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Abstract—We consider the problem of optimally assigning p
sniffers to K channels to monitor the transmission activities
in a multi-channel wireless network. The activity of users is
initially unknown to the sniffers and is to be learned along with
channel assignment decisions while maximizing the benifits of
this assignment, resulting in the fundamental trade-off between
exploration versus exploitation. We formulate it as the linear par-
tial monitoring problem, a super-class of multi-armed bandits. As
the number of arms (sniffer-channel assignments) is exponential,
novel techniques are called for, to allow efficient learning. We
use the linear bandit model to capture the dependency amongst
the arms and develop two policies that take advantage of this
dependency. Both policies enjoy logarithmic regret bound of time-
slots with a term that is sub-linear in the number of arms.

I. INTRODUCTION

Deployment and management of wireless devices and net-
works are often hampered by the poor visibility of PHY
and MAC characteristics, and complex interactions at various
layers of the protocol stack both inside a managed network
and across multiple administrative domains. The “can you hear
me” Verizon wireless TV commercial is a vivid demonstration
of the shortage of real-time knowledge that cellular providers
have regarding the condition of operational networks. Accurate
and timely estimates of network conditions and performance
characteristics can yield to better performance in a number of
applications, including the following:
• Network resource management.: Wireless service

providers and network administrators need to determine
the coverage of their own networks and make critical
decisions such as dimensioning and allocation of network
resources.

• Wireless advisory.: Individual devices can better adapt
their operational parameters (e.g., channels, sub-carriers,
hopping sequences, transmission power levels, etc.) for
co-existence and better performance.

• Trouble shooting and diagnosis.: Availability of cross-
layer information of the operational network can help
network administrators to determine the root causes of
service outage or performance degradation as well as
identify malicious behavior and intrusion.

Passive monitoring is a technique where a dedicated set of
hardware devices, called sniffers, are used to monitor activities
in wireless networks. These devices capture transmissions of
wireless devices or activities of interference sources in their

vicinity, and store packet level or PHY layer information
in trace files, which can be analyzed distributively or at a
central location. A canonical monitoring application has three
components: 1) sniffer hardware, 2) sniffer coordinator and
data collector, and 3) data processor and miner.

Since most, if not all infrastructure networks utilize mul-
tiple contiguous or non-contiguous channels or bands 1, an
important issue is to determine which set of frequency bands
each sniffer should operate on to maximize the total amount
of information gathered. This is called the sniffer-channel
assignment problem or channel assignment problem for short.
It is a challenging problem for two reasons. First, monitoring
resources are limited, and thus it is infeasible to monitor
all channels at all locations at all times. Second, intelligent
channel assignment requires the knowledge of usage patterns,
i.e., the likelihood of occurrence of interesting events. These
are of course not known a priori. An interesting trade-off
arises between assigning sniffers to channels known to be the
busiest based on current knowledge, versus exploring channels
that are undersampled. Sniffer-channel assignment with no
prior knowledge of user activity is closely related to the multi-
armed bandit problem (MAB) [1]. In a MAB, a gambler must
decide which arm of N non-identical slot machines to play in a
sequence of trials so as to maximize his payoff. In the sniffer-
channel assignment problem, each of the p sniffers must be
assigned to one of the K non-identical channels to monitor
so as to maximize the total information gathered. The number
of choices (arms) available in a round is thus N = Kp. In
this work we assume that the payoff is proportional to the
number of distinct users detected. For simplicity, we assume
that a user’s activity in a given channel can be described
with a sequence of IID Bernoulli random variables. However,
as opposed to the standard MAB problem, the observation
upon a single assignment is not only the reward associated
with the assignment, but also the activity patterns observed at
each monitored channel. Note that the observed pattern may
have correlated components, e.g. when two sniffers observe
the transmission of the same set of users.

A policy for sniffer-channel assignment determines at any
point in time the assignment to be chosen based on past

1A channel can be a single frequency band, a code in a CDMA system, or
a hopping sequence in a frequency-hopping system.
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information. The efficiency of different policies is measured
in terms of their associated regret, which is defined as the
difference between the expected payoff gained by a “genie”
(an unattainable ideal) who always uses the optimal stationary
sniffer-channel assignment, and that obtained by the given
policy. The regret achieved by a policy can be evaluated in
terms of its growth over time and how it scales with respect
to the various problem parameters. A naive approach to the
channel assignment problem would be to treat each sniffer-
channel combination as an arm (action), and learn the statistics
of each arm individually. With p sniffers and K channels in
the network, the statistics of a total of Kp arm-payoffs needs
to be learned. Direct application of known approaches to MAB
(e.g., UCB[2], ε-greedy[3]) results in a regret bound linear in
the number of arms Kp.

In this paper, we formulate the optimal channel assign-
ment problem as a multi-agent multi-arm partial information
problem with linearly parameterized payoff. Our proposed
policies are centralized and slotted in nature, namely, a fusion
center collects the information from each sniffer in each
slot and make decision regarding the channel assignment
for the next slot. Utilizing the dependency among arms, we
reduce the unknown parameter space to K · 2p. We devise
two order-optimal policies both having a regret bound that
grows logarithmically with respect to time with an associated
constant that grows sub-linearly in the number of arms. The
key improvement compared to the naive approach comes from
the concept of spanner arms, i.e, a small collection of arms
which provide information about all parameters. The policies
and regret bounds are derived for general correlation structures
among the sniffers, and remain valid for special cases where
the sniffer’s observations are identical or independent. In both
cases methods exist to identify the best arm to play in each
slot which are linear in the number of arms and exponential
in the number of sniffers.

The rest of the paper is organized as follows. In Section II,
related work on wireless monitoring and sequential learning
is summarized. We present the problem formulation in Sec-
tion III. Details and analysis of the two policies are provided
in Section IV and Section V, respectively. Simulation results
are presented in Section VI, followed by conclusion and a list
of future work in Section VII.

