
Sequential Kernel Herding:
Frank-Wolfe Optimization for Particle Filtering

Simon Lacoste-Julien Fredrik Lindsten Francis Bach
INRIA - Sierra Project-Team

École Normale Supérieure, Paris, France

Department of Engineering
University of Cambridge

INRIA - Sierra Project-Team

École Normale Supérieure, Paris, France

Abstract

Recently, the Frank-Wolfe optimization algo-
rithm was suggested as a procedure to ob-
tain adaptive quadrature rules for integrals
of functions in a reproducing kernel Hilbert
space (RKHS) with a potentially faster rate
of convergence than Monte Carlo integration
(and “kernel herding” was shown to be a spe-
cial case of this procedure). In this paper,
we propose to replace the random sampling
step in a particle filter by Frank-Wolfe op-
timization. By optimizing the position of
the particles, we can obtain better accuracy
than random or quasi-Monte Carlo sampling.
In applications where the evaluation of the
emission probabilities is expensive (such as in
robot localization), the additional computa-
tional cost to generate the particles through
optimization can be justified. Experiments
on standard synthetic examples as well as on
a robot localization task indicate indeed an
improvement of accuracy over random and
quasi-Monte Carlo sampling.

1 Introduction

In this paper, we explore a way to combine ideas from
optimization with sampling to get better approxima-
tions in probabilistic models. We consider state-space
models (SSMs, also referred to as general state-space
hidden Markov models), as they constitute an impor-
tant class of models in engineering, econometrics and
other areas involving time series and dynamical sys-
tems. A discrete-time, nonlinear SSM can be written
as

xt |x1:(t−1) ∼ p(xt|xt−1); yt |x1:t ∼ p(yt|xt), (1)

Appearing in Proceedings of the 18th International Con-
ference on Artificial Intelligence and Statistics (AISTATS)
2015, San Diego, CA, USA. JMLR: W&CP volume 38.
Copyright 2015 by the authors.

where xt ∈ X denotes the latent state variable and
yt ∈ Y the observation at time t. Exact state infer-
ence in SSMs is possible, essentially, only when the
model is linear and Gaussian or when the state-space
X is a finite set. For solving the inference problem be-
yond these restricted model classes, sequential Monte
Carlo methods, i.e. particle filters (PFs), have emerged
as a key tool; see e.g., Doucet and Johansen (2011);
Cappé et al. (2005); Doucet et al. (2000). However,
since these methods are based on Monte Carlo integra-
tion they are inherently affected by sampling variance,
which can degrade the performance of the estimators.

Particular challenges arise in the case when the ob-
servation likelihood p(yt|xt) is computationally expen-
sive to evaluate. For instance, this is common in
robotics applications where the observation model re-
lates the sensory input of the robot, which can com-
prise vision-based systems, laser rangefinders, syn-
thetic aperture radars, etc. For such systems, simply
evaluating the observation function for a fixed value
of xt can therefore involve computationally expensive
operations, such as image processing, point-set regis-
tration, and related tasks. This poses difficulties for
particle-filtering-based solutions for two reasons: (1)
the computational bottleneck arising from the like-
lihood evaluation implies that we cannot simply in-
crease the number of particles to improve the accuracy,
and (2) this type of “complicated” observation models
will typically not allow for adaptation of the proposal
distribution used within the filter, in the spirit of Pitt
and Shephard (1999), leaving us with the standard—
but inefficient—bootstrap proposal as the only viable
option. On the contrary, for these systems, the dy-
namical model p(xt|xt−1) is often comparatively sim-
ple, e.g. being a linear and Gaussian “nearly constant
acceleration” model (Ristic et al., 2004).

The method developed in this paper is geared toward
this class of filtering problems. The basic idea is that,
in scenarios when the likelihood evaluation is the com-
putational bottleneck, we can afford to spend addi-
tional computations to improve upon the sampling of

544

Sequential Kernel Herding: Frank-Wolfe Optimization for Particle Filtering

the particles. By doing so, we can avoid excessive vari-
ance arising from simple Monte Carlo sampling from
the bootstrap proposal.

Contributions. We build on the optimization view
from Bach et al. (2012) of kernel herding (Chen et al.,
2010) to approximate the integrals appearing in the
Bayesian filtering recursions. We make use of the
Frank-Wolfe (FW) quadrature to approximate, in par-
ticular, mixtures of Gaussians which often arise in a
particle filtering context as the mixture over past parti-
cles in the distribution over the next state. We use this
approach within a filtering framework and prove the-
oretical convergence results for the resulting method,
denoted as sequential kernel herding (SKH), giving one
of the first explicit better convergence rates than for a
particle filter. Our preliminary experiments show that
SKH can give better accuracy than a standard particle
filter or a quasi-Monte Carlo particle filter.

2 Adaptive quadrature rules with

Frank-Wolfe optimization

2.1 Approximating the mean element for
integration in a RKHS

We consider the problem of approximating integrals
of functions belonging to a reproducing kernel Hilbert
space (RKHS) H with respect to a fixed distribution p
over some set X . We can think of the elements of
H as being real-valued functions on X , with point-
wise evaluation given from the reproducing property
by f(x) = 〈f,Φ(x)〉, where Φ : X → H is the fea-
ture map from the state-space X to the RKHS. Let
κ : X 2 → R be the associated positive definite ker-
nel. We briefly review here the setup from Bach et al.
(2012), which generalized the one from Chen et al.
(2010). We want to approximate integrals Ep[f] for
f ∈ H using a set of n points x(1), . . . , x(n) ∈ X asso-
ciated with positive weights w(1), . . . , w(n) which sum
to 1:

