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Abstract : This paper proposes the use of Sequential Monte Carlo (SMC)
as the computational engine for general (non-convex) stochastic Model
Predictive Control (MPC) problems. It shows how SMC methods can
be used to find global optimisers of non-convex problems, in particular
for solving open-loop stochastic control problems that arise at the core of
the usual receding-horizon implementation of MPC. This allows the MPC
methodology to be extended to nonlinear non-Gaussian problems. We
illustrate the effectiveness of the approach by means of numerical examples
related to coordination of moving agents.

1 Introduction

Nonlinear Model Predictive Control (MPC) usually involves non-convex optimisation
problems, which in general suffer from the existence of several or even many local
minima or maxima. This motivates the use of global optimisation algorithms, which
guarantee asymptotic convergence to a global optimum. In most cases such algorithms
employ a randomised search strategy to ensure that the search process is not trapped
in some local mode. A popular example is Simulated Annealing (SA). Apart from the
issue of multi-modalities of costs or rewards, solving such problems becomes even more
complicated when stochastic processes are used to represent model uncertainties. In
general, stochastic decision problems involve nonlinear dynamics with arbitrary distri-
butions on general state spaces. In this paper we are mostly interested in continuous
state spaces. Furthermore, the costs or rewards are usually expressed as expectations
over relatively high-dimensional spaces. Monte Carlo methods are currently the most
successful methods for evaluating such expectations under very weak assumptions,
and have been widely applied in many areas such as finance, robotics, communica-
tions etc. An interesting point, which is overlooked often by the control community, is
that Monte Carlo has also been applied for performing global optimisation, mainly in
inference problems such as Maximum Likelihood or Maximum a Posteriori estimation,
as presented recently in [1, 8, 12].

Still, solving stochastic optimal control problems on continuous state spaces for
nonlinear non-Gaussian models is a formidable task. Solutions can be obtained by
solving Dynamic Programming/ Bellman equations [3], but there is no analytical so-
lution to this equation — except in very specific cases, such as finite state spaces or
linear Gaussian state-space models with quadratic costs. In general, the value func-
tion takes as argument a probability distribution, and it is extremely difficult to come
up with any sensible approximation to it. This is why, despite numerous potential
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applications, the literature on applications of Monte Carlo methods for control of non
linear non Gaussian models is extremely limited [2].

MPC combined with Monte Carlo methods provides a natural approximation of
solving the Bellman equation in the stochastic case, just as deterministic MPC can
be viewed as a natural approximate method for solving deterministic optimal control
problems [11]. For details of how MPC relates to dynamic programming and the
Bellman equation, with emphasis on the stochastic case, see [4].

The most developed approaches for exploiting Monte Carlo methods for optimisa-
tion are based on either Markov Chain Monte Carlo (MCMC) methods [14], or Sequen-
tial Monte Carlo (SMC) methods [5, 7]. Considerable theoretical support exists for
both MCMC and SMC under very weak assumptions, including general convergence
results and central limit theorems [14, 5].

To date the control community has investigated the use of MCMC as a tool for
evaluating approximate value functions [15], and SMC, in the guise of ‘particle filters’,
for state estimation — see [13] for a setting closely related to MPC. Recently, in [9, 10]
the authors proposed to use a MCMC algorithm similar to Simulated Annealing de-
veloped in [12], for sampling from a distribution of the maximisers of a finite-horizon
open-loop problem, as the key component of an MPC-like receding-horizon strategy.
As in any stochastic optimisation algorithm, the long execution times needed imply
that these methods can be considered only for certain control problems, in which fast
updates are not required. But even when restricted to such problems, the computa-
tional complexity of the algorithms can be very high. It is therefore important to take
advantage of any structure that might be available in the problem. SMC seems to
manage this better than MCMC in sequential problems, and might need less extensive
fine tuning than standard MCMC usually requires.

