefined threshold is only neces-
sary to compute the expected properties of the SBF method.
From a Bayesian point of view, the boundaries are not nec-
essary and a researcher can keep on collecting data until he

or she ‘runs out of time, money, or patience’ (Edwards et al.,
1963, p. 163).

Fourth, one can make interim tests as often as wanted,
without engaging in a questionable research practice. When
the data are inconclusive, simply increase sample size un-
til they are. This property of the SBF also corresponds to
the intuition of many researchers, as has been expressed by
Edwards et al. (1963): ‘This irrelevance of stopping rules
to statistical inference restores a simplicity and freedom to
experimental design that had been lost by classical emphasis
on significance levels’ (p. 239).

Fifth, the SBF is about 50 - 70% more e�cient than the
optimal NHST design, and even more e�cient than a typical
GS design. Optional stopping procedures give the opportu-
nity to stop early when the e↵ect is strong, and to continue
sampling when the e↵ect is weaker than expected.

Finally, compared to GS or adaptive designs in the NHST
tradition, the SBF design is easier to implement and more
flexible. It is convenient to compute BFs using one of the
websites, JASP, or the BayesFactor R package. There is no
need for di�cult pre-planning, variance spending plans, or a
priori e↵ects size estimates.

Disadvantages of the SBF and Limitations of the Simula-
tion

Beyond these clear advantages, the SBF also has potential
limitations. First, even amongst Bayesians, the BF in general
(e.g., Gelman & Rubin, 1995; Kruschke, 2011, 2012), or its
specific formulations (e.g., Johnson, 2013) are not without
criticism. Even amongst proponents of the BF, there is no
general consensus yet about what types of priors should be
used in which situations. Here, we focus on a default JZS
BF for t tests, as proposed by Morey and Rouder (2011) and
Rouder et al. (2009), but there are other ways to compute
BFs, which, for example, incorporate prior knowledge about
the research topic (Dienes, 2014).

Second, SBF as we defined it here, is an open procedure
with an unbounded sample size. GS designs, in contrast, still
have an upper limit of sample size which is known in advance
(Jennison & Turnbull, 1999). If the true e↵ect size is close
to zero (but not zero), it could happen that a SBF meanders
for thousands of participants in the ‘undecided’ region be-
fore it finally drifts towards the H1 boundary. This property
can make studies hard to plan, which could be problematic
for funding agencies that expect a precise planning of sample
size. On the other hand, researchers can still decide a priori to
use a maximum sample size in a SBF design given logistical
constraints and theoretical considerations.

Third, not for every design exists a handy default BF pro-
cedure, at least for the moment. For example, if complicated
multilevel models or structural equation models are to be
tested, it is probably more convenient to work in a Bayesian
estimation framework, or to fall back to fixed-n designs.
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Fourth, it is not possible to define the rate of FPE and FNE
a priori. Table 1, Table A1, and the Supplementary Material
allow to envisage expected long-term rates of misleading ev-
idence, but proper error control is the realm of NHST.

Fifth, it could be considered as a disadvantage that final
e↵ect size estimates can be biased upwards conditional on
early termination, or biased downwards conditional on late
termination. This is a property that the SBF shares with all
sequential designs, Bayesian and non-Bayesian (Proschan et
al., 2006). In the context of clinical sequential designs, sub-
stantial e↵orts have been undertaken to provide corrections
for that conditional bias (Chuang & Lai, 2000; Emerson &
Fleming, 1990; Fan et al., 2004; Li & DeMets, 1999; Liu,
2003; Pocock & Hughes, 1989; Whitehead, 1986). The is-
sue of conditional bias correction after a sequential design,
however, is less well understood than the control of Type I
error rates, and remains an active topic of research. Future
studies should investigate whether and how techniques for
correcting the conditional bias could be applied to an SBF
design.