II. RELATED WORK

Wireless monitoring is an active area of research that has
received much attention from several perspectives. There has
been much work done on wireless monitoring from a system-
level viewpoint, in an attempt to design complete systems,
and address the interactions among the components of such
systems [4], [5], [6], [8], [9]. The authors of these works
have argued both qualitatively and quantitatively the need for
monitoring on the wireless side.

To determine the optimal allocation of monitoring resources
to maximize captured information remains, in [10], where
Shin and Bagchi consider the selection of monitoring nodes
and their associated channels for monitoring wireless mesh

networks. The optimal monitoring is formulated as a maximum
coverage problem with group budget constraints, which was
previously studied by Chekuri and Kumar in [11]. In [12],
we introduced a quality of monitoring (QoM) metric defined
by the expected number of active users monitored, and in-
vestigated the problem of maximizing QoM by judiciously
assigning sniffers to channels based on knowledge of user
activities in a multi-channel wireless network. Two capture
models are considered. The first one, called the user-centric
model assumes frame-level capturing capability of sniffers
such that the activities of different users can be distinguished.
The second one, called the sniffer-centric model utilizes binary
channel information only(active or not) at a sniffer.

The above works assume that certain statistics regarding
the users’ activity are given [10], [11] or can be inferred [12].
When such statistics are not known a priori, sequential learning
is needed. Sequential decision making in presence of uncer-
tainty, faces the fundamental tradeoff between exploration and
exploitation. On one hand, it is desirable to put sniffers to the
channels where most activities have been observed and thus
more information is likely to be gathered (exploitation). On
the other hand, exploring the channels that are under-sampled
helps to reduce uncertainty and thus avoid being misled by
imprecise information. Such tradeoffs are vividly illustrated
by the famous multi-armed bandit problem (MAB). A large
volume of work has been been devoted to designing good
strategies for variations of the MAB problem and to the under-
standing of the theoretical limits of such procedures, among
which, just to name a few, Lai and Robbin [2] established
logarithmic upper and lower bounds for dent stochastic arms
with parametric payoff distributions; Agrawal [13] considered
a class of sample-mean based policies for the same setting;
Auer et al analyzed upper confidence bound (UCB) based and
ε-greedy policies for non-parametric stochastic bandit prob-
lems [3]. Recently, bandit problems with linear parameterized
payoff are considered in [15], [27]. Regret minimization under
partial monitoring is investigated in [16], where the player in
a repeated game, instead of observing the action chosen by the
opponent in each game round, receives a feedback generated
by the combined choice of the two players.

Recognizing the connection between the MAB and spec-
trum access in cognitive radio networks, Lai et al. applied
the UCB1 algorithm [3] to single user-channel selection in
[17], and later extended it to consider Markovian payoffs and
for the case of multiple users in [18]. Liu and Zhao [19]
formulated the problem of secondary user channel selection as
a decentralized multi-armed bandit problem, and presented a
policy that achieves asymptotically logarithmic regret in time.
Anandkumar [20] proposed two policies for distributed learn-
ing and access with order-optimal cognitive system throughput
under self play. In addition to learning the channel availability,
the second users also learn the other users’ strategies and the
number of total users in the system through channel feedback.
Existing work applying MAB in the cognitive radio context
assumes identical channel view with the exception of Gai et
al [21]. However, the model considered in this work, in fact
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makes the implicit assumption that all secondary users are co-
located (“if there are multiple users on the channel, then we
assume that, due to interference, at most one of the conflicting
users gets reward”). Since co-located secondary users likely
observe identical primary user activities, a contradiction arises
to the claim of “allowing the reward process on the same
channel to be different” [21].

In contrast to existing work, we consider a model where
sniffers are in general configuration and may observe different
sets of users in the same channel. This encompasses models
when either sniffers are co-located or when they are suffi-
ciently far apart. The algorithms and analytical bounds devised
are directly applicable to the specialized cases. Admittedly,
due to its generality, the model suffers from a higher computa-
tion and storage complexity. Unfortunately, this unavoidable as
a result of the NP-hardness of the nominal resource allocation
problem when all statistics are known as shown in Section III.

III. PROBLEM FORMULATION

Consider p sniffers monitoring user activities in K channels.
A user u operates in one of K channels, c(u) ∈ K =
{1, . . . ,K}. Let pu denote the transmission probability of user
u. We represent the relationship between users and sniffers
using an undirected bi-partite graph G = (S,U,E), where
S = {1, . . . , p} is the set of sniffer nodes and U is the set of
users. An edge e = (s, u) exists between sniffer s ∈ S and
user u ∈ U if u is within the reception range of sniffer s. If
transmissions from a user cannot be captured by any sniffer,
the user is excluded from G. For every vertex v ∈ S ∪U , we
let N(v) denote vertex v’s neighbors in G. For users, their
neighbors are sniffers, and vice versa. We assume that one
sniffer can observe one user at a time. This is consistent with
many existing multiple access mechanisms including FDMA,
TDMA.

At any point in time, a sniffer can only observe trans-
missions over a single channel. We will consider channel
assignments of sniffers to channels, k = (k1, . . . , kp), where
1 ≤ ki ≤ K. Let K = {k | k : S → {1, ..,K}p} be the set
of all possible assignments. The set of users a sniffer s can
observe is given by N(s)

⋂
{u : c(u) = ks }.

A. Optimal channel assignment in the nominal form

We first consider the formulation of the optimal sniffer-
channel assignment where the graph G and the user-activity
probabilities (pu;u ∈ U) are both known. The discussion
serves two purposes. First, optimal channel assignment with
uncertainty is inherently harder than that without uncertainty.
Therefore, determining the complexity of the later provides
a baseline understanding of the computational aspect of the
former problem. Second, as will become clearer, each instance
of the decision problem along the sequential learning process
can in fact be cast as the optimal channel assignment with
known parameters, where the known parameters in this case
are in fact the “best” estimates of these parameters (plus some
margins due to insufficient samples).