Ep[f] ≈
n∑

i=1

w(i)f(x(i)) = Ep̂[f], (2)

where p̂ :=
∑n

i=1 w
(i)δx(i) is the associated empirical

distribution defined by these points and δx(·) is a point
mass distribution at x. If the points x(i) are inde-
pendent samples from p, then this Monte Carlo esti-
mate (using weights of 1/n) is unbiased with a vari-
ance of Vp[f]/n, where Vp[f] is the variance of f with
respect to p. By using the fact that f belongs to the
RKHS H, we can actually choose a better set of points
with lower error. It turns out that the worst-case error
of estimators of the form (2) can be analyzed in terms
of their approximation distance to the mean element

µ(p) := Ep[Φ] ∈ H (Smola et al., 2007; Sriperumbudur
et al., 2010). Essentially, by using Cauchy-Schwartz
inequality and the linearity of the expectation opera-
tor, we can obtain:

sup
f∈H

‖f‖H≤1

|Ep[f]− Ep̂[f]| = ‖µ(p)− µ(p̂)‖H

=: MMD(p, p̂), (3)

and so by bounding MMD(p, p̂), we can bound the er-
ror of approximating the expectation for all f ∈ H,
with ‖f‖H as a proportionality constant. MMD(p, p̂)
is thus a central quantity for developing good quadra-
ture rules given by (2). In the context of RKHSs,
MMD(p, q) can be called the maximum mean discrep-
ancy (Gretton et al., 2012) between the distributions
p and q, and acts a pseudo-metric on the space of dis-
tributions on X . If κ is a characteristic kernel (such
as the standard RBF kernel), then MMD is in fact a
metric, i.e. MMD(p, q) = 0 =⇒ p = q. We refer the
reader to Sriperumbudur et al. (2010) for the regular-
ity conditions needed for the existence of these objects
and for more details.

2.2 Frank-Wolfe optimization for adaptive
quadrature

For getting a good quadrature rule p̂, our goal is thus
to minimize ‖µ(p̂)−µ(p)‖H. We note that µ(p) lies in
themarginal polytope M ⊂ H, defined as the closure of
the convex-hull of Φ(X). We suppose that Φ(x) is uni-
formly bounded in the feature space, that is, there is a
finite R such that ‖Φ(x)‖H ≤ R ∀x ∈ X . This means
thatM is a closed bounded convex subset ofH, and we
could in theory optimize over it. This insight was used
by Bach et al. (2012) who considered using the Frank-
Wolfe optimization algorithm to optimize the convex
function J(g) := 1

2‖g − µ(p)‖2H over M to obtain
adaptive quadrature rules. The Frank-Wolfe algorithm
(also called conditional gradient) (Frank and Wolfe,
1956) is a simple first-order iterative constrained op-
timization algorithm for optimizing smooth functions
over closed bounded convex sets like M (see Dunn
(1980) for its convergence analysis on general infinite
dimensional Banach spaces). At every iteration, the
algorithm finds a good feasible search vertex of M by
minimizing the linearization of J at the current iter-
ate gk: ḡk+1 = argming∈M〈J ′(gk), g〉. The next iter-
ate is then obtained by a suitable convex combination
of the search vertex ḡk+1 and the previous iterate gk:
gk+1 = (1− γk)gk + γkḡk+1 for a suitable step-size γk
from a fixed schedule (e.g. 1/(k+1)) or by using line-
search. A crucial property of this algorithm is that the
iterate gk is thus a convex combination of the vertices
of M visited so far. This provides a sparse expan-
sion for the iterate, and makes the algorithm suitable

545

Simon Lacoste-Julien, Fredrik Lindsten, Francis Bach

to high-dimensional optimization (or even infinite) –
this explains in part the regain of interest in machine
learning in the last decade for this old optimization al-
gorithm (see Jaggi (2013) for a recent survey). In our
setup where M is the convex hull of Φ(X), the vertices
of M are thus of the form ḡk+1 = Φ(x(k+1)) for some
x(k+1) ∈ X . Running Frank-Wolfe on M thus yields

gk =
∑k

i=1 w
(i)
k Φ(x(i)) = Ep̂[Φ] for some weighted set

of points {w(i)
k , x(i)}ki=1. The iterate gk thus corre-

sponds to a quadrature rule p̂ of the form of (2) and
gk = Ep̂[Φ], and this is the relationship that was ex-
plored in Bach et al. (2012). Running Frank-Wolfe op-
timization with the step-size of γk = 1/(k+1) reduces
to the kernel herding algorithm proposed by Chen
et al. (2010). See also Huszár and Duvenaud (2012)
for an alternative approach with negative weights.

Algorithm 1 presents the Frank-Wolfe optimization al-
gorithm to solve ming∈M J(g) in the context of get-
ting quadrature rules (we also introduce the short-
hand notation µp := µ(p)). We note that to evalu-
ate the quality MMD(p̂, p) of this adaptive quadra-
ture rule, we need to be able to evaluate µp(x) =
∫

x′∈X p(x′)κ(x′, x)dx′ efficiently. This is true only for
specific pairs of kernels and distributions, but fortu-
nately this is the case when p is a mixture of Gaussians
and κ is a Gaussian kernel. This insight is central to
this paper; we explore this case more specifically in
Section 2.3. To find the next quadrature point, we
also need to (approximately) optimize µp(x) over X
(step 3 of Algorithm 1, called the FW vertex search).
In general, this will yield a non-convex optimization
problem, and thus cannot be solved with guarantees,
even with gradient descent. In our current implemen-
tation, we approach step 3 by doing an exhaustive
search over M random samples from p precomputed
when FW-Quad is called. We thus follow the idea
from the kernel herding paper (Chen et al., 2010) to
choose the best N “super-samples” out of a large set
of samples M . Thanks to the fact that convergence
guarantees for Frank-Wolfe optimization can still be
given when using an approximate FW vertex search,
we show in Appendix B of the supplementary material
that this procedure either adds a O(1/M1/4) term or
a O(1/

√
M) term to the worst-case MMD(p̂, p) error.