From an unconditional perspective, underestimations
from late terminations balance the overestimations from
early terminations (Senn, 2014), which led Schou and
Marschner (2013) to conclude that ‘early stopping of clinical
trials for apparent benefit is not a substantive source of bias
in meta-analyses [...]. Evidence synthesis should be based on
results from all studies, both truncated and non-truncated’ (p.
4873). Furthermore, they conclude that mixing sequential
and fixed-n designs is not problematic. Due to the Bayesian
shrinkage of early terminations, meta-analytic aggregations
of multiple SBF studies underestimate the true e↵ect size by
5-9%. This analysis, however, presumes that all studies are
included in the meta-analysis – both H0 and H1 boundary
hits, and both early and late terminations. We assume that
publication bias favors studies that a) hit the H1 boundary,
and b) stop earlier rather than later. As such a selection pres-
sure leads to overestimated e↵ect sizes, the slight overall un-
derestimation can be considered a useful attenuation.

Other authors have argued that beyond the issue of unbi-
asedness the variance of e↵ect size estimates should be con-
sidered. The sequential procedure could increase the het-
erogeneity of results compared to the fixed-n case, leading
to an erroneous application of a meta-analytic random ef-
fects model (Hughes, Freedman, & Pocock, 1992; see also
Braschi, Botella, & Suero, 2014). But not all sequential pro-
cedures are alike, and it is unclear how simulation results
from one procedure generalize to other procedures. In sum-
mary, and as emphasized before, the SBF focuses on e�cient
hypothesis testing, and not on unbiased and precise parame-
ter estimates. Nonetheless, given that the bias is rather small
in practical terms, we tentatively conclude that Bayesian ef-
fect size estimates from SBF studies can be included in meta-
analyses. But certainly more research is needed before firm

conclusions can be drawn about the e↵ects of optional stop-
ping rules on research synthesis in general.

A final limitation of the current simulations is that we
only focused on the two-sample, two-sided t test. Although
we only investigated one specific test, the general sequential
procedure can be applied to every BF. The specific results of
our simulations, such as the expected sample size, however,
cannot be generalized to other tests. For example, the ASN
will be much lower for within-subject designs.

Hypothesis Testing vs. Accuracy in Parameter Estima-
tion

Several recent contributions aimed at shifting away from
hypothesis testing towards accuracy/precision9 of parameter
estimation (Cumming, 2014; Eich, 2014; Kelley & Maxwell,
2003; Maxwell et al., 2008). Morey, Rouder, Verhagen, and
Wagenmakers (2014), while agreeing with many of these rec-
ommendations, have argued, however, that hypothesis tests
are also essential for psychological science.

Hypothesis testing and estimation sometimes answer dif-
ferent questions. Some question may be better answered
from a hypothesis-testing point of view, some other rather
from a estimation/accuracy point of view, and ‘[...] the goals
of error control and accurate estimation can sometimes be in
direct conflict.’ (Goodman, 2007, p. 882).10 These di↵er-
ent goals could be captured in a trade-o↵ between accuracy
and e�ciency. Accuracy focuses on obtaining parameter es-
timates that are unbiased and precise. E�ciency, in contrast,
focuses on reliably detecting an e↵ect as quickly as possible.

If the main goal is to get accurate and stable estimates, one
cannot optimize e�ciency. For example, for typical e↵ect
sizes it has been shown that estimates of correlations only
tend to stabilize when n is approaching 250 (Schönbrodt &
Perugini, 2013), and in order to obtain accurate estimates of a
group di↵erence with the typical e↵ect size, one needs more
than 500 participants per group (Kelley & Rausch, 2006). If
the focus is on e�cient hypothesis testing, in contrast, an
SBF design can answer the question about the presence of
an e↵ect with strong evidence after only 73 participants on
average (instead of 500).

When the main question of interest is the precision of
the estimate, other approaches, such as ‘planning for accu-

9Precision and accuracy are conceptually di↵erent concepts that
are equivalent only when the expected value of a parameter is equal
to the parameter value it represents. We use the term accuracy here
for consistency with most previous relevant literature. However,
note that if the population values are unknown, it would be safer
to use the term precision. For a discussion of the relationship be-
tween accuracy and precision, see Kelley and Rausch (2006) and
Ledgerwood and Shrout (2011).