The objective of optimal channel assignment is to maximize
the expected number of active users monitored. Let MAX-
EFFORT-COVER (MEC) denote the problem of finding the
largest (weight) set of users that can be monitored by a set
of sniffers, where each sniffer can monitor one of a set of k
channels. Note that in MEC, the weights can in fact be any
non-negative values and are not limited to [0, 1]. The MEC
problem can be cast as the following integer program (IP):

max
∑
u∈U puyu

s.t.
∑K
k=1 zs,k ≤ 1 ∀s ∈ S

yu ≤
∑
s∈N(u) zs,c(u) ∀u ∈ U

yu, zs,k ∈ {0, 1} ∀u, s, k.

(1)

Each sniffer is associated with a set of binary decision
variables, zs,k = 1 if the sniffer is assigned to channel k; 0,
otherwise. Further, yu is a binary variable (but not a decision
variable) indicating whether or not user u is monitored, and
pu is the weight associated with user u. We have proven that
MEC is NP-hard in [12]:

Theorem 1 (Theorem 1[12]): The MEC problem is NP-hard
with respect to the number of sniffers, even for K = 2.
In other words, the computational complexity for a genie to
make the optimal choice with the knowledge of all users’
activity grows at least exponentially with respect to the number
of sniffers, unless P = NP . However, when the graphs G have
some specific structure, there may exist efficient algorithms.
For example, when G is restricted to be a complete bipartite
graph, it can be shown that MEC reduces to maximum
matching in a transformed bipartite graph, which can be solved
in polynomial time.

B. Linear bandit for optimal channel assignment with uncer-
tainty

Now, we turn to the optimal channel assignment when there
is uncertainty in both G and pu’s. We first define the structure
of instantaneous feedback and payoff of each sniffer.

Let Uik(t) be a nonnegative, integer-valued random vari-
able which denotes the index of the user whose activity
sniffer i can observe in channel k at time t, or which
takes the value of zero if there is no activity in the
chosen channel. For simplicity, we assume that U(t) =
(Uik(t); 1 ≤ i ≤ p, 1 ≤ k ≤ K) is a sequence of
IID random variables. The instantaneous feedback (observa-
tions) received under the joint action k(t) = (k1, . . . , kp)
is Y ◦(k1,...,kp)(t) = (U1,k1(t), U2,k2(t), . . . , Up,kp(t)). Note
that the indicator I{Ui1,ki1 (t)=Ui2,ki2

(t)=...=Uis,kis
(t)>0} is a

function of Y ◦(k1,...,kp)(t) and hence can be taken as part of
the observation Y(k1,...,kp)(t), defined as the collection[
I{Ui1,ki1 (t)=Ui2,ki2

(t)=...=Uis,kis
(t)>0}; 1 ≤ s ≤ p, 1 ≤ i1 < . . . < is ≤ p

]
.

(2)

Note that spatial multiplexing is allowed such that multiple
users can be active at the same time in one channel (as long
as they are sufficiently far apart geographically). However,
we assume one user can be observed by one sniffer at a
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time. This is consistent with many existing multiple access
mechanisms including FDMA, TDMA. As in Section III-A,
the payoff upon selecting the joint action is the number of
distinct users observed. That is, the joint payoff for selecting
channels k = (k1, k2, . . . , kp) is

Xk(t) = |{U1,k1(t), . . . , Up,kp(t)}|
−I{U1,k1

(t)=0,...,Up,kp (t)=0}
=

∑p
i=1 I{U1,ki

(t)>0}
−

∑p
i,j=1 I{Ui,ki (t)=Uj,kj (t)>0}I{ki=kj ,i6=j}

. . .
− (−1)pI{U1,k1

(t)=U2,k2
(t)=...=Up,kp (t)>0}

× I{k1=k2=...=kp}.
(3)

The expected payoff for channels k = (k1, k2, . . . , kp) is
given by,

E [Xk(t)]
=

∑p
i=1 P (U1,ki(t) > 1)

−
∑p
i,j=1 P

(
Ui,ki(t) = Uj,kj (t) > 0

)
I{ki=kj ,i6=j}

. . .
− (−1)pP

(
U1,k1(t) = . . . = Up,kp(t) > 0

)
×I{k1=k2=...=kp}

(4)

Define an unknown vector θ with the following elements:

P
(
Ui,k > 0

)
, 1 ≤ i ≤ p, 1 ≤ k ≤ K,

P
(
Ui1,k = Ui2,k > 0

)
, 1 ≤ i1 < i2 ≤ p, 1 ≤ k ≤ K,

...
P
(
U1,k = U2,k = . . . = Up,k > 0

)
, 1 ≤ k ≤ K.

(5)
We introduce the “arm features”, φk ∈ RM as (6), where

M = K(2p − 1). Note that the jth arm feature φk,j is
uniquely determined by the arm k = (k1, k2, . . . , kp). Let
Mk = { i : 1 ≤ i ≤M,φk,i 6= 0 } be the set of nonzero
components of feature vector φk and let Mk = |Mk|.

To this end, we can rewrite the expected payoff as a linear
function of the arm feature φk,

E [Xk(t)] = θT φk, (7)

where (·)T denotes transposition.
Knowing θ suffices to play optimally: An arm with maximal

payoff is given by k∗ = argmaxk∈K θ
>φk (here, and in

what follows, for the sake of simplicity, we assume that
there is a unique optimal arm). A reasonable way to estimate
the parameter vector θ is to keep a running average for the
components of θ. If at time t the agent chose k(t) ∈ K then
the current estimate, θ̂(t− 1), can be updated by

θ̂i(t) = θ̂i(t− 1) +
1

Ni(t)

(
Yi(t)− θ̂i(t− 1)

)
I{i∈Mk(t)},

Ni(t) = Ni(t− 1) + I{i∈Mk(t)}.