In this paper we investigate the use of a Sequential Monte Carlo (SMC) approach,
in contrast to the Markov chain Monte Carlo (MCMC) approach we proposed pre-
viously. This approach of using SMC methods for the sampling of global optimisers
within MPC, is to the best of our knowledge novel. We propose some specific algorith-
mic choices in order to accelerate convergence of Simulated Annealing methods when
applied to stochastic MPC problems. We shall demonstrate the effectiveness of our
approach by means of numerical examples inspired from Air Traffic Management.

2 Problem Formulation

In general control problems one focuses on dynamical models, in which a specified user
or controller or decision maker influences the evolution of the state, Xk ∈ Xk, and the
corresponding observation, Yk ∈ Yk, by means of an action or control input, Ak ∈ Ak,
at each time k. Consider the following nonlinear non-Gaussian state space model

Xk+1 = ψ (Xk, Ak, Vk+1) , Yk = φ (Xk, Ak, Wk) ,

where {Vk}k≥1 and {Wk}k≥0 are mutually independent sequences of independent ran-
dom variables and ψ, φ are nonlinear functions that determine the evolution of the
state and observation processes. The decision maker tries to choose the sequence
{Ak}k≥0, so that it optimises some user specified criterion Jk(A0:k).

In this paper we shall restrict our attention to the fully observed case (Yk ≡
Xk), although our results can be generalised for the partially observed case as well.
Furthermore, as our goal is to develop an algorithm for use with MPC, we will focus
only on finite horizon problems. We refer the interested reader to [2] for a treatment
on how SMC has been used for the infinite horizon case using stochastic gradients
instead.

Conditional upon {Ak}k≥0, the process {Xk}k≥0 is a Markov process with X0 ∼ µ
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and Markov transition density f (x′|x, a), so that we can write

Xk+1| (Xk = x, Ak+1 = a) ∼ f ( ·|x, a) (1)

where A0:k denotes the joint vector A0:k = [A1, ..., Ak]. These models are also referred
to as Markov Decision Processes (MDP).

We will now formulate an open loop problem solved at each MPC iteration. Let
us introduce a measurable reward function h : Xk ×Ak → H, where H ⊆ R+, for the
following additive reward decision problem. At time k − 1, the sequence Ak−1 has
been selected and one wants to maximise the function Jk defined as

Jk (Ak:k+H−1) = E

[
k+H∑

n=k

h (Xn, An)

]
(2)

where the expectations are with respect to the joint distribution of the states pAk:k+H (·|A0:k−1),

Jk (Ak:k+H) =

∫

Xk−1×...×Xk+H

(
k+H∑

n=k

h (xn, An)

)

︸ ︷︷ ︸
u(Ak:k+H

,xk−1:k+H )

k+H∏

n=k

f (xn|xn−1, An) p (xk−1|A0:k−1)

︸ ︷︷ ︸
pAk:k+H

(xk−1:k+H |A0:k−1)

dxk−1:k+H ,

(3)
where we define

u(Ak:k+H , xk−1:k+H) =

k+H∑

j=k

h (xj , Aj) . (4)

We aim to perform the following maximisation

A∗k:k+H−1 = arg max
Ak:k+H−1∈Ak:k+H−1

Jk (Ak:k+H−1) ,

in order to obtain a solution for the open loop problem.
Of course, this is not trivial a trivial task. If the control input took its values

in a finite set A of cardinality K, it would be possible to approximate numerically
this cost using particle methods or MCMC for the KH+1 possible values of Ak:k+H

and then select the optimal value. In [2] the authors present in detail how to get a
particle approximations of Jk using standard SMC results and in [14] one finds the
MCMC counterpart. Of course, in practice such an approach cannot handle large
values of H or K. Moreover if Ak takes values in a continuous space A and Jk (Ak) is
differentiable with respect to Ak, one can still resort to a gradient search in A. This
has been presented in [2]. Using gradients would imply, as in any local optimisation
method, that multiple runs from different initial points are needed to get a better
estimate of the global optimum, but still it is difficult to get any formal guarantees.
This motivates the use of Monte Carlo optimisation.

