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Introduction

◮ Test statistic T , reject for large values.
◮ Observation: t.
◮ p-value:

p = P(T ≥ t)

Often not available in closed form.
◮ Monte Carlo Test:

p̂naive =
1

n

n∑

i=1

I(Ti ≥ t),

where T ,T1, . . .Tn i.i.d.
◮ Examples:

◮ Bootstrap,
◮ Permutation tests.

◮ Goal: Estimate p using few Xi

Mainly interested in deciding if p ≤ α for some α.
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Sequential approaches based on Sn =
∑n

i=1 Xi
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◮ Stop once Sn ≥ Un or
Sn ≤ Ln

◮ τ : hitting time

◮ Compute p̂ based on Sτ

and τ .

◮ Hit BU : decide p > α,

◮ Hit BL: decide p ≤ α,
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Previous Approaches

◮ Besag & Clifford (1991):

0 m
n

0

h

Sn

◮ (Truncated) Sequential Probability Ratio Test, Fay et al. (2007)

0 m
n

0

h

Sn

◮ R-package MChtest.
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What do we really want?

Is p ≤ α?

Two individuals using the same statistical method on the same data
should arrive at the same conclusion.

First law of applied statistics, Gleser (1996)

Consider the resampling risk

RRp(p̂) ≡

{

Pp(p̂ > α) if p ≤ α,

Pp(p̂ ≤ α) if p > α.

Want:
sup

p∈[0,1]
RRp(p̂) ≤ ǫ

for some (small) ǫ > 0.
For Besag & Clifford (1991), SPRT: supp RRP ≥ 0.5
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Recursive Definition of the Boundaries

Want:
sup
p

RRp(p̂) ≤ ǫ

Suffices to ensure

Pα(hit BU) ≤ ǫ

Pα(hit BL) ≤ ǫ

Recursive definition:
Given U1, . . . ,Un−1 and L1, . . . , Ln−1, define

◮ Un as the minimal value such that

Pα(hit BU until n) ≤ ǫn

◮ and Ln as the maximal value such that

Pα(hit BL until n) ≤ ǫn

where ǫn ≥ 0 with ǫn ր ǫ (spending sequence).
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Recursive Definition - Example

◮ α = 0.2, ǫn = 0.4 n
5+n

.
◮ Un=the minimal value such that

Pα(hit BU until n) ≤ ǫn

◮ Ln = maximal value such that

Pα(hit BL until n) ≤ ǫn

n =
Pα(Sn =k, τ≥n) 0

k= 3
k= 2
k= 1
k= 0 1

ǫn 0

Un 1
Ln -1
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Sequential Decision Procedure - Example

α = 0.2, ǫn = 0.4 n
5+n

.

0 10 20 30 40 50 60 70 80 90 100
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20
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Influence of ǫ on the stopping rule

ǫ = 0.1, 0.001, 10−5, 10−7; ǫn = ǫ
n

1000+n
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Sequential Estimation based on the MLE

p̂ =







Sτ

τ
, τ < ∞

α, τ = ∞,

◮ One can show:
◮ hitting the upper boundary implies p̂ > α,
◮ hitting the lower boundary implies p̂ < α.

Hence,
sup
p

RRp(p̂) ≤ ǫ

◮ Furthermore, ∃ random interval In s.t.
◮ In only depends on X1, . . . ,Xn,
◮ p̂ ∈ In.
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Example - Two-way sparse contingency table

1 2 2 1 1 0 1
2 0 0 2 3 0 0
0 1 1 1 2 7 3
1 1 2 0 0 0 1
0 1 1 1 1 0 0

◮ H0: variables are independent.

◮ Reject for large values of the likelihood ratio test statistic T

◮ T
d
→ χ2

(7−1)(5−1) under H0. Based on this: p = 0.031.

◮ Matrix sparse - approximation poor?

◮ Use parametric bootstrap based on row and column sums.

◮ Naive test statistic p̂naive with n = 1,000 replicates:
p = 0.041 < 0.05.
Probability of reporting p > 0.05: roughly 0.08.

