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Sequential Imputations and 
Bayesian Missing Data Problems 

Augustine KONG, Jun S. LIU, and Wing Hung WONG* 

For missing data problems, Tanner and Wong have described a data augmentation procedure that approximates the actual posterior 
distribution of the parameter vector by a mixture of complete data posteriors. Their method of constructing the complete data sets 
is closely related to the Gibbs sampler. Both required iterations, and, similar to the EM algorithm, convergence can be slow. We 
introduce in this article an alternative procedure that involves imputing the missing data sequentially and computing appropriate 
importance sampling weights. In many applications this new procedure works very well without the need for iterations. Sensitivity 
analysis, influence analysis, and updating with new data can be performed cheaply. Bayesian prediction and model selection can also 
be incorporated. Examples taken from a wide range of applications are used for illustration. 

KEY WORDS: Bayesian inference; Importance sampling; Missing data; Predictive distribution; Sequential imputation. 

I. SUMMARY 

A standard method to handle Bayesian missing data prob- 
lems is to approximate the actual incomplete data posterior 
distribution of the parameter vector by a mixture of complete 
data posterior distributions. The multiple complete data sets 
used in the mixture are ideally created by draws from the 
posterior distribution of the missing data conditioned on the 
observed data. Two existing and related methods for doing 
this are the Gibbs sampler (Geman and Geman 1984) and 
the data augmentation procedure proposed by Tanner and 
Wong (1987). Both of these procedures are iterative and are 
basically equivalent when the iteration is only between the 
parameter vector and the missing data (Gelfand and Smith 
1990). In this setting the methods are analogous to the EM 
algorithm for finding maximum likelihood estimates 
(Dempster, Laird, and Rubin 1977). Similar to the EM al- 
gorithm, the convergence of these methods can be slow. Fur- 
thermore, in situations where the posterior distribution must 
be constantly updated with the arrival of new data with miss- 
ing parts (Spiegelhalter and Lauritzen 1990), these methods 
can be highly inefficient, because the whole iteration process 
must be redone with additional data. To resolve some of 
these difficulties, we propose sequential imputation as an 
alternative and sometimes complementary method for cre- 
ating multiple complete data sets. As a variation of impor- 
tance sampling, sequential imputation does not require it- 
erations. It is related to a method proposed by Rubin (1 987a, 
1987b) but tends to produce more stable importance weights. 
Moreover, with sequential imputation sensitivity analysis and 
updating with new data can be done cheaply. Bayesian pre- 
diction is automatically incorporated. 
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Section 2 presents details related to the implementation 
of sequential imputation. Using a number of examples, two 
of them with data, Section 3 illustrates a range of problems 
to which the method can be applied. Section 4 investigates 
the relative efficiency of the method through the study of the 
variance of the importance sampling weights and also dis- 
cusses the related problem of how many imputations need 
to be performed. Section 5 illustrates how sensitivity analysis, 
with respect to the prior distribution, and the study of case 
influence can be performed. Section 6 gives some final re- 
marks, discussing in particular connections between sequen- 
tial imputation and Gibbs sampling. 

2. THE METHOD 

Let 0 denote the parameter vector of interest and let x 
denote complete data, so that the posterior distribution 
p(0 I x )  is assumed to be simple. Suppose, however, that x is 
only partially observed and can be partitioned as (y, z), where 
y denotes the observed part and z represents the missing 
part. Now suppose that y and z can each be further decom- 
posed into n corresponding components so that 

def 

X =  ( X I , .  . . ,xn) = ( Y I ,  Z I , .  . .,Yn, zn) = ( Y , z ) ,  

where .xr = (y,, z,) for t = 1,  . . . , n .  In many applications 
x, are independent and identically distributed given 0, but 
this is not a necessary assumption. Also, the missing pattern 
generally will be different for different t's. Indeed, an obser- 
vation t can be complete so that y, = x,. We note that 

Hence if we can draw m independent copies of z's from the 
conditional distribution p(zl y) and denote them by z ( l ) ,  
z(2), . . . , z(m) ,  then we can approximate p(0 I y )  by 

where x ( j )  denotes the augmented complete data set (y, 
z ( j ) )  for j = 1, . . . , m. [Note that each z ( j )  has n compo-
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nents: z l ( j ) ,. . . , z n ( j ) . ]But drawing from p ( z  1 y )  directly 
is usually difficult. The Gibbs sampler or the data augmen- 
tation procedure mentioned earlier do this approximately 
by iterations. Sequential imputation achieves something 
similar by imputing the z:s sequentially and using impor- 
tance sampling weights to avoid iterations. Generally, se- 
quential imputation starts by drawing z: from p ( z l  I y l ) and 
computing wl = p( y l  ). Then, for t = 2,  . . . ,n ,  the following 
steps are done sequentially: 

a. Draw z: from the conditional distribution 

Notice that the z:'s had to be drawn sequentially, be- 
cause each zT is drawn conditioned on the previously 
imputed missing parts z: , . . . , Z T - ~ .  

b. Compute the predictive probabilities p ( y , I y l ,z: ,. . . , 
Y I - I ,  zT-I) and 