In our description of Algorithm 1, a preset number N
of particles (iterations) was used. Alternatively, we
could use a variable number of iterations with the ter-
minating criterion test ‖gk − µ(p)‖H ≤ ǫ which can
be explicitly computed during the algorithm and pro-
vides the MMD error bound on the returned quadra-
ture rule. Option (2) on line 5 chooses the step-size
γk by analytic line-search (hereafter referred as the
FW-LS version) while option (1) chooses the kernel
herding step-size γk = 1/(k + 1) (herafter referred as

the FW version) which always yields uniform weights:

w
(i)
k = 1/k for all i ≤ k. A third alternative is

to re-optimize J(g) over the convex hull of the pre-
viously visited vertices; this is called the fully cor-
rective version (Jaggi, 2013) of the Frank-Wolfe al-
gorithm (hereafter referred as FCFW). In this case:

(w
(1)
k+1, . . . , w

(k+1)
k+1) = argmin

w∈∆k+1
w

⊤
Kk+1w −

2c⊤k+1w, where ∆k+1 is the (k + 1)-dimensional prob-
ability simplex, Kk+1 is the kernel matrix on the
(k+1) vertices: (Kk+1)ij = κ(x(i), x(j)) and (ck+1)i =
µp(x

(i)) for i = 1, . . . , (k + 1). This is a convex
quadratic problem over the simplex. A slightly modi-
fied version of the FCFW is called the min-norm point
algorithm and can be more efficiently optimized us-
ing specific purpose active-set algorithms — see Bach
(2013, §9.2) for more details. We refer the reader
to Bach et al. (2012) for more details on the rate of con-
vergence of Frank-Wolfe quadrature assuming that the
FW vertex is found with guarantees. We summarize
them as follows: if H is infinite dimensional, then FW-
Quad gives the same O(1/

√
N) rate for the MMD error

as standard random sampling, for all FW methods.
On the other hand, if a ball of non-zero radius cen-
tered at µp lies within M, then faster rates than ran-
dom sampling are possible: FW gives a O(1/N) rate
whereas FW-LS and FCFW gives exponential conver-
gence rates (though in practice, we often see differences
not explained by the theory between these methods).

2.3 Example: mixture of Gaussians

We describe here in more details the Frank-Wolfe
quadrature when p is a mixture of Gaussians p(x) =
∑K

i=1 πiN (x|µi,Σi) for X = R
d and κ is the Gaus-

sian kernel κσ(x, x
′) := exp(− 1

2σ2 ‖x − x′‖2). In this

case, µp(x) =
∑K

i=1 πi(
√
2πσ)dN (x|µi,Σi+σ2Id). We

thus need to optimize a difference of mixture of Gaus-
sian bumps in step 3 of Algorithm 1, a non-convex
optimization problem that we approximately solve by
exhaustive search over M random samples from p.

3 Sequential kernel herding

3.1 Sequential Monte Carlo

Consider again the SSM in (1). The joint probabil-
ity density function for a sequence of latent states
x1:T := (x1, . . . , xT) and observations y1:T factor-

izes as p(x1:T , y1:T) =
∏T

t=1 p(xt|xt−1)p(yt|xt), with
p(x1|x0) := p(x1) denoting the prior density on the
initial state. We would like to do approximate in-
ference in this SSM. In particular, we could be in-
terested in computing the joint filtering distribution
rt(x1:t) := p(x1:t|y1:t) or the joint predictive distri-
bution pt+1(xt+1, x1:t) := p(xt+1, x1:t|y1:t). In parti-

546

Sequential Kernel Herding: Frank-Wolfe Optimization for Particle Filtering

Algorithm 1 FW-Quad(p, H, N): Frank-Wolfe adap-
tive quadrature

Input: distribution p, RKHS H which defines ker-
nel κ(·, ·) and state-space X , number of samples N

1: Let g0 = 0.
2: for k = 0 . . . N − 1 do
3: Solve x(k+1) = argmin

x∈X
〈gk − µp,Φ(x)〉

That is:

x(k+1) = argmin
x∈X

k∑

i=1

w
(i)
k (κ(x(i), x)− µp(x)).

4: Option (1): Let γk = 1
k+1 .

5: Option (2): Let γk =
〈gk−µp,gk−Φ(x(k+1))〉

‖gk−Φ(x(k+1))‖2 (LS)

6: Update gk+1 = (1− γk)gk + γkΦ(x
(k+1))

i.e. w
(k+1)
k+1 = γk;

and w
(i)
k+1 = (1− γk)w

(i)
k for i = 1 . . . k

7: end for
8: Return: p̂ =

∑N
i=1 w

(i)
N δx(i)

Algorithm 2 Particle filter template (joint predictive
distribution form) — SKH alg. by changing step 3

Input: SSM p(xt|xt−1),
ot(xt) := p(yt|xt) for t ∈ 1 : T .

