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Sequential Memory: A Putative Neural and
Synaptic Dynamical Mechanism

Gustavo Deco1 and Edmund T. Rolls2

Abstract

& A key issue in the neurophysiology of cognition is the

problem of sequential learning. Sequential learning refers to

the ability to encode and represent the temporal order of

discrete elements occurring in a sequence. We show that the

short-term memory for a sequence of items can be imple-

mented in an autoassociation neural network. Each item is one

of the attractor states of the network. The autoassociation

network is implemented at the level of integrate-and-fire

neurons so that the contributions of different biophysical

mechanisms to sequence learning can be investigated. It is

shown that if it is a property of the synapses or neurons that

support each attractor state that they adapt, then everytime

the network is made quiescent (e.g., by inhibition), then the

attractor state that emerges next is the next item in the

sequence. We show with numerical simulations implementa-

tions of the mechanisms using (1) a sodium inactivation-based

spike-frequency-adaptation mechanism, (2) a Ca2+-activated

K+ current, and (3) short-term synaptic depression, with

sequences of up to three items. The network does not need

repeated training on a particular sequence and will repeat the

items in the order that they were last presented. The time

between the items in a sequence is not fixed, allowing the items

to be read out as required over a period of up to many seconds.

The network thus uses adaptation rather than associative syn-

aptic modification to recall the order of the items in a recently

presented sequence. &

INTRODUCTION

A key issue in the neurophysiology of cognition is the

problem of sequential learning. Sequential learning re-

fers to the ability to encode and represent the temporal

order of discrete elements occurring in a sequence. Many

of the behaviors that we produce are sequential in

nature. The learning of serial order is fundamental to

all forms of skilled behavior from motor sequences (e.g.,

playing the piano, dancing, drawing) to language (Aver-

beck, Chafee, Crowe, & Goergopoulos, 2002; Conway &

Christiansen, 2001; Dell, Burger, & Svec, 1997). Complex

sequential learning is very evident in language acquisi-

tion and production.

A major contribution to the complex problem of serial

order learning was provided by Lashley (1951). Lashley’s

theory suggests a model of sequential learning that is

based on parallel response activation. This means that

the temporal serial order in behavior assumes a cotem-

poral neural representation of all serial elements before

action begins. Averbeck et al. (2002) supported this

theory by training two monkeys to copy simple geomet-

rical shapes, which they drew as a series of movement

segments, and investigated the neural representation of

the serial order of these segments in the prefrontal

cortex, an area with an established role in serial ordering

of motor actions and working memory (Fuster, 2000;

Goldman-Rakic, 1987). In fact, lesions of the prefrontal

cortex impair the sequential learning of visual stimuli

in monkeys (Petrides, 1991), and disrupt serial temporal

motor integration in humans (Luria, 1966). Averbeck et al.

provided evidence that all serial elements of a move-

ment sequence are represented in an orderly fashion

in the prefrontal cortex before the action begins. In

addition, Dell et al. (1997) studied a connectionist ab-

stract neural network model of language production

based on Lashley’s arguments, which was able to account

for serial-order errors in speech. The most basic charac-

teristic of their model was its capacity to activate the

present, deactivate the past, and prepare for the future.

The aim of the present work is to introduce a detailed

and plausible model of serial order memory at the

neurobiological level. A crucial contribution of the pres-

ent model, and a difference from Lashley’s arguments, is

that we assume that the temporal coding of actions

before their execution can be understood at the level of

internal and intrinsic biophysical variables of neurons

related to spike-frequency mechanisms. These neuronal

processes are able to activate the present, deactivate the

past, and prepare for the future.

We propose three putative and potentially alternative

neuron-level mechanisms to implement the required pro-

cessing, namely, (1) a sodium inactivation-based spike-1ICREA and Universitat Pompeu Fabra, 2University of Oxford
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frequency-adaptation mechanism, (2) a Ca2+-activated

K+ current, and (3) short-term synaptic depression. We

investigate here a mechanism that, by utilizing an attrac-

tor autoassociative network with recurrent connections

(Rolls & Deco, 2002; Rolls & Treves, 1998; Hopfield,

1982), can maintain the sequence item that is current

in a continuing active state of firing until the next item

stored in the same attractor is turned on. To implement

this model in a biologically plausible form, the processes

occurring at the alpha-amino-3-hydroxy-5-methyl-4-

isoxazolepropionic acid (AMPA), N-methyl-D-aspartate

(NMDA), and gamma-aminobutyric acid (GABA) synaps-

es are dynamically modeled in an integrate-and-fire

implementation to produce realistic spiking dynamics

(Deco & Rolls, 2003; Brunel & Wang, 2001). This also

enables the synaptic adaptation that is one of the pu-

tative mechanism to be realistically implemented. The

NMDA receptors provide no particular role in the mech-

anism for sequence memory described here, but are

included in the simulations for biological accuracy, and

because of their long time constant and nonlinearity,

they do make a useful contribution to the dynamical

stability of integrate-and-fire networks.