Let w = wn, so that 

Note that steps a and b are usually done simultaneously. 
Both steps are required to be computationally simple, which 
is often the case if the predictive distributions p ( x l )  and 
p ( x l I xl, . . . ,xlPl), t = 2,  . . . ,n are simple. This is the key 
to the feasibility of sequential imputation. Steps a and b are 
done repeatedly and independently m times. Let the results 
bedenoted by z * ( l ) ,  z*(2),  . . . ,z * ( m )and w ( l ) ,. . . ,w ( m ) ,  
where z * ( j )  = ( z : ( j ) ,  . . . , z , * ( j ) ) f o r j  = 1 , .  . . , m .  We 
now estimate the posterior distribution p ( 8 l y )  by the 
weighted mixture 

1 
-C w ( j ) p ( e l x * ( j ) ) ,  ( 2 )  

,=I 

where W = C w ( j )and x*( j )  denotes the augmented data 
set ( y ,  z*( j ) )  for j = 1, . . . , m .  To understand why ( 2 ) is 
the appropriate approximation, we note that each indepen- 
dent imputation z*( j )  is not drawn from the actual condi- 
tional distribution p ( z  I y ) .  Instead, from (A ) ,z*( j )  is drawn 
from the "trial density" 

Using standard results from importance sampling, after the 
draws the different imputations are weighted by 

Because l / p ( y )  is the same across imputations and the 
weights have to be normalized, ( 2 )gives the correct approx- 
imation. We now provide comments useful in the imple- 
mentation of the two steps. 

2.1 Predictive Distributions 

Let ~ ( 8 )= p ( 8 )  denote the prior distribution of the pa- 
rameter vector 8 ,  with other notations as before. For sim- 
plicity we assume in this section that xt are iid given 8.  As 
mentioned earlier, the implementation of sequential impu- 
tation requires that the predictive distribution p ( x l I xl, . . . , 
x,-~) is simple for all t and any realization of the x's. Inter-
estingly, if ~ ( 8 )is conjugate to p(x l l  8 ) ,  which is necessary 
for the complete data posterior distribution to be simple, 
then the predictive distribution can usually be obtained in 
closed form. This is because 

and generally 
n I 

is the inverse of the normalizing constant of the complete 
data posterior distribution p(8I x l ,  . . . ,x,);that is, 

for any 8 .  An essentially identical result was noted by Besag 
(1989) . For example, in the standard conjugate setup for 
multivariate Gaussian data, the predictive distribution is 
multidimensional noncentral t .  In problems where the pa- 
rameters have Dirichlet prior distributions, it is often the 
case that 

where 8 = E ( 8 I x l ,  x 2 ,  . . . ,x , -~). Note that ( 6 )means that 
the predictive distribution of xl given ( x , ,  x2, . . . ,xt- , )is 
the same as if 8 is known to be 8.  More details can be found 
in the examples presented in Section 3. 

2.2 Weights and Prediction 

Defining the importance weight recursively as in ( 1 )  frees 
us from having to think of a fixed sample size, which is con- 
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venient when the data really do anive sequentially. Definition 
( 1 )  has the natural interpretation that the importance weight 
is sequentially adjusted by how well a certain augmented 
data set predicts the next observation. Keeping track of the 
w,'s has another potential advantage. Suppose that the data 
are processed sequentially for all m independent augmented 
data sets simultaneously. At time t ,  p(0 I y , ,  . . . , y,) is ap-
proximated by 

where W, = C,w , ( j )  and x T ( j )  = ( y , ,  z : ( j ) ,  . . . , y,, 
zT ( j )) . Now some of the augmented data sets xT (J )  may 
have weights w , ( j )  that are substantially smaller than the 
others and are practically negligible. When the new obser-
vation y,+, arrives, instead of continuing to impute using 
the current augmented data sets x: ( j ) ,j = 1, . . . ,m ,  there 
is the following alternative. Draw m copies of x, indepen-
dently from the collection xT (j ) ,  j = 1, . . . ,m ,  with prob-
abilities proportional to w,(j ) .  These drawn x,'s, denoted by 
x : * ( j ) ,  j = 1, . . . , m ,  will now have equal weights. To 
process the ( t  + 1)th observation, we draw z,*,T ( j ) ,j = 1, 
. . . ,m from 

The data sets x z ( j )  = ( x r * ( j ) ,y,+,, z:+T(j)),j = 1, . . . , 
m will then have weights p(y,+, I x: * ( j ) ) .  

To end this section, we note that the problem of Bayesian 
prediction is automatically incorporated in sequential im-
putation. Obviouslyp ( ~ , + ~I y l ,  . . . ,y,) can be approximated 
by 

and p(z ,+,I y , ,  . . . ,y,+,) can be approximated by 

2.3 Order of Imputation 

When the data do not actually arrive sequentially, we are 
free to process the cases in any order. But some orders are 
better than others in the sense that for the same number of 
imputations, they tend to produce better approximations of 
the actual posterior distribution and hence are more efficient. 
The difference in efficiency can be substantial. Generally, it 
is desirable to have the trial distribution p*( z *  1 y ) as close 
to the true distribution p ( z  I y )  as possible. This usually means 
that the complete cases should be processed first, and the 
other cases should then be processed in the order of increasing 
missingness. This is because the missing z,'s should be im-
puted conditioned on as much of y as possible. More details 
concerning the efficiency of sequential imputation and how 
it can be measured are given in Section 4. 

will be important to get likelihoods of different models. For 
a particular model M the likelihood of M given incomplete 
data y = ( y , ,  . . . ,y,)is 

where 0 may be model-dependent. Suppose that we have 
applied sequential imputation based on model M. Then for 
all j it is easy to see that 

wherep* and w* are as defined in ( 3 )and (4). It then follows 
from (5) that E p . ( w ( j ) )  = p M ( y ) .Thus 

is an unbiased estimate of pM(y ). 