(8)

Here Ni(0) = 0, θ̂i(0) = 0. Thus, Ni(t) counts the number
of times data for component i was observed up to time t.

Example 1 (Co-located sniffers): When the sniffers are
“co-located” or are deployed at close proximity, their ob-
servations are identical. Therefore, U(t) will be such that if

ki = kj then Ui,ki(t) = Uj,kj (t).
2 Then, the expected payoff is

maximized by putting different sniffers to different channels,
i.e., ki 6= kj , 1 ≤ i < j ≤ p. It can be proved that it is
strictly better to put different sniffers to different channels. In
this case it suffices to estimate P (Uik > 0), i.e., a total of
K · p parameters. The problem then becomes essentially the
multi-armed bandit problem with multiple plays considered in
a number of previous works [23], [19], [20].

Example 2 (Independent sniffers): The opposite case is
when Ui,ki(t) 6= Uj,kj (t) whenever i 6= j and when one
of Ui,ki(t) and Uj,kj (t) is nonzero. In words, all sniffers are
guaranteed to observe distinct users (e.g., they are far away
from one another). Then, I{Ui1,ki1 =Ui2,ki2

=...=Uis,kis
>0} = 0,

2 ≤ s ≤ p, 1 ≤ i1 <, . . . , < is ≤ p. Therefore, the number of
parameters are reduced to K · p and each sniffer can decide
independently which channel to monitor. Thus the, problem
reduces to p independent K-arm bandit problems.

In practice, sniffers are deployed distributedly. Their obser-
vations are typically correlated but non-identical. This motives
us to consider the optimal channel assignment in general
configurations. An optimal monitoring policy π determines a
sequence of actions in K over time such that the expected
regret is minimized:

Rπn = E

[
n∑
t=1

{
max
k∈A

φTk θ − φTktθ
}]

.

Here, kt denotes the joint action selected at time t.

C. Relationships between pu and θ

Theorem 2 states the one-to-one mapping between pu and θ
with G properly defined. As such, we can apply optimization
solutions to (1) to determine the “best” arm to play at each
instance.

Theorem 2: Let p̄ be the vector denoting the user-activity
probabilities. Under some mild non-limiting conditions, there
exists a full rank matrix A such that log(1−θ) = log(1−p̄)·A.

Proof: See Appendix A.

D. Spanners

Since some arms reveal information about other arms, it
might be possible to identify a restricted set E ⊂ K, which
might be much smaller than K, so that playing only arms in E
gives sufficient information to identify the optimal arm. A suf-
ficient condition for this is that ∪k∈EMk = {1, . . . ,M}. This
condition ensures that by choosing an appropriate arm in E any
component of X(t) can be observed, which is clearly sufficient
to identify θ. Since exploration is generally costly, the set E
is ideally chosen to be small. In the monitoring problem E
can be chosen to be E = { (k, . . . , k) : 1 ≤ k ≤ K }, i.e. all
the sniffers assigned to the same channel to cover (2p − 1)
parameters, whose cardinality is K � Kp = |K|. The set E is
called a spanning set or a spanner and its elements are called
spanner arms.

2Clock synchronization among sniffers can be achieved online or offline
using methods such as in [22].
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φk,i =



I{k1=i} , if 1 ≤ i ≤ K;

. . .

I{k2=i−l·K} , if l ·K + 1 ≤ i ≤ (l + 1) ·K;

. . .

−I{k1=k2=i−p·K} , if p ·K + 1 ≤ i ≤ (p+ 1) ·K;

. . .

−(−1)pI{k1=k2=...=kp=i−K(2p−2)} , if K(2p − 2) + 1 ≤ i ≤ K(2p − 1)

(6)

IV. AN UPPER CONFIDENCE BOUND (UCB)-BASED
POLICY

The first policy that we consider is similar to UCB1 [3] with
the difference that in the initialization stage, we only play each
of the spanners once. Formally, the algorithm first plays each
arm in E once and then at time t ≥ |E|+ 1 chooses

k(t) = argmax
k∈E

Vk(t− 1),

where

Vk(t− 1) = µ̂k(t− 1) +
∑
i∈Mk

√
ρ log t

Ni(t− 1)
,

µ̂k(t− 1) = θ̂(t− 1)>φk.

After playing k(t) and observing (Yi(t); i ∈ Mk(t)) the
parameter estimate is updated using (8). Then, the process
is repeated.

Theorem 3: Choose any ρ that satisfies ρ > 1/1.99. Then,
there exists a constant C > 0 (which may depend on ρ) such
that for all n ≥ 1, the expected regret of UCB1 satisfies

RUCB1
n ≤ 4M∆max

(
max

k:∆k>0

Mk

∆k

)2

ρ log n+ C,

where ∆max = maxk ∆k.
The exact dependence of C on the problem parameters can be
extracted from the proof. In particular, C scales linearly with
|K|.

Proof: The proof is similar to the original proof that
given by Auer et al[3], with some elements borrowed from
the analysis technique of Audibert et al[24]. (see also, [25])
and Gai et al [21].

We start by introducing the necessary notation. We de-
note by Tk(n) the number of times arm k is chosen up
to time n (including time n): Tk(n) =

∑n
t=1 I{k(t)=k}.

We let µ∗ = maxk µk, ∆k = µ∗ − µk. Then, it
is easy see that E

[
RUCB1
n

]
=

∑
k ∆kE [Tk(n)] ≤

(maxk ∆k) E
[∑

k:∆k>0 Tk(n)
]
. Our goal is to develop a

bound on E
[∑

k:∆k>0 Tk(n)
]

which scales linearly with M
rather that with |K|.

