Imperial College London

Sequential Implementation of Monte Carlo Tests with Uniformly Bounded Resampling Risk

Axel Gandy

Department of Mathematics Imperial College London a.gandy@imperial.ac.uk

> useR! 2009, Rennes July 8-10, 2009

- ▶ Test statistic *T*, reject for large values.
- Observation: t.
- *p*-value:

$$p = \mathsf{P}(T \ge t)$$

Often not available in closed form.

Monte Carlo Test:

$$\hat{p}_{\mathsf{naive}} = rac{1}{n} \sum_{i=1}^{n} \mathtt{I}(T_i \geq t),$$

< 67 ►

where T, T_1, \ldots, T_n i.i.d.

Examples:

- Bootstrap,
- Permutation tests.

▶ Goal: Estimate *p* using few *X*

Mainly interested in deciding if $p \leq \alpha$ for some α .

Imperial College Axel Gandy Sequential Implementation of Monte Carlo Tests with Uniformly Bounded Resampling Risk 2 London

- ▶ Test statistic *T*, reject for large values.
- Observation: t.
- *p*-value:

$$p = \mathsf{P}(T \ge t)$$

Often not available in closed form.

Monte Carlo Test:

$$\hat{p}_{\text{naive}} = \frac{1}{n} \sum_{i=1}^{n} \underbrace{\mathbb{I}(T_i \ge t)}_{=:X_i \sim B(1,p)},$$

< 67 ►

where T, T_1, \ldots, T_n i.i.d.

Examples:

- Bootstrap,
- Permutation tests.

• Goal: Estimate p using few X_i

Mainly interested in deciding if $p \leq \alpha$ for some α .

Imperial College Axel Gandy Sequential Implementation of Monte Carlo Tests with Uniformly Bounded Resampling Risk 2

- ▶ Test statistic *T*, reject for large values.
- Observation: t.
- *p*-value:

$$p = \mathsf{P}(T \ge t)$$

Often not available in closed form.

Monte Carlo Test:

$$\hat{p}_{\text{naive}} = \frac{1}{n} \sum_{i=1}^{n} \underbrace{\mathbb{I}(T_i \ge t)}_{=:X_i \sim B(1,p)},$$

< 67 ►

where T, T_1, \ldots, T_n i.i.d.

- Examples:
 - Bootstrap,
 - Permutation tests.
- ▶ Goal: Estimate *p* using few *X_i*

Mainly interested in deciding if $p \leq \alpha$ for some α .

- ► Test statistic *T*, reject for large values.
- Observation: t.
- *p*-value:

$$p = \mathsf{P}(T \ge t)$$

Often not available in closed form.

Monte Carlo Test:

$$\hat{p}_{\text{naive}} = \frac{1}{n} \sum_{i=1}^{n} \underbrace{\mathbb{I}(T_i \ge t)}_{=:X_i \sim B(1,p)},$$

< (F) >

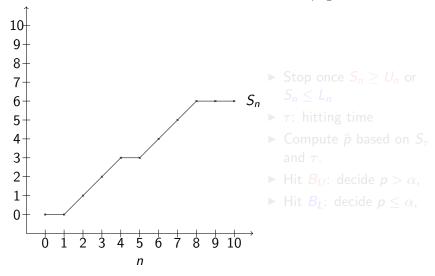
where T, T_1, \ldots, T_n i.i.d.

- Examples:
 - Bootstrap,
 - Permutation tests.
- Goal: Estimate p using few X_i

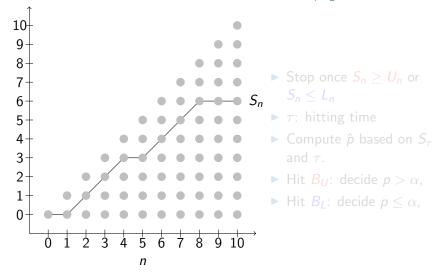
Mainly interested in deciding if $p \leq \alpha$ for some α .

