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Sequential Monte Carlo Methods for High-Dimensional Inverse Problems: A

case study for the Navier-Stokes equations

Nikolas Kantas∗ §, Alexandros Beskos† ‡ § ¶, and Ajay Jasra‡ ¶

Abstract. We consider the inverse problem of estimating the initial condition of a partial differential equation,
which is only observed through noisy measurements at discrete time intervals. In particular, we focus
on the case where Eulerian measurements are obtained from the time and space evolving vector field,
whose evolution obeys the two-dimensional Navier-Stokes equations defined on a torus. This context
is particularly relevant to the area of numerical weather forecasting and data assimilation. We will
adopt a Bayesian formulation resulting from a particular regularization that ensures the problem is
well posed. In the context of Monte Carlo based inference, it is a challenging task to obtain samples
from the resulting high dimensional posterior on the initial condition. In real data assimilation
applications it is common for computational methods to invoke the use of heuristics and Gaussian
approximations. As a result, the resulting inferences are biased and not well-justified in the presence
of non-linear dynamics and observations. On the other hand, Monte Carlo methods can be used to
assimilate data in a principled manner, but are often perceived as inefficient in this context due to the
high-dimensionality of the problem. In this work we will propose a generic Sequential Monte Carlo
(SMC) sampling approach for high dimensional inverse problems that overcomes these difficulties.
The method builds upon “state of the art” Markov chain Monte Carlo (MCMC) techniques, which
are currently considered as benchmarks for evaluating data assimilation algorithms used in practice.
SMC samplers can improve in terms of efficiency as they possess greater flexibility and one can
include steps like sequential tempering, adaptation and parallelization with relatively low amount
of extra computations. We will illustrate this using numerical examples, where our proposed SMC
approach can achieve the same accuracy as MCMC but in a much more efficient manner.
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1. Introduction. We consider the inverse problem of estimating the initial condition of a
dynamical system described by a set of partial differential equations (PDEs) based on noisy
observations of its evolution. Such problems are ubiquitous in many application areas, such
as meteorology and atmospheric or oceanic sciences, petroleum engineering and imaging (see
e.g. [1, 14, 34, 33, 8, 20]). In particular, we will look at applications mostly related to
numerical weather forecasting and data assimilation, where one is interested in prediction of
the velocity of wind or ocean currents. There, a physical model of the velocity vector field
is used together with observed data, in order to estimate its state at some point in the past.
This estimated velocity field is then used as an initial condition within the PDE to generate
forecasts. In this paper we focus on the case where the model of the evolution of the vector
field corresponds to the two-dimensional (2D) Navier-Stokes equations and the data consists
of Eulerian observations of the evolving velocity field originating from a regular grid of fixed
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positions. Although the inverse problem related to the Navier-Stokes dynamics may not be as
difficult as some real applications, we believe it can still provide a challenging problem where
the potential of our methods can be illustrated. Furthermore, the scope of our work extends
beyond this particular model and the computational methods we will present are generic to
inverse problems related with dynamical systems.

In a more formal set-up, let (U, ∥·∥U ) and (Y, ∥·∥Y ) be given normed vector spaces. A
statistical inverse problem can be formulated as having to find an unknown quantity u ∈ U
that generates data y ∈ Y :

y = G(u) + e ,

where G : U → Y is an observation operator and e ∈ Y denotes a realization of the noise
in the observation; see [20] for an overview. In a least squares formulation, one may add
a Tikhonov-Phillips regularization term to ensure that the problem is well posed (see e.g.
[8, 23, 33]) in which case one seeks to find the minimizer:

u⋆ = argmin
u∈U

(∥∥∥Γ−1/2 (y − G(u))
∥∥∥
2

Y
+

∥∥∥C−1/2(u−m)
∥∥∥
2

U

)
,

where Γ, C are trace class, positive, self-adjoint operators on Y, U respectively and m ∈ U . In
addition, one may also be interested in quantifying the uncertainty related to the estimate
u⋆. This motivates following a Bayesian inference perspective which is the one adopted in this
work. Under appropriate conditions (to be specified later; [33]) one can construct a posterior
probability measure µ on U such that Bayes rule holds:

dµ

dµ0
(u) ∝ l(y;u) ,

where µ0 is the prior and l(y;u) is the likelihood. The prior is chosen to be a Gaussian
probability measure µ0 = N (m, C) (i.e. a normal distribution on U with mean m ∈ U and
covariance operator C) as implied by prior knowledge on the smoothness or regularization
considerations. The likelihood, l(y;u), is a density w.r.t some reference measure on Y and is
obtained from the statistical model believed to generate the data. For example, one may use

l(y;u) = exp(−
1

2

∥∥∥Γ−1/2 (y − G(u))
∥∥∥
2

Y
) ,

if a Gaussian additive noise model is adopted.
In this paper we will consider u to be the unknown initial condition of the PDE of interest.

We will model the observations as a vector of real random variables, Y ∈ R
dy , and assume

U is an appropriate Hilbert space. Thus, the observation operator is closely related to the
semigroup of solution operators of the PDE, {Ψ(·, t) : U → U}t≥0, which maps a chosen initial
condition u ∈ U to the present state Ψ(u, t) at time t ≥ 0. It is straightforward both
to extend Bayesian methodology for these spaces ([33]) and to also ensure that necessary
differentiability and smoothness conditions are being enforced with regards to the evolution
of the vector field via the appropriate choice of the prior measure. We will also work with
periodic boundary domains, which is a convenient choice that allows solving PDEs numerically
using a spectral Galerkin method with Fast Fourier Transforms (FFTs). Notice that here we
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are confronted with an infinite-dimensional problem as U is a function space, but in practice a
high-dimensional discretization (or mesh) is used. Still it remains as an important requirement
that any computational method should be able to cope with an arbitrary fine discretization,
i.e. that it is robust to mesh refinement.

A plethora of methods have appeared in the literature to tackle such inverse problems.
Usually these adopt various heuristic approximations when new data points are assimilated.
The first successful attempt in this direction of algorithms was based on optimization and
variational principles ([24, 30]). Later, these ideas were combined with Gaussian approxima-
tions, linearizations and Kalman-type computations in [34] leading to the popular 3DVAR and
4DVAR. Another popular method is the ensemble Kalman filter (enKF), which is nowadays
employed by an increasing number of weather forecasting centers; see [14] for an overview.
Although these methods have been used widely in practice, an important weakness is that
their use is not well justified for non-linear problems and it is hard to quantify under which
conditions they are accurate (with the exception of linear Gaussian models; [25]). A different
direction that overcomes this weakness is to use Monte Carlo computations that make full use
of Bayes rule to assimilate data in a principled manner. In this paper we will refer to these
methods as ‘exact’ given the resulting estimation error will diminish by using more Monte
Carlo samples and also in order to distinguish with the above methods that use heuristic
approximations. Recently, exact Markov chain Monte Carlo (MCMC) methods suitable for
high dimensional inverse problems have been proposed in the literature ([8, 22, 33]). This
class of MCMC algorithms can be shown to be much more accurate than the popular data
assimilation algorithms mentioned earlier (see [23] for a thorough comparison). However, the
improvement in performance comes at a much greater computational cost, limiting the effect
of the method to providing benchmarks for evaluating data assimilation algorithms used in
practice.