Let I(t) = argminj∈Mk(t)
Nj(t − 1) (ties can be broken,

say, in favor of the smallest index), Zi(t) = I{k(t) 6=k∗,I(t)=i},
T̃i(t) = T̃i(t − 1) + Zi(t).3 Note that

∑
k6=k∗ Tk(n) =

3We are using the assumption that there is a unique optimal arm k∗. Note
that this is assumed just for the sake of simplicity and the proof, at the price
of a more complicated presentation, works without it.

∑
i T̃i(n), since exactly one of the counters is incremented on

both sides when a suboptimal arm is chosen. Thus, it suffices
to bound T̃i(n).

Therefore pick any index 1 ≤ i ≤M and let u be an integer
to be chosen later. We have Zi(t) = Zi(t)I{T̃i(t−1)>u} +

Zi(t)I{T̃i(t−1)≤u}. Since
∑n
t=1 Zi(t)I{T̃i(t−1)≤u} ≤ u + 1, it

suffices to deal with the first term, which we bound as follows:

Zi(t)I{T̃i(t−1)>u}

≤ I{Vk(t)(t−1)>µ∗,T̃i(t−1)>u,I(t)=i} + I{Vk∗ (t−1)≤µ∗}.

Thus,

E
[
T̃i(n)

]
≤ u+ 1

+

n∑
t=1

P
(
Vk(t)(t− 1) > µ∗, T̃i(t− 1) > u, I(t) = i

)
+

n∑
t=1

P (Vk∗(t− 1) ≤ µ∗) .

We will now show that both sums are finite, provided that u
is sufficiently large.

The summand of the first sum is bounded as follows:

p1t
def
= P

(
Vk(t)(t− 1) > µ∗, T̃i(t− 1) > u, I(t) = i

)
≤ P

{
µ̂k(t)(t− 1) > µk(t) + ∆k(t) − ck(t),t−1,

T̃i(t− 1) > u, I(t) = i
}

where ck,t−1 =
√
ρ log t

∑
i∈Mk

√
1

Ni(t−1)

def
=

√
ρ log t Wk(t− 1). Now,

∆k − ck,t−1

=
∑
i∈Mk

(
∆k

Wk(t− 1)
−
√
ρ log t

)√
1

Ni(t− 1)
.

We claim that under the condition that T̃I(t)(t − 1) > u the
largest value Wk(t)(t− 1) can take is bounded from above by
Mk(t)/

√
u. To see this note that T̃i(t−1) ≤ Ni(t−1) holds for

any i and t, because Ni(·) is always incremented when T̃i(·) is
incremented. Further, since I(t) = argminj∈Mk(t)

Nj(t− 1),
NI(t)(t− 1) ≤ Nj(t− 1) holds for any j ∈Mk(t). Thus, for
arbitrary j ∈Mk(t), u < T̃I(t)(t−1) ≤ NI(t)(t−1) ≤ Nj(t−
1). The claim then follows from the definition of Wk(t)(t−1).
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Hence,

∆k(t) − ck(t),t−1

≥
∑

i∈Mk(t)

(
∆k(t)

√
u

Mk(t)
−
√
ρ log t

)√
1

Ni(t− 1)
.

Further, ∆k(t)

√
u

Mk(t)
−
√
ρ log t ≥

√
ρ log n holds for 1 ≤ t ≤ n

if

u ≥
(

2 max
k:∆k>0

Mk

∆k

)2

ρ log n.

Then, ∆k(t) − ck(t),t−1 ≥
√
ρ log n Wk(t)(t− 1) and thus

p1t ≤ P
(
µ̂k(t)(t− 1) > µk(t) +

√
ρ log n Wk(t)(t− 1)

)
≤
∑
k

Mk d4 log ne exp (−1.99ρ log n) ,

where the last inequality follows from the union bound
and Lemma 6, which is presented in Appendix B. Thus,∑n
t=1 p1t ≤

∑
kMkd4 log nen1−1.99ρ. Hence, if ρ is such

that 1.99ρ > 1, we get that
∑n
t=1 p1t = o(1) (note that p1t

does depend on n through u, although this dependence was
chosen not to be shown in the notation).

Using Lemma 6 again, we get that p2t =
P (Vk∗(t− 1) ≤ µ∗) ≤ Mk∗d4 log net−1.99ρ. Hence,∑n
t=1 p2t ≤ Mk∗d4 log ne(1.99ρ − 1)−1, again, under

the assumption that 1.99ρ > 1.
Putting together the inequalities obtained we get the desired

result.
Note that in linear bandit problems there exist similar

regret bounds, see [26], [27]. The (problem dependent) bound
developed in [27] takes the form (M2/mink ∆k) log3(n),
i.e., it is in general incomparable to our bound: Our bound
scales better as a function of n and M when maxkM

2
k is

“small”. However, the scaling of our bound as a function
of ∆min = mink:∆k>0 ∆k is worse. In general, one expects
the algorithm presented here to perform better than the ones
developed for the linear bandit problem since those algorithms
do not take advantage of the potentially richer feedback.
However, this remains to be proven.

Our result is more directly comparable to that of Gai et al
[21]. In fact, their problem is a special case of the problem
studied here (when we allow arbitrary φk ∈ {−1, 0, 1}M ).
The scaling behavior of our bound (for their problem) is
essentially the same as a function of n and ∆min (after
bounding maxk:∆k>0Mk/∆k by (maxkMk)/∆min) but our
bound scales better as a function of maxkMk (their bound
scales with maxkM

3
k , whereas ours scales with maxkM

2
k).

Note that in the proof no attempt was made to optimize
the constants. The major issue with this algorithm is that
apart from the initialization phase in its “exploration” it
does not take full advantage of the correlations between
the payoffs of the arms, at least when it is exploring. One
idea to overcome the algorithm’s potential insensitivity to the
correlation structure is to modify the algorithm so that the arms
in E are explored (with uniform probabilities) in the explicit

“exploration steps”, i.e., when k(t) 6= argmaxk µ̂k(t− 1).
We conjecture that this algorithm indeed overcomes the above
mentioned handicap, i.e., its regret would scale with |E| and
not with the number of the parameters.