10For a discussion of the ethical consequences of estimation vs.
hypothesis testing in the medical sciences, see Mueller, Montori,
Bassler, Koenig, and Guyatt (2007) and Goodman (2007).
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racy’ (Kruschke, 2012; Maxwell et al., 2008), might be bet-
ter suited. Hence, accuracy in an estimation framework and
e�ciency in a sequential hypothesis testing framework are
complementary goals for di↵erent research scenarios.

Conclusion

In an ideal world, scientists would have precise theories,
easy access to thousands of participants, and highly reliable
measures. In such a scenario, any reasonable hypothesis
test procedure would come to the same conclusions, and re-
searchers would have no need to use an optional stopping
rule that depends on the e↵ect size.

In a realistic scenario, however, where resources are lim-
ited and researchers have the obligation to use these re-
sources wisely, the SBF can answer the question about the
presence or absence of an e↵ect with better quality (i.e., a
smaller long-term rate of misleading evidence) and/or higher
e�ciency (i.e., fewer participants on average) than the clas-
sical NHST-PA approach or typical frequentist sequential de-
signs. Furthermore, it is highly flexible concerning the sam-
pling plan and does not depend on correct a priori guesses of
the true e↵ect size.

Therefore, a prototypical scenario for the application of
the SBF design could be early lines of research that sort out
which e↵ects hold promise (see also Lakens, 2014). Further-
more, its e�ciency makes it especially valuable when sam-
ples are hard to collect or limited in size, such as clinical
samples. After the presence of an e↵ect is established with
strong evidence, accumulating samples or meta-analyses can
provide unbiased and increasingly accurate estimates of the
e↵ect size.

It is important to stress that the SBF design is not a magic
wand, it has both advantages and disadvantages, and it should
not be used mindlessly. However, it represents a valid ap-
proach for hypothesis testing with some distinctive desirable
properties that set it apart from current common alternatives.
Among these, we wish to stress that it makes a commonly
used procedure perfectly acceptable, which has been consid-
ered as questionable so far: If the results are unclear, collect
more data. While in NHST this option is taboo, using the
SBF it can be done without any guilt. Not only it can be
done, but doing so results in a more e�cient research strat-
egy, provided that some rules are followed.
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Expected stopping-n for SBF designs: Quantiles

BF = 3 BF = 5 BF = 6 BF = 7 BF = 10 BF = 20 BF = 30
Stopping-n at � = 0

r =
p

2/2 22/34/45/60 69/110/160/220 105/170/245/340 150/235/335/475 305/490/710/1020 1250/1990/2960/4440 2820/4560/6900/10100
r = 1 20/25/32/40 36/56/79/115 53/83/125/175 73/120/175/250 160/255/365/526 625/1000/1500/2200 1420/2290/3440/5200
r =
p

2 20/21/26/32 21/32/45/62 28/44/63/88 38/60/86/130 77/130/190/280 320/520/765/1130 710/1150/1710/2560
Stopping-n at � > 0

r =
p

2/2
� = 0.20 24/39/56/77 80/190/290/395 135/305/440/565 200/415/565/695 350/625/795/955 465/795/1010/1190 510/855/1070/1260
� = 0.30 25/44/63/84 79/165/220/275 115/215/280/340 135/250/320/390 165/300/385/460 200/345/435/515 220/370/465/545
� = 0.40 26/45/61/78 64/120/155/190 74/140/180/215 79/150/195/235 88/165/210/255 110/190/240/285 125/205/255/300
� = 0.50 25/42/56/69 45/82/110/130 49/89/120/145 51/93/125/150 58/105/135/160 70/120/155/180 77/130/165/190
� = 0.60 23/38/49/59 33/59/77/93 36/63/81/98 37/65/84/105 42/71/91/110 50/82/105/125 55/89/115/135
� = 0.70 21/33/42/50 26/45/58/70 28/47/60/73 29/49/62/75 32/53/67/81 38/62/77/91 42/66/82/96
� = 0.80 20/28/35/42 22/35/45/54 23/37/46/56 24/38/48/58 26/42/52/62 30/48/59/69 33/52/63/74
� = 1.00 20/21/26/30 20/24/30/35 20/25/31/36 20/26/32/38 20/28/34/40 22/32/39/46 23/34/42/49
� = 1.20 20/20/20/23 20/20/22/26 20/20/23/27 20/20/24/28 20/21/25/29 20/24/28/33 20/25/30/35