RESULTS

Model

Prefrontal Architecture

We explicitly model the level of processes occurring at

the AMPA, NMDA, and GABA synapses in the integrate-

and-fire implementation to produce realistic spiking

dynamics. We follow the neurodynamical framework

introduced by the authors (Corchs & Deco, 2002; Deco

& Lee, 2002; Rolls & Deco, 2002; Deco & Zihl, 2001) and

the integrate-and-fire neuronal framework introduced

and studied by Brunel and Wang (2001). We incorporate

shunting inhibition (Battaglia & Treves, 1998; Rolls &

Treves, 1998) and inhibitory-to-inhibitory cell synaptic

connections (Brunel & Wang, 2001), which are useful

in maintaining stability of the dynamical system, and

incorporate appropriate currents to achieve low firing

rates (Brunel & Wang, 2001; Amit & Brunel, 1997). We

assume in the single attractor network architecture

investigated the existence of different neuronal popula-

tions or pools, each of which corresponds to an item or

element of the sequence (a visual stimulus, a simple

motor action, a phoneme, or a syntactic element). By a

single attractor network, we mean a single autoassocia-

tion network with firing that can reflect at any one time

one of a number of different attractor memory states

stored in the network by synaptic modification (Rolls &

Deco, 2002; Rolls & Treves, 1998). Each memory, item,

or attractor state involves the firing of one of the pop-

ulations (also called pools) of neurons in the network.

We show that a single network is sufficient in terms of

architecture for operation of the model. Because the

prefrontal cortex is implicated in some types of se-

quence memory, we use the term prefrontal architec-

ture above, but a network of the type we describe could

be implemented in a number of different brain areas.

In this section, we describe the architecture and oper-

ation of the model and provide a full mathematical

specification of the model, and the neuronal parameters

used, in the Appendix section.

A conceptual overview of the single autoassociation

network architecture is shown in Figure 1. The different

specific pools are activated sequentially because there

is partial adaptation in a neuronal pool when it is active,

so that after a global inhibition signal shuts down the

current attractor, the least recently activated neuronal

Figure 1. Architecture of the

model. There is a single

attractor network with the

items T1–Tn that can be part

of a sequence stored using

AMPA and NMDA receptors in

the recurrent collateral

connections. There is a pool of

inhibitory interneurons using

GABA as the transmitter. In

addition, there is a non-specific

pool of neurons with random

spiking activity.

Deco and Rolls 295



pool emerges into activity. The adaptation mechanism

may be at the neuronal or synaptic level. If the network

is presented with a short sequence of stimuli to remem-

ber, it will retrieve them in the order in which they were

just presented.

In the case of a sodium inactivation-based spike-

frequency-adaptation mechanism, the internal proba-

bility of spike emission near the threshold will be the

relevant variable that correlates with the temporal order

in the sequence memorized. In the case of Ca2+-activated

K+ current, the Ca2+ concentration inside the membrane

of the neurons is the relevant variable that correlates

with the temporal order in the sequence memorized.

Last, in the case of short-term synaptic depression, the

probability of neurotransmitter release is the relevant

variable that correlates with the temporal order in the

sequence memorized.

The network contains NE (excitatory) pyramidal cells

and NI inhibitory interneurons. In our simulations, we

use NE = 800 and NI = 200, consistent with the neuro-

physiologically observed proportion of 80% pyramidal

cells versus 20% interneurons (Rolls &Deco, 2002; Abeles,

1991). In the network, the neurons are fully connected

(with synaptic strengths as specified below). Neurons

in the cortical network shown in Figure 1 are clustered

into populations or pools. Each pool of excitatory cells

contains fNE neurons, where f is the fraction of the

excitatory neurons in any one population (in our simu-

lations, f = 0.1). There are two different types of pool:

excitatory and inhibitory.

There are two subtypes of excitatory pool, namely,

specific and nonselective. Specific pools encode, for

example, the identity of a visual object, or a phoneme,

or a simple motor action to be remembered as a part of

a temporal sequence. The remaining excitatory neurons

are in a nonselective pool. [These neurons have some

spontaneous firing and help to introduce some noise

into the simulation, which aids in generating the almost

Poisson spike firing patterns of neurons in the simula-

tion that are a property of many neurons recorded in

the brain (Compte et al., 2003; Brunel & Wang, 2001)].

All the inhibitory neurons are clustered into a common

inhibitory pool, so that there is global competition

throughout the network. We assume that the synaptic

coupling strengths between any two neurons in the

network act as if they were established by Hebbian

learning, that is, the coupling will be strong if the pair

of neurons have correlated activity and weak if they are

activated in an uncorrelated way. As a consequence,

neurons within a specific excitatory pool are mutually

coupled with a strong weight (ws = 2.1). Neurons in the

inhibitory pool are mutually connected with an interme-

diate weight (w = 1, forming the inhibitory to inhibitory

connections that are useful in achieving nonoscilla-

tory firing). They are also connected with all excitatory

neurons with the same intermediate weight (w = 1).

The connection strength between two neurons in two

different specific excitatory pools is weak and given

by ww = 1 � f(ws � 1)/(1 � f ). Neurons in a specific

excitatory pool are connected to neurons in the nonse-

lective pool with a feed-forward synaptic weight (w = 1)

and a feedback synaptic connection of weight (ww).

