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Abstract

We provide the first study on online learn-
ing problems under stochastic constraints that
are “soft”, i.e., need to be satisfied with high
probability. These constraints are imposed
on all or some stages of the time horizon so
that the stage decisions probabilistically satisfy
some given safety conditions. The distribu-
tions that govern these conditions are learned
through the collected observations. Under a
Bayesian framework, we introduce a scheme
that provides statistical feasibility guarantees
through the time horizon, by using posterior
Monte Carlo samples to form sampled con-
straints which leverage the scenario generation
approach in chance-constrained programming.
We demonstrate how our scheme can be inte-
grated into Thompson sampling and illustrate
it with an application in online advertisement.

1 INTRODUCTION

Most of the literature in stochastic online learning fo-
cuses on performances measured by optimality achieve-
ment. Common examples include the minimization of
cumulative regret in the multi-arm bandit setting (e.g.,
Auer et al. (2002); Lai and Robbins (1985)), best arm
selection (e.g., Audibert and Bubeck (2010)) and the
closely related ranking and selection (e.g., Boesel et al.
(2003)) in the simulation literature. In many situations,
however, the uncertainty or the stochasticity appears not
only in the objective function, but also in the constraints
of the problem whose feasibility can be of utmost im-
portance. The focus of this paper is to design sequential
methodologies that maintain probabilistic feasibility re-
quirements with rigorous statistical guarantees.

Our study is motivated from a rich set of problems where
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“budgets” or “resources” are limited for various opera-
tional or commercial reasons, and these constraints are
in a sense “soft”, i.e., the capacities placed on these con-
straints, while preferred to be satisfied, are allowed to
be violated with a small probability. Such considera-
tion is common among applications. For example, in
online advertisement problems encountered by our co-
authors when optimizing spending for large advertisers,
the task involves sequentially picking items (e.g., key-
words, targets) to maximize revenues, while adhering to
a specified marketing budget for a duration. The mar-
keter in general expects to meet the budget goals. How-
ever, if occasionally the budget is exceeded the campaign
is still acceptable as long as the revenue performance is
sustained. Other similar settings include clinical trials,
where the costs of competing treatments are substantial
and noisy, and over-budget is undesired but sometimes
allowable. Whereas past work in stochastic sequential
learning has focused on rewards (with hard constraints
if needed), this paper provides the first study on a class
of problems that not just include the rewards but also
stochastic constraints that need to be satisfied with high
probability.

Our framework can be viewed as a sequential prob-
lem under so-called probabilistic or chance constraints
(Prékopa, 2003), which has been widely used in stochas-
tic programming under limited and uncertain resources
(e.g., Shietal. (2015); Lejeune and Ruszczynski (2007)).
A generic representation of a chance constraint is

P((x, &) satisfies a given safety condition) > 1—a (1)

where x is a decision variable and ¢ denotes some ran-
domness distributed under P. Satisfying the safety con-
dition means that (z, ) lies in a desirable deterministic
region, which can be represented by, e.g., a set of in-
equalities. The given parameter « is the tolerance level
that represents the allowable probabilistic violation.

In the sequential setting, « would denote a sequence of
decisions. The safety condition could include individual



requirements on all or some stages. In many applications
of interest, P needs to be learned as complete distribu-
tional knowledge on £ is not available. Along the vein of
conventional online problems that focus on optimality, at
each stage we may observe some components of ¢ so that
we can update our belief on P.

As our main methodological contribution, we analyze an
online strategy that provides guarantees on (1) with a
high confidence, under a statistical framework that we
shall describe. On a high level, it means we can guaran-
tee, with our proposed policy, that

P(P((x,¢&) satisfies a given safety condition)
>1-a)>1-8 ()

where the outer probability now refers to the randomness
of z induced by the sequential observations, and 1— is a
confidence level (90% for instance). Our methodology is
based on a combination of two ideas. First is a Bayesian
extension of the so-called scenario generation or con-
straint sampling (Calafiore and Campi, 2005; De Farias
and Van Roy, 2004) approach in approximating chance-
constrained optimization problems. This approach re-
places the unknown or difficult chance constraint with a
collection of sampled constraints that come from data or
from numerical simulation. Viewing such an approach
in a Bayesian manner allows it to be blended naturally
into popularly used online learning algorithms such as
Thompson sampling (Agrawal and Goyal, 2012; Russo
and Van Roy, 2016) that also operates via Bayesian up-
dating. Second, by capitalizing results on scenario gener-
ation in the static setting, we can derive the precise num-
ber of samples required at each stage of the sequential
process such that (2) holds throughout the horizon. As
far as we know, our formulation and analysis of chance-
constraint guarantees in an online setting is new to the
literature.