In this paper, we aim to improve in terms of the efficiency of obtaining Monte Carlo samples
for Bayesian inference. We will use these accurate MCMC methods as building blocks within
Sequential Monte Carlo (SMC) samplers ([6, 12]). Our work builds upon recent advances in
MCMC/SMC methodology and we will propose a SMC sampler suitable for high-dimensional
inverse problems. SMC methods have been very successful in a wide range of relatively low-
dimensional applications ([13]) and their validity has been demonstrated by many theoretical
results (see [11] for an exhaustive review). SMC can be a useful numerical tool for high-
dimensional data assimilation applications, but one needs to implement very efficient versions
of these algorithms and not simply use them in their plain generic form. Evidence for this
can be provided by recent success of SMC in high-dimensional applications ([19, 31]) as well
as recent theoretical results with emphasis on high dimensional problems ([2, 3, 32]). The
necessity for developing more elaborate implementations of SMC has been also recognised in
related high dimensional filtering problems with stochastic dynamics ([36, 7]). Here we will
not consider this type of problems and focus only in the case of deterministic dynamics.

We will propose an efficient algorithm based on the algorithm in [6]. We will generate
weighted samples (called particles) from a sequence of target probability measures, (µn)

T
n=0,

that starts from the prior, µ0, and terminates at the posterior of interest (i.e. µT = µ). This
is achieved by a combination of importance sampling, resampling and MCMC mutation steps.
Several important challenges arise when trying to use this approach for the high-dimensional
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problems of interest in this paper: (i) Overcoming weight degeneracy: when the amount
of information in an assimilated data-point is overwhelming, the importance weights will ex-
hibit a very high variance. For example at the n-th step of the algorithm (when targeting µn)
the observations about to be assimilated might exhibit a highly peaked likelihood function rel-
ative to the previous target and current proposal µn−1. (ii) Constructing effective MCMC
mutation kernels: the availability of MCMC kernels with sufficiently mixing properties is
well-known to be critical for algorithmic efficiency of SMC ([11]). This is extremely challeng-
ing in high dimensions since the target distributions are typically comprised of components
with widely varying scales and complex correlation structures. (iii) Effective design and
monitoring of algorithmic performance: insufficient number of particles and MCMC mu-
tation steps or inefficient MCMC kernels might lead to a population of particles without the
required diversity to provide good estimates. Even in such an undesirable situation standard
performance indicators such as the Effective Sample Size (ESS) can give satisfactory values
and a false sense of security (this has been noted in [6]). Hence the development and use of
reliable criteria to monitor performance is required and these should be easy to compute using
the particles.

SMC samplers possess a great amount of flexibility with design elements that can be
modified according to the particular problem at hand. Understanding some of the statistical
properties of the posterior of interest can be used to design an appropriate (and possibly
artificial) target sequence (µn)

T
n=0 as well as constructing MCMC mutation steps with ade-

quate mixing. To overcome the difficulties mentioned above in points (i)-(ii) we will revisit
some previously successful adaptation ideas from the SMC literature. Firstly, we will employ
sequential and adaptive tempering to smooth peaked likelihoods by inserting an intermediate
target sequence between µn−1 and µn. At each step of the algorithm, the next temperature
will be chosen automatically based on information from the particles as proposed in [19]. In
particular for our problem, adaptive tempering will not increase the total computational cost
too much, when more amount of tempering is performed at earlier stages of the algorithm,
which require shorter runs of the expensive numerical solutions of the PDE. In addition, to
address point (ii) above, we will use the particles at each stage of the algorithm and adapt
the MCMC steps to the structure of the target as suggested in [6]). In order to achieve this,
we will propose a novel MCMC kernel robust to high dimensions using similar principles as
in [8].

Our main contribution will be to combine these two ideas and propose a generic and
efficient SMC algorithm that can be used for a variety of inverse problems of interest to
the data assimilation community. In addition, we will propose a statistic to measure the
amount of diversity of the particles during the MCMC mutation. We will use a particular
standardized square distance travelled by the particles during the mutation, which to the
best of our knowledge has not been used before. Good values for this criterion might be
chosen by requiring a minimum amount of de-correlation. The performance of the proposed
scheme will be demonstrated numerically on the inverse problem related to the Navier-Stokes
equations, but we expect similar performance in other problems such as the ones described
in [8]. For the numerical implementation, we will exploit the fact that many steps in SMC
are trivially parallelizable. This leads to high speed-ups in execution time when implemented
on appropriate hardware platforms, such as computing clusters or GPUs ([26]). Although



SMC for a high dimensional inverse problem related to the Navier-Stokes equations 5

this is becoming increasingly a common practice in the SMC community, to the best of our
knowledge this is the first attempt to investigate the practical speed-up benefits in high-
dimensional inverse problems.

The organization of the paper is as follows. In Section 2 we formulate the inverse problem
related to the Navier-Stokes equations that will be used in this paper. In Section 3 we present
the MCMC sampling procedure of [8] and a basic SMC sampling method. In Section 4 we will
extend the SMC methodology for high dimensional inverse problems. In Section 5 we present
two numerical examples with the inverse problem for the Navier-Stokes equations: in the first
one SMC appears to achieve the same accuracy as MCMC at a fraction of the computational
cost; in the second one it is unrealistic to use MCMC from a computational perspective, but
SMC can provide satisfactory numerical solutions at a reasonable computational cost. Finally,
in Section 6 we present some concluding remarks.

2. Problem formulation. In this section we will give a brief description of the Navier-
Stokes equations defined on a torus, specify the observation mechanism and present the pos-
terior distribution of interest for the initial condition. We will later use the problem formulated
in this section as a case study for the proposed SMC algorithm for inverse problems.

2.1. Navier-Stokes Equations on a Torus. We will first set up the appropriate state space
and then present the dynamics. Readers with less interest in the Navier-Stokes equations
should be able to go directly to Section 2.2 with little loss in continuity.

2.1.1. Preliminaries. Consider the state (or phase) space being the 2D-torus, T = [0, 2π)×
[0, 2π), with x ∈ T being a point on the space. The initial condition of interest is a 2D
vector field u : T → R

2. We set u = (u1(x), u2(x))
′, where u1, u2 ∈ L2(T) and ·′ denotes

vector/matrix transpose. We will define the vorticity as, ϖ = ϖ(x, t) = −∇ × u(t, x), with
the (slightly unusual) convention that clock-wise rotation leads to positive vorticity. Let |·|
denote the magnitude of a vector or complex variate. For a scalar field g : T → R we will
write ∇⊥g = (−∂x2g, ∂x1g)

′. We will also consider the vector Laplacian operator, ∆u =(
∂2x1

u1 + ∂2x2
u1, ∂

2
x1
u2 + ∂2x2

u2
)′
, and, for functions ṽ, v : T → R

2, the operator: (v · ∇) ṽ =
(v1∂x1 ṽ1 + v2∂x2 ṽ1, v1∂x1 ṽ2 + v2∂x2 ṽ2)

′ . Define the Hilbert space:

U :=

{
2π − periodic trigonometric polynomials u : T → R

2
∣∣ ∇ · u = 0 ,

ˆ

T

u(x)dx = 0

}
,

and let U be the closure of U with respect to the norm in L2(T)2. Let also P : (L2(T))2 → U
denote the Leray-Helmholtz orthogonal projector. An appropriate orthonormal basis for U is
comprised of the functions ψk(x) =

k⊥

2π|k| exp (ik · x) , k ∈ Z
2 \ {0}, where k⊥ = (−k2, k1)

′
and

i2 = −1. So k corresponds to a (bivariate) frequency and the Fourier series decomposition of
an element u ∈ U is written as:

u(x) =
∑

k∈Z2/{0}
ukψk(x) , uk = ⟨u, ψk⟩ =

ˆ

T

u · ψ̄k(x)dx ,

for the Fourier coefficients uk, with ·̄ denoting complex conjugate. Notice that since u is
real-valued we will have uk = −u−k.
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Also we define A = −P∆ to be the Stokes operator; note that A is diagonalized in U in the
basis {ψk}k∈Z2\{0} with eigenvalues {λk}k∈Z2\{0} where λk = |k|2. Fractional powers of the
Stokes operator can then be defined by the diagonalization. For any s ≥ 0, we define As as the
operator with eigenvalues λk,s = |k|2s and eigenfunctions {ψk}k∈Z2\{0} and the Hilbert spaces

U s ⊆ U as the domain of As/2, that is the set of u ∈ U such that
∑

k∈Z2/{0} |k|
2s|uk|

2 <∞.