3. EXAMPLES 

3.1 Functionals of the Multivariate Normal 
Covariance Matrix 

This example was constructed by Murray (1977) in the 
discussion of Dempster, Laird, and Rubin (1977) and was 
again used by Tanner and Wong (1987).Table 1 contains 
12 observations assumed to be drawn from a bivariate normal 
distribution with known means pl = p2 = 0 and unknown 
covariance matrix. For notation, p denotes the correlation 
coefficient and al and a2 denote the marginal variances. We 
are interested in the posterior distribution of p given the 
incomplete data. Note that the information on al and a2 
provided by the eight incomplete observations cannot be 
ignored in drawing likelihood-based inference about p. Fol-
lowing Tanner and Wong, the covariance matrix of the bi-
variate normal is assigned the Jeffreys's, noninformative prior 
distribution (Box and Tiao 1973) 

~ ( 2 )cc 121-(k+l)'2 (10)  

where k is the dimensionality and is equal to 2 here. The 
posterior distribution of 2 given complete data is 

1
p ( Z  1 complete data) cc ~ ( ~ " ) - l e x p [-;t r [ Z  S ]1 , 

where S = ( s , , ) ~ , ~is the sample uncorrected covariance ma-
trix and Z = 2 - ' .  

Let complete data be xl, . . . ,x 1 2 ,where x, = (u,, v , )  for 
t = 1, . . . , 12. Thus v,  are missing for observations 5-8, 
whereas u, are missing for observations 9- 12. The predictive 
distribution of x,+,given complete data x l ,  . . . ,x, is 

where S ,  = ( s i j ) ,sij = C x,( i)x,( j ) ,  and t2 is the bivariate 

Table 1. Twelve Bivariate Normal Observations 

2.4 Likelihoodof Models 

Our imputation and inference are based on a specific 
model. In situations where we want to compare models, it Indicatesthat the value is missing 
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t distribution. It follows that, conditioning on x l ,  . . . ,x,, 
marginal and conditional distributions are 

and 

Similar results can be obtained for v , + ~I x, and u , + ~I x,v,+,. 
Based on these distributional results, steps a and b both can 
be easily implemented. 

The complete-data posterior distribution of p is still hard 
to compute, because it has the form 

where r is the sample correlation coefficient, v = n - 2 = 10. 
To avoid numerical integration of this distribution, the al- 
gorithm proposed by Ode11 and Feiveson (1 966) can be used 
to generate observations from inverse Wishart distribution. 
The observed-data posterior distribution of p can be obtained 
analytically up to a renormalizing constant: 

p (p  ldata in Table 1) a [(I - ~ ~ ) ~ . ~ 1  
[(1.25 - p2)8]' 

Figure 1 gives the exact posterior distribution of p and the 
approximated posterior distribution based on sequential im- 
putation. The approximation is a weighted mixture of m 
= 1,000 complete data posterior distributions. Our approx- 
imation is comparable to that of Tanner and Wong (1987), 
which is based on 6,400 imputations and 15 iterations. Fur- 
thermore, we do not have to draw from an inverse Wishart 
distribution, which is an unavoidable step for Tanner and 
Wong. The sequential imputation part of this example took 

3.2 	Nonparametric Bayesian Analysis of Binomial 
Data 

Here we consider the binomial model 

y, -- Binomial(l,, {,) 1 I t I n ,  

where the {,'s are assumed to be random and independent 
and to have a common distribution F. Our interests are in 
drawing inference about both F and the {,'s based on the 
observed data y,, t = 1, . . . , n .  For example, imagine ran- 
domly drawing n baseball players from a population of 
professional players. Then {, can be interpreted as the in- 
herent unobserved long-run batting average of player t .  The 
observed data for player t is y,, the number of hits out of a 
total of I, official at bats. Note that the number of at bats 
need not be the same for all the players. Efron and Monis 
(1975) used normal theory-based empirical Bayes method 
to analyze data of the first 45 at bats in a season for n = 18 
major league players. Taking a nonparametric Bayesian ap- 
proach, we assign F, which is an infinite dimensional pa- 
rameter, a Dirichlet prior distribution B ( a )  where a is some 
measure on the interval [0, 11. Note that B ( a )  is a probability 
measure on P,where P is the set of all probabilities on the 
Bore1 sets of [0, 11. Readers not familiar with this special 
class of Dirichlet prior distributions and nonparametric 
Bayesian inference are referred to the work of Ferguson 
(1 974). In this problem 5; plays the role of the missing data 
z, and Fcorresponds to 0.  What is special is that Fhas infinite 
dimension. Also, the posterior distribution of the missing 
data { = ( r l ,  . . . , ln)may itself be of interest. In the case of 
batting averages, we may want to estimate {, for a certain 
player t given his performance in the first 45 at bats to predict 
his performance in the remainder of the season. Given {, 
the posterior distribution of F is simply B ( a l )  with a' = a 
+ C 6ft, where 6ft is a delta measure with mass 1 located 