Axel Gandy Sequential Implementation of Monte Carlo Tests with Uniformly Bounded Resampling Risk 11



Example - Two-way sparse contingency table

1 2 2 1 1 0 1
2 0 0 2 3 0 0
0 1 1 1 2 7 3
1 1 2 0 0 0 1
0 1 1 1 1 0 0

◮ H0: variables are independent.

◮ Reject for large values of the likelihood ratio test statistic T

◮ T
d
→ χ2

(7−1)(5−1) under H0. Based on this: p = 0.031.

◮ Matrix sparse - approximation poor?

◮ Use parametric bootstrap based on row and column sums.

◮ Naive test statistic p̂naive with n = 1,000 replicates:
p = 0.041 < 0.05.
Probability of reporting p > 0.05: roughly 0.08.

Axel Gandy Sequential Implementation of Monte Carlo Tests with Uniformly Bounded Resampling Risk 11



Example - Two-way sparse contingency table

1 2 2 1 1 0 1
2 0 0 2 3 0 0
0 1 1 1 2 7 3
1 1 2 0 0 0 1
0 1 1 1 1 0 0

◮ H0: variables are independent.

◮ Reject for large values of the likelihood ratio test statistic T

◮ T
d
→ χ2

(7−1)(5−1) under H0. Based on this: p = 0.031.

◮ Matrix sparse - approximation poor?

◮ Use parametric bootstrap based on row and column sums.

◮ Naive test statistic p̂naive with n = 1,000 replicates:
p = 0.041 < 0.05.
Probability of reporting p > 0.05: roughly 0.08.

Axel Gandy Sequential Implementation of Monte Carlo Tests with Uniformly Bounded Resampling Risk 11



Example - Bootstrap and Sequential Algorithm

> dat <- matrix(c(1,2,2,1,1,0,1, 2,0,0,2,3,0,0, 0,1,1,1,2,7,3, 1,1,2,0,0,0,1,

+ 0,1,1,1,1,0,0), nrow=5,ncol=7,byrow=TRUE)

> loglikrat <- function(data){

+ cs <- colSums(data);rs <- rowSums(data); mu <- outer(rs,cs)/sum(rs)

+ 2*sum(ifelse(data<=0.5, 0,data*log(data/mu)))

+ }

> resample <- function(data){

+ cs <- colSums(data);rs <- rowSums(data); n <- sum(rs)

+ mu <- outer(rs,cs)/n/n

+ matrix(rmultinom(1,n,c(mu)),nrow=dim(data)[1],ncol=dim(data)[2])

+ }

> t <- loglikrat(dat);

> library(simctest)

> res <- simctest(function(){loglikrat(resample(dat))>=t},maxsteps=1000)

> res

No decision reached.

Final estimate will be in [ 0.02859135 , 0.07965451 ]

Current estimate of the p.value: 0.041

Number of samples: 1000

> cont(res, steps=10000)

p.value: 0.04035456

Number of samples: 8574



Further Uses of the Algorithm

◮ Simulation study to evaluate whether a test is
liberal/conservative.

◮ Determining the sample size to achieve a certain power.

◮ Iterated Use:
◮ Determining the power of a bootstrap test.
◮ Simulation study to evaluate whether a bootstrap test is

liberal/conservative.
◮ Double bootstrap test.
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Expected Hitting Time
Result: Ep(τ) < ∞ ∀p 6= α

Example with α = 0.05, ǫn = ǫ
n

1000+n
:

0
4
0
0

8
0
0

E
p
((ττ

))

εε == 0.001

εε == 1e−05

εε == 1e−07

0.0 0.2 0.4 0.6 0.8 1.0

1
.0

1
.2

1
.4

p

E
p
((ττ

))
µµ p

µp = theoretical lower bound on Ep(τ).

◮ Note:
∫ 1
0 µpdp = ∞;

◮ for iterated use: Need to limit the number of steps.
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Summary

◮ Sequential implementation of Monte Carlo Tests and
computation of p-values.

◮ Useful when implementing tests in packages.

◮ After a finite number of steps:
◮ p̂ or

◮ interval [p̂L
n , p̂U

n ] in which p̂ will lie.

◮ Guarantee (up to a very small error probability):

p̂ is on the “correct side” of α.

◮ R-package simctest available on CRAN.
(efficient implementation with C-code)

◮ For details see Gandy (2009).
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