2.1.2. The Navier Stokes equations. The Navier-Stokes equations describe Newton’s
laws of motion for an incompressible flow of fluid defined on T. Let the flow be initialized
with u ∈ U and consider the case where the mean flow is zero. We will denote the time and
space varying velocity field as v : T × [0,∞) → R

2, v(x, t) = (v1(x, t), v2(x, t))
′ and this is

given as follows:

∂tv − ν∆v + (v · ∇) v = f −∇p , v(x, 0) = u(x),

∇ · v = 0 ,

ˆ

T

vj(x, ·)dx = 0 , j = 1, 2 ,

where ν > 0 is the viscosity parameter, p : T× [0,∞) → R is the pressure function, f : T → R
2

an exogenous time-homogeneous forcing. We assume periodic boundary conditions:

vj(·, 0, t) = vj(·, 2π, t) , vj(0, ·, t) = vj(2π, ·, t) , j = 1, 2 .

Applying the projection P to v, we may write the equations in the form of an ordinary
differential equation (ODE) in U :

(2.1)
dv

dt
+ νAv +B(v, v) = P (f) , v (0) = u ,

where the symmetric bi-linear form is defined as:

B(v, ṽ) = 1
2P ((v · ∇) ṽ) + 1

2P ((ṽ · ∇) v) .

Intuitively, P projects an arbitrary forcing f into the space of incompressible functions U . See
[29, 15] for more details. Let {Ψ(·, t) : U → U}t≥0 denote the semigroup of solution operators
for the equation (2.1) through t time units. We also define the discrete-time semigroup

G
(n)
δ (·) = Ψ(·, nδ) corresponding to time instances t = nδ, of lag δ > 0 and n = 0, . . . , T , with

the conventions G
(0)
δ = I, G

(1)
δ = Gδ and G

(n)
δ = Gδ ◦G

(n−1)
δ .

In practice we will use a finite but high dimensional approximation for G
(n)
δ

(
u
)
, which

is obtained numerically using a mesh for u, v; we will present the details of the numerical
solution of (2.1) in Section 5.

2.2. A Bayesian Framework for the Initial Condition . We will model the data as noisy
measurements of the evolving velocity field v on a fixed grid of points, x1, . . . , xΥ, for Υ ≥ 1.
These are obtained at regular time intervals that are δ time units apart. So the observations
will be as follows:

yn,ς = v (xς , nδ) + γζn,ς , ζn,ς
iid
∼ N (0, 1) , 1 ≤ ς ≤ Υ , 1 ≤ n ≤ T ,
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where γ ≥ 0 is constant and v is initialized by the unknown ‘true’ initial vector field, u†. To

simplify the expressions, we will write y =
(
(yn,ς)

Υ
ς=1

)T
n=1

. Performing inference with this type
of data is referred to as Eulerian data assimilation. The likelihood of the data, conditionally
on the unknown initial condition u, can be written as:

(2.2) l(y;u) =
1

Z(y)

T∏

n=1

Υ∏

ς=1

exp
(
− 1

2γ2

(
yn,ς −G

(n)
δ

(
u
)
(xς)

)2)
.

where Z(y) a normalizing constant that does not depend on u.

We will also consider the following family of priors:

(2.3) µ0 = N (0, β2A−α),

with hyper-parameters α > 1, β > 0 affecting the roughness and magnitude of the initial
vector field. This is a convenient but still flexible enough choice of a prior; see [10, Sections
2.3 and 4.1] for an introduction to Gaussian distributions on Hilbert spaces. Indeed, when
considering the Fourier domain, we have the real function constraint for the complex conjugate
coefficients (uk = −u−k), so we split the domain by defining:

Z
2
↑ =

{
k = (k1, k2) ∈ Z

2 \ {0} : k1 + k2 > 0
}
∪
{
k = (k1, k2) ∈ Z

2 \ {0} : k1 + k2 = 0, k1 > 0
}
.

We will impose that uk = −u−k for k ∈ {Z2 \ {0}} \ Z
2
↑. Since the covariance operator is

determined via the Stokes operator A, we have the following equivalence when sampling from
the prior:

u ∼ µ0 ⇔ Re(uk), Im(uk)
iid
∼ N (0, 12β

2|k|−2α) , k ∈ Z
2
↑ .

That is, µ0 admits the the following Karhunen-Loéve expansion:

µ0 = Law
( ∑

k∈Z2\{0}

β√
2
|k|−α ξk ψk

)
;(2.4)

Re(ξk) , Im(ξk)
iid
∼ N (0, 1) , k ∈ Z

2
↑ ; ξk = −ξ−k , k ∈ {Z2 \ {0}} \ Z2

↑ .(2.5)

Thus a-priori, the Fourier coefficients uk with k ∈ Z
2
↑ are assumed independent normally

distributed, with a particular rate of decay for their variances as |k| increases.

Adopting a Bayesian inference perspective, we need to construct a posterior probability
measure µ on U :

(2.6)
dµ

dµ0
(u) =

1

Z(y)
l(y;u) ,

where Z(y) is the normalization constant. Due to the generality of the state space, some care

is needed here to make sure that under the chosen prior, the mappings G
(n)
δ possess enough

regularity (i.e. they are µ0-measurable) and hence the change of measure is well defined. We
refer the interested reader to an longer pre-print of this paper, [21], for more details.



8 N. Kantas, A. Beskos and A. Jasra

Algorithm 1 MCMC for High Dimensional Inverse Problems (see [8, 33] for more details).

• Run a µ-invariant Markov chain (u (m) ;m ≥ 0) as follows:
• Initialize u(0) ∼ µ0. For m ≥ 1:

1. Propose:
ũ = ρ u (m− 1) +

√
1− ρ2 Z , Z ∼ µ0 ,

2. Accept u (m) = ũ with probability:

(3.1) 1 ∧
l(y; ũ)

l(y;u (m− 1))

otherwise u (m) = u (m− 1).

3. Monte Carlo Methods for the Inverse Problem. In this section we present some
Monte Carlo algorithms that can be used for inverse problems such as the one involving
the Navier-Stokes dynamics formulated in Section 2. We will present first a well-established
MCMCmethod applied in this context and then outline a basic general-purpose SMC sampling
algorithm. We postpone the presentation of our proposed method for Section 4.

3.1. A MCMC Method on the Hilbert Space. MCMC is an iterative procedure for
sampling from µ, where one simulates a long run of an ergodic time-homogeneous Markov
chain (u (m) ;m ≥ 0) that is µ-invariant. After a few iterations (burn-in) the samples of this
chain can be treated as approximate samples from µ. There are many possible transition
kernels for implementing MCMC chains, but we will only focus on some algorithms that have
been carefully designed for the posteriors of interest in this paper and seem to be particularly
appropriate for Hilbert-space-valued measures arising as change of measure from Gaussian
laws. In Algorithm 1 we present such an algorithm, which has appeared earlier in [27] as
a regression tool for Gaussian processes and in [8, 33] in the context of high-dimensional
inference. ρ is the only tuning parameter taking values in (0, 1) and controls the step size of
proposal move. Note that here and throughout we will use the convention u(m) to denote the
m-th iteration of any MCMC transition kernel and the notation min {a, b} = a ∧ b.