In the next section we explore a similar idea in the context
of a simpler algorithm, ε-greedy.

V. AN ε-GREEDY ALGORITHM

The policy considered here is a variant of ε-greedy. The
standard ε-greedy algorithm for bandit problems chooses with
probability ε uniformly at random some arm (i.e., it “explores”
with probability ε) and it chooses the arm with the highest
estimated payoff otherwise. When ε is appropriately scheduled
(basically, one needs ε = εn = c/n with an appropriately
selected constant c > 0) this policy can also achieve a
logarithmically bounded expected regret just like UCB1 [3].

Since in our case the arms are correlated and when an arm
is chosen one receives some additional information in addition
to the payoffs, one may restrict the set of arms explored to a
spanner E . We expect that performance will improve if |E| �
|K| since then one “pays less” for the exploration steps.

Formally, the algorithm works as follows: Choose a spanner
E ⊂ K and a sequence (εt; t ≥ 1), εt ∈ [0, 1]. In the
initialization phase explore each arm in E once and initialize
the parameter estimates θ̂(·) based on the information received.
After the exploration phase, at time t ≥ |E|, the arm to
be played is decided by first drawing a random number
Ut from the uniform distribution over [0, 1]. If Ut ≤ εt
then k(t) is chosen uniformly at random from E . Otherwise,
k(t) = argmaxk µ̂k(t− 1), where µ̂k(t− 1) = θ̂(t− 1)>φk.
After playing k(t) and observing the feedback, the parameters
are updated using (8).

The next theorem gives a bound on the regret of this policy:
Theorem 4: Let

εn = min
{

1,
c

n

}
, n > |E|, (9)

where c > 0 is a tuning parameter. Then, assuming that
c > min(10|E|, 4|E|

d2 ), where d = mink:∆k>0 ∆k, the expected
regret of ε-greedy satisfies

E
[
Rε−greedy
n

]
≤ c log(n+ 1) +O(1). (10)

From the point of view of minimizing the leading term, the
best choice of c is min(10|E|, 4|E|

d2 ). With such a choice, we
see that the leading term of regret scales linearly with |E|, and
not with |K|. This is the main difference between the bound
in this theorem and in the previous result. This can be a major
advantage when |E| � |K| (e.g., in the monitoring problem).
The disadvantage of this algorithm is that in practice tuning c
might be difficult, since, typically, d is unknown. One remedy
then is to replace c with a slowly growing sequence cn (e.g.,
cn = log log n, i.e., use εn = min(1, log logn

n ). This would
result in a regret that grows in the order of cn log n, but the
proof of this result is omitted for brevity.

Proof: The proof follows the steps of the proof in [3]
with some modifications (and slight improvements). We will
use the notation introduced in the proof of Theorem 3.
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Without the loss of generality, we may assume that εn =
0 if n ≤ |E| (note that the algorithm does not depend on
the values of ε1, . . . , ε|E| and this assumption allows us to
shorten the proof). Clearly, it suffices to bound E [Tk(n)]. For
this purpose we will bound P (k(n) = k), where k is any
suboptimal action.

For n > |E|, the probability of choosing k is bounded by

P (k(n) = k) ≤
εn I{k∈E}
|E|

+ (1− εn)P (µ̂k(n− 1) ≥ µ̂k∗(n− 1)) .

We have

P (µ̂k(n− 1) ≥ µ̂k∗(n− 1)) ≤ P
(
µ̂k(n− 1) ≥ µk +

∆k

2

)
+ P

(
µ̂k∗(n− 1) ≤ µ∗ − ∆k

2

)
.

We bound the first term as follows: Define δk = ∆k

Mk
. Then,

P
(
µ̂k(n− 1) ≥ µk +

∆k

2

)
≤
∑
i∈Mk

P
(
θ̂i(n− 1)φk,i ≥ θiφk,i +

δk
2

)
Pick i ∈Mk. Define x0 = 1

2|E|
∑n−1
t=1 εt. By Lemma 7,

P
(
θ̂i(n− 1)φk,i ≥ θiφk,i +

δk
2

)
≤ P (Ni(n− 1) ≤ x0) +

2

δ2
k

exp

(
−dx0eδ2

k

2

)
.

Let us now bound the first term of the right-
hand side. Let ke ∈ E be such that i ∈ Mke .
Let NR

i (n) be the number of times ke was selected
up to time n in an exploration step: NR

i (n) =∑n
t=1 I{k(t)=ke,Ut≤εt}. Clearly, NR

i (n − 1) ≤ Ni(n − 1).
Hence, P (Ni(n− 1) ≤ x0) ≤ P

(
NR
i (n− 1) ≤ x0

)
. Fur-

thermore, E
[
NR
i (n− 1)

]
= 1

|E|
∑n−1
t=1 εt = 2x0, and

Var[NR
i (n − 1)] ≤ 1

|E|
∑n−1
t=1 εt = 2x0. Therefore, by

Bernstein’s inequality (for details see [3]), we have

P
(
NR
i (n− 1) ≤ x0

)
≤ e−x0/5. (11)

Since x0 = 1
2|E|

∑n−1
t=1 εt ≥

c
2|E| log n, we have

P
(
NR
i (n− 1) ≤ x0

)
≤ e−x0/5 ≤ n−

c
10|E| .

Thus,

P
(
µ̂k(n− 1) ≥ µk +

∆k

2

)
≤Mkn

− c
10|E| +

∑
i∈Mk

2

δ2
k

n
cδ2k
4|E| .