3 Monte Carlo Optimisation

Maximising (3) falls into the broader class of problems of maximising

J (θ) =

∫

Z
u(θ, z)pθ(z)dz, (5)

where we define θ = Ak:k+H and z = xk−1:k+H , while θ∗ are the maximisers of J . In
this section we show how Monte Carlo simulation can be used to maximise J. In [1, 12]
MCMC algorithms have been proposed for this and in [9] the authors explained how
they can be combined with MPC. More recently, in [8] SMC methods have been applied
for solving a marginal Maximum Likelihood problem, whose expression is similar to
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(5). In the remainder of this paper we shall focus on deriving a similar algorithm to
[8], intended to be used for MPC.

The basic idea is the same as in [1, 8, 12]. First we assume u(θ, z) is nonnega-
tive. Note that this might seem restrictive at the beginning but we remark that any
maximisation remains unaffected with respect to shifting by some finite positive con-
stant. As in the standard Bayesian interpretation of Simulated Annealing, we define
a distribution π̃γ

π̃γ(θ) ∝ p(θ)J (θ)γ ,

where p(θ) is an arbitrary prior distribution, which contains the maximisers θ∗ and
encapsulates any prior information on θ not captured by the model. As such infor-
mation is not likely to be available, uninformative priors might be used. Under weak
assumptions, as γ →∞, π̃γ(θ) becomes concentrated on the set of maximisers of J .

We now introduce γ artificial replicates of z, all stacked into a joint variable z1:γ

and define the distribution πγ

πγ(θ, z1:γ) ∝
γ∏

i=1

u(θ, zi)pθ(zi).

It easy to show that the marginal of πγ is indeed π̃γ , i.e. π̃γ(θ) =
∫

πγ(θ, z1:γ)dz1:γ .
We now define a strictly increasing integer infinite sequence {γl}l≥0, which will play
the role of the inverse temperature (as in SA). For a logarithmic schedule one can
obtain convergence results [12], but in practice this leads to slow convergence; more
quickly increasing rates and finite sequences {γl}l≥0 are therefore used. In general it is
impossible to sample directly from πγ , hence various Monte Carlo schemes have been
proposed. In [1, 12] this is achieved by MCMC, and in [8] an SMC sampling approach
was proposed for a Maximum Likelihood problem, based on the generic SMC algorithm
found in [6]. The SMC approach can achieve more efficient sampling from πγ , and
avoids some of the fundamental bottlenecks of MCMC-based optimisation.

4 Stochastic Control using MPC based on SMC

SMC is a popular technique, applied widely in sequential inference problems. The
underlying idea is to approximate a sequence of distributions πl(x)1 of interest as a

collection of N discrete masses of the variables (also referred as particles {X(i)
l }N

i=1),

properly weighted by a collection of weights {w(i)
l }N

i=1 to reflect the shape of the
distribution πl. As πl can be time varying, the weights and the particles are propagated
iteratively by using a sequential importance sampling and resampling mechanism,
which uses the particles of iteration l − 1 to obtain new particles at iteration l. We
shall be referring to {X(i)

l , w
(i)
l }N

i=1 as the particle approximation π̂l of πl and this
should satisfy

N∑
i=1

w
(i)
l δ

X
(i)
l

(dx)
N→∞→

a.s.
πl(dx),

where δ is a Dirac delta mass. For more details, see [5, 6, 7]. In Figure 1, we set out
an SMC algorithm which can be used for the MPC problem defined in Section 2.

Steps 1 to 3 of the algorithm are iterated recursively to obtain a particle approxi-
mation for the maximisers of Jk. Referring to the general description of SMC in the
previous paragraph, one can associate πγl with πl. We shall be using iteration number
l, to index the propagation of πγl . As we cannot run an infinite number of iterations,
we shall terminate the iteration at l = lmax. Note that l should not be confused with
the time index k of Section 2 regarding the real time evolution of the state. To avoid

1x is not meant to be confused with xk. Later it will be apparent that we shall be using
(θk, zk,1:γl

) as the variable of interest.
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At time k,

• For l = 1, ..., lmax :

1. Sampling new particles

• For each particle i = 1, ..., N sample A
(i)
k:k+H,l ∼

ql(·|X̃(i)
k:k+H,1:γl−1

, Ã
(i)
k:k+H,l−1)

• For each particle i = 1, ..., N sample replicas of the joint state trajectory,

for j = γl−1 + 1, ..., γl , X
(i)
k:k+H,j ∼

k+H∏
n=k

f(xn|xn−1, A
(i)
n,l).