Maintain p̂t(x1:t)=
∑N

i=1w
(i)
t δ

x
(i)
1:t
(x1:t) during algo-

rithm as approximation of p(xt, x1:(t−1)|y1:(t−1)).
1: Let p̃1(x1) := p(x1)
2: for t=1 . . . , T do
3: Sample: get p̂t = SAMPLE(p̃t, N)

[For SKH, use p̂t = FW-Quad(p̃t,Ht, N)]
4: Include observation and normalize:

Ŵt = Ep̂t
[ot]; r̂t(x1:t) :=

1
Ŵt

ot(xt)p̂t(x1:t).

5: Propagate approximation forward:
p̃t+1(xt+1, x1:t) := p(xt+1|xt)r̂t(x1:t)

6: end for
7: Return Filtering distribution r̂T ; predictive

distribution p̂T+1; normalization constants
Ŵ1, . . . , ŴT .

cle filtering methods, we approximate these distribu-
tions with empirical distributions from weighted parti-

cle sets {w(i)
t , x

(i)
1:t}Ni=1 as in (2). We note that it is easy

to marginalize p̂ with a simple weight summation, and
so we will present the algorithm as getting an approx-
imation for the joint distributions rt and pt defined
above, with the understanding that the marginal ones
are easy to obtain afterwards. In the terminology of

particle filtering, x
(i)
t is the particle at time t, whereas

x
(i)
1:t is the particle trajectory. While principally the PF

provides an approximation of the full joint distribution
rt(x1:t), it is well known that this approximation dete-
riorates for any marginal of xs for s ≪ t (Doucet and
Johansen, 2011). Hence, the PF is typically only used
to approximate marginals of xs for s . t (fixed-lag
smoothing) or s = t (filtering), or for prediction.

Algorithm 2 presents the bootstrap particle filtering al-
gorithm (Gordon et al., 1993) from the point of view of
propagating an approximate posterior distribution for-
ward in time (see e.g. Fearnhead, 2005). We describe
it as propagating an approximation p̂t(x1:t) of the joint
predictive distribution one time step forward with the
model dynamics to obtain p̃t+1(xt+1, x1:t) (step 5),
and then randomly sampling from it (step 3) to get
the new predictive approximation p̂t+1(xt+1, x1:t). As
p̂t is an empirical distribution, p̃t+1 is a mixture distri-
bution (the mixture components are coming from the
particles at time t):

p̃t+1(xt+1, x1:t) =

1

Ŵt

N∑

i=1

p(yt|x(i)
t)w

(i)
t

︸ ︷︷ ︸

mixture weight

p(xt+1|x(i)
t)

︸ ︷︷ ︸

mixture component

δ
x
(i)
1:t
(x1:t). (4)

We denote the conditional normalization constant at
time t by Wt := p(yt|y1:(t−1)) and the global normal-

ization constant by Zt := p(y1:t) =
∏t

u=1 Wu. Ŵt

is the particle filter approximation to Wt and is ob-
tained by summing the un-normalized mixture weights
in (4); see step 4 in Algorithm 2. Randomly sam-
pling from (4) is equivalent to first sampling a mix-
ture component according to the mixture weight (i.e.,

choosing a past particle x
(i)
1:t to propagate), and then

sampling its next extension state x
(i)
t+1 with probability

p(xt+1|x(i)
t). The standard bootstrap particle filter is

thus obtained by maintaining uniform weight for the

predictive distribution (w
(i)
t = 1

N) and randomly sam-
pling from (4) to obtain the particles at time t+1. This
gives an unbiased estimate of p̃t+1: Ep̃t+1

[p̂t+1] = p̃t+1.
Lower variance estimators can be obtained by using a
different resampling mechanism for the particles than
this multinomial sampling scheme, such as stratified
resampling (Carpenter et al., 1999) and are usually
used in practice instead.

One way to improve the particle filter is thus to re-
place the random sampling stage of step 3 with differ-
ent sampling mechanisms with lower variance or bet-
ter approximation properties of the distribution p̃t+1

that we are trying to approximate. As we obtain the
normalization constants Wt by integrating the obser-
vation probability, it seems natural to look for particle
point sets with better integration properties. By re-
placing random sampling with a quasi-random number
sequence, we obtain the already proposed sequential
quasi-Monte Carlo scheme (Philomin et al., 2000; Or-
moneit et al., 2001; Gerber and Chopin, 2014). The

547

Simon Lacoste-Julien, Fredrik Lindsten, Francis Bach

main contribution of our work is to instead propose to
use Frank-Wolfe quadrature in step 3 of the particle
filter to obtain better (adapted) point sets.

3.2 Sequential kernel herding

In the sequential kernel herding (SKH) algorithm,
we simply replace step 3 of Algorithm 2 with p̂t =
FW-Quad(p̃t,Ht, N). As mentioned in the introduc-
tion, many dynamical models used in practice assume
Gaussian transitions. Therefore, we will put par-
ticular emphasis on the case when (more generally)
p(xt|x1:(t−1), y1:(t−1)) is a mixture of Gaussians, with
parameters for the mixture components that can be ar-
bitrary functions of the state history x1:(t−1), y1:(t−1),
and is thus still fairly general. We thus consider the
Gaussian kernel for the FW-Quad procedure as then
we can compute the required quantities analytically.
An important subtle point is which Hilbert space Ht

to consider. In this paper, we focus on the marginal-
ized filtering case, i.e. we are interested in p(xt|y1:t)
only. Thus we are only interested in functions of xt,
which is why we define our kernel at time t to only
depend on xt and not the past histories. For simplic-
ity, we also assume that Ht = H for all t (we use the
same kernel for each time step). Even though the algo-
rithm can maintain the distribution on the whole his-
tory p̂t(x1:t), the past histories x1:(t−1) are marginal-
ized out when computing the mean map, for example
µ(p̃t) = Ep̃t(x1:t)[Φ(xt)]. During the SKH algorithm,
we can still track the particle histories by keeping track
from which mixture component in (4) xt was coming
from, but the past history is not used in the compu-
tation of the kernel and thus does not appear as a
repulsion term in step 3 of Algorithm 1. We leave it as
future work to analyze what kind of high-dimensional
kernel on past histories would make sense in this con-
text, and to analyze its convergence properties. The
particle histories are useful in the Rao-Blackwellized
extension that we present in Appendix A and use in
the robot localization experiment of Section 4.3.