Each neuron (pyramidal cells and interneurons) receives

Next = 800 excitatory AMPA synaptic connections from

outside the network. The external inputs are given by a

Poisson train of spikes. To model the background,

spontaneous activity of neurons in the network (Brunel

& Wang, 2001), we assume that Poisson spikes arrive at

each external synapse with a rate of 3 Hz, consistent

with the spontaneous activity observed in the cerebral

cortex (Rolls & Treves, 1998; Wilson, O’Scalaidhe, &

Goldman-Rakic, 1994). In other words, the effective

external spontaneous background input rate of spikes

to each cell is vext = Next � 3 Hz = 2.4 kHz.

We use leaky integrate-and-fire neurons for modeling

the excitatory pyramidal cells and the inhibitory inter-

neurons. The synaptic inputs to an integrate-and-fire

neuron are basically described by a capacitor (Cm)

connected in parallel with a resistor (Rm) through which

currents are injected into the neuron. These current

injections produce excitatory or inhibitory postsynaptic

potentials (EPSPs and IPSPs, respectively). These poten-

tials are integrated by the cell, and if a threshold u is

reached, a d pulse (spike) is fired and transmitted to

other neurons, and the potential of the neuron is reset.

The incoming presynaptic d pulse current from another

neuron is low-pass filtered by the synaptic and mem-

brane time constants, and an EPSP or IPSP is generated

in the one-compartment neuronal model.

The synaptic current flows into the cells are mediated

by three different families of receptors. The recurrent

excitatory postsynaptic EPSPs are mediated by AMPA and

NMDA receptors. These two glutamatergic excitatory

synapses are on the pyramidal cells and on the inter-

neurons. The external inputs (background, sensory

input, or external top–down interaction from other

areas) are mediated by AMPA synapses on pyramidal

cells and interneurons. Inhibitory GABAergic synapses

on pyramidal cells and interneurons yield the corre-

sponding IPSPs. The mathematical descriptions of each

synaptic channel and the corresponding parameters are

provided in the Appendix section.

All neuronal and synaptic equations were integrated

using the second-order Runge–Kutta method, with an

integration step of dt = 0.1 msec. Checks were per-

formed to show that this was sufficiently small. For the

neural membrane potential equations, interpolation of

the spike times and their use in the synaptic currents

and potentials were taken into account following the

prescription of Hansel, Mato, Meunier, and Neltner

(1998) to avoid numerical problems due to the discon-

tinuity of the membrane potential and its derivative at

the spike firing time. The external trains of Poisson

spikes were generated randomly and independently.

296 Journal of Cognitive Neuroscience Volume 17, Number 2
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Operation of Sequence Learning

To achieve the sequential activation of specific pools in

the network, we assume that the attractor state is reset

periodically via a nonspecific global inhibitory signal. In

our implementation, we implemented the effects of this

inhibitory signal by increasing for 200 msec the external

AMPA input to the inhibitory pool of the network. (The

increase was from vext to vext + lReset with lReset =

900 Hz, which corresponds to an increase of 1.125 Hz

to each of the 800 external synapses impinging on the

neurons of the inhibitory pool. This compares to the

mean value of the spontaneous external input of 3 Hz

per synapse.) This increased the global inhibition, and

suppressed the activity of all the excitatory neuronal

pools in the network. We incorporate into the neurons

or synaptic connections between the neurons different

mechanisms to implement spike-frequency adaptation

(with details provided below). This provides a mecha-

nism that implements a temporal memory of the previ-

ously activated pool. When the attractor state of the

network is shut down by the inhibitory input, then the

attractor state that subsequently emerges when firing

starts again will be different from the state that has just

been present, because of adaptation of the synaptic or

neuronal processes that supported the previous attrac-

tor state. To assure that one of the specific pools is

active, to promote high competition between the pos-

sible specific pools (the items in the sequence), we con-

tinuously excite externally all specific pools with the

same nonspecific input by increasing the external input

Poisson firing rate impinging on the excitatory pools of

the network (from vext to vext + B with B = 200Hz). The

function of B is thus to maintain as selected the set of

items in the sequence being remembered.

We describe now the specific implementation of the

spike-frequency-adaptation mechanism that we used in

the network.