2. Weighting particles

For each particle i = 1, ..., N assign weights w
(i)
l =

w
(i)
l−1

γl∏
j=γl−1+1

u(A
(i)
k:k+H,l, X

(i)
k:k+H,j) and normalise w

(i)
l =

w
(i)
l

N∑
j=1

w
(j)
l

.

3. Resample, if necessary, according to the multinomial dis-

tribution {(A(i)
k:k+H,l, X

(i)
k:k+H,1:γl

), w
(i)
l }N

i=1 to get new particles

{(Ã(i)
k:k+H,l, X̃

(i)
k:k+H,1:γl

), 1
N
}N

i=1.

• Compute the maximiser estimate Âk:k+H =
N∑

i=1

w
(i)
lmax

A
(i)
k:k+H,lmax

and apply Âk

as the action of time k.

Proceed to time k + 1

Figure 1: SMC Algorithm for MPC

this, we define θk = Ak:k+H−1 and zk = xk−1:k+H , and also add a subscript k to πγ to
show the real time index. At each epoch k , we are interested in obtaining lmax con-
secutive particle approximations of πk,γl(θk, zk,1:γl), where zk,1:γl = [zk,γ1 , ..., zk,γl ].
(Note that zk,1:γl is the stacked vector of the γl artificial replicates of xk−1:k+H and n
is used as a sequence index for the interval k : k + H.) At each iteration l, we obtain

particle approximations π̂k,γl , {(Θ(i)
k,l, Z

(i)
k,1:γl

), w
(i)
l }N

i=1, by propagating the particles of

the previous approximation π̂k,γl−1 , {(Θ(i)
k,l−1, Z

(i)
k,1:γl−1

), w
(i)
l−1}N

i=1, weighting the new

particles and then resampling.
We now explain briefly how steps 1 to 3 can be derived. Suppose we are at epoch

k and iteration l. For the sampling step, we assume in this paper that we can sample
from the model of the state, pθk (zk), by repeatedly sampling from each transition
density f . This is not always possible, but for most practical control problems it is. If
one cannot sample directly from f then importance sampling can be used. For every
particle i, to get a sample Z

(i)
k,j = X

(i)
k−1:k+H,j , we use an initial sample of the state

X
(i)
k−1,j and then repeatedly sample X

(i)
n,j ∼ f(·|X(i)

n−1,j , Θ
(i)
k,l) for n = k, ..., k + H. For

sampling new particles Θ
(i)
k,l, an importance sampling approach has to be used at each

l. We shall be using an importance distribution ql to obtain Θ
(i)
k,l ∼ ql(·|Z(i)

k,1:γl
, Θ

(i)
k,l−1)

by simulation. We have intentionally chosen ql to be varying with l and to depend
on Zk,1:γl as this ia appropriate for the general design setting. We shall not provide
details on how to design ql, as this depends on the problem specifics. We shall refer
the reader again to [5, 6, 7] for a more general treatment.
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For the weighting step we use

πk,γl

πk,γl−1

∝
γl∏

i=γl−1+1

u(θk, zi,k)pθk (zk,i)

to obtain
w

(i)
l

w
(i)
l−1

as an importance ratio proportional to
γl∏

j=γl−1+1

u(Θ
(i)
k,l, Z

(i)
k,j), where

dividing by ql in each term comes from standard importance sampling. To obtain

u(Θ
(i)
k,l, Z

(i)
k,j) — see (3) and (4) — one can evaluate h

(
X

(i)
n,j , A

(i)
n,l

)
pointwise at each

step n during the sampling stage, and then get the total value of u(Θ
(i)
k,l, Z

(i)
k,j). After

normalising the weights one can perform a resampling step, if the variance of the
weights is low.