3.3 Convergence theory

In this section, we give sufficient conditions to guar-
antee that SKH is consistent as N goes to infinity.
Let pt here denote the marginalized predictive in-
stead of the joint. Let Ft be the forward transfor-
mation operator on signed measures that takes the
predictive distribution pt on xt and yields the un-
normalized marginalized predictive distribution Ftpt
on xt+1 in the SSM. Thus for a measure ν, we get
(Ftν)(·) :=

∫

Xt
p(·|xt)p(yt|xt)dν(xt). We also have

that pt+1 = 1
Wt

Ftpt.

For the following theorem, Ft is a function space on

Xt+1 defined (depending on Ht+1) as all functions for
which the following semi-norm is finite:1

‖f‖Ft
:= sup

‖h‖Ht+1
=1

∣
∣
∣
∣

∫

Xt+1

f(xt+1)h(xt+1)dxt+1

∣
∣
∣
∣
.

Theorem 1 (Bounded growth of the mean map).
Suppose that the function ft : (xt+1, xt) 7→
p(yt|xt)p(xt+1|xt) is in the tensor product function
space Ft⊗Ht with the following defined nuclear norm:
‖ft‖Ft⊗Ht

:= inf
∑

i ‖αi‖Ft
‖βi‖Ht

, where the infimum
is taken over all the possible expansions such that
ft(xt+1, xt) =

∑

i αi(xt+1)βi(xt) for all xt, xt+1. Then
for any finite signed Borel measure ν on Xt, we have:

‖µ(Ftν)‖Ht+1 ≤ ‖ft‖Ft⊗Ht
‖µ(ν)‖Ht

.

Theorem 2 (Consistency of SKH). Suppose that for
all 1 ≤ t ≤ T , ft is in Ft⊗Ht as defined in Theorem 1
and ot is in Ht. Then we have:2

‖µ(p̂T)− µ(pT)‖HT
≤

ǫ̂T +

(

R
‖oT−1‖HT−1

WT−1
+ ρT−1

) T−1∑

t=1

χt ǫ̂t

(
T−2∏

k=t

ρk

)

,

where ρt :=
‖ft‖Ft⊗Ht

Wt
, χt :=

∏t−1
k=1

Ŵk

Wk
and ǫ̂t is the

FW error reported at time t by the algorithm: ǫ̂t :=
‖µ(p̂t)− µ(p̃t)‖Ht

.

We note that χt ≈ 1 as we expect the errors on Wk

to go in either direction, and thus to cancel each other
over time (though in the worst case it could grow expo-
nentially in t). If ǫ̂t ≤ ǫ and ρt ≤ ρ, we basically have
‖µ(p̂T) − µ(pT)‖ = O(ρT ǫ) if ρ > 1; O(Tǫ) if ρ = 1;
and O(ǫ) if ρ < 1 (a contraction). The exponential
dependence in T is similar as for a standard particle
filter for general distributions; see Douc et al. (2014)
though for conditions to get a contraction for the PF.

Importantly, for a fixed T it follows that the rates of
convergence for Frank-Wolfe in N translates to rates
of errors for integrals of functions in H with respect
to the predictive distribution pT . Thus if we suppose
that H is finite dimensional, that pt has full support
on X for all t and that the kernel κ is continuous, then
by Proposition 1 in Bach et al. (2012), we have that
the faster rates for Frank-Wolfe hold and in particu-
lar we could obtain an error bound of O(1/N) with N
particles. As far as we know, this is the first explicit
faster rates of convergence as a function of the number

1In general, the integral on Xt+1 should be with re-
spect to the base measure for which the conditional density
p(xt+1|xt) is defined. All proofs are in the supplementary
material.

2We use the convention that the empty sum is 0 and
the empty product is 1.

548

Sequential Kernel Herding: Frank-Wolfe Optimization for Particle Filtering

10
0

10
1

10
2

10
3

10
−3

10
−2

10
−1

10
0

10
1

 −0.53 −0.64

 −0.95

 −1.47

Number of particles

M
M

D
 E

rr

d = 2, K = 100, σ
2
 = 1

MC
QMC
FW
FCFW

10
0

10
1

10
2

10
3

10
−4

10
−2

10
0

10
2

 −0.44
 −0.57
 −0.76

 −1.83

Number of particles

E
rr

 f
o

r
fu

n
c
ti
o

n
 m

e
a

n

d = 2, K = 100, σ
2
 = 1

MC
QMC
FW
FCFW

Figure 1: Top: MMD error for different sampling
schemes where p is a mixture of 2d Gaussians with
K = 100 components. Bottom: error on the mean
estimate for the same mixture. The dashed lines are
linear fits with slopes reported next to the axes.

of particles than the standard O(1√
N
) for Monte Carlo

particle filters. In contrast, Gerber and Chopin (2014,
Theorem 7) showed a o(1√

N
) rate for the randomized

version of their SQMC algorithm (note the little-o).3

Note that the theorem does not depend on how the
error of ǫ is obtained on the mean maps of the distri-
bution; and so if one could show that a QMC point
set could also achieve a faster rate for the error on the
mean maps (rather than on the distributions itself as
is usually given), then their rates would translate also
to the global rate by Theorem 2.4

4 Experiments

4.1 Sampling from a mixture of Gaussians

We start by investigating the merits of different sam-
pling schemes for approximating mixtures of Gaus-
sians, since this is an intrinsic step to the SKH al-

3The rate holds on the approximation of integrals of
continuous bounded functions.

