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A novel Monte Carlo method for linkage analyses involving large pedigrees and 
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method are discussed. CI 1993 Wiley-Liss, Inc. 
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INTRODUCTION 

In both disease mapping and mapping of genetic markers, often many linked loci 
have to be handled simultaneously. Computationally efficient algorithms for calculating 
likelihoods are available for large pedigrees with a small number of loci, and small 
pedigrees with a large number of loci. However, for large pedigrees with a large number 
of loci, especially those that have substantial missing data, exact evaluation of a single 
likelihood value can be prohibitive because of the required memory and computing time. 
In this paper, a method called sequential imputation is proposed to handle problems of 
this type. It is aMonte Carlo approach that applies the traditional technique of importance 
sampling in a novel fashion. Based on a fixed value of the parameter, missing data are 
imputed conditioned on the observed data. The loci are processed one (or a few) at a time 
to reduce the demand on computational resources. The result is a collection of complete 
data sets with associated weights. Not only can the weights be used to estimate the 
likelihood of the parameter value used for the imputations, but the complete data sets can 
also be used to approximate the whole likelihood surface. 

METHOD 

In multilocus linkage problems, if for each person and each locus it is known 
exactly what allele is inherited from the father and what allele is inherited from the 
mother, the likelihood function is trivial to evaluate. We refer to this information which 
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is desirable, but not available (as least not entirely), as missing data and denote it by z .  
The observed data, denoted by y, include marker genotypes for some members of the 
pedigree. In the case of disease mapping, y will also include available disease phenotypes 
of the members. The combination y, z is referred to as the complete data. 

Let 8 be the unknown parameter vector so that the likelihood function is L(8) = 

PO@). In the case of disease mapping, 8 is often a scalar that denotes the location of the 
disease gene relative to a set of markers whose locations are assumed to be known; 8 may 
also incorporate other parameters such as marker allele frequencies and parameters 
relating the disease genotype and phenotype. In linkage mapping of markers, 8 is a 
vector that denotes the relative locations among a collection of markers. 

Let b,, ...y,} and {zl, ...,z,} be some decomposition of y and z.  At this time, 
assume that there are n loci so that for t = 1 ,. . , ,n, y t  and zf are respectively the observed 
and missing data on locus t .  Other decompositions will be considered later. Note that the 
labels t, t = 1 ,. . . ,n, do not necessarily correspond to the physical ordering, assumed or 
real, of the loci. Given a certain value of 8, sequential imputation [Kong et al., 19911 is 
a Monte Carlo method that allows us to obtain an unbiased estimate of L(8) and generate 
weighted samples of z = {z,, ...,z,} from the conditional distribution Pe(z I y). The 
method involves first simulating z: from pe(ZI I y , )  and computing w, =pebl). Then the 
following two steps are applied for t = 2,. . . ,n, in increasing order oft:  

(A) Simulate z; from the conditional distribution pO(zt I y, ,  z:,. . . yt-l, zf-,, yf). Notice 
that the z;’s have to be simulated sequentially since each zf is simulated conditioned 
on the previously imputed missing parts z;,. . . , ZT-, 
Sequentially compute the predictive probabilities p O b f  1 y, ,  z:,.. .yt- , ,  (B) and wt 
- 
- Wt-1 P& Iv,, z:,...&-, > and set w = w,. 

Given the decompositions described above, for each t, (A) and (B) are done 
simultaneously and involve a single locus peel. Kong [1991] provides details on how to 
simulate missing data for one locus conditioned on the imputed missing data of other loci. 
Steps (A) and (B) are done repeatedly and independently m times. The choice of my the 
number of imputations, is discussed later. Let the results be denoted z*( l),. . . , z*(m) and 
w(1) ,..., w(m), where z*(j) = {zf(j) ,... ,zi(j)} fo r j  = 1 ,..., m. Note that z*(j) is simulated 
from the distribution 
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AS a consequence, w = m-1 xy=, w(j) is an unbiased estimate of L(8). 
Besides getting an unbiased estimate of the likelihood, the samples z* G),j = 

1,. . . ,m, generated by sequential imputation can be treated as weighted samples (weight 
cc wG)) taken from the conditional distribution pe(Z I y). These samples can be used to 
estimate the likelihoods ofother parameter values. Following Thompson and Guo [ 19911, 
let 

h(Y,Z)=Pglol,Z) I P80(YJ) 

be the complete data likelihood ratio, where 8,, and are two values of 8. Note that both 
and pg,(y,z) and Pe,(Y,z), the complete data likelihoods, usually can be easily evaluated 
given any z. If the sequential imputation is applied based on a parameter value 8,, then 

=Pelol), 

which implies that m-'xy=,h(y,Z*(j))W(j) is an unbiased estimate of L(8,). Hence, by 
applying sequential imputation based on a parameter value B0, an unbiased estimate of 
the likelihood for any other parameter value can be obtained. 