After presenting our theoretical investigation on feasibil-
ity guarantees, we illustrate the integration of our scheme
into a variant of Thompson sampling in an online adver-
tisement setting. We then numerically demonstrate how
this chance-constrained Thompson sampling performs
competitively, in achieving feasibility but also maintain-
ing good objective values.

2 RELATED WORK

The earliest work in chance constraints dated back to
Charnes et al. (1958) and Miller and Wagner (1965). Ex-
act solution techniques for such problems are notoriously
difficult due to non-convexity, and are only available in
few instances even when P is known; e.g., Lagoa et al.
(2005). Several lines of approximation methodologies

have been proposed. A conventional method is to use
so-called safe convex approximation that replaces the
chance constraint with more conservative convex con-
straints (Ben-Tal and Nemirovski, 2000). Rossi et al.
(2011, 2015) used policy trees and confidence interval
construction to obtain the so-called (v, ¥)-solution. Sce-
nario generation (Calafiore and Campi, 2006; Campi and
Garatti, 2008), which we leverage on in this work, uses
sampled constraints to populate the feasible region. This
approach has several extensions, such as sampling-and-
discarding (Campi and Garatti, 2011) and multi-phase
schemes (Care et al., 2014; Calafiore, 2017; Chamanbaz
et al., 2016), and relates to sample average approxima-
tion (Luedtke et al., 2010). Other data-driven methods
include distributionally robust optimization (Calafiore
and El Ghaoui, 2006; Zymler et al., 2013) and data-
driven robust optimization (Bertsimas et al., 2013).

Our work focuses on chance-constrained problem in an
online fashion, under the broad umbrella of sequential
decision-making. In the later part of this paper, we
demonstrate our proposed strategy in a variant of the
stochastic multi-arm bandit problem (Auer et al., 2002)
used to address the well-known exploration-exploitation
tradeoff. In budgeted bandits, Ding et al. (2013) con-
sider the presence of random costs and an overall budget,
where learning and revenue accumulation stops when
the budget runs out. Xia et al. (2015) study Thomp-
son sampling for a similar setting; in this work we in-
tegrate our strategy into Thompson sampling, especially
the one considered in Ferreira et al. (2016) motivated
from network revenue management. Other related work
include those in the framework of “bandits with knap-
sacks” (Badanidiyuru et al., 2013; Tran-Thanh et al.,
2012; Besbes and Zeevi, 2012) that have been applied
in pricing and supply chain management (Wang et al.
(2014)) and healthcare (Villar et al. (2015)). The works
closest to our online advertisement example are Tran-
Thanh et al. (2014) and Amin et al. (2012) that study the
problem of item bidding under a budget, but they do not
consider probabilistic violation of the constraints that we
focus on.

3 CHANCE-CONSTRAINED ONLINE
LEARNING

Consider a sequence of decision variables z; € R%, ¢t =
1,...,7T, and a sequence of random variables & €
=t = 1,...,T assumed independent among the steps
t in a given horizon 7T'. For convenience, denote &1., =
(&1,...,&) and z14 = (x1,...,x¢) as the cumulative
randomness and decisions up to . Consider a sequence
of safety conditions that we write as f;(z1.¢,£1.t) € A,
where each function f; maps to some space ); such that



Ay C Y, (for example, fi(71.4,&1.4) € A; can be a
set of inequalities so that }; = R™ for some m and
Ar={yeR™:y <0}.

We are interested in a sequential problem with horizon
T:

max
L1y, @T

h(zq,...,z7)

subjectto  P(fi(z1.4,&1:4) € Al Fi—1) > 1 —aVt €S,

(3)
where the decisions 1, . ..,z are sequential, i.e., X441
depends on the past observations of ¢;.; and past deci-
sions 1.4, S C {1,...,T} is a given set, and h(-) is the
objective function. Note that the function f; and the set
A; can depend on the time step ¢. For convenience, let
Fi = {&1.t, 1.+ } be the information up to time ¢. In each
probability P in (3), the function f;(x1.4,£1.¢) can be
expressed as ft(fl:(t—1)7 @ty §1:(t-1)s &t) where T1:(t—1)
and &;.(;—1) belong to the past information F;_.