10 seconds on a Sparc Station 11. 	 at {,. For simplicity, suppose that a is uniform on [0, 11 with 

Posterior distribution of the 
correlation coefficient 

correlation coefficient 

Figure 7. An Approximation to the Posterior Distribution of the Sample Correlation Coefficient p for Murray's Data. Solid line: true density; dashed 
line: approximation. 
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Table2. Batting Averages and Their Estimates 

Batting 
average 
for first 

45 at bats 
t (1) 

Batting 
average for 
remainder 
of season 

(2) 

Dirichlet prior with 
or = 2 X Beta(2 6) 

Efron- Posterior 
Stein's Morris's Posterior standard 

estimator estimator mean deviation 
(3) (4) (5) (6) 

,290 ,334 ,315 ,063 
,286 ,313 ,304 ,056 
,281 ,292 ,294 ,050 
,277 ,277 ,286 ,045 
.273 ,273 ,279 ,041 
,273 ,273 ,279 ,041 
,268 ,268 ,272 ,039 
,264 ,264 ,267 ,037 
,259 ,259 ,261 ,036 
,259 ,259 ,261 ,036 
,254 ,254 ,255 .037 
.254 ,254 ,255 ,037 
,254 ,254 ,255 ,037 
,254 ,254 ,255 ,037 

norm Ilall = 1. Then, conditioned on {,, . . . , F is 
distributed as a)(a,-, ), with a,-, = a + C f:: Gf,  . This implies 
that 

which should be interpreted as a probabilistic mixture of a 
and delta measures concentrated at the 6's. It follows that 

where 

is the Beta function, Beta( , .) is the standard Beta distri-
bution, and 

is the normalizing constant. Note that (12) is a mixture of a 
Beta distribution and discrete point masses. From (11) we 
also get 

which is the term needed for updating the importance sam-
pling weights. Hence both steps a and b of sequential im-
putation can be easily implemented. Note that a direct ap-
plication of Gibbs sampling is not feasible here because of 
the difficulties in drawing samples of F, which is infinite 
dimensional. Escobar (1991) described a way of imple-
menting Gibbs sampling without drawing the F's directly, 
which also takes advantage of the simplicity of the predictive 
distributions (11)and (12). For a related problem where the 
Tis are ordered, Gelfand and Kuo (1991)also used a similar 
idea to avoid sampling the infinite-dimensional F .  

Sequential imputation is applied to the same set of data 
analyzed by Efron and Morris (1975). The batting averages 
based on the first 45 at bats, yl/45, of 18 major league players 
in the 1970 season are displayed in Table 2. Also displayed 
are the batting averages for the remainder season. We per-
formed m = 1,000 imputations. Because F is infinite di-
mensional, there is no easy way to display its approximated 
posterior distribution. Figure 2 shows part of our results, 
which is the approximate of the mean curve of the poste-
rior distribution of F .  More precisely, the posterior distribu-
tion of F is approximated by (1/ W) Cp, w( j ) a ) ( a ( j ) ) ,  
where a ( j )  = a + C:=, tiff(,,.  The curves in Figure 2 are 
1l [ ( n+ Ilall)W] Cp1 MI(j ) a (j ) ,  which are approximations 
to E(F 1 y). Note that E (F 1 y) is also the predictive distri-
bution p({,,+, 1 y) of the long-term batting average for the 
next randomly chosen player. Two different priors were used. 
The first has a as a uniform measure on [0, 11 with llall 

Figure 2. Approximation of E(FI y), the Predictive Distribution for the Batting Average of Another Randomly Chosen Player. Solid line: a uniform; 
dotted line: a = 2 X Beta(2 6). 
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= 1. The second a, which better reflects our prior knowledge, 
has a density proportional to a Beta(2, 6) distribution, but 
llall = 2. (This will be referred to as 2 X Beta(2, 6).) A com-
plete analysis studying the sensitivity of the results to both 
the shape and the norm of a was provided by Liu (1993). 

For a given t the posterior distribution p (  1 y) can be es- 
timated by the weighted mixture 

-
1 
C wl(j)p(rl I Y,  {T-l](j)), 

J = l  

where i-T-tl(j) = ({T(j), . . . ,  {T-l(j), {T+l(j), . . . ,  
{,*( j ) ). From this mixture approximates of both the posterior 
mean E S;l y) and the posterior standard deviation4can be obtained. These estimates for all 18 play- 
ers, computed using the results from having a = 2 X Beta(2, 
6), are displayed in Table 2. For comparison the results from 
using Stein's estimator and one of the estimators constructed 
by Efron and Morris (1975) are also displayed. These are 
point estimates of the G's. Relative to the maximum likeli- 
hood estimates, the observed batting averages, Stein's esti- 
mator has the well-known effect of shrinking the estimates 
toward the center of the group. Efron and Morris put a 
threshold on the amount of shrinkage and hence deviated 
from Stein's estimator for the extreme observations. Our 
posterior means are somewhat between the two. Note that, 
as is reasonable, the posterior standard deviations are bigger 
for the more extreme y,'s. Also note that for all 18 players, 
the batting averages for the remainder of the season, which 
can be treated as surrogates to the actual el's, fall within two 
posterior standard deviations of the posterior means. 