EFFICIENCY AND SAMPLE SIZE 

The coefficient of variation of W ,  C[ W], measures the relative standard error of W, 
as an estimate ofp&y). We have 

1 1 J W T -  -- 1 /- C[W] =-C[wO]] =- 
fi fi Ep4wO1l fi Pool) 

1 1 S W  Its sample estimate isC[i]=-d[wO)l=-jz= , where sw denotes the sample standard 

deviation of the w(j)'s. For C[ W] to be some desirable value 6, m has to be equal to 6-2 
x (C[ W(j)])2. For example, suppose we want C[ W] to be around 0.1. Based on the 
samples, this implies that the number of imputations needs to be about 100 x s$ W2. Note 
that C[ W ]  is approximately the standard error of loge W as an estimate of loge L(8). In 

J;;; 
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the scale of the lod score, C[ W] = 0.1 corresponds to a standard error of 0.1 x loglo e = 
0.043. 

As demonstrated, the efficiency of the method is inversely proportional to 
( C [ W ( ~ ) ] ) ~ .  Note that C[w(j)] depends on the distribution from which the z*'s are 
simulated, which in turn depends on the decompositions of y and z used for sequential 
imputations. From (1) we have w(j) = pg(y)ps(z*(i> I y)/pi(z*(j) I y). In importance 
sampling, p* is referred to as the trial distribution, and the ratio pg(z*(j) I y)/pz(z*(j) I y) 
is called the importance sampling weight, so that w(j) is the importance sampling 
weight multiplied by the unknown constant pe(Y). This implies that 
(CI~~)l)~=Va$*~gz*~) ly) /pi(z'(j)  Iy)] can be considered as ameasure ofdistance between 
the actual conditional distribution of z, pg(z 1 y), and the trial distribution pi( .  1 y). To 
keep this distance small, it is desirable to have pi<. I y) as close topg(' I y) as possible. 

In section 2, we considered a special decomposition of the observed data y and the 
missing data z, i.e., yt  and zt denote respectively the observed and missing data of a single 
locus 1. To improve efficiency, it is necessary to consider other decompositions. Two 
criteria for choosing the appropriate decompositions are: (I) steps (A) and (B) can be 
performed inexpensively, in terms of both computing time and memory requirement; (11) 
the coefficient of variation C[w(j)] is kept small. Note that (I) and (11) are often 
conflicting crittria. For example, under the trivial decomposition y = b,} and z = { z , } ,  
pe(z I y) =p$(z I y) and w(j) = p e ( y )  with zero variation. But doing this requires peeling 
all the loci jointly, which is exactly what we are trying to avoid. We now present a few 
modifications of the basic procedure proposed in section 2 which will help to reduce the 
variation of w(j) without increasing difficulties in computation. 

Note that p(z I y) can be written as p(zl ly)n",, p(~~~y,z~,...,z~-~). So simulating z: 
from p(zl I y) is obviously preferable to simulating z: from p(zl  I y,) ifthe former can be 
done cheaply. This suggests that, when simulating zy, as much information as possible 
should be conditioned on as long as it does not increase computational cost. For each 
locus, each person, and each of their parents, define an identity-by-descent (IBD) variable 
as the indicator of whether the allele inherited by the person came from the grandfather 
or the grandmother. Often, some of the IBD variables can be deduced from the observed 
data y. Here we redefine y,  to include the observed data on the first locus processed plus 
the IBD variables of other loci that can be deduced from the observed data. This change 
is easy to do and has virtually no effect on the amount of computation needed, but can 
reduce the variation of the weights substantially. 

Further gains can be made by incorporating more than one locus intoy,. Note that 
the first step of sequential imputation involves computing p&,) and simulating z:(j), 
j = 1 ,. . . ,m, from pg(z,  I y,). This requires peeling the loci incorporated in y ,  jointly, but 
note that only a single peel of these loci is needed for all m imputations. As long as the 
amount of computing time and memory required to perform this first peel are within 
acceptable limits, we should incorporate as many loci into y ,  as possible. This will 
decrease the variation of the weights and, as a consequence, possibly reduce the overall 
computing time. 