Imperial College Axel Gandy Sequential Implementation of Monte Carlo Tests with Uniformly Bounded Resampling Risk 2 London Sequential approaches based on $S_n = \sum_{i=1}^n X_i$

London

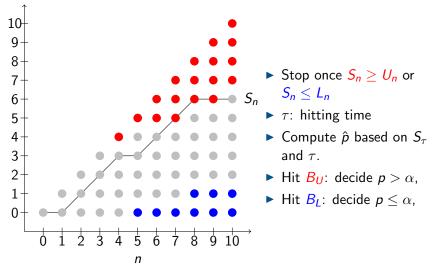


Sequential approaches based on $S_n = \sum_{i=1}^n X_i$

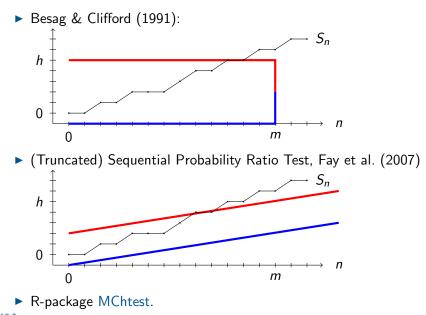


London

Sequential approaches based on $S_n = \sum_{i=1}^n X_i$



Previous Approaches



Imperial College Axel Gandy Sequential Implementation of Monte Carlo Tests with Uniformly Bounded Resampling Risk 4

< (7)

Is $p \leq \alpha$?

Two individuals using the same statistical method on the same data should arrive at the same conclusion. *First law of applied statistics, Gleser (1996)*

Consider the resampling risk

$$\mathsf{RR}_{\rho}(\hat{p}) \equiv \begin{cases} \mathsf{P}_{\rho}(\hat{p} > \alpha) & \text{if } p \leq \alpha, \\ \mathsf{P}_{\rho}(\hat{p} \leq \alpha) & \text{if } p > \alpha. \end{cases}$$

Want:

 $\sup_{p \in [0,1]} \mathsf{RR}_{p}(\hat{p}) \leq \epsilon$

for some (small) $\epsilon > 0$. For Besag & Clifford (1991), SPRT: sup_p RR_P \geq 0.5

Imperial College

Axel Gandy

Sequential Implementation of Monte Carlo Tests with Uniformly Bounded Resampling Risk 5

Is $p \leq \alpha$?

Two individuals using the same statistical method on the same data should arrive at the same conclusion. *First law of applied statistics, Gleser (1996)*

Consider the resampling risk

$$\mathsf{RR}_{p}(\hat{p}) \equiv \begin{cases} \mathsf{P}_{p}(\hat{p} > \alpha) & \text{if } p \leq \alpha, \\ \mathsf{P}_{p}(\hat{p} \leq \alpha) & \text{if } p > \alpha. \end{cases}$$

Want:

 $\sup_{p \in [0,1]} \mathsf{RR}_p(\hat{p}) \le \epsilon$

for some (small) $\epsilon > 0$. For Besag & Clifford (1991), SPRT: sup_p RR_P \geq 0.5

Imperial College

Axel Gandy

Sequential Implementation of Monte Carlo Tests with Uniformly Bounded Resampling Risk 5

< 67 b

Is
$$p \leq \alpha$$
?

Two individuals using the same statistical method on the same data should arrive at the same conclusion. *First law of applied statistics, Gleser (1996)*

Consider the resampling risk

$$\mathsf{RR}_{p}(\hat{p}) \equiv \begin{cases} \mathsf{P}_{p}(\hat{p} > \alpha) & \text{if } p \leq \alpha, \\ \mathsf{P}_{p}(\hat{p} \leq \alpha) & \text{if } p > \alpha. \end{cases}$$

Want:

 $\sup_{p \in [0,1]} \mathsf{RR}_p(\hat{p}) \le \epsilon$

for some (small) $\epsilon > 0$. For Besag & Clifford (1991), SPRT: $\sup_{p} RR_{P} \ge 0.5$

Imperial College

Axel Gandy

Sequential Implementation of Monte Carlo Tests with Uniformly Bounded Resampling Risk 5

Is
$$p \leq \alpha$$
?