Sodium inactivation. One implementation used for

the simulations was a sodium inactivation-based spike-

frequency-adaptation mechanism. A full statistical analy-

sis of a model of sodium inactivation in the framework of

integrate-and-fire models was introduced by Giugliano,

La Camera, Rauch, Luescher and Fusi (2002) as a real-

istic candidate for long-lasting nonmonotonic effects

in current-to-rate response functions observed in vitro

(Rauch, La Camera, Luescher, Seen, & Fusi, 2003) and

associated with spike-frequency mechanisms. The mod-

el was called an integrate-and-may-fire model and takes

into account the inactivation of sodium channels after

spike generation. The integrate-and-fire model is mod-

ified by changing the condition that when the mem-

brane potential reaches the threshold u, the emission of

a spike at that time is an event occurring with an activity-

dependent probability q. After the spike emission, the

membrane potential is clamped to the value Vreset of

�55 mV for an absolute refractory time, after which the

current integration starts again. However, each time the

excitability threshold u is crossed and no spike has been

generated (i.e., an event with probability 1 � q), the

membrane potential is reset to H2 (Vreset < H2 < thres-

hold u < 0) and no refractoriness occurs. Additionally,

q is a decreasing function of a slow voltage-dependent

variable v (0 < v < 1), reminiscent of the sigmoidal

voltage dependence of the fast inactivation state variables

that characterize conductance-based model neurons:

q ¼ 1þ e
v�v0
�v

h i�1

ð1Þ

where v evolves by

�v
dvðtÞ

dt
¼

VðtÞ

�
� v ð2Þ

which corresponds to a first approximation to the aver-

age transmembrane electric field experienced by indi-

vidual ion channels and affecting their population-level

activation and inactivation. In our simulations, we used

tv=9000msec,sv=0.01,v0=0.8563, andH2=�52mV.

Ca2+-activated K+ hyperpolarizing currents. We also

tried other spike-frequency adapting mechanisms, in-

cluding Ca2+-activated K+ hyperpolarizing currents (Liu

& Wang, 2001). They assume that the intrinsic gating

of K+ after-hyperpolarizing current (IAHP) is fast, and

therefore its slow activation is due to the kinetics of the

cytoplasmic Ca2+ concentration. This can be introduced

in the model by adding an extra current term in the

integrate-and-fire model, that is, by adding IAHP on the

right hand of Equation 6 in the Appendix, as follows:

IAHP ¼ �gAHP½Ca
2þ�ðVðtÞ � VK Þ ð3Þ

where VK is the reversal potential of the potassium

channel. Further, each action potential generates a small

amount (a) of calcium influx, so that IAHP is incremented

accordingly. Between spikes, the [Ca2+] dynamics is

Figure 2. Ca2+ -activated K+ hyper-polarizing current mechanism. (A) Rate activity and calcium intracellular concentration as a function of time for

a temporal sequence of two items. The two items were presented in the order item 2 – item 1 just at the start of the simulation period shown, and

retrieval is demonstrated starting at 4000 msec. The firing rate and the intracellular calcium concentration for the two populations of neurons are

shown. An external signal indicating that the network should move to the next item in the sequence is applied at times 4000 and 6000 msec. This

signal quenches the attractor rapidly, and the next attractor takes some time to develop because of the competitive processes taking place between

the neurons in the two populations. The rate measure in this and subsequent Figures is the mean firing rate of the neurons in the particular

population shown. (B) Rastergrams showing the spiking activity in the neurons in the different populations.

298 Journal of Cognitive Neuroscience Volume 17, Number 2



modeled as a leaky integrator with a decay constant

(tCa). Hence, the calcium dynamics can be described by

following system of equations:

d½Ca2þ�

dt
¼ �

½Ca2þ�

�Ca
ð4Þ

If V(t) = u, then [Ca2+] = [Ca2+] + a and V= Vreset, and

these are coupled to the above-mentioned modified

equations of the Appendix. The [Ca2+] is initially set to

be 0 AM, tCa = 600 msec, a = 0.005, VK = �80 mV, and

gAHP = 7.5 nS.

Short-term synaptic depression. The synaptic depres-

sion mechanism was used following Dayan and Abbott

(2002, p. 185). In particular, the probability of transmit-

ter release Prel was decreased after each presynaptic

spike by a factor Prel = Prel 	 fD, with fD = 0.982. Between

presynaptic action potentials, the release probability Prel
is updated by

�P
dPrel

dt
¼ P0 � Prel ð5Þ

with P0 = 1 and tP = 600 msec.

Simulation of the Model

To show how the model is able to implement the

learning of temporal sequences of items (visual objects,

phonemes, simple motor actions, etc.) and specially

how Lashley’s ideas of cotemporal activation are re-

flected in the cotemporal activation of intrinsic synaptic

(probability of release) or neural (intracellular calcium

or probability of spiking due to sodium inactivation)

processes, we performed simulations of how the tem-

poral order of a two- or three-element sequence is

maintained by using the three different mechanisms

mentioned above.

Figure 2 shows simulations corresponding to the use

of calcium-dependent AHP potassium currents. Two

items formed a sequence. Figure 2A plots the rate of

average activity in the two specific pools corresponding

to the items in the sequence. The network needs an

external signal to indicate when it should move to the

next item in the sequence. After each switch initiated by

the external signal, the correct next item in the sequence

is activated. The temporal order is encoded in the

intracellular calcium concentration shown in the bottom

of Figure 2A. Because the most recently activated pool

has a larger amount of intracellular calcium, the inhib-

itory AHP current causes this pool not to be activated

after the switch. Figure 2B plots the rastergrams of

randomly selected neurons for each pool in the network

(5 for each specific pool, 10 for the nonselective excit-

atory pool, and 10 for the inhibitory pool).