The 4's are imputed only because that helps to simplify computations. In section 
2, z included every locus and every member in the pedigree. In some cases, some 
members of the pedigree are typed for some, but not all, of the loci. For a particular 
person and locus, we call the missing data ignorable if neither the person nor any of 
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hisher descendants is typed for that locus. Since there is absolutely no information on 
these ignorable data, imputing them will only add noise and inflate the variation of the 
weights. Hence, for each t, t = 1 ,  ..., n, we redefine zt to include only data that are not 
ignorable. This redefinition does not make steps (A) and (B) more difficult and can 
reduce the computation time. But more important, doing this can drastically reduce the 
variance of the weights. 

The order the loci are processed affects the trial distribution p* and hence the 
variance, but not the mean, of the weights wu). An optimal order is one that minimizes 
the weight variance. An important guideline for choosing an optimal, or close to optimal, 
processing order is to start with loci that have the least amount of missing information 
among the nonignorable data. For two loci that have the same typed individuals, the one 
with more alleles, and hence usually more informative, should be processed first. Usually 
it is not too difficult to rank marker loci based on informativeness. 

Location scores for a disease gene relative to a number of marker loci with known 
locations can be estimated by a simple strategy. Set yn to be the observed disease data and 
process the markers first based on the above criteria. The average of the weights before 
processing the disease data, Gn-l= rn-'r=, wn-,(j), is an unbiased estimate ofpb,, .  ..y,-,). 
Hence Gn-l x p@,) is an unbiased estimate of the likelihood for the scenario that the 
disease locus is unlinked to the markers. Then process the disease locus at various 
locations linked to the marker loci. This strategy has the advantage that one set of marker 
imputations can be used to compute the likelihoods of all locations [Lange and Sobel, 
19911. Note that the estimates of the likelihoods for different locations all have easily 
computable standard errors. To increase efficiency for those that have very large standard 
errors, we can contemplate processing the disease locus first, maybe jointly with one or 
two markers close by for that particular assumed location of the disease locus. Finally, 
we note that it is usually enough to apply sequential imputation to a single location, 
probably in the middle, between two physically adjacent markers. Likelihoods for other 
locations in the interval can be estimated by the procedure discussed at the end of section 
2. An example of this procedure, involving a pedigree of 155 individuals, 8 loci, and 
32,256 haplotypes, is given in Kong et al. [ 19921. By performing m = 10,000 impuations, 
which took a total of 20 CPU hours on a SUN SPARG 1 workstation, location scores were 
obtained for the whole region. Standard errors were smaller than 0.05 on the lod score 
scale for most of these estimates. 

DISCUSSION 

Because of the inherent limitations of existing computer programs and algorithms 
that do exact computations of likelihoods, investigators often have to reduce the number 
of loci and the number of alleles per locus in their analyses. This leads to loss of 
information and can create bias. In addition, because of the inefficiency of computing 
likelihoods point by point, sensitivity analyses for diagnostic schemes or marker allele 
frequencies may be prohibitively time consuming. The method of sequential imputation 
introduced in this paper can drastically reduce the burden for multipoint computations and 
can encourage more complete analyses. 

Sequential imputation and other Monte Car10 methods [Guo and Thompson, 1992; 
Lange and Sobel, 19911 are most useful for problems in disease mapping where analyses 
involving large pedigrees with a substantial amount of missing data are unavoidable. For 
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mapping markers, because small nuclear families with little missing data can be 
concentrated on, exact computations of likelihoods and the implementation of the EM 
algorithm can be very fast even with a large number of loci, using packages based on the 
algorithm given in Lander and Green [1987]. Hence, the need for Monte Carlo methods 
is not as apparent. However, we feel that sequential imputation can still be useful, 
although less crucial, for marker mapping. The algorithm in Lander and Green [I9871 
depends critically on the assumption of lack of genetic interference. In comparison, 
sequential imputation can computationally incorporate interference without any additional 
cost. While we share the beliefs of many investigators that the effect of interference is 
likely to be small in most situations, the capability to compute probabilities and 
likelihoods under models that incorporate interference can only help to refine analyses. 
A related issue is that estimated genetic distances between markers are often published 
without associated standard errors. That can be explained partly by the technical 
difficulties in obtaining standard errors when the data are not complete. Sequential 
imputation can help to resolve this problem by using the complete data sets to 
approximate the information matrix at the maximum likelihood estimate. However, when 
the maximum likelihood estimate of any of the recombination probabilities is too close 
to zero, the standard errors obtained by inverting the information matrix may not be 
appropriate. The 
posterior distributions for the parameters based on carefully selected prior distributions 
can be approximated using the multiple complete data sets with suitable reweighting 
[Kong et al., 19911. Further investigations in these directions are warranted. 

In these situations, an alternative approach is Bayesian analysis, 
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