Two individuals using the same statistical method on the same data should arrive at the same conclusion. *First law of applied statistics, Gleser (1996)*

Consider the resampling risk

$$\mathsf{RR}_{p}(\hat{p}) \equiv \begin{cases} \mathsf{P}_{p}(\hat{p} > \alpha) & \text{if } p \leq \alpha, \\ \mathsf{P}_{p}(\hat{p} \leq \alpha) & \text{if } p > \alpha. \end{cases}$$

Want:

 $\sup_{\in [0,1]} \mathsf{RR}_p(\hat{p}) \leq \epsilon$

for some (small) $\epsilon >$ 0. For Besag & Clifford (1991), SPRT: $\sup_p {\sf RR}_P \ge 0.5$

Imperial College

Axel Gandy

Sequential Implementation of Monte Carlo Tests with Uniformly Bounded Resampling Risk 5

Is
$$p \leq \alpha$$
?

Two individuals using the same statistical method on the same data should arrive at the same conclusion. *First law of applied statistics, Gleser (1996)*

Consider the resampling risk

$$\mathsf{RR}_{p}(\hat{p}) \equiv \begin{cases} \mathsf{P}_{p}(\hat{p} > \alpha) & \text{if } p \leq \alpha, \\ \mathsf{P}_{p}(\hat{p} \leq \alpha) & \text{if } p > \alpha. \end{cases}$$

Want:

 $\sup_{p \in [0,1]} \mathsf{RR}_p(\hat{p}) \le \epsilon$

for some (small) $\epsilon > 0$. For Besag & Clifford (1991), SPRT: sup_p RR_P \geq

Imperial College Axel Gandy Sequential Implementation of Monte Carlo Tests with Uniformly Bounded Resampling Risk 5

Is
$$p \leq \alpha$$
?

Two individuals using the same statistical method on the same data should arrive at the same conclusion. *First law of applied statistics, Gleser (1996)*

Consider the resampling risk

$$\mathsf{RR}_{p}(\hat{p}) \equiv \begin{cases} \mathsf{P}_{p}(\hat{p} > \alpha) & \text{if } p \leq \alpha, \\ \mathsf{P}_{p}(\hat{p} \leq \alpha) & \text{if } p > \alpha. \end{cases}$$

Want:

 $\sup_{p \in [0,1]} \mathsf{RR}_p(\hat{p}) \le \epsilon$

for some (small) $\epsilon > 0$. For Besag & Clifford (1991), SPRT: sup_p RR_P ≥ 0.5

Imperial College Axel Gandy Sequential Implementation of Monte Carlo Tests with Uniformly Bounded Resampling Risk 5

Want:

 $\sup_{p} \mathsf{RR}_{p}(\hat{p}) \leq \epsilon$

Suffices to ensure

 $P_{\alpha}(\text{hit } B_{U}) \leq \epsilon$ $P_{\alpha}(\text{hit } B_{L}) \leq \epsilon$

Recursive definition:

Given U_1, \ldots, U_{n-1} and L_1, \ldots, L_{n-1} , define

▶ U_n as the minimal value such that

 $P_{\alpha}(hit B_U until n) \leq \epsilon_n$

▶ and L, as the maximal value such that

 $P_{\alpha}(\text{hit } B_{L} \text{ until } n) \leq \epsilon_{n}$

4 **A**

where $\epsilon_n \geq 0$ with $\epsilon_n \nearrow \epsilon$ (spending sequence).

Imperial College Axel Gandy Sequential Implementation of Monte Carlo Tests with Uniformly Bounded Resampling Risk 6

Want:

 $\sup_{p} \mathsf{RR}_{p}(\hat{p}) \leq \epsilon$

Suffices to ensure

 $\begin{aligned} \mathsf{P}_{\alpha}(\mathsf{hit} \ \mathbf{B}_{U}) &\leq \epsilon \\ \mathsf{P}_{\alpha}(\mathsf{hit} \ \mathbf{B}_{L}) &\leq \epsilon \end{aligned}$

Recursive definition:

Given U_1, \ldots, U_{n-1} and L_1, \ldots, L_{n-1} , define

U_n as the minimal value such that

 $\mathsf{P}_{\alpha}(\mathsf{hit} \ \mathbf{B}_{U} \text{ until } n) \leq \epsilon_{n}$

▶ and L_n as the maximal value such that

 $P_{\alpha}(\text{hit } B_{L} \text{ until } n) \leq \epsilon_{n}$

4 **A**

where $\epsilon_n \geq 0$ with $\epsilon_n \nearrow \epsilon$ (spending sequence).