4We also note that a simple computation shows that
for a Monte Carlo sample of size N , E‖µ(p̂) − µ(p)‖2H ≤
(R2−‖µ(p)‖2)

N
.

gorithm. In Figure 1, we give the MMD error as
well as the error on the mean function in term of
the number of particles N for the different sampling
schemes on a randomly chosen mixture of Gaussians
with K = 100 components in d = 2 dimensions. Addi-
tional results as well as the details of the model are
given in Appendix C.1 of the supplementary mate-
rial. In our experiments, the number of FW search
points is M = 50,000. We note that even though in
theory all methods should have the same rate of con-
vergence O(1/

√
N) for the MMD (as H is infinite di-

mensional), FCFW empirically improves significantly
over the other methods. As d increases, the differ-
ence between the methods tapers off for a fixed kernel
bandwidth σ2, but increasing σ2 gives better results
for FW and FCFW than the other schemes.

In the remaining sections, we evaluate empirically the
application of kernel herding in a filtering context us-
ing the proposed SKH algorithm.

4.2 Particle filtering using SKH on synthetic
examples

We consider first several synthetic data sets in order
to assess the improvements offered by Frank-Wolfe
quadrature over standard Monte Carlo and quasi-
Monte-Carlo techniques. We generate data from four
different systems (further details on the experimental
setup can be found in Appendix C.2):

Two linear Gaussian state-space (LGSS) mod-
els of dimensions d = 3 and d = 15, respectively.

A jump Markov linear system (JMLS), consist-
ing of 2 interacting LGSS models of dimension
d = 2. The switching between the models is gov-
erned by a hidden 2-state Markov chain.

A nonlinear benchmark time-series model used by,
among others, Doucet et al. (2000); Gordon et al.
(1993). The model is of dimension d = 1 and is
given by:

xt+1 = 0.5xt + 25
xt

1 + x2
t

+ 8 cos(1.2t) + vt,

yt = 0.05x2
t + et,

with vt and et mutually independent standard
Gaussian.

These models are ordered in increasing levels of diffi-
culty for inference. For the LGSS models, the exact
filtering distributions can be computed by a Kalman
filter. For the JMLS, this is also possible by running
a mixture of Kalman filters, albeit at a computational
cost of 2T (where T is the total number of time steps).
For the nonlinear system, no closed form expressions

549

Simon Lacoste-Julien, Fredrik Lindsten, Francis Bach

are available for the filtering densities; instead we run
a PF with N = 100,000 particles as a reference.

We generate 30 batches of observations for T = 100
time steps from all systems, except for the JMLS where
we use T = 10 (to allow exact filtering). We run the
proposed SKH filter, using both FW and FCFW op-
timization and compare against a bootstrap PF (us-
ing stratified resampling (Carpenter et al., 1999)) and
a quasi-Monte-Carlo PF based on a Sobol-sequence
point-set. All methods are run with N varying from
20 to 200 particles. We deliberately use rather few par-
ticles since, as discussed above, we believe that this is
the setting when the proposed method can be partic-
ularly useful.

To assess the performances of the different meth-
ods, we first compute the root-mean-squared errors
(RMSE) for the filtered mean-state-estimates over
the T time steps, w.r.t. the reference filters. We re-
port the median RMSEs over the 30 different data
batches, along with the 25% and 75% quantiles, and
the minimum and maximum values in Figure 2. The
SKH algorithms were run for three different values of
σ2 ∈ {0.01, 0.1, 1}. Here, we report the results for
σ2 = 1 for the LGSS models and the JMLS, and for
σ2 = 0.1 for the nonlinear benchmark model. The re-
sults for the other values are given in Appendix C.2.
The improvements are somewhat robust to the value
of σ2, but in some cases significant differences were ob-
served. As can be seen, both SKH methods improve
significantly upon both QMC and the bootstrap PF.
For the two LGSS models, we also compute the MMD
(reported in the rightmost column in Figure 2).

4.3 Vision-based UAV Localization

In this section, we apply the proposed SKH algo-
rithm to solve a filtering problem in field robotics.
We use the data and the experimental setup described
by Törnqvist et al. (2009). The problem consists of es-
timating the full six-dimensional pose of an unmanned
aerial vehicle (UAV).

Törnqvist et al. (2009) proposed a vision-based solu-
tion, essentially tracking interest points in the camera
images over consecutive frames to estimate the ego-
motion. This information is then fused with the in-
ertial and barometer sensors to estimate the pose of
the UAV. The system is modelled on state-space form,
with a state vector comprising the position, velocity,
acceleration, as well as the orientation and the angu-
lar velocity of the UAV. The state is also augmented
with sensor biases, resulting in a state dimension of 22.
Furthermore, the state is augmented with the three-
dimensional positions of the interest points that are
currently tracked by the vision system; this is a vary-

ing number but typically around ten.

To deal with the high-dimensional state-vector,
Törnqvist et al. (2009) used a Rao-Blackwellized PF
(see Appendix A) to solve the filtering problem,
marginalizing all but 6 state components (being the
pose, i.e., the position and orientation) using a combi-
nation of Kalman filters and extended Kalman filters.
The remaining 6 state-variables were tracked using a
bootstrap particle filter with N = 200 particles; the
strikingly small number of particles owing to the com-
putational complexity of the likelihood evaluation.