There are some particular challenges in this application that make other more standard
MCMC algorithms (e.g. Gibbs, Random-Walk Metropolis) difficult to apply:

i) the posterior lacks a hierarchical modelling structure, so there are no conditional inde-
pendencies of the Fourier coefficients present to exploit. Therefore implementation of condi-
tional updates of updates of a fraction (or block) of Fourier coefficients would require calcula-
tions over all coefficients (or dimensions), making Gibbs-type schemes not useful in practice.

ii) the posterior is defined on an infinite-dimensional state space. In practice a high
dimensional approximation (mesh) will be used, but we still require the method to be valid
for an arbitrary mesh size and hence robust to mesh refinement.

iii) the information in the observations is not spread uniformly over the Fourier coefficients.
A-posteriori these can have very different scaling ranging from the very low frequencies to
the very high ones. At low frequencies one expects that the support of the posterior can
change drastically from the prior. All these different scales cannot be easily determined
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either analytically or approximately making it difficult for MCMC algorithms to adjust their
proposal’s step-sizes in the many different directions of the state space.

Considerations i) and ii) have prompted the development of Algorithm 1 and various
extensions, forming a family of global-update MCMC algorithms, which are well-defined on
the Hilbert space and robust upon mesh-refinement. In direct relevance to the purposes of
this paper, Algorithm 1 has been applied in the context of data assimilation and is often used
as the ‘gold standard’ benchmark to compare data assimilation algorithms as done in [23].
One interpretation why the method works in infinite dimensions is that Step 1 of Algorithm 1
provides a proposal transition kernel that preserves the Gaussian prior µ0, while the posterior
itself will be preserved using the accept/reject rule in Step 2. In contrast, standard Random-
Walk Metropolis proposals (of the type ũ = u(m − 1) + noise) would provide proposals of
a distribution which is singular with respect to the target µ, and will thus be assigned zero
acceptance probability. In practice, when a finite-dimensional approximation of u is used, both
the standard MCMC methods and Algorithm 1 will have non-zero acceptance probability, but
in the limit only Algorithm 1 is valid. The mixing properties of the standard MCMC transition
kernels will also diminish quickly to zero upon mesh-refinement (in addition to the acceptance
probability), whereas this is not true for Algorithm 1; see [17] for more details.

As a limitation, it has been noted often in practice that a value of ρ very close to 1 is needed
(e.g. 0.9998 will be used later on) to achieve a reasonable average acceptance probability (say
0.2 − 0.3). This is because the algorithm is optimally tuned to the prior Gaussian measure
µ0, whereas the posterior resembles closely µ0 only at the Fourier coefficients of very high
frequencies. This leads to small exploration steps in the proposal and relatively slow mixing
of the MCMC chain, which means that one needs to run the chain for an excessive number
of iterations (of the order 106) to get a set of samples with reasonable quality. In addition,
each iteration requires running a PDE solver until time T to compute l(y;u) in Step 2, so the
approach is very computationally expensive. To sum up, although Algorithm 1 has provided
satisfying results in many applications ([8]), there is still a great need for improving the
efficiency of the method. One possible approach in this direction is described in [22].

3.2. A generic SMC Approach. We proceed by a short presentation of SMC and refer the
reader to [6, 12] for a more thorough treatment. Consider a sequence of probability measures
(µn)

T
n=0 defined on U such that µT = µ and µ0 is a prior as in (2.3). A popular choice is to

define each target µn in the sequence as follows:

(3.2)
dµn
dµ0

(u) =
1

Zn

n∏

p=1

lp(yp;u) , 0 ≤ n ≤ T ,

where each lp is the likelihood of the block of observations at the p-th epoch:

lp(yp;u) :=
1

Zp(yp)

Υ∏

ς=1

exp

(
− 1

2γ2

(
yp,ς −G

(p)
δ

(
u

)
(xς)

)2
)
.

Note that as p increases so does the computational effort required to compute lp due to using a

numerical PDE solution to evaluate G
(p)
δ (u). This forms a bridging sequence of distributions
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between the prior and the posterior, which also admits a Karhunen-Loeve expansion:

(3.3) µn = Law
( ∑

k∈Z2\{0}

β√
2
|k|−α ξk,n ψk

)
, k ∈ Z

2
↑ ; ξk,n = −ξ̄−k,n , k ∈ {Z2 \ {0}} \ Z2

↑ ,

where compared to (2.4)-(2.5), {ξk,n}k∈Z2
↑
are now correlated random variables from some

unknown distribution. Note the particular choice of (µn)
T
n=0 in (3.2) is a natural choice for this

problem. In fact, there are other alternatives involving artificial sequences and introduction
of auxiliary variables; see [12] for some more examples. The SMC algorithm will target
sequentially each intermediate µn, which will be approximated by a weighted collection of
N >> 1 samples often referred to as particles. This is achieved by a sequence of selection and
mutation steps (see [11, Chapter 5]):

Selection step: Assume at the n-th iteration we have N equally weighted samples of
µn−1, denoted {ujn−1}

N
j=1. These will be used as importance proposals for µn and are assigned

the incremental (normalized) weights:

W j
n ∝

dµn
dµn−1

(ujn−1) = ln(yn;u
j
n−1),

N∑

j=1

W j
n = 1, 1 ≤ j ≤ N .

The weighting step is succeeded by a resampling step so as to discard samples with low weights.
The particles are resampled probabilistically with replacement according to their weights W j

n.

Mutation step: Carrying out only selection steps will eventually lead to degeneracy
in the diversity of the particle population. During each successive resampling step, only few
parent particles will survive and copy themselves. Thus, one needs to reinsert the lost diversity
in the particle population while maintaining the statistical properties of µn. This is achieved
by evolve the particles independently by a small number of transitions of a MCMC kernel Kn

such that µnKn = µn.

In Algorithm 2 we present the general purpose SMC algorithm that has appeared in [6].
For the resampling step, we have used R to denote the distribution of the indices of the parent
particles. A simple choice for R is to use multinomial distribution, which we will follow in this
paper, but other better performing choices are possible; see [13, 11] for more details. Recall
also that ujn denotes the j-th particle approximating µn and in this paper this will be thought
as a concatenated vector of the real and imaginary parts of the Fourier coefficients in Z

2
↑ (or

its finite truncation). Upon completion of Step 2 one obtains particle approximations for µn:

µNn =

N∑

j=1

W j
nδuj

n
,

where δu denotes the Dirac point measure at u ∈ U . Many convergence results have been
established for µNn ; we refer the reader to [11] for a book length review. Note that most steps in
the algorithm allow for a trivial parallel implementation and hence very fast execution times;
see [26] for more details. In addition, the resampling step is typically only performed when
an appropriate statistic (commonly the effective sample size (ESS)) will indicate its necessity;
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Algorithm 2 Basic Sequential Monte Carlo

• At n = 0, for j = 1, . . . , N sample uj0 ∼ µ0.
• Repeat for n = 1, . . . , T :

1. Selection:
(a) Importance Sampling: weight particles W j

n ∝ W j
n−1

dµn

dµn−1
(ujn−1) ,

∑N
j=1W

j
n = 1 .

(b) Resample (if required):
i. Sample offsprings

(
p1n, . . . , p

N
n

)
∼ R(W 1

n , . . . ,W
N
n ).

ii. Set ŭjn = up
j
n

n−1 and W j
n = 1

N , 1 ≤ j ≤ N .