Figure 3 shows simulations corresponding to the use

of sodium inactivation mechanisms. Three items formed

a sequence. Figure 3A plots the rate of average activity in

the three specific pools corresponding to the items in

the sequence. After each switch, the correct item is

activated. The temporal order is encoded in the proba-

bility of spiking due to sodium inactivation as shown at

the bottom of Figure 3A. Because the most recently

activated pool has a lower probability of spiking due to

the sodium inactivation, this pool is with high probabil-

ity not activated after the switch. Figure 3B plots the

rastergrams of randomly selected neurons for each pool

in the network.

Figure 4 also shows simulations corresponding to the

use of sodium inactivation mechanisms, but was per-

formed to show that the same architecture after training

on several items can remember the sequence of the

items even if there are different numbers of items in

different sequences. The simulation thus shows that

neither the order nor the number of items in the se-

quence is fixed by the training of the synaptic weights.

In this simulation, the number of items is decided (and

also which items are in the sequence) by the external

bias B acting only on the pools that represent the items

in the sequence. This determines the items that are

included in the sequence to be remembered. The order

of the items is determined by the order in which the

items in the sequence are presented to the network,

as a result of the adaptation mechanism described in

this article. Figure 4A plots the rate of average activity

in the two specific pools corresponding to the items in

the sequence. After each switch, the correct item is ac-

tivated. The temporal order is encoded in the proba-

bility of spiking due to sodium inactivation as shown

at the bottom of Figure 4A. Because the most recently

activated pool has a lower probability of spiking due

to the sodium inactivation, this pool is with high

probability not activated after the switch. Figure 4B

plots the rastergrams of randomly selected neurons

for each pool in the network. We emphasize that the

network and the items stored in the recurrent associa-

tive synaptic connections in the network are identical

Figure 3. Sodium inactivation mechanism. (A) Rate activity and spiking probability due to sodium inactivation as a function of the time for a

temporal sequence of three items. The three items were presented in the order item 3 – item 2 – item 1 just at the start of the simulation period

shown, and retrieval is demonstrated starting at time = 15 sec. Activity in the three specific corresponding pools is shown. The lower plot shows the

probability of spiking which alters due to a sodium inactivation spike frequency adaptation mechanism (see text). An external signal indicating that

the network should move to the next item in the sequence is applied at time = 15, 20 and 25 sec. (B) Rastergrams showing the spiking activity in

the neurons in the different populations.
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for the simulations shown in Figures 3 and 4. The

difference is just that for the simulation in Figure 3,

three items were presented as the sequence to be re-

membered, and the bias input, B, was applied to those

three items. For the simulation shown in Figure 4, two

items were presented as the sequence to be remem-

bered, and the bias input, B, was applied to those

two items. The bias input, B, could originate from a

short-term memory attractor or attractors that would

hold active the items in the sequence, whereas the

network with adaptation described in this article would

determine the order in which the items are recalled.

The whole of this process could take place for items

previously stored in the network everytime a new

sequence is needed without any synaptic modifica-

tion. Indeed, it is a prediction of the model described

here that once the items have been trained individually,

then the sequence memory could be used to receive

and replay different sequences of the items without

limit without any further synaptic modification.

Figure 5 shows simulations corresponding to the use

of short-term synaptic depression. Two items formed

a sequence. Figure 5A plots the rate of average activity

in the two specific pools corresponding to the items

in the sequence. As before, an external signal is used

to indicate that the network should move to the next

item in the sequence. After each switch, the correct

next item is activated. The temporal order is encoded

in the probability of transmitter release as shown in the

bottom of Figure 5A. Because the most recently acti-

vated pool has a lower probability of release, this pool

is with high probability not activated after the switch.

Figure 5B plots the rastergrams of randomly selected

neurons for each pool in the network.

DISCUSSION

The single attractor network implementation of a se-

quence memory that we describe can store several items

in a sequence without repeated training on any one

sequence. The memory for the order in which the

items were presented is not implemented by long-term

associative synaptic modification such as long-term po-

tentiation, but instead by short-term nonassociative

adaptation. The adaptation could be of the active neu-

rons, or of the active synapses, as demonstrated. The

adaptation must be partial, if the sequence is not to

move on automatically, but is to be moved onto the next

item in the sequence by an external signal, which

quenches the current attractor. If the adaptation is more

complete, then the item currently in the attractor will

automatically become unstable, and the next least re-

cently active attractor will then become active, without

the need for an external signal-producing inhibition to

move the network onto the next item in a sequence. In

automatic mode, the speed with which the system

would move onto the next item need not be very fast,

and is a function of how rapidly the adaptation occurs.