Consistent with the introduction, « is a tolerance param-
eter on the violation of the safety condition. This param-
eter is assumed constant across ¢ for convenience, but
our analysis can be easily adapted to the case where it
varies. Note that S determines how many chance con-
straints need to be maintained throughout the horizon.
For example, S = {1,...,T} means there is a budget
requirement for each step, and S = {7T'} means there
is only one overall budget requirement across the whole
horizon.

3.1 SCENARIO GENERATION FOR STATIC
PROBLEMS

We first discuss a well-studied approach to approximate
a static version of (3). Suppose T' = 1. In this setting we
can simplify notation and write the formulation as

max h(x)
subjectto P(f(x,§) e A) >1—« )

Suppose we can simulate or collect data for £ to obtain,
say, i.i.d. &',...,6N. We consider replacing the con-
straint in (4) by sampled constraints, so that the optimiza-
tion program becomes

max h(x)

* Q)]
subjectto  f(z, ") e A, Vn=1,...,N

We call (5) a sampled program, which serves as a rea-
sonable approximation to (4) when N is large. However,
since £™’s are randomly generated, the solution obtained
from (5) is subject to statistical noise and cannot be guar-
anteed feasible for (4). The following celebrated result
from (Calafiore and Campi, 2006; Campi and Garatti,

2008) gives the sample size needed to guarantee feasi-
bility for (4) with a certain confidence by solving (5).

Condition 1. An optimization program is said to be in
class R if: 1) It is feasible and the feasible region has a
non-empty interior; 2) Its optimal solution exists and is
unique.

Theorem 1. (Adopted from Theorem 2.4, Campi and
Garatti (2008)) Suppose for each &, f(z,§) € Ais a
convex set in v € R and h is concave. Suppose also
that any instance of (5) belongs to R. Fix real numbers
a, B € [0,1]. Then for N chosen such that

df (J;])a"(l —a)¥i<p

=0

the optimal solution of the sampled stochastic program
(5) is feasible for (4) with probability no smaller than

1-p5.

It is known that this result can be improved, e.g., by us-
ing sampling-and-discarding (Campi and Garatti, 2011)
and multi-stage or iterative schemes (Care et al., 2014;
Calafiore, 2017; Chamanbaz et al., 2016). In this paper
we stick with the requirement in Theorem 1 to illustrate
our proposed strategies; improvements can be made ac-
cordingly by modifying the use of Theorem 1 to better
results available in the literature.

3.2 SCENARIO GENERATION UNDER
UNKNOWN DISTRIBUTION: A BAYESIAN
PERSPECTIVE

The scenario generation approach depicted in Theorem
1 requires direct observations on & or the capacity to ob-
tain Monte Carlo samples for . In problems with learn-
ing, the distribution of ¢ is not fully known, and Theo-
rem 1 does not apply directly. We shall adopt a Bayesian
perspective that naturally integrates to many online algo-
rithms (e.g., Thompson sampling). Suppose £ follows a
parametric distribution G|p with unknown parameter p.
After specifying a prior distribution for x4 and collecting
some data historically, we have a posterior distribution
for 1 denoted by F. We seek to use Monte Carlo sam-
pling to conduct an analog of scenario generation so that
a posterior credibility guarantee

Py(Pepp(f(@,§) e A)>1-a)>1-8  (6)

is achieved, where P, denotes the posterior probability
distribution on p, and P§| . denotes the distribution of §
given a parameter value of p. In other words, we want
the chance constraint to hold with a posterior credibility
level 1 — 3. Note that this is a natural Bayesian analog
of the frequentist result in Theorem 1. In the setting of



Theorem 1, P is not known but data are available, so that
a 1 — 3 confidence is attained. In our current Bayesian
investigation, P is not known but subject to a posterior
belief summarized by the distribution of 1, and we want
this posterior credibility to be 1 — f3.

Directly sampling & using any particular value of ;o does
not sufficiently capture the posterior uncertainty. To
blend the latter into a scenario generation, we can use
a two-level sampling, where in the first level we gener-
ate a posterior sample for y, and in the second level we
generate ¢ conditional on p. This sampling procedure is
described in Algorithm 1.

Algorithm 1 Posterior Constraint Sample Generator
(PCSG)

1. Repeat N times:

(a) Generate u" ~ F.
(b) Generate £" ~ G|u"™.