r = 1
� = 0.20 20/28/38/51 40/82/145/225 61/155/260/375 92/250/385/525 255/515/685/835 495/835/1050/1230 545/900/1120/1310
� = 0.30 20/32/44/58 44/95/150/200 69/155/215/275 96/200/270/335 165/295/372/445 210/360/455/535 235/390/480/565
� = 0.40 21/34/45/58 45/85/120/150 62/120/155/190 75/140/180/220 93/175/220/260 115/200/250/295 130/215/265/310
� = 0.50 21/34/44/55 39/70/92/115 48/86/115/135 54/95/125/150 60/110/140/170 72/125/160/190 80/135/170/200
� = 0.60 21/32/41/50 33/56/71/86 37/63/81/98 38/67/87/105 43/74/94/115 51/85/110/130 56/91/115/135
� = 0.70 21/30/37/45 27/45/57/68 28/48/62/74 30/50/64/78 33/55/69/83 39/63/79/93 42/68/84/99
� = 0.80 20/27/33/39 22/36/45/54 23/38/48/57 24/39/49/59 26/42/53/63 31/49/60/71 33/52/64/76
� = 1.00 20/21/26/30 20/24/30/36 20/25/31/37 20/26/32/38 20/28/35/41 22/32/39/46 23/35/42/49
� = 1.20 20/20/21/23 20/20/22/26 20/20/23/27 20/20/24/28 20/21/25/30 20/24/29/33 20/25/30/35

r =
p

2
� = 0.20 20/23/30/39 23/42/68/110 30/64/120/200 43/110/205/320 115/335/510/665 485/815/1020/1200 580/940/1160/1360
� = 0.30 20/26/35/45 25/53/84/130 35/83/140/195 52/130/195/260 125/245/325/395 225/380/470/555 250/405/500/585
� = 0.40 20/28/37/47 27/57/83/115 38/80/115/150 53/110/150/185 90/165/210/250 125/210/260/305 135/225/275/325
� = 0.50 20/29/38/46 29/54/73/92 37/69/92/115 47/84/110/135 63/115/145/170 76/130/165/195 83/140/175/205
� = 0.60 20/29/37/44 27/47/61/75 33/57/73/88 38/65/83/99 45/77/98/120 53/88/115/135 58/95/120/140
� = 0.70 20/28/35/41 25/41/51/62 28/47/59/70 31/51/65/77 34/57/72/86 40/65/81/96 43/70/87/105
� = 0.80 20/26/32/37 22/34/43/51 24/38/48/56 25/40/51/61 27/44/55/66 31/50/62/73 34/54/66/78
� = 1.00 20/22/26/30 20/25/31/36 20/26/32/38 20/27/33/39 20/29/36/42 22/33/40/47 23/35/43/50
� = 1.20 20/20/21/24 20/20/23/27 20/20/24/28 20/21/24/29 20/22/26/30 20/24/29/34 20/26/31/36

Note. r = scale parameter of H1 prior. � = true e↵ect size. Numbers in each cell are the 50th, 80th, 90th, and 95th quantile of each stopping-n distribution. Stopping-n is sample
size in each group.
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# load the package for the active session
library(BayesFactor)

# open the help page
?ttestBF

# load a built-in data set
data(sleep)

## Compute the Bayes factor for a
## two-group mean comparison.
## Set r to 1
BF <- ttestBF(x = sleep$extra[sleep$group==1],

y = sleep$extra[sleep$group==2], rscale=1)

print(BF)

# --> It's very weak evidence (BF=1.15)
# --> for a group difference

## Compute the Bayesian effect size estimate
samples <- posterior(BF, iterations = 10000)
summary(samples)
HPDinterval(samples, prob = 0.95)

# --> Bayesian ES estimate = -0.6794 (see "delta")
# --> 95% HPD interval [-1.54; 0.15]
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