The computations performed for this example took about 
15 seconds on a Sparc station SLC. 

3.3 Graphical Models and Genetics 

We end this section by mentioning two large classes of 
problems where sequential imputation can be and has been 
applied. 

Graphical models, directed and undirected, were intro- 
duced by Kiiveri, Speed, and Carlin (1984) and Darroch, 
Lauritzen, and Speed (1980). Directed and undirected graphs 
are used to illustrate causal relations and conditional inde- 
pendence relations among variables. Undirected graphical 
models with discrete data form a special class of log-linear 
models. For undirected decomposable graphical models with 
complete data, Dawid and Lauritzen (1993) demonstrated 
how conjugate prior distributions can be set up so that both 
the posterior distributions of parameters and the predictive 
distribution of the next observation are simple. In particular, 
they showed that (6) is satisfied for models with discrete data 
and Dirichlet prior distributions. Similar theoretical results 
for directed graphical models were presented by Spiegelhalter 
and Lauritzen (1990), who also discussed the problem of 
missing data and the possibility that the observations may 
actually arrive sequentially under a medical diagnostic set- 
ting. Using the results derived by the two aforementioned 
references, sequential imputation can be easily implemented 
where there are missing data. Because these models have 
some other special characteristics that require elaborate il- 

lustration, a separate report on them with real examples is 
under preparation. 

The examples presented so far concentrate on situations 
where xi,i = 1, . . . ,n are iid given the unknown parameter 
8. In an application in genetics linkage involving the analysis 
of pedigree data on multiple loci, the missing data z,'s are 
high-dimensional binary vectors and form an inhomoge- 
neous Markov chain given 8. In one special case 8 is uni- 
variate and denotes the location of a decrease-causing gene 
relative to a collection of genetic markers. For this problem 
the exact evaluation of a single likelihood value is prohibitive, 
because it involves summing over a very high-dimensional 
space. Kong, Irwin, Cox, and Frigge ( 1992) applied sequential 
imputation conditioned on a fixed parameter value of interest 
denoted by 8*. Similar to the results presented in Section 
2.4, it can be shown that E,.(w~(j)) = p(y 1 O*), which implies 
that the average of the w(j)'s is an unbiased estimate of the 
likelihood L(8* ) = p(y lo*). In this way accurate estimates 
of likelihood values can be obtained even with data involving 
more than four highly polymorphic genetic markers, some- 
thing that could not be done before. 

4. EFFICIENCY OF SEQUENTIAL IMPUTATION AND 
THE CHOICE OF M 

4.1 Effective Sample Size 

Because sequential imputation is a form of importance 
sampling, one way to measure its efficiency as a method to 
perform imputations is to compare it with direct sampling 
from p(z  I y). To be specific, let h(8) be some function of 8 
and suppose that the posterior mean E(h(8)  I y), denoted by 
ph, is of interest. If sequential imputation is applied, then 

is a natural estimate of ph. For comparison suppose z( j ) ,  j 
= 1, . . . , m are independent draws from p(z  I y ) ;  then 

where x( j )  = (y,  z( j ) ) ,  is the natural unbiased estimate of 
ph. Hence the ratio var,. (iih)/varp(bh), where p*  is as de- 
fined in (3) and p denotes p (  . 1 y), measures the relative ef- 
ficiency of sequential imputation. Although this ratio gen- 
erally depends on h, by applying the delta method and using 
only the first two moments of wJ and h we get the approxi- 
mation 

where w*(j )  is as defined in (4) (see Kong 1992 for details). 
Although there is no guarantee that the remainder term in 
this approximation is ignorable, what is nice about ( 1  3) is 
that it does not involve h .  This makes it particularly useful 
as a measure of relative efficiency when many different h's 
are of potential interest. Indeed, following a rule of thumb 
in sampling, we define 



m
ESS = 

1 + var,.(w*(j)) 

as the effective sample size of sequential imputation. In gen- 
eral, var,*(w*(j)) is impossible to obtain. But because of 
(9) and the fact that w(j)  is proportional to MI*(j ) ,  
var,*(w~*( j ) )  is equal to the square of the coefficient of vari- 
ation of w(j ) .  Define the standardized weights as 

The standardized weights have average equal to 1. Hence 
their sample variance 

can be used to approximate var, * ( w*( j ) ) .  Consider the ex- 
amples in Section 3. In the bivariate normal example the 
variance of the standardized weights is .08, which translates 
into an effective sample size of m/  1.08 = .93m, a very high 
efficiency. In the baseball example the variances of the stan- 
dardized weights for the two priors are 2.95 and 3.45, which 
correspond to effective sample sizes of 1~13.95  = .25m and 
m14.45 = .22m. 