For the current experiment, we obtained the code and
the flight-test data from Törnqvist et al. (2009). The
modularity of our approach allowed us to simply re-
place the Monte Carlo simulation step within their
setup with FW-Quad. We ran SKH-FW with σ2 = 10
and SKH-FCFW with σ2 = 0.1, as well as the boot-
strap PF used in Törnqvist et al. (2009), and a QMC-
PF; all methods using N = 50, 100, and 200 parti-
cles. We ran all methods 10 times on the same data;
the variation in SKH coming from the random search
points for the FW procedure, and in QMC for starting
the Sobol sequence at different points. For compari-
son, we ran 10 times a reference PF with N = 100,000
particles and averaged the results. The median posi-
tion errors for 100 seconds of robot time (there are 20
SSM time steps per second of robot time) are given in
Figure 3. The UAV is assumed to start at a known
location at time zero, hence, all the errors are zero ini-
tially. Note that all methods accumulate errors over
time. This is natural, since there is no absolute po-
sition reference available (i.e., the filter is unstable)
and the objective is basically to keep the error as
small as possible for as long time as possible. SKH-
FW here gives the overall best results, with significant
improvements over the bootstrap PF and the QMC
methods for small number of particles. SKH-FW even
gives similar errors for the last time step with only
N = 200 particles as one of the reference PFs (us-
ing N = 100,000 particles). See Appendix C.2.1 for a
discussion of the role of σ2 for FCFW.

Runtimes. In these experiments, we focused on in-
vestigating how optimization could improve the error
per particle, as the gain in runtime depends on the
exact implementation as well as the likelihood eval-
uation cost. We note that the FW-Quad algorithm
scales as O(NM) for N samples and M search points
when using FW, by updating the objective on the M
search points in an online fashion (we also empirically
observed this linear scaling in N). On the other hand,
FCFW scales as O(N2M) as the weights on the parti-
cles possibly change at each iteration, preventing the
same online trick. SKH scales linearly with the num-
ber of time steps T (as a standard PF). For the UAV

550

Sequential Kernel Herding: Frank-Wolfe Optimization for Particle Filtering

20 50 100 200

10
−1

10
0

 −0.46

Number of particles

RMSE, LGSS, d = 3

 −0.55

 −0.56

 −0.60

PF
QMC
FW (σ2 = 1)
FCFW (σ2 = 1)
min/max

20 50 100

10
−1

10
0

 −0.49

Number of particles

RMSE, JMLS

 −0.46

 −0.21
 −0.32

PF
QMC
FW (σ2 = 1)
FCFW (σ2 = 1)
min/max

20 50 100 200

10
−1

10
0

 −0.45

Number of particles

MMD RMS (σ2 = 1), LGSS, d = 3

 −0.51

 −0.54

 −0.64

PF
QMC
FW (σ2 = 1)
FCFW (σ2 = 1)
min/max

20 50 100 200
10

−1

10
0

10
1

 −0.36

Number of particles

RMSE, LGSS, d = 15

 −0.38
 −0.36 −0.36

PF
QMC
FW (σ2 = 1)
FCFW (σ2 = 1)
min/max

20 50 100 200
10

−2

10
−1

10
0

10
1

 −0.84

Number of particles

RMSE, Nonlinear benchmark

 −0.89

 −1.22

 −1.25

PF
QMC
FW (σ2 = 0.1)
FCFW (σ2 = 0.1)
min/max

20 50 100 200
10

−1

10
0

 −0.42

Number of particles

MMD RMS (σ2 = 1), LGSS, d = 15

 −0.41

 −0.35 −0.36

PF
QMC
FW (σ2 = 1)
FCFW (σ2 = 1)
min/max

Figure 2: RMSEs (left and middle columns) for the four considered models and MMDs (right column) for the
two LGSS models.

0 20 40 60 80 100
0

1

2

3

4

5

6

P
os
it
io
n
er
ro
r
(m

)

Robot time (s)

N = 50

PF
QMC
FW (σ2 = 10)
FCFW (σ2 = 0.1)
PF N = 10k
PF N = 100k

0 20 40 60 80 100
0

1

2

3

4

5

6

P
os
it
io
n
er
ro
r
(m

)

Robot time (s)

N = 100

PF
QMC
FW (σ2 = 10)
FCFW (σ2 = 0.1)
PF N = 10k
PF N = 100k

50 100 200
0

5

10

15

P
os
it
io
n
er
ro
r
(m

)

Number of particles

UAV - last time step error

PF
QMC
FW (σ2 = 10)
FCFW (σ2 = 0.1)
PF N = 10k
PF N = 100k
min/max

Figure 3: Median of position errors over 10 runs for each method. The errors are computed relative to the mean
prediction over 10 runs of a PF with 100k particles (the variation of the reference PF is also shown for PF 100k).
The error bars represent the [25%, 75%] quantile. The rightmost plot shows the error at the last time step as a
function of N . 100 s of robot time represents 2,000 SSM time steps, it does not correspond to computation time.

application, the original Matlab code from Törnqvist
et al. (2009) spent an average of 0.2 s per time step for
N = 50 particles (linear in the number of particles as
the likelihood evaluation is the bottleneck) on a XEON
E5-2620 2.10 GHz PC. The overhead of using our Mat-
lab implementation of FW-Quad with N = 50 is about
0.15 s per time step for FW and 0.3 s for FCFW; and
0.3 s for FW and 1.0 s for FCFW for N = 100 (we
used M = 10,000 search points in this experiment).
In practice, this means that SKH-FW can be run here
with 50 particles in the same time as the standard PF
is run with about 90 particles. But as Figure 3 shows,
the error for SKH-FW with 50 particles is still much
lower than the PF with 200 particles.