The fact that the replay of the sequence can be slow is

an advantage over some other ways that sequence

memory might be implemented that are discussed be-

low. Although the sequence of the items is not stored

by associative long-term synaptic modification, each of

the items must be trained into the attractor network

by long-term associative synaptic modification. The

items need not be learned before the sequence is first

presented, because the associative synaptic modification

could occur rapidly while each item in the sequence is

being presented for the first time. The network can

replay the sequence of items just presented, but it does

not store the sequence itself as a fixed sequence in long-

term memory. If the network operates using an external

trigger to indicate when the next item should be re-

called, this could be provided by something as simple as

an excitatory nonspecific input to a region. This will

cause extra activation of the inhibitory interneurons and

essentially, by competitive interactions implemented

through the inhibitory neurons, quench the attractor

holding active the current item in the sequence. The

magnitude of this reset signal need not be large. For

example, the reset can be produced by increasing the

external background spontaneous excitatory input to all

the 800 external synapses on the neurons in the network

from an average of 3 to 3.375 Hz for 500 msec. If the

reset signal was applied to a smaller fraction of the

neurons, a correspondingly larger change of firing rate

would be needed. If we were to keep providing reset

inputs, the network would keep on recalling the se-

quence, providing a mechanism for rehearsal.

In the network we describe, the adaptation must be

sufficiently long so that it spans the duration of the

whole sequence to be remembered. If the adaptation

lasted for only the duration of a single item, then after

the second item in a three-item sequence, there would

be no preferential recall of the third rather than the first

item in the sequence. (In the case of the synaptic adap-

tation mechanism described in Figure 5, this factor

might limit the sequence memory to 3 or 4 items each

spaced 2 sec apart in the case of the parameters inves-

tigated, but, of course, the value of the relevant param-

Figure 4. Sodium inactivation mechanism. (A) Rate activity and spiking probability due to sodium inactivation as a function of the time for a

temporal sequence of two items. The two items were presented in the order item 2 – item 1 just at the start of the simulation period shown, and

retrieval is demonstrated starting at 10 sec. The two specific corresponding pools are shown. The simulation was identical to that shown in Figure 3,

except that two items instead of three were used. An external signal indicating that the network should move to the next item in the sequence is

applied at 10 and 15 s. (B) Rastergrams showing the spiking activity in the neurons in the different populations.
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eters in parts of the brain that implement sequence

memory may be different from those simulated.) In

addition, other items stored in the same attractor might

cause errors in retrieval unless there was a mechanism

for preventing this. The error would arise if, for example,

a fourth item was stored as an item by associative

synaptic weight modification in a network, but was

not part of a three-item sequence being remembered.

After the first item in the sequence, with the second

item still showing some adaptation, and the third item

more adaptation, then the fourth item stored in the

network would be retrieved, rather than the second

item in the sequence. One way in which this is overcome

is by the use of B to facilitate just the items that are part

of the current sequence, with the adaptation imple-

menting the dynamics of the sequence order retrieval.

This potential problem could also be overcome by

making the associative synaptic modification that stores

each item in the attractor network last for only a

relatively short period. In particular, the problem would

be solved if the long-term potentiation lasted for

a shorter period than the period within which the

network might be required to perform the learning

and replay of another sequence. A simple scenario would

be to have sufficient relatively short-lasting synaptic

modification occurring during presentation of each item

of the sequence during its initial presentation to set up

the attractor for each item in the sequence and to make

this synaptic modification last for just longer than the

duration of the sequence to be remembered.

The type of sequence memory we describe is suitable

for a short-term memory sequence mechanism. It would

not incorporate and implement long-term frequently

repeated fixed sequences of the type that might be

involved in learning to play a piece of music and then

playing the whole piece without the score. On the other

hand, the sequence memory we describe would be

suitable for a short-term scratchpad memory where only

the most recent sequence would be remembered. In

this respect, it would be similar to the recency part of

human auditory–verbal short-term or working memory,

in which different sequences of the same items can be

correctly used, and only the most recent sequence is

remembered (Baddeley, 1986). It is a remarkable prop-

erty of the recency part of auditory–verbal short-term

memory (and of the visuospatial scratchpad) that not

just the items presented for memory, but the order in

which the items were presented is a generic property of

this type of memory (Baddeley, 1986). It is also a generic

property of the type of sequence memory described

here. It is also a property of auditory–verbal short-term

or working memory that its capacity is strictly limited to

7 ± 2 items or ‘‘chunks’’ (Baddeley, 1986; Miller, 1956).

Because of the way in which the adaptation must be

stronger while the sequence is being replayed for later

than earlier items in a sequence, and because the

attractor that emerges after quiescence will be subject

to noise effects, the maximum number of items in a

sequence that could be remembered by the network

described here is also likely to be limited to a few items.

Indeed, we would be surprised if the model described

here could remember many more than 7 items in a

sequence. This limitation on the number of items in a

sequence is in major contrast to the number of sepa-

rate items that could be stored in the autoassociation

network, which is in the order of the number of re-

current collateral synapses on each neuron if the repre-

sentation is sparse (Rolls & Deco, 2002; Rolls & Treves,

1998). This would make the number of items in the

network in the order of 5000–10,000, from which a

subset of perhaps 7 ± 2 could be used in any sequence.

Further, we note that the temporal period over which

any sequence is recalled will be limited by the time

constant of the adaptation process. Another property of

the system described is that it would fail if an item in a

sequence is repeated (e.g., 1–5–1–6, which would be

recalled as 5–1–6). A solution to this potential problem

is to use chunking (a strategy often used in human

auditory–verbal short-term memory), by encoding the

four-item sequence into, for example, 15–16. Another

condition when recall of the sequence might not be

correct would occur with this class of network if the

external signal requesting the next item in the sequence

occurs at one of the very short times when the adapta-

tion variables for the different items happen to be equal.