Here we discuss the practical problem of how to choose 
In assuming that the posterior distribution of h(0) for some 
function h is of interest. One key aspect of the posterior 
distribution is the posterior mean ph = E(h(0) I y) .  The vari- 
ance var, * (jib), is a measure of the noise created by Monte 
Carlo approximation. In most applications the Monte Carlo 
noise will have a negligible effect on the overall inference 
about h(0) if varp.(Eh) is small relative to the posterior vari- 
ance var( h(8) 1 y). More specifically, the ratio 

should not be greater than .05, preferably smaller than .01. 
[Note that E and var are taken with respect to p ( . ) ,  and 
bh, as before, is the estimate of ph assuming that one can 
sample directly from p(z  I y).] The term 

is what Rubin ( 1987b) referred to as the fraction of missing 
information with respect to h. From (1 3) and (1 4) the term 
(1 / m ) ( ~ a r , * ( ~ h ) / v a r , ( ~ ~ ) )  1/is approximately equal to 
ESS. Thus (16) can be interpreted as the fraction of missing 
information divided by the effective sample size. Note that 
the fraction of missing information is specific to the data, 
and the effective sample size is specific to the method used 
to perform the imputations. Because the fraction of missing 
information is bounded above by 1 for all h ,  it implies that 
(16) will be smaller than .O1 if the effective sample size is 
larger than 100. If needed, the fraction of missing information 
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can be approximated from the samples. The conditional ex- 
pectation E(var(h(0)l y, z)l y) can be approximated by 
( l / W )  CFl w(j)var(h(O)lx*( j ) ) .  Also, 

which can be approximated by (1 /W)  C,"=,w~(j) 
X (E(h(0)I x*( j ) )  - /?ih)2. For the bivariate normal example 
presented in Section 3.1, taking h ( 2 )  to be a:, the fraction 
of missing information is estimated to be approximately .42. 

4.2 A Simulation Study 

As demonstrated, the key to the efficiency of sequential 
imputation is the variance of the importance sampling 
weights. Considering that both the bivariate normal example 
and the baseball example have rather small sample sizes n ,  
to better understand the behavior of the weights we simulated 
269 vectors from a six-dimensional multivariate distribution 
with mean 0 and covariance matrix 

It is also assumed that the data have the missing pattern 
displayed in Table 3. For example, 88 vectors are completely 
observed, 40 vectors are missing only the sixth variable, and 
26 vectors are missing both the first and the second variable. 
(This missing data pattern came from a real application in 
social science, but the multivariate normal assumption is 
not quite appropriate for the actual data set.) Both the mean 
and the covariance matrix are assumed to be unknown and 
are assigned the Jeffreys's noninformative prior distribution 

where k = 6. Similar to the bivariate normal example in 
Section 3.1, the predictive distributions p(x,+, I x l, . . . ,x,) 
are all multivariate noncentral t (see Box and Tiao 1973). 
Because of that, both steps a and b can be easily implemented. 

Our focus here is the variance of the standardized weights 
instead of the actual posterior distribution of the parameters. 
We started by applying sequential imputation to the full data 
set, which has 88 complete observations and 18 1 incomplete 
observations. We chose m to be 1,000 and processed the data 
in order from left to right in Table 3. In other words the 88 
complete cases were processed first, which did not require 
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Table 3. Missing Pattern for the Six-Dimensional Multivariate Normal Data. 

Dim/No. 88 40  22 22 4 3 23 26 7 

1 
2 
3 
4 
5 
6 ? 

? 
? 

? 

? 

? 
? 

? 
? 

? 

? 

NOTE: A questlon mark represents missing data 

any imputations, followed by the 40 observations missing 
the sixth variable, and so on. The overall computing time 
was about 21 minutes on a Sparc Station 11. The sample 
variance of the standardized weights came out to be about 
.12. This corresponds to an effective sample size of about 
rn/ 1.12 = .831n. To investigate further, we redid the im- 
putations, this time using only 20 of the original 88 complete 
observations but keeping all the incomplete cases. This re- 
duced n from 269 to 20 1. With this change, the sample vari- 
ance of the standardized weights increased to about 4.0, im- 
plying that the effective sample size decreases to rn/5 = .21n, 
which is still perfectly acceptable. We then further reduced 
the number ofcomplete observations to 10. Here the variance 
of the standardized weights becomes as large as 140, corre- 
sponding to less than 1% efficiency. 

These results are not surprising. The main concern with 
sequential imputation is how the early imputations (z, for 
small t )  are done. Because the early imputations are done 
only conditional on the early part of the observations, the 
trial distribution they are drawn from can be very far from 
the actual conditional distribution p(  . 1 y). This can lead to 
highly varied importance weights. When we have 88 com- 
plete cases to start with, the first time we have to actually 
impute is with zg9. The trial density we draw from, p(zg9 I x I ,  
. . . , xxg, yx9), is likely to be not too far from the actual 
conditional distribution p(zs9 I X I ,  . . . , XXX,Y89, . . . , y269). 
The situation improves further for the latter imputations. 
Hence the variance of the importance weights tends to be 
small. In contrast, when the number of complete cases de- 
creases to near 0, the situation deteriorates because the early 
imputations are basically drawn from the flat prior distri- 
bution, which can be very far from the actual conditional 
distribution, especially in the case of normal data. This is 
what we see when the number of complete cases is reduced 
to 10, which is quite extreme for this problem because it 
takes 6 observations to ensure the sample covariance matrix 
is nonsingular, a necessary condition for the predictive dis- 
tribution to be proper. 