(12)

The same bound holds for P
(
µ̂k∗(n− 1) ≤ µ∗ − ∆k

2

)
. There-

fore, combining the inequalities obtained so far, we get

P (k(n) = k) ≤
c I{k∈E}
n|E|

+ 2Mkn
− c

10|E| +
∑
i∈Mk

4

δ2
k

n
cδ2k
4|E| .

Now, E
[
Rε−greedy
n

]
≤ |E| +∑n

t=|E|+1

∑
k ∆kP (k(n) = k) ≤ |E| + c log n +

(
∑

k 2∆kMk)
∑n
t=1 t

− c
10|E| +

∑
k:∆k>0

4M2
k

∆k

∑n
t=1 t

cδ2k
4|E| . If

c > min(10|E|, 4|E|
δ2k

) holds for any suboptimal k then the
sum of the last two terms over t = 1, . . . , n becomes finite.
This finishes the proof of the result.

VI. NUMERICAL RESULTS

We have implemented the proposed UCB and ε-Greedy
algorithms, and a naive extension of the UCB scheme
proposed by Gai et al [21] in Matlab. In extending [21] to
deal with correlated arms, since the dimension of an arm is
the number of non-zero elements in the arm-features, we used

Vk(t− 1) = µ̂k(t− 1) + |Mk|

√
(|Mk|+ 1) log t

minMk
Ni(t− 1)

,

µ̂k(t− 1) = θ̂(t− 1)>φk.

as the index for the UCB scheme in [21]. In the simulations,
we vary the number of sniffers p = {1, 2, . . . , 5}, and the
number of channels K ∈ {1, 2, . . . , 8}. Each channel has one
user associated to it. The users are active with probability
[0.1− 0.8] respectively in channel [1− 8]. The adjacency
matrix G of all 5 sniffers is given by

1 1 1 0 1 0 0 0
1 1 0 1 0 1 0 0
0 0 1 0 1 0 1 1
0 0 0 1 0 1 1 1
0 0 0 0 0 0 1 1


where gi,j = 0 indicates that the user j is out of the reception
range of sniffer i. θ can be obtained from the adjacency matrix
and the user active probability due to Theorem 2.

From Figure 1, we see that for all schemes the regret
tends to flatten out over time. We used the exact value of
the parameter d for ε-greedy algorithm. Among the three
schemes, ε-greedy has the fastest convergence followed by the
proposed UCB as second, and then UCB scheme of Gai et al
[21]. This is because ε-greedy utilizes the spanners during the
exploration phases and can gain “most” information regarding
the unknown parameters and it also avoids using confidence
bounds in making decisions. In contrast, both UCB policies
update their confidence bounds quite conservatively, and thus
exhibit slow convergence. Similar observations can be made
from Figure 1(b)(c) showing the regret after 5000 time slots.

VII. CONCLUSION AND FUTURE WORK

In this paper, we considered the problem of optimally
assigning p sniffers to K channels to monitor the transmission
activities in a multi-channel wireless network. Two policies
were proposed that learn sequentially the user activities while
making channel assignment decisions. Both policies were
shown to achieve logarithmic regret in the number of time
slots with a term sub-linear in cardinality of the action space.
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Fig. 1: Comparison of regrets of three schemes

The generalization of our theorems to the following cases
is trivial: (i) Xi(t) is sub-Gaussian with known tail behavior
(e.g., Xi(t) are bounded with known bounds), (ii) φk ∈
RM . Other possible future work includes extension to non-
stationarity environments, which could be done, e.g., along
the line of work of [28], the consideration of an adversarial
setting [16], [29], and/or switching costs [30].

APPENDIX A
EQUIVALENCE BETWEEN THE TWO MODELS

In this section, we establish the equivalence between the
two models to describe user activities. In the first model, the
restriction of which sniffer can observe which users is modeled
as a bi-partite graph G = (S,U,E), and the user activity
is encoded by a vector p = (pu)u∈U . In the second model,
a K · 2p-dimension vector θ is defined with the following
elements:

P
(
Ui,k > 0

)
, 1 ≤ i ≤ p, 1 ≤ k ≤ K,

P
(
Ui1,k = Ui2,k > 0

)
, 1 ≤ i1 < i2 ≤ p, 1 ≤ k ≤ K,

...
P
(
U1,k = U2,k = . . . = Up,k > 0

)
, 1 ≤ k ≤ K.

When the set of sniffers that can observe u and v are
identical in the same channel, namely, N(u) = N(v), we
treat u and v as a single user. In another word, in the first
model, we only consider distinct users, each connecting to a
different set of sniffers over a specific channel. Note that the
total number of distinct users is at most K ·2p. Let us consider
users on channel k without loss of generality. Each user u is
represented by yu, a vector of length p, where yu(i) = 1 if
u ∈ N(i), i = 1, . . . , p. Denote a partial order between two
binary vectors yu � yv if yu 6= yv , and ∀l, s.t., yu(l) = 1,
yv(l) = 1. Let pk = [pk1 , p

k
2 , . . . , p

k
2p−1], i.e., the vector of

probabilities of the individual user being active in channel k.
Construct a matrix A(k) as follows. Au,v(k) = 1 if yv � yu.

Clearly, with proper permutation, A(k) is an upper diagonal
matrix with all 1 entries at the diagonal. Furthermore, log(1−
θ) = log(1− pk) · A(k). Since A(k) is of full rank, we have
log(1 − pk) = log(1 − θ) · A(k)−1. Now let A(k) be the
kth diagonal block of A and p̄ = [p1, p2, . . . , pk]. We have
log(1− θ) = log(1− p̄) ·A and log(1− p̄) = log(1− θ) ·A−1.

APPENDIX B
TAIL PROBABILITY BOUNDS

The following lemma generalizes Hoeffding’s inequality to
sums with a random number of terms. The lemma in the form
presented here can be found as Theorem 18 of [28] (a similar
statement, generalizing Bernstein’s inequality can be extracted
from [24]).