One such time occurs at approximately 2500 and 4800 in

Figure 5. Thus, this type of sequence memory might

make occasional errors if the external signal comes at a

particular time with respect to the adaptation processes,

and this might be investigated experimentally in studies

of human sequence memory.

We emphasize that the model makes a number of

predictions. One that will allow it to be tested is whether

in the attractor networks (perhaps in the prefrontal

cortex) involved in short-term flexible sequence mem-

ory decrease their neuronal activity when the network

progresses from one item in the sequence to the next.

This is a property of the mechanism described, in that

the transition between different attractors is produced

by a decrease in neuronal activity in the attractors while

Figure 5. Synaptic adaptation mechanism. (A) Rate activity and average probability of transmitter release at the synapses in the different pools as a

function of the time for a temporal sequence of two items. The two items were presented in the order item 2 – item 1 at the start of the simulation

period shown, and retrieval is demonstrated starting at 4000 msec. The two specific corresponding pools are shown. An external signal indicating

that the network should move to the next item in the sequence is applied at time = 4000 and time = 6000 msec. (B) Rastergrams showing the

spiking activity in the neurons in the different populations.
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the network is quenched. It is also an interesting and

integral property of this type of short-term memory

system with some adaptation that it automatically re-

trieves items in the same sequence in which they were

presented, which is a striking characteristic of at least

some human short-term memory systems, including the

recency part of auditory–verbal short-term memory. It is

thus a plausible suggestion that the recency effect part

of auditory–verbal short-term memory (Baddeley, 1986)

is implemented by a network with some of the mecha-

nisms described here. It is also an integral property of

the mechanism described here that it automatically

starts its recall with the first item in the recently pre-

sented sequence of items, and this too is a characteristic

property of the recency effect part of human auditory–

verbal short-term memory. It is also a potentially telling

similarity between the mechanism described here and

some short-term memory systems in humans, including

auditory–verbal short-term memory without explicit re-

hearsal and visuospatial short-term memory that both

types fail if there is a long delay between presentation

of the items to be remembered and the time when they

are to be recalled. It is also of interest that the mecha-

nism described here provides a mechanism by which re-

hearsal could be implemented, which is by repeating the

external signal that causes quenching at regular inter-

vals. In fact, this process is illustrated in Figures 2–5.

An application of a sequence network of the type

described here apart from short-term sequence mem-

ory is central pattern generation (Grillner et al., 1998;

Grillner, Wallen, Brodin, & Lansner, 1991; Selverston,

1985), for which networks with dynamics of the type

described here might be useful. Another application is in

attentional and behavioral switching, and in reward re-

versal, wherein a signal of unexpected nonreward or

punishment may switch an attractor network holding

the current rule from one state to a different state that

has not been recently active (Deco & Rolls, in press).

We now contrast the implementation of a sequence

memory described here with the more traditional

method for storing a sequence of items in an attractor

network, associating a time-delayed version of one item

with the next item in the sequence (Kohonen, 1989;

Sompolinsky & Kanter, 1986; Hopfield, 1982; Kohonen,

1977). For that implementation, the recurrent collateral

connections of the attractor network implement a fixed

time delay, and the delayed representation of the first

item is associated with the next item. Because of the

time delay, this is an asymmetric network, with, in par-

ticular, the connections between neurons that repre-

sent different items in a sequence not symmetric as in a

standard autoassociative network (Kohonen, 1989; Som-

polinsky & Kanter, 1986; Hopfield, 1982; Kohonen,

1977). A biological problem with this implementation

of sequence memory is that the natural time delay in the

recurrent collateral synapses is likely to be in the order

of several milliseconds, so that when the sequence is

recalled, the sequence will be recalled with a speed of

several milliseconds between each item or several

hundred items per second, which is rather fast. In com-

parison, the network described here is more graceful

because it recalls successive items in a sequence, it can

either be triggered, with no precise timing necessary, by

an external signal that resets the network into quies-

cence (and the next item is then recalled) or the

sequence can be automatically recalled at a speed that

depends on how fast or slowly the adaptation builds up,

which could be over in as long as many seconds. In the

latter case, the items would be recalled in the correct

sequence automatically without a trigger for each item

and at a speed that depends on the underlying factors

that determine how rapidly adaptation builds up. The

short-term flexible sequence short-term memory we

describe is also very different from the bird song se-

quence memory model of Drew and Abbott (2003),

which learns a fixed sequence of items held in long-

term memory, and an autoassociation network with

asymmetric connections as above to implement a fixed

sequence but noise to move attractor states from one

item to the next (Buhmann & Schulten, 1987).