2. Impose the constraints f(x,£") € A, n =
1,..., N and solve the sampled program
max  h(xr)
N @)

subjectto  f(z, ") e A, Vn=1,...,N

In PCSG we encounter two different sources of random-
ness. First is the statistical noise from the uncertainty of
1, captured by the posterior credibility level 1 — 3. The
second source is the Monte Carlo error, and we denote
by 1 — § the confidence level induced from this error. By
choosing a suitable sample size N in terms of «, f3, 0,
PCSG turns out to achieve a guarantee below.

Theorem 2. Suppose f(x,€) € Ais a convex set in x €
RY, and h(x) is concave. Suppose also that any instance
of (7) belongs to R. Fix real numbers 0,c, 3 € [0,1]
and choose

3 (Vema-ar=<s®

4 )
=0

Consider a solution x obtained from the sampled pro-
gram in PCSG. Then,

1. x satisfies (6) with a Monte Carlo confidence 1 — 9,
ie.,

Prre(Pu(Pe(f(2,8) € A) 2 1-a) 2 1-8) = 1-6

)
where the outermost Pyrc denotes the probability
with respect to the N Monte Carlo samples.

2. x satisfies

Eyvc[Pu(Peu(f(z,§) € A) 2 1-a)] = (1-5)(1-6)

(10)
where E o] denotes the expectation with respect to
the N Monte Carlo samples.

Theorem 2 Part 1 stipulates that choosing N in (8)
achieves chance-constraint feasibility with a Bayesian
credibility 1 — 3, under a Monte Carlo confidence 1 — 9.
Part 2 will be useful in generalizing to the multi-stage
setting presented next.

3.3 SEQUENTIAL POLICIES

We now move our analysis to the sequential problem de-
picted in (3). We generalize PCSG, with the posterior up-
date occurring at every step of the horizon and the sample
size required at each step modified in order to achieve a
chance constraint guarantee over the whole horizon. Let
Ny be the sample size used in step ¢, which depends on «
and also the confidence-level parameters 3; and §;. We
denote Fy as the prior distribution of 1 and F; as the
posterior distribution of y at step t. We denote G¢|u as
the distribution of &; given u. Note that p is a parameter
shared among the &; at different steps so that information
can be learned over time. To distinguish the real data
from the Monte Carlo samples, we use f 1:(¢—1) to denote
the actual data of £ coming from steps 1 to ¢ — 1.

We have the following procedure:

Algorithm 2 Dynamic PCSG
Set Fy as the prior distribution of p. For¢t = 1,...,T"
While ¢ € S, and given F} and the realized x;.(;—1) and

f1:(t71)1
1. Repeat N, times:

(a) Generate u"™ ~ Fj.
(b) Generate £™ ~ G¢|u™.

2. Impose the constraints

ft(xlz(tfl)vxt»él:(tflﬁfn) €Ay, Vn=1,..., Ny
(11)
at stage ¢.

It is understood that in the second step of Dynamic
PCSG, the constraints are imposed together with an ap-
propriate objective function (typically the cost-to-go in
formulation (3)) to form a stepwise optimization with de-
cision variable x;. The following result gives the choice
of NV, and the resulting guarantee:



Theorem 3. Suppose the stepwise safety conditions are
all convex sets, the objective function at every step is con-
cave, and x; € R?. Suppose also that any instance of the
optimization resulted from imposing (11) belongs to R.
Suppose 0 < B, 0 < 1 are constants such that

d—1
(1 )@sra-as < a
=0
and
> (Be + 0 — Bidr) < BA (13)
teS

Then the policy obtained from Dynamic PCSG is feasi-
ble for (3) under the updated posterior distribution with
probability at least 1 — (3, with overall Monte Carlo con-
fidence 1 — )\, i.e.,

PMC(Pltl:T(PEt‘Nt(ft(xtaft) € -At|]:t—1) >1l—-a

VteS)>1-6)>1-X (14)
where P, . denotes the probability with respect to

Wiy ..., Mt, Where each p, ~ Fy, the posterior distri-
bution of yu at step t, and P, denotes the probability
with respect to &; given a realized parameter of [i;.

Theorem 3 asserts that the round-specific statistical pa-
rameters, namely the posterior credibility 1 — /3, and the
Monte Carlo confidence level 1 — ¢§;, which determine
the constraint sample size, can be chosen to satisfy a lo-
cal condition (12) and a global condition (13) to achieve
an overall statistical guarantee.