2. µn-invariant mutation: update ujn ∼ Kn(ŭ
j
n, ·), 1 ≤ j ≤ N , where µnKn = µn.

e.g. when ESS will drop below a prescribed threshold:

ESSn = (

N∑

j=1

(
W j

n

)2
)−1 < Nthresh.

When not resampling, particles keep their different weights W j
n (and are not all set to 1/N),

which are then multiplied with the next incremental weights. In [6] the author uses the particle
population to design Kn either as a standard random walk or as an independent Metropolis-
Hastings sampler based on particle approximation µNn . We will proceed by extending these
ideas for our problem.

4. Extending SMC for High Dimensional Inverse Problems. One advantage of SMC is
its inherent flexibility due to all different design elements such as the sequence (µn)

T
n=1 or

the kernels Kn. In high dimensional applications such as data assimilation a user needs to
design these carefully to obtain good performance. In addition, monitoring the performance
also includes some challenges itself. We will deal with these issues in this section.

Firstly, recall the equivalence between representing the initial vector field u by its Fourier
coefficients and vice versa:

u↔ {uk}k∈Z2
↑
; uk = ⟨u, ψk⟩, ūk = −uk.

In this section u will be treated again as the concatenated vector of the real and imaginary
part of its Fourier coefficients. In theory, this vector is infinite-dimensional, but in practice it
will be finite (but high) dimensional due to the truncation in the Fourier space used in the
numerical PDE solver. We will sometimes refer to the size of the implied mesh, du, informally
as the dimensionality of u.

SMC as in Algorithm 2 needs to be adjusted so that it is effective especially when dealing
with high dimensional problems. One needs to ensure that both the importance sampling
procedure is well behaved and mixing properties of the MCMC kernels are good enough to
re-introduce every time the lost diversity due to resampling.

First we need to ensure that the importance sampling weights (in Step 1 of Algorithm
2) are ‘stable’ in the sense that they exhibit low variance ( and hence are not favoring one
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or relatively few particles). For high dimensional inverse problems it is expected that this is
not the case when the sequence (µn)

T
n=1 is defined as in (3.2). We will modify the sequence

of target distributions (µn)
T
n=1 so that it evolves from the prior µ0 to the posterior µ more

smoothly. One way to achieve this is by bridging the two successive targets µn−1 and µn via
intermediate tempering steps as in [28]. So one can introduce a (possibly random) number,
say qn, of artificial intermediate targets between µn−1 and µn:

(4.1) µn,r = µn−1

( dµn

dµn−1

)ϕn,r ,

where

(4.2) 0 = ϕn,0 < ϕn,1 < · · · < ϕn,qn = 1 ,

are a sequence of user-specified temperatures. The accuracy of SMC when using such tem-
pering schemes have been the topic of study in [3, 2, 16, 32].

For the SMC sequence implied jointly by (3.2) and (4.1), in Section 4.1 we will present an
adaptive implementation for choosing the next temperature on-the-fly ([19]) and in Section
4.2 propose improved MCMC mutation kernels that use particle approximations for each µn,r.

4.1. Stabilizing the Weights with Adaptive Tempering. A particularly useful feature of
using tempering within SMC is that one does not need to choose for every bridging sequence
qn and ϕn,0, . . . , ϕn,qn before running the algorithm. In fact these can be decided on-the-fly
using the particle population as it was originally proposed in [19]. Suppose at the moment
the SMC algorithm is about to proceed to iteration n, r (the r-th tempering step between
µn−1 and µn). The MCMC mutation step for temperature ϕr−1,n has just completed and let

{ujn,r−1}
N
j=1 be equally weighted particles1 approximating µn,r−1 as defined in (4.1). The next

step is to use {ujn,r−1}
N
j=1 as importance proposals for µn,r. The incremental weights are equal

to W j
n,r ∝

dµn,r

dµn,r−1
(ujn,r−1), so if ϕn,r has been specified, they can be also written as:

(4.3) W j
n,r =

ln(yn;u
j
n,r−1)

ϕn,r−ϕn,r−1

∑N
s=1 ln(yn;u

s
n,r−1)

ϕn,r−ϕn,r−1
.

Now from the expression in (4.3) it follows that one can choose ϕn,r by imposing a mini-
mum quality for the particle population after weighting, e.g. a minimum value for the ESS.
Therefore we can use the particles {ujn,r−1}

N
j=1 to specify ϕn,r as the solution of the equation:

(4.4) ESSn,r(ϕn,r) =
( N∑

j=1

(
W j

n,r

)2 )−1
≈ Nthresh .

If ESSn,r (1) > Nthresh one should set ϕn,r = 1 and proceed to the next tempering sequence
leading to µn+1. Solving the above equation for ϕn,r can be easily implemented using an

1Here u
j
n,r−1 denotes the concatenated real vector of real and imaginary Fourier coefficients in Z

2
↑ for the

j-th particle targeting µn,r−1. Often in the discussion we interpret µn,r as a probability measure on a similar
real vector un,r.
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iterative bisection on (ϕn,r−1, 1] for the scalar function ESSn,r(ϕ). There is now only one
user-specified parameter to be tuned, namely Nthresh. This adaptive tempering approach of
[19] has been also used successfully in [31, 37, 5]. In [37] one may also find an alternative
choice for the quality criterion instead of the ESS.

4.2. Improving the Mixing of MCMC Steps with Adaptive Scaling. We proceed by
considering the design of the MCMC mutation steps to be used between tempering steps. We
will design a random-walk-type method, tuned to the structure of the target distributions, by
combining two ingredients: (a) we will use current information from the particles to adapt the
proposal on-the-fly to the target distribution and (b) we will distinguish between high and
low frequencies for the MCMC formulation. The latter is a consideration specific to inverse
problems related to dissipative PDEs, where the data often contains more information about
the lower frequencies. We will look for a moment at the MCMC mutation kernel of Algorithm
2. Recall the correspondence between an element in U and its Fourier coefficients. To remove
the effect of different scaling for each Fourier coefficient (due to the different variances in
prior) we will consider the bijection

u↔ {ξk}k∈Z2
↑

as implied by (2.4)-(2.5) for µ0 or (3.3) for µn. As a result a-priori, Re(ξk), Im(ξk) for all
k ∈ Z

2
↑ are i.i.d. samples from N (0, 1). The proposal in Step 1 of Algorithm 1 written in

terms of ξk is:

(4.5) ξ̃k = ρ ξk +
√

1− ρ2 Zk , Re(Zk), Im(Zk)
iid
∼ N (0, 1) , k ∈ Z

2
↑ .

This would be an excellent proposal when the target is very similar to the prior µ0. When
such a proposal is used within MCMC transition kernels for Step 2 of Algorithm 2, then
the mixing of the resulting mutation kernels will rapidly deteriorate as we move along the
sequence (µn)

T
n=1. The assimilated information from the observations will change the posterior

densities for each ξk relative to the prior. In particular, often the data will contain a lot of
information for the Fourier coefficients located at low frequencies, thereby shrinking their
posterior variance. Thus, at these low frequencies the update in (4.5) will require a choice of ρ
very close to 1 for the proposal ξ̃k to have a non-negligible chance to remain within the domain
of the posterior and hence deliver non-vanishing acceptance probabilities. At the same time
such small steps will penalize the mixing of the rest of the Fourier coefficients with relatively
large posterior variances. This is a well known issue often seen in practice ([22]) and somehow
the scaling of the random walk exploration for each frequency needs to be adjusted to the
shape of the posterior it is targeting.