Imperial College Axel Gandy Sequential Implementation of Monte Carlo Tests with Uniformly Bounded Resampling Risk 6

Want:

 $\sup_{p} \mathsf{RR}_{p}(\hat{p}) \leq \epsilon$

Suffices to ensure

 $P_{\alpha}(\text{hit } B_{U}) \leq \epsilon$ $P_{\alpha}(\text{hit } B_{L}) \leq \epsilon$

Recursive definition:

Given U₁,..., U_{n-1} and L₁,..., L_{n-1}, define ► U_n as the minimal value such that

 $P_{\alpha}(hit B_{U} until n) \leq \epsilon_{n}$

▶ and *L_n* as the maximal value such that

 $P_{\alpha}(\text{hit } B_{L} \text{ until } n) \leq \epsilon_{n}$

< 67 ►

where $\epsilon_n \geq 0$ with $\epsilon_n \nearrow \epsilon$ (spending sequence).

Imperial College Axel Gandy Sequential Implementation of Monte Carlo Tests with Uniformly Bounded Resampling Risk 6 London

Want:

 $\sup_{p} \mathsf{RR}_{p}(\hat{p}) \leq \epsilon$

Suffices to ensure

 $\begin{aligned} \mathsf{P}_{\alpha}(\mathsf{hit} \ \mathbf{B}_{U}) &\leq \epsilon \\ \mathsf{P}_{\alpha}(\mathsf{hit} \ \mathbf{B}_{L}) &\leq \epsilon \end{aligned}$

Recursive definition:

Given U_1, \ldots, U_{n-1} and L_1, \ldots, L_{n-1} , define

U_n as the minimal value such that

 $P_{\alpha}(\text{hit } B_{U} \text{ until } n) \leq \epsilon_{n}$

▶ and *L_n* as the maximal value such that

 $P_{\alpha}(\text{hit } B_{L} \text{ until } n) \leq \epsilon_{n}$

< (F) >

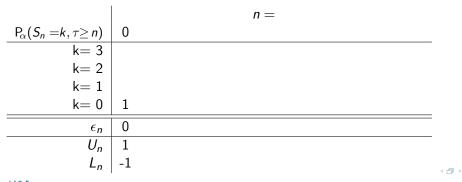
where $\epsilon_n \geq 0$ with $\epsilon_n \nearrow \epsilon$ (spending sequence).

•
$$\alpha = 0.2$$
, $\epsilon_n = 0.4 \frac{n}{5+n}$.
• U_n =the minimal value such that

 $\mathsf{P}_{\alpha}(\mathsf{hit} \ \mathbf{B}_{U} \text{ until } n) \leq \epsilon_{n}$

• $L_n = \max$ maximal value such that

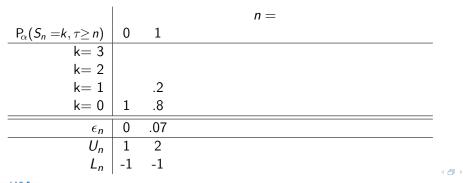
 $P_{\alpha}(\text{hit } B_{L} \text{ until } n) \leq \epsilon_{n}$



 $\mathsf{P}_{\alpha}(\mathsf{hit} \ \mathbf{B}_{U} \text{ until } n) \leq \epsilon_{n}$

• L_n = maximal value such that

 $P_{\alpha}(\text{hit } B_{L} \text{ until } n) \leq \epsilon_{n}$

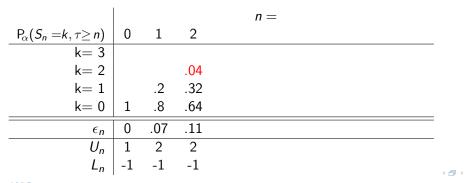


Imperial College

 $\mathsf{P}_{\alpha}(\mathsf{hit} \ \mathbf{B}_{U} \text{ until } n) \leq \epsilon_{n}$