APPENDIX

In this section, we give the mathematical equations that

describe the spiking activity and synapse dynamics in the

network, following in general the formulation described

by Brunel and Wang (2001). Each neuron is described by

an integrate-and-fire model. The subthreshold mem-

brane potential V(t) of each neuron evolves according

to the following equation:

Cm

dVðtÞ

dt
¼ �gmðVðtÞ � VLÞ � IsynðtÞ ð6Þ

where Isyn(t) is the total synaptic current flow into the

cell, VL is the resting potential, Cm is the membrane

capacitance, and gm is the membrane conductance.

When the membrane potential V(t) reaches the thresh-

old u, a spike is generated and the membrane potential

is reset to Vreset. The neuron is unable to spike during

the first tref millisecond, which is the absolute refrac-

tory period. The total synaptic current is given by the

sum of glutamatergic excitatory components (NMDA

and AMPA) and inhibitory components (GABA). As

described above, we consider that external excitatory

contributions are produced through AMPA receptors

(IAMPA,ext), whereas the excitatory recurrent synapses

operate through AMPA and NMDA receptors (IAMPA,rec

and INMDA,rec). The total synaptic current is therefore

given by

IsynðtÞ ¼ IAMPA;extðtÞ þ IAMPA;recðtÞ þ INMDA;recðtÞ þ IGABAðtÞ

ð7Þ

Deco and Rolls 305



where

IAMPA;extðtÞ ¼ gAMPA;extðVðtÞ � VEÞ
X

Next

j¼1

s
AMPA;ext
j ðtÞ ð8Þ

IAMPA;recðtÞ ¼ gAMPA;recðVðtÞ � VEÞ
X

NE

j¼1

wjs
AMPA;rec
j ðtÞ ð9Þ

INMDA;recðtÞ ¼
gNMDAðVðtÞ � VEÞ

ð1þ CMgþþ expð�0:062VðtÞ=3:57ÞÞ

�
X

NE

j¼1

wjs
NMDA
j ðtÞ ð10Þ

In the preceding equations, VE = 0 mV and V1 =

�70 mV. The fractions of open channels, s, are given by:

ds
AMPA;ext
j ðtÞ

dt
¼ �

s
AMPA;ext
j ðtÞ

�AMPA

þ
X

k

�ðt� tkj Þ ð11Þ

ds
AMPA;rec
j ðtÞ

dt
¼ �

s
AMPA;rec
j ðtÞ

�AMPA

þ
X

k

�ðt� tkj Þ ð12Þ

dsNMDA
j ðtÞ

dt
¼ �

sNMDA
j ðtÞ

�NMDA;decay
þ �xjðtÞð1� sNMDA

j ðtÞÞ ð13Þ

dxjðtÞ

dt
¼ �

xjðtÞ

�NMDA;rise
þ
X

k

�ðt� tkj Þ ð14Þ

dsGABAj ðtÞ

dt
¼ �

sGABAj ðtÞ

�GABA
þ
X

k

�ðt� tkj Þ ð15Þ

where the sums over k represent a sum over spikes

emitted by presynaptic neuron j at time tkj The value of

a = 0.5 msec�1.

The values of the conductances for pyramidal neurons

were gAMPA,ext = 2.08, gAMPA,rec = 0.104, gNMDA = 0.328,

gGABA = 1.44 nS; for interneurons, gAMPA,ext = 1.62,

gAMPA,rec = 0.081, gNMDA = 0.258, and gGABA = 0.973 nS.

We used biologically realistic parameters (McCormick,

Cannors, Lighthall, & Prince, 1985). We take for both

excitatory and inhibitory neurons a resting potential

VL = �70 mV, a firing threshold u = �50 mV, and a

reset potential Vreset = �55 mV. The membrane capac-

itance, Cm, is 0.5 nF for the pyramidal neurons and

0.2 nF for the inhibitory interneurons. The membrane

leak conductance, gm, is 25 nS for pyramidal cells and

20 nS for interneurons. The refractory period, tref, is

2 msec for pyramidal cells and 1 msec for interneurons.

Hence, the membrane time constant, tm, = Cm/gm is

20 msec for pyramidal cells and 10msec for interneurons.

We consider that the NMDA currents have a voltage

dependence that is controlled by the extracellular mag-

nesium concentration ( Jahr & Stevens, 1990), CMg++ =

1 mM. We neglect the rise time of both AMPA and

GABA synaptic currents because they are typically very

short (<1 msec). The rise time for NMDA synapses is

tNMDA,rise = 2 msec (Spruston, Jonas, & Sakmann, 1995;

Hestrin, Sah, & Nicoll, 1990). All synapses have a time

delay of 0.5 msec. The time constant for AMPA synapses

is tAMPA = 2 msec (Spruston et al., 1995; Hestrin et al.,

1990), for NMDA synapses, tNMDA,decay = 100 msec

(Spruston et al., 1995; Hestrin et al., 1990), and for

GABA synapses, tGABA = 10 msec (Xiang, Huguenard,

& Prince, 1998; Salin & Prince, 1996). The synaptic

conductivities for each receptor type were taken from

Brunel and Wang (2001) and were adjusted using a

mean field analysis to be approximately 1 nS in magni-

tude and were consistent with experimentally observed

values (Destexhe, Meinen, & Sejnowski, 1998).
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