We will adapt the proposal to the different posterior scalings in the coefficients using
the particles. Assume that the algorithm is currently at iteration n, r, where the importance
sampling step with proposals from µn−1,r in (4.1) has been completed and we have the weighted

particle set {ujn,r−1,W
j
n,r}Nj=1 approximating µn,r. We will construct the MCMC mutation

kernel Kn,r (so that µn,rKn,r = µn,r) as follows. With a slight abuse of notation, we denote by

ujk,n,r−1 the bivariate real vector comprised of the real and imaginary part of the k-th Fourier

coefficient of ujn,r−1, where 1 ≤ j ≤ N and k ∈ Z
2
↑. We estimate the marginal mean and
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covariance of the k−th Fourier coefficient under the current target in the sequence µn,r as
follows:

(4.6) mN
k,n,r =

N∑

j=1

W j
k,n,ru

j
k,n,r−1 , ΣN

k,n,r =

N∑

j=1

W j
k,n,r(u

j
k,n,r−1−mN

k,n,r)(u
j
k,n,r−1−mN

k,n,r)
′ .

The estimated moments mN
k,n,r, Σ

N
k,n,r (and the corresponding Gaussian approximation of the

posterior) will be used to provide the scaling of the step size of the random walk for each
k. Let {ŭjn,r}Nj=1 be the collection of particles obtained after resampling {ujn,r−1}

N
j=1 with

replacement according to the weights W j
n,r. In the MCMC mutation step we can use the

following proposal instead of (4.5):

(4.7) ũk,n,r = mN
k,n,r + ρ (ŭjk,n,r −mN

k,n,r) +
√

1− ρ2N (0,ΣN
k,n,r) .

Notice that in (4.7) we propose to move the real and imaginary parts of the Fourier coefficients
separately for each frequency k ∈ Z

2
↑. This requires computing only the sample mean and

covariances of the k-th marginal of µn,r. Alternatively, one could try to jointly estimate
the high-dimensional covariance matrices ΣN

n,r (for the joint vector un,r involving every k).
Although this can perform better, some regularization might be required and we advise some
caution when the number of particles is moderate because of the Monte Carlo variance in
estimating high dimensional covariances. A pragmatic option in this case is to use only the
diagonal elements of the joint covariance estimator or possibly include some off-diagonal terms
where (partial) correlations are high.

The second ingredient of the proposed MCMC mutation kernel involves distinguishing
between low and high frequencies. In particular, we will use the proposal of (4.7) for a window
of the Fourier coefficients with relatively low frequencies and the standard proposal of (4.5)
that uses the prior for the higher frequencies. This modification ensures that the MCMC
kernel will be robust to mesh refinement and valid for the infinite dimensional problems
considered here. In addition, we have found empirically that this hybrid approach gives a
better balance between adaptation and variability caused by Monte Carlo error in estimating
empirical covariances. We will use the proposal of (4.7) for coefficients with frequencies in the
rectangular window defined as:

(4.8) K =
{
k ∈ Z

2 \ {0} : k1 ∨ k2 ≤ K
}
,

where k1 ∨ k2 = max{k1, k2}. It would certainly be possible to use an alternative definition
for K; see [21] for more ideas and extensions.

The proposed MCMC kernel is presented in Algorithm 3. For simplicity, in the notation
we omit subscripts n, r when writing u(m), u for un,r(m), un,r. We also use subscripts L, H
to refer to collection of concatenated vectors of real/imaginary parts of Fourier coefficients in
K∩Z2

↑ and Kc∩Z2
↑ respectively and I is a 2×2 unit matrix. Notice, that even with adaptation,

a few MCMC iterations (denoted by M ≥ 1) might be required to introduce enough diversity
to the particle population (e.g. 10− 30).
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Algorithm 3 A µn,r-invariant MCMC Mutation kernel Kn,r(u, ·)

1. Initialize un,r(0) = u (when in Step 3(f) of Algorithm 4 set un,r(0) = ŭjn,r). Let mN
k,n,r,

ΣN
k,n,r be known approximations for all K ∩ Z

2

↑. Choose ρL, ρH ∈ (0, 1).
2. For m = 0, . . . ,M − 1:

(a) For k ∈ K ∩ Z
2
↑, propose the update:

ũk = mN
k,n,r + ρL(uk(m)−mN

k,n,r) +
√

1− ρ2L N (0,ΣN
k,n,r) ;

for k ∈ Kc ∩ Z
2
↑ propose the update:

ũk = ρH uk(m) +
√

1− ρ2H N (0, 12β
2|k|−2α I) .

(b) Compute forward dynamics G
(n)
δ (ũ) and likelihood functions

l1(y1; ũ), . . . , ln(yn; ũ).
(c) With probability:

(4.9) 1 ∧
ln,r(ũ)

ln,r(u(m))

µ0(ũL)

µ0(uL(m))

Q(ũL, uL(m))

Q(uL(m), ũL)

accept the proposal and set u(m + 1) = ũ ; otherwise set u(m + 1) = u(m). We
use:

ln,r(u) = ln(yn;u)
ϕn,r

n−1∏

s=1

ls(ys;u) ,(4.10)

µ0(uL) = exp
{
−

∑

k∈K∩Z2
↑

β−2|k|2α |uk|
2
}
,(4.11)

Q(uL, ũL) = exp
{

− 1
2(1−ρ2

L
)

∑

k∈K∩Z2
↑

(
ũk −mN

k,n,r − ρL(uk −mN
k,n,r)

)′
(4.12)

×
(
ΣN
k,n,r

)−1
(
ũk −mN

k,n,r − ρL(uk −mN
k,n,r)

)}
.

3. Output u(M) as a sample from Kn,r(u, ·).

4.3. The Complete Algorithm. The complete SMC algorithm is presented in Algorithm
4. After the completion of Step 4 of Algorithm 4, the particles can be used to approximate the
intermediate posteriors µn; this is emphasized in Step 4 by denoting ujn,r = ujn when ϕn,r = 1.
In addition, when ϕn,r = 1 the resampling steps can be omitted whenever ESS > Nthresh, as
mentioned in Section 3.2.

Although standard SMC methods have a well-developed theoretical framework for their
justification, this literature is much less developed in the presence of the critical adaptive
steps considered in Algorithm 4. When both adaptive scaling of MCMC steps and adaptive
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Algorithm 4 A SMC algorithm for High-Dimensional Inverse Problems

• At n = 0, for j = 1, . . . N sample uj0,0 ∼ µ0.
• For n = 0, . . . , T

1. For j = 1, . . . N compute forward dynamics Gδ ◦G
(n−1)
δ (ujn,0) and ln(yn, u

j
n,0).

2. Set r = 0 and ϕn,0 = 0.
3. While ϕn,r < 1

(a) Increase r by 1.
(b) (Compute temperature)

IF minϕ∈(ϕn,r−1,1] ESSn,r(ϕ) > Nthresh, set ϕn,r = 1,
ELSE compute ϕn,r such that

ESSn,r(ϕn,r) ≈ Nthresh

using a bisection on (ϕn,r−1, 1].
(c) (Compute weight) for j = 1, . . . N :

W j
n,r =

ln(yn;u
j
n,r−1)

ϕn,r−ϕn,r−1

∑N
s=1 ln(yn;u

s
n,r−1)

ϕn,r−ϕn,r−1
.

(d) (Moment estimates) compute mN
k,n,r and ΣN

k,n,r for k ∈ K ∩ Z
2
↑ as in (4.6).

(e) (Resample) let
(
p1n, . . . , p

N
n

)
∼ R(W 1

n , . . . ,W
N
n ). For j = 1, . . . , N set ŭjn,r =

up
j
n

n,r−1 and W j
n,r =

1
N .

(f) (µn,r-invariant mutation) for j = 1, . . . N , sample ujn,r ∼ Kn,r(ŭ
j
n,r, ·) (see

Algorithm 3).