For convenience we can set ; = J; and both equal to
some constant, say ;. This v can be set to be stage-
independent or dependent. The following subsection
shows two choices of ;.

3.4 TWO EXPLICIT STRATEGIES

We demonstrate two choices of {V;} in terms of {~;}.
The first choice is a simple one that requires knowl-
edge of the horizon length T', by setting 7; to be a con-
stant. The second choice uses a decaying v, conse-
quently an increasing sample size N;, which does not
require knowledge of T a priori. For convenience, we
denote |S| as the size of the set S. For the first strategy,
we have:

Proposition 1. Given a time horizon T, if we let B; =

0y =y forallt € S such thaty <1 —+/1—B\/|S|,
then (14) holds.

The following describes our second strategy that is stage-
dependent such that (14) holds without knowing the hori-
zon T or |S| a priori:

Proposition 2. Ifwe let 5, = 6, = v forallt € S such
that v = (1/¢(t)?) An, where p > 1,0 < n < 1, and
C(t)y =t{s €S :s <t} (ie, ((t)is the “counter” of t
in S) such that

2 1 n?
p—1 (1/771//)_1);)—1 nl/r 41

1 1
_ < 1
2p —1(1/nt/p 4+ 1)2p=1 = br 13

then (14) holds regardless of |S)|.

1-1/p

2n

For example, if p is set to be 2, then (15) becomes 2, /7 +

2y/m/(1—y/m)—n*/(yi+1) =12/ (3(1+/n)%) < BA.

4 INTEGRATION INTO THOMPSON
SAMPLING

We illustrate the integration of our strategies with
Thompson sampling, which also operates via Bayesian
updating, by an example of revenue maximization in on-
line advertising (Pani et al., 2017). The advertiser is
interested in maximizing the expected revenue across a
portfolios of keywords or biddable ad units while ensur-
ing that the budget constraint is not violated. When the
advertiser selects a bid value for a keyword it results in
ad clicks, the volume of which is stochastic. The distri-
bution of clicks and the associated revenue is not initially
known to the decision-maker and needs to be learned
over time. Further, the cost associated with the choice
of a bid is also unknown and hence, there is uncertainty
regarding how the budget will be affected.

To be more concrete, consider a set of K bid values
{Kk1,..., kK }, for M items labeled {my,...,mps}, Over
the campaign horizon 7. Bidding value j on item
¢ will induce an average revenue r;; and cost ¢;; re-
spectively. These quantities are assumed to follow in-
dependent Poisson distributions with initially unknown
parameters (the Poisson assumptions come from the
click count nature). In each period ¢t = 1,...,T, the
advertiser picks a bid value j from every item, ob-
serves the outcome, i.e., the realizations of 7;;, ¢;;,7 =
1,..., M. She gains Zﬁl Zszl ri;2;; and consumes
Zi\il Zle ¢i;jx;; from the budget, where z;; is the al-
location portion for bid value j of item ¢ (i.e., the fraction
of time or the probability in a randomized scheme that is
allocated to this particular bid value and item).

The advertiser’s goal is to maximize the total revenue
while maintain a budget constraint with high probabil-
ity. In other words, letting r;;(t) and c;;(¢) be the re-
alized revenue and cost for a bid at time ¢, and x;;(t)
be the corresponding allocation variables, she wants to

maximize E[ZZ;I Zf\il Zfil i (t)x:;(t)]. A typical



budget constraint is a bound given by the remaining bud-
get averaged over the remaining horizon. Specifically,
let the overall budget be B. Denoting B(t — 1) =
- Z Z]K:l ¢ij(u)z;;(u) as the remaining
budget before epoch t € S, the advertiser wants to keep
POty M S e (u)a(u) < B(t—1)/(T—t+
1)) > 1 — a Vvt € S. This type of dynamically updated
per-round budgets is common in practice and is argued
to be more effective than fixed per-round budgets. In the
following, we will concentrate on the particular choice
described above as the feasibility requirement.

4.1 A BUDGETED ALGORITHM

The setting of this problem resembles a recent study (Fer-
reira et al., 2016) on a network revenue management
problem. They developed a Thompson sampling algo-
rithm to sequentially assign a price vector to items under
resource constraints, where each step involves a knap-
sack optimization problem. Here we present a variant of
their algorithm to suit our setting (Algorithm 3). This ini-
tial algorithm does not take into account the possibility
of constraint violation; the idea is to later illustrate how
our Dynamic PCSG strategy can be integrated.