5 Conclusion

We have developed a method for Bayesian filtering
problems using a combination of optimization and par-
ticle filtering. The method has been demonstrated to
provide improved performance over both random sam-
pling and quasi-Monte Carlo methods. The proposed
method is modular and it can be used with different
types of particle filtering techniques, such as the Rao-
Blackwellized particle filter. Further investigating this
possibility for other classes of particle filters is a topic
for future work. Future work also includes a deeper
analysis of the convergence theory for the method in
order to develop practical guidelines for the choice of
the kernel bandwidth.

551

Simon Lacoste-Julien, Fredrik Lindsten, Francis Bach

Acknowledgements

We thank Eric Moulines for useful discussions. This
work was partially supported by the MSR-Inria Joint
Centre, a grant by the European Research Council
(SIERRA project 239993) and by the Swedish Re-
search Council (project Learning of complex dynamical
systems number 637-2014-466).

References

F. Bach. Learning with submodular functions: A
convex optimization perspective. Foundations and
Trends in Machine Learning, 6(2-3):145–373, 2013.

F. Bach, S. Lacoste-Julien, and G. Obozinski. On the
equivalence between herding and conditional gradi-
ent algorithms. In Proceedings of the 29th Inter-
national Conference on Machine Learning (ICML),
pages 1359–1366, 2012.

O. Cappé, E. Moulines, and T. Rydén. Inference in
Hidden Markov Models. Springer, 2005.

J. Carpenter, P. Clifford, and P. Fearnhead. Improved
particle filter for nonlinear problems. IEE Proceed-
ings Radar, Sonar and Navigation, 146(1):2–7, 1999.

Y. Chen, M. Welling, and A. Smola. Super-
samples from kernel herding. In Proceedings of the
26th International Conference on Machine Learning
(ICML), 2010.

R. Douc, E. Moulines, and J. Olsson. Long-term sta-
bility of sequential Monte Carlo methods under ver-
ifiable conditions. Annals of Applied Probability, 24
(5):1767–1802, 2014.

A. Doucet and A. Johansen. A tutorial on particle
filtering and smoothing: Fifteen years later. In
D. Crisan and B. Rozovsky, editors, The Oxford
Handbook of Nonlinear Filtering. Oxford University
Press, 2011.

A. Doucet, S. J. Godsill, and C. Andrieu. On sequen-
tial Monte Carlo sampling methods for Bayesian
filtering. Statistics and Computing, 10(3):197–208,
2000.

J. C. Dunn. Convergence rates for conditional gra-
dient sequences generated by implicit step length
rules. SIAM Journal on Control and Optimization,
18:473–487, 1980.

P. Fearnhead. Using random quasi-Monte-Carlo
within particle filters, with application to financial
time series. Journal of Computational and Graphical
Statistics, 14(4):751–769, 2005.

M. Frank and P. Wolfe. An algorithm for quadratic
programming. Naval Research Logistics Quarterly,
3:95–110, 1956.

M. Gerber and N. Chopin. Sequential quasi-Monte
Carlo. arXiv preprint arXiv:1402.4039v5, 2014.

N. J. Gordon, D. J. Salmond, and A. F. M.
Smith. Novel approach to nonlinear/non-Gaussian
Bayesian state estimation. Radar and Signal Pro-
cessing, IEE Proceedings F, 140(2):107–113, Apr.
1993.

A. Gretton, K. M. Borgwardt, M. J. Rasch,
B. Schölkopf, and A. Smola. A kernel two-sample
test. The Journal of Machine Learning Research,
13:723–773, 2012.

F. Huszár and D. Duvenaud. Optimally-weighted
herding is Bayesian quadrature. In Proceedings of
the 28th Conference on Uncertainty in Artificial In-
telligence (UAI), pages 377–385, 2012.

M. Jaggi. Revisiting Frank-Wolfe: Projection-free
sparse convex optimization. In Proceedings of the
30th International Conference on Machine Learning
(ICML), 2013.

D. Ormoneit, C. Lemieux, and D. J. Fleet. Lattice
particle filters. In Proceedings of the 17th Confer-
ence on Uncertainty in Artificial Intelligence (UAI),
pages 395–402, 2001.

V. Philomin, R. Duraiswami, and L. Davis. Quasi-
random sampling for condensation. In Proceedings
of the 6th European Conference on Computer Vision
(ECCV), 2000.

M. K. Pitt and N. Shephard. Filtering via simulation:
Auxiliary particle filters. Journal of the American
Statistical Association, 94(446):590–599, 1999.

B. Ristic, S. Arulampalam, and N. Gordon. Beyond
the Kalman filter: particle filters for tracking appli-
cations. Artech House, London, UK, 2004.

A. Smola, A. Gretton, L. Song, and B. Schölkopf. A
Hilbert space embedding for distributions. In Al-
gorithmic Learning Theory, pages 13–31. Springer,
2007.

B. K. Sriperumbudur, A. Gretton, K. Fukumizu,
B. Schölkopf, and G. R. Lanckriet. Hilbert space em-
beddings and metrics on probability measures. The
Journal of Machine Learning Research, 99:1517–
1561, 2010.

D. Törnqvist, T. B. Schön, R. Karlsson, and
F. Gustafsson. Particle filter SLAM with high di-
mensional vehicle model. Journal of Intelligent and
Robotic Systems, 55(4):249–266, 2009.

552