4. Set ujn+1,0 = ujn,r
(
:= ujn

)
.

tempering are considered together, we refer the reader to [4] for asymptotic convergence results
(in N). Relevant non-asymptotic results can be found in [16], where the authors consider only
adaptive tempering and assume that ideal MCMC kernels with sufficient mixing are available.

As regards the computational cost, for each MCMC mutation at iteration n, r, we need to
run the PDE numerical solver M times from t = 0 up to the current time t = nδ. Therefore,
the total computational cost is proportional to κMNT 2, where κ depends on the random
number of tempering steps. In fact, this cost is significantly reduced when more tempering
steps are required for small values of n. Finally, the memory requirements are O(N) as there
is no need to store past particles at each step of the algorithm.

4.4. Monitoring the performance: towards an automatic design. Although SMC is a
generic approach suitable for a wide class of problems, this flexibility also means that the user
has to select many design elements. We proceed by outlining different measures of performance
for some of the remaining tuning parameters.

For ρH , ρL, we recommend that they should be tuned so that at time T the acceptance
ratio in (4.9) averaged over the particles has a reasonable value, e.g. 0.1 − 0.3. Having said
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that, the average value of the acceptance ratio should be recorded and monitored for the
complete run of the SMC. The same applies for the ESS, which will also reveal how much
tempering is used during the SMC run.

It is critical to choose M so as to provide sufficient diversity in the particle population. A
question often raised when using SMC samplers is whether a given value of M is adequate.
For each frequency k, we propose the following measure for monitoring the movement of the
particles in the population during the MCMC steps at iteration n, r:

(4.13) Jk,n,r =

∑N
j=1

∣∣∣ujk,n,r(M)− ujk,n,r(0)
∣∣∣
2

2
∑N

j=1

∣∣∣ujk,n,r(0)− µNk,n,r

∣∣∣
2 .

We remark that the statistic Jk,n,r has not been used before for SMC to the best of our
knowledge. Of course, monitoring every value of k is not necessary, and one could in practice
choose a small number of representative frequencies from their complete set. In addition, as
N increases, Jk,n,r will converge to 1 − corr(uk,n,r(M), uk,n,r(0)). Hence, statistical intuition
can explain what requirements we should pose for Jk,n,r, e.g. that it should be at least above
0.01 − 0.05. In our context the MCMC mutation steps are applied to jitter the population
at each of the many steps of the SMC sampler. The role of the MCMC steps here is very
different than in a full MCMC sampler, where the number of MCMC steps have to be large
enough for ergodic theory to apply. However, popular monitoring statistics from MCMC such
as the autocorrelation for some fixed lag could be related to Jk,n,r or potentially used instead
of Jk,n,r, but these need to be averaged over the particle population.

It is also possible to empirically validate whether the chosen value for K, the half-width
of K, was appropriate. A revealing plot here is the two-dimensional heat map of the ratio of
the variance of the posterior to the variance of the prior against k. K should include as much
as possible the region where this ratio is significantly less than 1, e.g. say less than 0.8.

A particularly interesting point is that summaries like the average acceptance ratio, the
statistic Jk,n,r, or the ratio of the posterior to prior variance can be also be potentially used
within decision rules to determine ρL, ρH , M and K adaptively on-the-fly. This can be imple-
mented similarly to how the ESS is used for adaptively choosing the tempering temperatures.
An approach for automating the tuning of ρL, ρH can be found in [19] and a more detailed
discussion for the remaining parameters in [21].

5. Numerical Examples. We will use numerical solutions for the Navier-Stokes PDE in
(2.1) given an initial condition. We employ a method based on a spectral Galerkin approxi-
mation of the velocity field in a divergence-free Fourier basis ([18]). The convolutions arising
from products in the nonlinear term are computed via FFTs on a 642 grid with additional
anti-aliasing using double-sized zero padding ([35]). In addition, exponential time differencing
is used as in [9], whereby an analytical integration is used for the linear part of the PDE,
νAv, together with an explicit numerical Euler integration scheme for the non-linear part,
P (f)−B(v, v).

In this section we will present two numerical examples using two different synthetic data-
sets obtained from some corresponding true initial vector fields, u†. The first example will use
Data-set A consisting of few blocks of observations obtained at close time intervals (small δ),
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but each block is obtained from a dense observation grid (high Υ). For this example we will
compare the performance of our method with benchmark results from the MCMC approach
described in Algorithm 1. For the second example we will use Data-set B, a longer data-set
with blocks of observations spaced apart by longer time periods δ, each originating from a
sparser observation grid (low Υ). In both cases the total number of observations of the vector
field will be the same and ΥT = 80. We summarize these details in Table 5.1.

Data-set A δ = 0.02 , Υ = 16 , T = 5 u† ∼ N (0, β2A−α) , β2 = 5, α = 2.2

Data-set B δ = 0.2 , Υ = 4 , T = 20 u† ∼ N (0, β2A−α) , β2 = 1, α = 2
Table 5.1

The specification of the two datasets considered in the numerical examples. Data-set A corresponds to a
scenario of a short-time data-set with a dense observation grid and Data-set B to the scenario of a long data-set
with a sparse observation grid. The true initial condition u† was sampled from the specified prior.

The two data-sets are synthesized using the numerical PDE solver described above. In
both cases we have set ν = 0.02 , f(x) = ∇⊥ cos

(
(5, 5)

′
· x

)
, γ2 = 0.2 , where we remind the

reader that ν is the viscosity, f the external forcing and γ2 the observation noise variance.
Adjoint PDE solvers will be used in the sense that the same numerical solver is used for
synthesizing the data and in the Monte Carlo inference algorithms.

In Table 5.2 we summarize the computational cost of the algorithms used in our exper-
iments. The table presents the number of times a PDE solution is required and the total
execution time. We do not provide an MCMC benchmark for Data-set B as the more expen-
sive PDE solver needed in this case would result in an enormous execution time for Algorithm
1. For SMC, we will present results from an implementation of Algorithm 4 with trivial paral-
lelization, whereby the resampling step is performed at a single computing node that collects
and distributes all particles. For Data-set A, in Table 5.2 we also show the computational
cost from a typical run of SMC with N = 500 but without using parallelization. Although in
the remainder of this section we will not present the actual results from this run, we report
that the performance was comparable to MCMC as well as SMC with higher N obtained via
the parallel implementation. In a way this demonstrates the efficiency of the SMC method
compared to MCMC, but we have to emphasize that for more realistic applications paral-
lelization is critical for effective execution times. We proceed at looking with more detail at
each example.

5.1. Data-set A: Short-time Data-set with a Dense Observation Grid. Figure 5.1 plots
the posterior mean of the vorticity and velocity fields for the initial condition as estimated
by our adaptive SMC algorithm (left) and the MCMC one (right). In the same plot the true
field u† and its vorticity is displayed in the middle. The results from SMC and MCMC are
very similar and both methods manage to capture the main features of the true field u†. The
smoothing effect observed for the posterior means by both SMC and MCMC appears because
the observations cannot provide substantial information about the high frequency Fourier
coefficients.