• L_n = maximal value such that

 $P_{\alpha}(\text{hit } B_{L} \text{ until } n) \leq \epsilon_{n}$



•
$$\alpha = 0.2$$
, $\epsilon_n = 0.4 \frac{n}{5+n}$.
• U_n =the minimal value such that

 $P_{\alpha}(\text{hit } B_{U} \text{ until } n) \leq \epsilon_{n}$

 \blacktriangleright $L_n = \max$ maximal value such that

 $P_{\alpha}(\text{hit } B_{L} \text{ until } n) \leq \epsilon_{n}$

Imperial College London

Axel Gandy

< 🗇 >

•
$$\alpha = 0.2$$
, $\epsilon_n = 0.4 \frac{n}{5+n}$.
• U_n =the minimal value such that

 $\mathsf{P}_{\alpha}(\mathsf{hit} \ \mathbf{B}_{U} \text{ until } n) \leq \epsilon_{n}$

• L_n = maximal value such that

 $P_{\alpha}(hit B_{L} until n) \leq \epsilon_{n}$

					n =	
$P_{\alpha}(S_n = k, \tau \ge n)$	0	1	2	3	4	
k= 3						
k= 2			.04	.06	.08	
k=1		.2	.32	.38	.41	
k= 0	1	.8	.64	.51	.41	
ϵ_n	0	.07	.11	.15	.18	
Un	1	2	2	2	3	
L _n	-1	-1	-1	-1	-1	

Imperial College

Axel Gandy

< 🗇 >

•
$$\alpha = 0.2$$
, $\epsilon_n = 0.4 \frac{n}{5+n}$.
• U_n =the minimal value such that

 $\mathsf{P}_{\alpha}(\mathsf{hit} \ \mathbf{B}_{U} \text{ until } n) \leq \epsilon_{n}$

• L_n = maximal value such that

 $P_{\alpha}(hit B_{L} until n) \leq \epsilon_{n}$

					n =		
$P_{\alpha}(S_n = k, \tau \ge n)$	0	1	2	3	4	5	
k= 3						.02	
k= 2			.04	.06	.08	.14	
k=1		.2	.32	.38	.41	.41	
k= 0	1	.8	.64	.51	.41	.33	
ϵ_n	0	.07	.11	.15	.18	.20	
Un	1	2	2	2	3	3	
L _n	-1	-1	-1	-1	-1	-1	

Imperial College

< 🗇 >

•
$$\alpha = 0.2$$
, $\epsilon_n = 0.4 \frac{n}{5+n}$.
• U_n =the minimal value such that

 $\mathsf{P}_{\alpha}(\mathsf{hit} \ \mathbf{B}_{U} \text{ until } n) \leq \epsilon_{n}$

• L_n = maximal value such that

 $P_{\alpha}(hit B_{L} until n) \leq \epsilon_{n}$

					n =			
$P_{\alpha}(S_n = k, \tau \ge n)$	0	1	2	3	4	5	6	
k= 3						.02	.03	
k= 2			.04	.06	.08	.14	.20	
k=1		.2	.32	.38	.41	.41	.39	
k= 0	1	.8	.64	.51	.41	.33	.26	
ϵ_n	0	.07	.11	.15	.18	.20	.22	
Un	1	2	2	2	3	3	3	
L _n	-1	-1	-1	-1	-1	-1	-1	

Imperial College

Axel Gandy

< 🗇 >

•
$$\alpha = 0.2$$
, $\epsilon_n = 0.4 \frac{n}{5+n}$.
• U_n =the minimal value such that

 $\mathsf{P}_{\alpha}(\mathsf{hit} \ \mathbf{B}_{U} \text{ until } n) \leq \epsilon_{n}$

• L_n = maximal value such that

 $P_{\alpha}(hit B_{L} until n) \leq \epsilon_{n}$

					n =				
$P_{\alpha}(S_n = k, \tau \ge n)$	0	1	2	3	4	5	6	7	
k= 3						.02	.03	.04	
k= 2			.04	.06	.08	.14	.20	.24	
k=1		.2	.32	.38	.41	.41	.39	.37	
k= 0	1	.8	.64	.51	.41	.33	.26	.21	
ϵ_n	0	.07	.11	.15	.18	.20	.22	.23	
Un	1	2	2	2	3	3	3	3	
L _n	-1	-1	-1	-1	-1	-1	-1	0	