Lemma 5: Let (Ft; t ≥ 0) be a filtration. Let (Xt; t ≥ 1)
be an i.i.d. sequence taking values in some interval of length
B. Let εt ∈ {0, 1} be a binary sequence. Assume that Xt is
Ft-measurable and εt is Ft−1-measurable (t ≥ 1). Let Nn =∑n
t=1 εt, Xn =

∑n
t=1 εtXt/Nn. Then, for any n ≥ 1, η > 0,

P
(
Xn > E [X1] + z

√
1

Nn
, Nn ≥ 1

)
≤

log n

log(1 + η)
exp

(
−2z2

B2

(
1− η2

16

))
.

In particular, when η = 0.3,

P
(
Xn > E [X1] +

z√
Nn

, Nn ≥ 1

)
≤ d4 lnne exp

(
−1.99z2

B2

)
.

Now, we consider a multi-dimensional generalization of this
result:

Lemma 6: Let (Ft; t ≥ 0) be a filtration. Let (Xt; t ≥ 1)
be an i.i.d. sequence taking values in RM such that Xti,
the ith component of Xt, takes values in some interval of
length B. Define µ =

∑M
i=1 E [X1i]. Let εt ∈ {0, 1}M be

an M -dimensional binary sequence. Assume that Xt is Ft-
measurable and εt is Ft−1-measurable (t ≥ 1). Let Nni =∑n
t=1 εti, Xni = N−1

ni

∑n
t=1 εtiXti and Xn =

∑M
i=1Xni.

Then, for any n ≥ 1,

P

(
Xn > µ+ z

M∑
i=1

√
1

Nni
, Nn1, . . . , NnM ≥ 1

)
≤

M d4 lnne exp

(
−1.99z2

B2

)
.

Proof: Let p denote the probability to be
bounded and let µi = E [X1i]. Then, p ≤∑M
i=1 P

(
Xni > µi + z

√
1
Nni

, Nni ≥ 1
)
. The result then
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follows by applying Lemma 5 to each of the M terms on the
right-hand side.

The next result can be extracted from [3] (with a slight
improvement). The setting is similar to that of Lemma 5 with
the deviation from the mean as a deterministic number.

Lemma 7: Let (Ft; t ≥ 0) be a filtration. Let (Xt; t ≥ 1)
be an i.i.d. sequence taking values in some interval of length
1. Let εt ∈ {0, 1} be a binary sequence. Assume that Xt is
Ft-measurable and εt is Ft−1-measurable (t ≥ 1). Let Nn =∑n
t=1 εt, Xn =

∑n
t=1 εtXt/Nn. Then, for any n ≥ 1, x > 0,

z > 0,

P
(
Xn > E [X1] +

z

2

)
≤ P (Nn < x) +

2

z2
exp

(
−dxez

2

2

)
.

Proof: We have

P
(
Xn > E [X1] +

z

2

)
≤ P (Nn < x)

+ P
(
Nn ≥ x,Xn > E [X1] +

z

2

)
.

Now,

P
(
Nn ≥ x,Xn > E [X1] +

z

2

)
=

n∑
s=dxe

P
(
Nn = s,Xn > E [X1] +

z

2

)
.

Let Sn =
∑n
t=1 εtXt. Define τ(s) as the first time when

s values of X are observed: τ(s) = min { t ≥ 1 : Nt = s }.
Further, let S(1) = Sτ(1), S(2) = Sτ(2), . . .. Note that S(k)

has exactly k terms and S(k) is an F (k)-adapted martingale,
where F (k) = Fτ(k)−1 (the so-called the “optional skipping
process”). Now, Xn = Sn/Nn = S(Nn)/Nn. Hence,

P
(
Nn = s,Xn > E [X1] +

z

2

)
= P

(
Nn = s, S(Nn)/Nn > E [X1] +

z

2

)
= P

(
Nn = s, S(s)/s > E [X1] +

z

2

)
≤ P

(
S(s)/s > E [X1] +

z

2

)
.

By the Hoeffding-Azuma inequality,
P
(
S(s)/s > E [X1] + z

2

)
≤ exp(−s z2/2). Using∑∞

s=u e
−κu ≤ κ−1 e−κu, which holds for any integer u

and κ > 0, we obtain the desired result.
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[3] Peter Auer, Nicolò Cesa-Bianchi, and Paul Fischer, “Finite-time analysis
of the multiarmed bandit problem,” Mach. Learn., vol. 47, no. 2-3, pp.
235–256, 2002.

[4] Anand Balachandran, Geoffrey M. Voelker, Paramvir Bahl, and P. Venkat
Rangan, “Characterizing user behavior and network performance in a
public wireless LAN,” SIGMETRICS Perform. Eval. Rev., vol. 30, no.
1, pp. 195–205, 2002.

[5] Tristan Henderson, David Kotz, and Ilya Abyzov, “The changing usage
of a mature campus-wide wireless network,” in Mobicom, 2004, pp.
187–201.

[6] Jihwang Yeo, Moustafa Youssef, and Ashok Agrawala, “A framework for
wireless LAN monitoring and its applications,” in WiSe ’04: Proceedings
of the 3rd ACM workshop on Wireless security, 2004, pp. 70–79.

[7] Jihwang Yeo, Moustafa Youssef, Tristan Henderson, and Ashok
Agrawala, “An accurate technique for measuring the wireless side
of wireless networks,” in the 2005 workshop on Wireless traffic
measurements and modeling, 2005, pp. 13–18.

[8] Maya Rodrig, Charles Reis, Ratul Mahajan, David Wetherall, and John
Zahorjan, “Measurement-based characterization of 802.11 in a hotspot
setting,” in Proceedings of the 2005 ACM SIGCOMM workshop on
Experimental approaches to wireless network design and analysis, 2005,
pp. 5–10.

[9] Yu-Chung Cheng, John Bellardo, Péter Benkö, Alex C. Snoeren, Ge-
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