Note that the objective here is to approximate the full posterior and not just the mean.
Figure 5.2 shows the estimated posterior density functions (PDFs) for a few (re-scaled) Fourier
coefficients, ξk,T (as defined in (3.3)), of different frequencies k obtained using both SMC and
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Algorithmic number of calls execution time
Parameters of PDE solver

MCMC Dataset A ρ = 0.9998 0.9× 106 9 days

SMC Dataset A N = 500 , Nthresh = N
3 , M = 20

7.266× 105 3 days
no parallelization ρL = 0.99 , ρH = 0.991 , K = 7

SMC Dataset A N = 1, 020 , Nthresh = N
3 , M = 20

1.403× 106 7.4 hours
with parallelization ρL = 0.99 , ρH = 0.991 , K = 7

SMC Dataset B N = 1, 020 , Nthresh = N
3 ,M = 20

1.447× 106 3.5 days
with parallelization ρL = 0.99 , ρH = 0.991 , K = 7

Table 5.2

We present the number of times a numerical PDE solution of total length δ is required by each algorithm.
This number is divided by T . The total execution time is also shown for each case. For the parallel implemen-
tation of Algorithm 4 we used trivial parallelization (except for the resampling step). The code was written in
Matlab(R) and parallel implementations of SMC run as a parallel MPI job with 60 workers on the computing
cluster of CSML-UCL (SunGrid(R) engine). All other simulations were performed in Matlab(R) on the same
computer running Linux with an Intel(R) Xeon(R) CPU E5-1660 at 3.30GHz (six core) and 16 GB RAM.

Figure 5.1. Data-set A. Top panel: left, posterior mean of initial vorticity from SMC; center, true initial
vorticity; right, posterior mean of initial vorticity from MCMC. Bottom panel: corresponding graphs for the
velocity fields with same order from left to right. The crosses indicate the positions x1, . . . , xΥ where the vector
field is observed.
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MCMC. Recall the scaling in ξk,0 makes all prior densities equal to standard normals. In
Figure 5.2 we plot the prior density (dotted), the posterior densities from SMC (solid) and

MCMC (dashed) together with the true value of ξ†k,T used for generating the data (vertical
line).

We proceed by presenting different measures of performance for MCMC and SMC. In
Figure 5.3 we plot the autocorrelations of the MCMC trajectory for different Fourier coef-
ficients. The mixing of the MCMC chain is quite slow, hence a large number of iterations
was required for the MCMC approach to deliver reliable results. To monitor the performance
of the SMC algorithm, Figure 5.4 includes plots of the ESS, the average acceptance ratio
and the indicator Jk,n,r against each SMC iteration 2 index n, r. Compared to the size of
the data-set (ΥT = 80) the total number of extra tempering steps required here was about
50. The majority of tempering steps was performed early on when assimilating the first few
observations. At later stages gradually less tempering was required with SMC being able to
assimilate 2 -3 data points without resampling during the final stages. This is beneficial in
terms of efficiency too, as this extra computational effort in the earlier stages of the adaptive
algorithm requires much shorter numerical solutions of the PDE.

In the bottom left plot in Figure 5.4 we observe how the average, maximum and minimum
(over k) of Jk,n,r changes with n, r separately for when k is within or outside the window of
frequencies K. For some indicative values of k we also show Jk,n,r in the lower right plot of
Figure 5.4. Jk,n,r does not seem to vary a lot with |k|. It is certainly reassuring that all the
MCMC steps seem to deliver considerable amount of diversity to all Fourier coefficients. Also,
the amount of diversity appears to be fairly evenly spread over all Fourier coefficients, even if
different MCMC proposals are used within and outside the window K. Although supporting
plots are not shown here, Jk,n,r seemed to grow linearly with M for every k and each n, r.

5.2. Dataset B: Long-time Data-set with a Sparse Observation Grid. We will now
present the results of the SMC method of Algorithm 4 when applied to Data-set B. This
scenario is more challenging than the one with Data-set A, as we allow the Navier-Stokes
dynamics to evolve for a longer period of time. We will follow a similar presentation as in
the previous example. Figure 5.5 plots the posterior mean of the initial vorticity and velocity
field. This plot can be used to compare the SMC estimates method versus the true values
corresponding to u†. Although here we do not have a benchmark available like before, the
smoothing effect in the estimates relative to the truth does not seem surprising based on the
intuition gained from the previous example.

Figure 5.6 displays the approximate posterior densities of ξk,n for a number of frequencies
k. The difference compared to Figure 5.2 for the previous example is that now we can see how
µn changes for n = 0 (dotted), 0.5T (dash-dotted), 0.75T (dashed), T (solid). As expected,
each new block of observations contributes to shaping a more informative posterior. To
monitor the performance of SMC, in Figure 5.7 we plot the ESS, average acceptance ratio
and Jk,n,r all against n, r as we did for the previous example. The algorithm uses almost the
same number of tempering steps in total compared to the previous example and again most
are needed in earlier epochs n. In addition, the acceptance ratio and Jk,n,r stop decreasing

2By SMC iteration index n, r we mean actually iteration r +
∑n−1

p=0 qp , i.e. the number of times Steps 1-4
of Algorithm 4 have completed. Note qp is as in (4.2) and is a random variable determined by the algorithm.
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Figure 5.2. Data-set A. Estimated PDFs: Blue lines are the estimated posterior densities for ξk,T ; the solid
lines are for SMC, the dashed ones for MCMC and the dotted (black) lines correspond to the prior densities.
The left panel is for the real parts and right panel for the imaginary parts. The different rows correspond to
each of the frequencies k = (0, 1), (1, 1), (2, 1), (4, 4), (9, 9) from top to bottom. The red vertical lines designate
the true values ξ

†
k,T .
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Figure 5.3. Data-set A: monitoring MCMC performance. Autocorrelation plots from the MCMC trajectory
of ξk,T , for a number of different frequencies; left graph corresponds to the real parts, and the right one to the
imaginary ones.

after some iteration. We interpret this as a sign that µn stops changing fast with n and that
the particles form good approximations of the targeted sequence.

Finally, Figure 5.8 shows the heat maps against k of the estimated posterior means of ξk,T
and the ratio of their marginal posterior standard deviations over their prior values. Most
information gain from the observations appear in the posterior at the low frequencies and
choice of K = 7 seems to be justified. Finally, for each of the presented examples one can find
more figures displayed in [21].

6. Conclusion. This paper aims to make a significant contribution towards demonstrating
that SMC can be useful for high-dimensional inverse problems. The added efficiency of our
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Figure 5.4. Data-set A: monitoring SMC performance with N = 1020. In all plots the horizontal axis is
index of SMC iteration n, r. Top left: ESS oscillating between Nthresh (when φn,r < 1) and higher values (when
φn,qn = 1). Top right: thick-solid (blue) is average acceptance ratio (w.r.t the particles), dot-solid (magenta)
is maxk Jk,n,r, solid (magenta) is the average of Jk,n,r (w.r.t k), dotted (magenta) is mink Jk,n,r. Bottom left:
We plot again maximum, minimum and average of Jk,n,r w.r.t k separately for k ∈ K ∩ Z

2
↑ (dash-dot, blue)

and k ∈ K
c
∩ Z

2
↑ (dashed, magenta). Bottom right: Jk,n,r for k = (0,−1), (−7, 7), (9, 9).

method compared to plain MCMC can be attributed to being able to employ a variety of
adaptation steps that take advantage of the evolving particle population, hence tuning the
algorithm effectively to the structure of the target distributions in the SMC sequence. SMC
algorithms are also appealing to practitioners given the inherent ability to parallelize many
steps in the algorithm thus drastically reducing execution times. As regards to understanding
the effect of each block of observations, another useful aspect of the method is that the SMC
sequence allows for monitoring the evolution of posterior distributions of interest as more
observations arrive. In contrast, MCMC methods would require re-running the algorithm
from scratch. In terms of the accuracy of the estimates we believe that SMC can be on a par
with expensive MCMC methods, which is illustrated clearly in the example with Data-set A.
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