Denote by X;;(t — 1) the allocation units on bid value
4 for item ¢ cumulated in the first ¢ — 1 rounds, and de-
note by W/ (t — 1) and W (¢ — 1) the total revenue and
cost generated by assigning bid value j to item ¢ during
these periods respectively. In Algorithm 3, the advertiser
samples from the joint posterior distributions of 0;;, the
unknown Poisson rate of the revenue, and ji;;, the rate
of the cost, corresponding to bid value 5 for item i. We
put independent Gamma prior distributions for these pa-
rameters and hence the posterior distributions are also
independent. The posterior samples of these parameters
are then used in a linear program to decide the alloca-
tion. This algorithm follows quite intuitively from stan-
dard Thompson sampling, in which one generates poste-
rior samples for the unknown parameters, and use them
as “plug-in” to solve stage-wise optimization problems.

4.2 CHANCE-CONSTRAINED BUDGETED
THOMPSON SAMPLING

We want to ensure P(Zzzlz ZJ 1 Cij(w)agj(u) <
Bt-1)/(T-t+1) >1—aVt e Sholds with

posterior credibility 1 — 5. To achieve this, we integrate
our Dynamic PCSG into Step 2 of Algorithm 3 by
restructuring the involved optimization program. Algo-
rithm 4 shows Dynamic PCSG in this particular setting.

The output of this procedure is a set of constraints,
which will be used in the linear program of the budgeted

Algorithm 3 Budgeted Thompson Sampling for deter-
ministically constrained problems adopted from Ferreira
et al. (2016)

Given a total budget B(0)
following:

1: For each bid value j and each item ¢, sample 6;; from
Gamma(W[;(t —1) +1,X;;(t — 1) + 1) and p;; from
Gamma(Wi;(t — 1)+ 1, X;;(t — 1) + 1).

2: Solve the following linear program:

= B. Fort = 1,...,T, do the

K M

max E E Oijxij
x

j=11i=1

ZZH%J%J > Tl)l

=1 i=1

subject to

$¢j§17Vi:1,...,M

e &

l‘ijZO,Vi:].,...,

to obtain (x7;(t))i=1,... M j=1,.. K.
3: The revenue, 7;;(¢), and the cost, c;;(t), generated by as-
signing bid value j on item ¢ are revealed. We update

Xij(t) = Xoj(t — 1) + @i (), Wi5(t) = Wis(t — 1) +
rij ()23 (1), Wis(t) = Wi(t - ) + cij(t)i;(t) and
B(t) = B(t —1) — 372, 3200, e () (t).

4: If B(t) < 0, the algorithm terminates.

Thompson sampling. Algorithm 5 shows how Dynamic
PCSG can be integrated into Algorithm 3. The following
is an immediate consequence of Theorem 3:

Corollary 4. Suppose that any instance of the sampled
program in (16) belongs to R. Suppose 0 < B;,0; < 1
are chosen to satisfy

KM-1

> (Nt) (@B)' (1 = af)™M =" <6,

=0

and

S (B + 6 — Bide) < BA

tesS

Consider a modification of Algorithm 5 such that at any
point of time, if the total budget B is fully depicted, we
refill the shortfall and add extra budget B (so that the
total remaining budget in the next step returns to the full
level B). Then the sequence of decisions obtained will
satisfy

i _ Blt-1
<ctut ZZZ% )z (u ﬁ

u=11i=1 j=1

ZlthGS)ZlB



Algorithm 4 Dynamic PCSG for the Bidding Problem

1. Set F;;(0),i=1,...,M,5 =1,..., K as the prior dis-
tribution of p;;. Fort = 1,...,T: Given B(t — 1) and
F;;(t — 1), the posterior distribution of p;; given F;—_1,

(a) Repeat IV, times:
i. Generate j;; ~ Fj;(t — 1) independently for
each item ¢ = 1,..., M and bid value ;7 =
1,... K.
ii. Generate &; ~ Poisson(u;;) for each item
i=1,...,mandbidvalue j =1,..., K.
(b) Form the constraints

with Monte Carlo confidence level at least 1 — \. P,
denotes the probability of { }1=1,... 1, where p is the
collection (f1;5);,; and each element is distributed inde-
pendently according to the posterior distribution F};(t —
1), and P,),, denotes the probability with respect to the
collection (c;;);,; given the realization of (1;j); ;-

We mention that the “modification of Algorithm 5 intro-
duced in Corollary 4 is only a technicality that takes care
of the unusual situation when the entire available budget
is prematurely depleted. Since we divide the remaining
budget by the remaining horizon (a common practice to
set per-round budgets) to form our constraint at each step,
the scenario of total budget depletion before the last step
rarely happens.