Having obtained the particle approximation π̂k,γlmax
, {(Θ(i)

k,lmax
, Z

(i)
k,1:γl max

), w
(i)
lmax

}N
i=1,

we can use θ̂k =
N∑

i=1

w
(i)
lmax

Θ
(i)
k,lmax

as the estimator of θ∗k, where θ∗k is the maximiser of

Jk(θk). Then we can use this solution for performing an MPC step. Once θ̂k is calcu-

lated we can then apply Âk and then proceed to time k + 1 and repeat for optimising
Jk+1.

5 Numerical Examples

In this section we demonstrate how the proposed algorithm can be used in navigation
examples, where it is required to coordinate objects flying at constant altitude, such
as aircraft, UAVs, etc. We consider a two-dimensional constant speed model for the
position of an object controlled by changing its bearing

Xk+1 = Xk + vτ [sin φk+1, cos φk+1]
T + bk+1 + Vk+1,

where v is the speed of the object, τ is a measuring period, φ is the bearing , bn

represents the predicted effect of the wind and Vk
iid∼ N (0, Σ). Although this is a linear

kinematic model with Gaussian added noise, the algorithm in Figure 1 can handle
nonlinear and non-Gaussian cases as it requires no assumptions on the dynamics or
distributions.2 We shall be using some way points αn that the object is desired to
pass through at each time n. We shall encode this in the following reward at time k,

Jk(φk:k+H) = E[

k+H∑

n=k

(c− ‖Xn − αn‖2Q − ‖φn − φn−1‖2R)],

where c > 0 is sufficiently large to ensure c − ‖Xn − αn‖2Q − ‖φn − φn−1‖2R ≥ 0, and
Q, R ≥ 0 are matrices of appropriate sizes.

We shall be investigating a number of scenarios. Firstly assume there are three
waypoints to be cleared, such that α1 = α2 = ... = αH1 , αH1+1 = ... = αH2 and
αH2+1 = ... = αH . If a single object obeying (5) starts at some initial position, then
choosing a maneuver to maximise Jk means that it should pass through the points and
stay near the check points as long as possible. The result of applying the algorithm of
Figure 1 is shown in Figure 2(a).

We proceed by adding additional objects that also obey the dynamics of (5). Sup-
pose that safety requirements impose the constraint that objects should not come closer
to each other than a distance dmin. This makes the problem much harder as one has
to ensure that constraints are not violated and the constraints have a significant effect
on the multi modality of the reward. Let Xj

k denote the position of the jth object. The

2Also non-convex constraints can be added.
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feasible space X j
k is modified so that X j

k = {Xj
k ∈ R2 :

∥∥Xj
k −Xi

k

∥∥ ≥ dmin,∀i 6= j}.
Moreover, all expectations presented so far, for example equation (3), should be de-
fined over the new feasible spaces for each object. To account for this we could modify
the instantaneous reward to h

(
xj

n, Aj
n

)
1

X
j
0:n∈X

j
0:n

, where 1x∈B is an indicator func-

tion for the set B. Such a simple penalty approach means that no reward should be
credited if a sampled trajectory Z

j,(i)
k,j does not obey the constraint and its correspond-

ing weight should be set to zero. Given that the SMC optimisation algorithm uses a
large number of particles and samples many replicates of the state trajectories, this
should allow safe decisions to be made.

We have verified this using two different scenarios. In the first one seen in Figure
2(b), two objects flying in parallel towards the same direction, try to approach parallel
waypoints. MPC was used for repeated number of runs and no conflict between two
objects took place. Further scenarios are depicted in Figures 2(c) and 2(d). These
show a more complicated problem, in which four objects are directed towards each
other and their waypoints would lead them to a collision if constraints were not taken
into account. In Figure 2(c) we plot the open loop solution of the problem at time
k = 1 for a random disturbance sequence and in Figure 2(d) the MPC solution. We
see that three objects try to cruise as closely as possible between their waypoints and
orbit each way point for some time, while one orbits waiting for the others. Again no
conflict took place in multiple runs.

As a concluding remark, we would like to stress that little tuning was done to
produce the results shown here. The examples show early results from ongoing work,
but they already demonstrate that the proposed SMC algorithm can be effective for
non-convex decision problems.
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