Imperial College

< 🗇 >

 $\mathsf{P}_{\alpha}(\mathsf{hit} \ \mathbf{B}_{U} \text{ until } n) \leq \epsilon_{n}$

• L_n = maximal value such that

 $P_{\alpha}(hit B_{L} until n) \leq \epsilon_{n}$

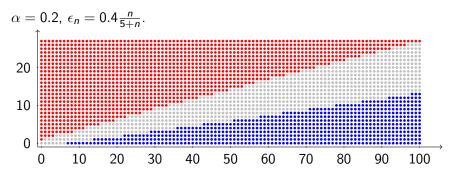
					<i>n</i> =					
$P_{\alpha}(S_n = k, \tau \ge n)$	0	1	2	3	4	5	6	7	8	
k= 3						.02	.03	.04	.05	
k= 2			.04	.06	.08	.14	.20	.24	.26	
k=1		.2	.32	.38	.41	.41	.39	.37	.29	
k= 0	1	.8	.64	.51	.41	.33	.26	.21		
ϵ_n	0	.07	.11	.15	.18	.20	.22	.23	.25	
Un	1	2	2	2	3	3	3	3	3	
L _n	-1	-1	-1	-1	-1	-1	-1	0	0	

Imperial College

Axel Gandy

< @ ► 7

Sequential Decision Procedure - Example



п

< 67 b

Influence of ϵ on the stopping rule

$$\epsilon = 0.1, 0.001, 10^{-5}, 10^{-7}; \epsilon_n = \epsilon \frac{n}{1000+n}$$



Imperial College London

Axel Gandy

Sequential Implementation of Monte Carlo Tests with Uniformly Bounded Resampling Risk

Sequential Estimation based on the MLE

$$\hat{p} = \begin{cases} \frac{S_{\tau}}{\tau}, & \tau < \infty \\ \alpha, & \tau = \infty, \end{cases}$$

One can show:

- hitting the upper boundary implies $\hat{p} > \alpha$,
- hitting the lower boundary implies $\hat{p} < \alpha$.

Hence,

$$\sup_{p} \mathsf{RR}_{p}(\hat{p}) \leq \epsilon$$

- Furthermore, \exists random interval I_n s.t.
 - I_n only depends on X_1, \ldots, X_n ,
 - ▶ $\hat{p} \in I_n$.

Example - Two-way sparse contingency table

- H_0 : variables are independent.
- Reject for large values of the likelihood ratio test statistic T
- $T \xrightarrow{d} \chi^2_{(7-1)(5-1)}$ under H_0 . Based on this: p = 0.031.
- Matrix sparse approximation poor?
- Use parametric bootstrap based on row and column sums.
- Naive test statistic \hat{p}_{naive} with n = 1,000 replicates: p = 0.041 < 0.05.
 - Probability of reporting p > 0.05: roughly 0.08.

< 67 ►

Example - Two-way sparse contingency table

1	2	2	1	1	0	1
2	0	0	2	3	0	0
0	1	1	1	2	7	3
1	1	2	0	0	0	1
0	1	1	1	1	0	0

- ► *H*₀: variables are independent.
- Reject for large values of the likelihood ratio test statistic T
- ▶ $T \xrightarrow{d} \chi^2_{(7-1)(5-1)}$ under H_0 . Based on this: p = 0.031.
- Matrix sparse approximation poor?
- Use parametric bootstrap based on row and column sums.
- Naive test statistic \hat{p}_{naive} with n = 1,000 replicates: p = 0.041 < 0.05.

Probability of reporting p > 0.05: roughly 0.08.

< 67 ►

Example - Two-way sparse contingency table

1	2	2	1	1	0	1
2	0	0	2	3	0	0
0	1	1	1	2	7	3
1	1	2	0	0	0	1
0	1	1	1	1	0	0

- H_0 : variables are independent.
- Reject for large values of the likelihood ratio test statistic T
- ▶ $T \xrightarrow{d} \chi^2_{(7-1)(5-1)}$ under H_0 . Based on this: p = 0.031.
- Matrix sparse approximation poor?
- Use parametric bootstrap based on row and column sums.
- Naive test statistic \hat{p}_{naive} with n = 1,000 replicates: p = 0.041 < 0.05.