4.3 NUMERICAL RESULTS

We examine the empirical performance of our proposed
strategy on a synthetic dataset with two items and three
bid values (M = 2, K = 3) over the time horizon
T = 100. The cost and revenue of each item-bid value
pair follow Poisson distributions with parameters taken
uniformly from an interval that is calibrated from a real
data set owned by a prominent tech firm (blinded for
peer-review purpose). We test with five different val-
ues of the overall budget B = (a Zf\il pi) x T where
a € [0.5,0.75,1,1.25,1.5] and p; is the average cost of
item ¢ over the K bid values. The choice of B roughly
matches the scale of the total cost over the time. The per-
round budget is defined as the remainder of the overall
budget divided by the remaining number of rounds.

To test our chance-constrained Thompson sampling
(CCTS) in Algorithm 5, we use three different settings
for S,i.e. S = {25,50, 75}, So = {20, 40, 60, 80,100}
and S5 = {10, 20, 30, 40, 50, 60, 70, 80,90, 100}. We
enforce « = 0.1, 8 = A = 0.3, and 5; = d; = vy where

Algorithm 5 Chance-constrained Thompson Sampling
(CCTS)

Initialize o, B¢, 0+ € [0, 1] satisfying (13). Given a total budget
B(0) = B. Fort =1,..., T, do the following:

1: For each bid value j and each item ¢, sample 6;; from
Gamma(W;(t — 1) + 1, X;;(t — 1) + 1) and p; from
Gamma(Wi(t—1)+ 1, X;;(t — 1) + 1).

2: Run Dynamic PCSG using N; samples to get the con-
straints

K M

ZZ&Z;xz] = Tl)l Vn=1,...,N;

Jj=11i=1

3: Solve the following linear program:

K M
RS 3) S{
j=11i=1
M
1)

subject to =1,...,N;

K
K
gy <1, Vi=1,...,M
i=
Tij 20, Vi= 1,...,
(16)
to obtain (.T;k] ())i=1,... .M, j=1,....K -

4: The revenue, r;;(t), and the cost, c¢;;(t), generated by as-
signing bid value j on item % are revealed. We update
Xi; (1) = Xu( 1) +ai; (1), Wi (1) = Wis(t — 1) +
P20, W) = W5t — 1) & ey (Dl (6) and
B(t) = B(t - 1) - Zz]'\il cij (05 (t).

5: If B(t) < 0, the algorithm terminates.

v is taken as the upper bound depicted in Proposition 1.
With these configurations, the number of constraints in
the involved linear programs are typically in the range
of thousands, which gives a run-time of a few minutes
in solving the decisions for the whole horizon using our
sever machine. Note that, if we consider our online prob-
lem a daily problem (common in practice) then this so-
lution time is quite acceptable as we have hours to solve
the problem at each stage. Moreover, the number of con-
straints and hence the run-time can be further reduced by
using more recent advances in the constraint sampling
literature as depicted at the end of Section 3.1.

For each considered setting, we conduct 500 simulation
runs. For each run, we estimate the proportion of viola-
tion of the decision using 100 inner repetitions of &;, at
each step ¢ € S. Figure 1 depicts the box-plots show-
ing the distribution of the proportion of violation. For
all the tested budget levels and choices of S, CCTS was
able to maintain the proportion of budget violation well
below the 10% tolerance at the relevant steps. This im-
plies, moreover, that the overall violation (i.e., at least



one violation at a step in S) is also below 10%.