The preceding discussion does not imply that having a 
certain percentage of complete observations is necessary for 
sequential imputation to work well. For example, in the 
problem with the baseball data there are no complete ob- 
servations, but the weights are still well behaved. The reason 
is partly that the observed data are discrete and the missing 
data are bounded and partly that the latter observations do 
not provide a huge amount of information about the early 
missing data. Indeed the worst situation is when there are a 
significant portion of complete cases, but they are processed 

3 3 2 10 5 2 2 1 2 2 1 1 

? 
? 

? 

? 

? 

? 

? 
? 

? 

? 
? 
? 

? 

? 
? 

? 
? 

? 

? 
? 

? 

? 
? 

? 
? 

? 
? 

? 
? 

? 
? 
? 

? 

? 
? 
? 

? 

after the incomplete observations. As mentioned earlier, if 
the data do not actually arrive sequentially, then the data 
should be processed in the order of increasing missingness. 

Another interesting aspect is how the variance of the 
weights behave as a function of t. Define 

where zT(j)  = ( z , ( j ) ,  . . . , z t ( j ) )  and y, = ( y l , . . . ,y,). So 
wl*(j), as defined in (4), is equal to w,*(j).  It can be easily 
checked that MI? ( j )  satisfies the recursive relationship 

and, as a generalization of (9), 

Because of (18), the sample variance of the standardized 
w,(j)'s, as defined in ( I ) ,  can be used to approximate 
varp*( wT ( j ) ) .  For the multivariate normal data set gener- 
ated based on Table 3, the sample variance of the standard- 
ized w~,(j)'s is plotted as a function of t  in Figure 3. (Because 
the first 88 observations do not require any imputations, the 
Time in the Figure starts with the 89th observation.) The 
results of two separate runs, each with rn = 1,000, are pre- 
sented for comparison. One striking feature is that the two 
plots are very similar. In both simulations the sample vari- 
ance of the standardized weights are 0 up to Time = 40. 
This is not a coincidence. In the case of multivariate normal 
data it can be shown that if the missing data pattern is mono- 
tone (Little and Rubin 1987), which means that one can 
find an ordering of the data so that the missing covariates 
are nested in the order of increasing missingness, and the 
data are processed in such order, then p*(z* 1 y ) is actually 
the same as p(z*  1 y ), and so the importance weights have 
zero variance! In our example, for up to the first 40 incom- 
plete cases the missing data pattern is monotone. Another 
feature we see in the plots is that the sample variance of the 
standardized weights tend to increase in time but not strictly 
so. Both phenomena can be explained by the following 
theorem. 

The importance sampling weight w,T (j) re-
sulting from the method of sequential imputation is a mar-
tingale sequence in t with both z*( j) and treated as random. 
This implies that its variance is an increasing function o f t .  

f'r09f: For simplicity we suppress the argument ( j )  here 
and let y7[,= a{zT, . . . , zT, Y I ,  . . . , Y,} be the a-field gen- 
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First Run Second Run 

Time Time 

~ i ~ u r e3: The Increasing Trend of the Variance of the Standardized Weights. 

erated by all the observed and imputed random variables up 
to time t .  Because zy , . . . , z: are imputed from y l ,  . . . , 
y,, it is valid to think of y,+, as conditionally independent 
of zT given y, , . . . ,y,. Hence from ( 17) we have 

E(W:+~13,) = w: 1P(YI+IYt) dyt+~ 

which shows that w: is a martingale in t .  Therefore, 

which completes the proof. 
The theorem shows that the variance of w: ,unconditional 

on y, is an increasing function of t .  But the variance in 
expression (14) and its estimate (1 5), although not explicitly 
indicated there, is conditional on y, or y, here. From the 
variance decomposition we have 

var(w7) = E(var(wT1 y,)) + var(E(wr1 y,)).  

But E(w7 / y,) = 1 for all y,. So E(var(wT 1 y,)) = var(w:), 
which explains why the estimates of var(w: 1 y,) plotted in 
Figure 3 have an increasing trend but are not strictly in- 
creasing. 

5 .  SENSITIVITY AND INFLUENCE ANALYSES 

In Bayesian inference we often will be interested in how 
sensitive the posterior distribution is to the prior distribution. 
In the missing data setting this distribution can be highly 
inefficient if we have to create separate augmented data sets, 
either by sequential imputation or other techniques, for each 
prior distribution we would like to consider. Next we dem- 
onstrate that the multiple augmented data sets that we con- 
structed based on one prior distribution can actually be used 
for approximating the posterior distribution of 8 under a 
different prior distribution. 

Assume that the prior distribution used for the imputations 
is ~ ( 8 )  = p(8) and that we are interested in the posterior 
distribution of 8 if the prior distribution is f(8) instead. In 

general, let f denote the distribution of variables under the 
prior distributionf(8). For example, 

Again, based on standard importance sampling theory, the 
correct approach is to weight the augmented complete data 
sets by 

where w(J), the original weight computed, is as defined in 
(1). Now, becausef(y) does not depend on J, we can simply 
weight the augmented data sets by 

Computing the new weight w"J) requires evaluation of 
f(x*( J ) )  and p(x*( J)) ,  which is easy if both f(8) and ~ ( 8 )  
are conjugate prior distributions or mixtures of conjugate 
prior distributions. The posterior distribution f(8 1 y) can then 
be approximated by 

where LVC = C?, wC(j ) .  For example, consider the case 
of multivariate normal data studied earlier. Suppose that 
the missing data are imputed sequentially based on Jeff- 
reys's prior distribution as given in (10) and that we are in- 
terested in the posterior distribution of the parameters 
under a new conjugate prior distribution of the form f ( 2 )  
cc I 2 I - ( k + ~ + h ) / ?exp(- t r (2- 'A)) .  Then 

p ( x )  cc I S,I - ( 'I2)  and f ( x )  cc 1 S,+A 1 -( '+b)12. 