Probability of reporting p > 0.05: roughly 0.08.

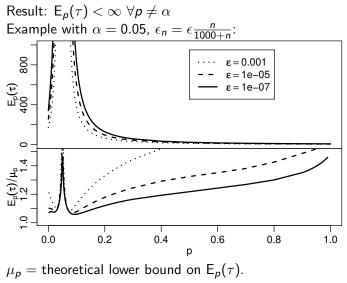
Example - Bootstrap and Sequential Algorithm

```
> dat <- matrix(c(1,2,2,1,1,0,1, 2,0,0,2,3,0,0, 0,1,1,1,2,7,3, 1,1,2,0,0,0,1,
                  0,1,1,1,1,0,0), nrow=5,ncol=7,byrow=TRUE)
+
> loglikrat <- function(data){</pre>
+ cs <- colSums(data);rs <- rowSums(data); mu <- outer(rs,cs)/sum(rs)
   2*sum(ifelse(data<=0.5, 0,data*log(data/mu)))
+
+ }
> resample <- function(data){</pre>
+ cs <- colSums(data);rs <- rowSums(data); n <- sum(rs)
   mu <- outer(rs,cs)/n/n</pre>
+
   matrix(rmultinom(1,n,c(mu)),nrow=dim(data)[1],ncol=dim(data)[2])
+
+ }
> t <- loglikrat(dat);</pre>
> library(simctest)
> res <- simctest(function(){loglikrat(resample(dat))>=t},maxsteps=1000)
> res
No decision reached.
Final estimate will be in [ 0.02859135 , 0.07965451 ]
Current estimate of the p.value: 0.041
Number of samples: 1000
> cont(res, steps=10000)
p.value: 0.04035456
Number of samples: 8574
```

Further Uses of the Algorithm

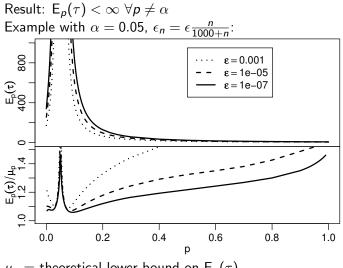
- Simulation study to evaluate whether a test is liberal/conservative.
- Determining the sample size to achieve a certain power.
- Iterated Use:
 - Determining the power of a bootstrap test.
 - Simulation study to evaluate whether a bootstrap test is liberal/conservative.
 - Double bootstrap test.

Expected Hitting Time



- Note: $\int_0^1 \mu_p dp = \infty$;
- for iterated use: Need to limit the number of steps.

Expected Hitting Time



 μ_p = theoretical lower bound on $E_p(\tau)$.

- Note: $\int_0^1 \mu_p dp = \infty$;
- for iterated use: Need to limit the number of steps.

Summary

- Sequential implementation of Monte Carlo Tests and computation of *p*-values.
- Useful when implementing tests in packages.
- After a finite number of steps:
 - ▶ *p̂* or
 - interval $[\hat{p}_n^L, \hat{p}_n^U]$ in which \hat{p} will lie.
- Guarantee (up to a very small error probability):

 \hat{p} is on the "correct side" of α .

- R-package simctest available on CRAN. (efficient implementation with C-code)
- ▶ For details see Gandy (2009).

References

- Besag, J. & Clifford, P. (1991). Sequential Monte Carlo p-values. *Biometrika* 78, 301–304.
- Davison, A. & Hinkley, D. (1997). Bootstrap methods and their application. Cambridge University Press.
- Fay, M. P., Kim, H.-J. & Hachey, M. (2007). On using truncated sequential probability ratio test boundaries for Monte Carlo implementation of hypothesis tests. *Journal of Computational & Graphical Statistics* 16, 946 – 967.
- Gandy, A. (2009). Sequential implementation of Monte Carlo tests with uniformly bounded resampling risk. Accepted for publication in JASA.
- Gleser, L. J. (1996). Comment on *Bootstrap Confidence Intervals* by T. J. DiCiccio and B. Efron. *Statistical Science* 11, 219–221.