Note that the theoretical guarantees studied in the previ-
ous sections focus on the feasibility in maintaining the
chance constraints. In practice, the objective value per-
formance is also important. To test this, we compare
the performance of CCTS, both regarding budget vio-
lation and revenue attainment, against the following al-
gorithms: 1) a hypothetical algorithm that assumes the
distributions of the costs and revenues are all known and
draws Monte Carlo samples from it, otherwise the same
as CCTS; 2) the deterministically constrained Thomp-
son sampling (DCTS) in Algorithm 3; 3) the algorithm
in Badanidiyuru et al. (2013) that uses reward-to-cost ra-
tios; and 4) Besbes and Zeevi (2012) that uses an ini-
tial learning phase (in our experiment we set the learning
phase to 50 steps). Figure 2 shows the distributions of
the proportion of violations at ¢t € S, based on 500 sim-
ulation runs, for the five described budget levels. We see
that only CCTS and the hypothetical algorithm maintains
the proportion of violation to well below 10%, whereas
the other three algorithms fluctuate around 20-40%, as
they do not account for the chance constraint on the per-
round budget. On the other hand, Figure 3 shows the
average cumulative revenue achieved through the hori-
zon (the bar depicts one standard deviation around the
average). DCTS appears the best in terms of cumulative
rewards, and Badanidiyuru et al. (2013) and Besbes and
Zeevi (2012) perform similarly. CCTS achieves less re-
wards (around 15%), which can be viewed as the price
of maintaining the chance constraint. The hypothetical
algorithm performs better than CCTS, not surprisingly
given the full distributional knowledge. This behavior
persists for S7 and S3 as well as for several priors we
have tested (similar to plots Figures 2 and 3). Thus, in
view of achieving overall performances in terms of both
controlling violation proportions and attaining cumula-
tive rewards, our CCTS appears to be superior to all the
other considered methods.

The above experiments all used the budget violations cal-
culated using the true underlying distribution of the cost.
In Table 1, we compare with the calculation based on the
evolving posterior distributions, in terms of the average
of all the proportions of violations for ¢t € S;,S, and
Ss at the five described budget levels. The average pro-
portion of violation based on the posterior distribution is
consistently lower than the one based on the true distri-
bution for all budget levels and S. This is expected since
our chance constraint is maintained under the posterior
distribution (as Theorem 3 states). However, the propor-
tion of violations is maintained below 10% under the true
distribution, thanks to the relatively robust performance
of our approach in abiding with the chance constraint.

Table 1: Comparison of the average proportions of vi-
olations based on the true distribution and the updated
posterior distributions over 500 simulation runs

Budget Si S Ss
Bl True Dist. 0.018 0.019 0.018
Posterior Dist.  0.011  0.012  0.009
B9 True Dist. 0.016 0.015 0.014
Posterior Dist.  0.01 0.01  0.008
B3 True Dist. 0.014 0.013 0.013
Posterior Dist.  0.008 0.009 0.007
B4 True Dist. 0.013 0.011 0.01
Posterior Dist.  0.009 0.007 0.005
B5 True Dist. 0.008 0.008 0.007
Posterior Dist.  0.006 0.005 0.004

Alternatively, we also investigated the amount of budget
violation at t € S. Figure 4 depicts the distributions of
the total amounts of budget violation in 57, So and S3 for
the five budget levels over 500 simulation runs. Similar
to the proportion of budget constraint violations, the av-
erage amounts of violation for CCTS and DTS tend to be
much lower than the other three algorithms, with at most
25% of those of the other three algorithms in the same
setting. This suggests a strong dependence between the
proportion and the amount of violation which substanti-
ates the use of CCTS in maintaining over-spending even
in the monetary scale.

S CONCLUSION

We studied sequential learning subject to constraints that
need to be satisfied with high probability. We investi-
gated a methodology to obtain posterior statistical guar-
antees for the feasibility of these constraints, by gen-
eralizing the constraint sampling approach in chance-
constraint programming to a two-level Monte Carlo pro-
cedure and analyzing the sample size needed in achiev-
ing overall feasibility through the learning horizon. We
further incorporated our scheme into Thompson sam-
pling using an online advertisement example, and numer-
ically demonstrated how it led to desirable performances
in both feasibility and optimality. As far as we know,
this work represents the first methodological investiga-
tion of “soft” stochastic constraints in sequential learn-
ing. In subsequent work, we will investigate the tighten-
ing of the requirements in sampled constraints, via for in-
stance analyzing the correlation among decisions at dif-
ferent stages, and will also study the scalability of this
approach to higher-dimensional problems.
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Figure 1: Estimated proportion of violation at each step in S, for S = S, So, S3 and five different budget levels, using
500 simulation runs under CCTS.
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Figure 2: Estimated proportion of violation at each step in Sy, with 500 simulation runs for different algorithms
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