So (19) can be computed easily. We apply this to the bivariate 
normal example in Section 3.1, where we choose f to have 
b = 1 and 
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Note that this alternative prior density is biased toward a 
positive p.  By applying ( 2 0 ) to the augmented data sets in 
Section 3.1, the new posterior distribution of p is approxi- 
mated by the distribution displayed in Figure 4. The histo- 
grams of the standardized w ( j ) ' s and w O ( j ) ' sare also dis- 
played in Figure 4. Recall that the standardized w ( j ) ' s have 
sample variance equal to .08. In comparison, the sample 
variance of the standardized w C ( j ) ' sis about .36, which still 
corresponds to an effective sample size of about 1.0001 1.36 
= 735.  

As pointed out by a referee, the technique of reweighting 
used for sensitivity analysis can also be applied to study case 
influence (Kass, Tierney, and Kadane 1989). For 1 It In ,  
1 5 J 5 m,let Y [ - 1 1  = ( Y I . - . . ,Y I - I ,Y I + I ,. . . ,yn) ,Z ~ - ~ I ( J )  

= ( z T ( j ) , . . . , z? - I ( J ) ,z?+I ( J ) ,. . . , z ; ( j ) ) ,  and X [ - I I ( J )  
-
- ( Y [ - ~ ] ,z?-,]( j ) )  . The posterior distribution with case t de-
leted, p ( 0 1 y[- ,]) ,can be approximated by 

( 2 1 )  

where 

w ( j )
W [ - [ I ( ~ )  ( 2 2 )= P ( Y ~ I x T - ~ ( J ) )  

and W[-I1= C p l  W [ - ~ I (j ) .  The reasoning leading up to the 
weight (22 ) is as follows~To begin, j )  can be 

interpreted as a sample taken from p ( z 1 y )  with associated 
weight w( j )  . As a component of z*( j ) ,  z?-,~( j )  can be con- 
sidered as a sample drawn from P ( z [ - t l ,y )  with associated 
weight w ( j ) .  To delete case t ,  samples taken from 
P ( Z [ - ~ ]I Y [ - ~ ] )are needed. This requires adjusting the original 
weight w(j )  by the factor 

P - I J Y - ~- P ( X ~ - I ] ( J ) )  P ( Y )  -

~ ( z T - ~ l ( j ) i ~ )  P ( Y [ - ~ I )P(Y , , X T - ~ I ( J ) )  

- 1 P ( Y )- x-
p ( y I  lxT-,I( j ))  P ( Y [ - , I )' 

Ignoring the f a c t ~ r p ( y ) / p ( y ~ - , ~ ) ,which does not depend on 
j ,  leads to ( 2 2 ) .  

The histogram of the standardized weights for New histogram of the standardized weights 
the original data and prior (variance=O.Ol) after changing the prior (variance=0.36) 

n n 

New posterior of the correlation coefficient after changing the prior 

Figure 4.  Sensitivity Analysis on Murray's Data. 



Finally, it should be emphasized that the idea of reweight- 
ing also applies to augmented data sets created by Gibbs 
sampling. In that case, with w ( J )set to be 1 for all J ,  (19)-
(22) are still appropriate. 

6. DISCUSSION 

For many problems where sequential imputation can be 
applied, Gibbs sampling can also be done. Although se-
quential imputation produces independent samples with dif- 
ferent weights, Gibbs sampling generates dependent samples 
with equal weights. Which method is more efficient will in 
general depend on the problem at hand. Gibbs sampling can 
have problems if the serial correlations are too high (see Liu, 
Wong, and Kong 1994);in the case of sequential imputation 
the variance of the importance weights is the main concern. 

Sequential imputation is most useful when the data ac- 
tually amve sequentially. In contrast, suppose that the Gibbs 
sampler is applied to a given set of data to generate multiple 
complete data sets. Suppose then that some new data are 
collected. If we insist on using the Gibbs sampler alone, then 
the previously imputed data sets will have to be abandoned 
and all the iterations redone by incorporating the new data. 
In this situation a much more efficient alternative is to simply 
use the augmented data sets generated from the first batch 
of data, which have equal weights to start with, to sequentially 
impute the new data. We will then have multiple complete 
data sets with different weights. This procedure is very similar 
to that described in the paragraph following (7). As long as 
the new data do not contain a lot more information than 
the first batch of data, the importance weights should be well 
behaved. This shows that the methods of sequential impu- 
tation and Gibbs sampling can sometimes be combined and 
actually complement each other. Indeed, as noted earlier, 
the reweighting schemes we gave for performing sensitivity 
and influence analyses apply equally well to complete data 
sets generated by the Gibbs sampler. Finally, we note that 
Gibbs sampling does not give direct estimates of model like- 
lihoods as defined in (8), which is another strong point of 
sequential imputation. 
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