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Sequential Monte Carlo Methods for Multiple Target
Tracking and Data Fusion

Carine Hue, Jean-Pierre Le Cadre, Member, IEEE, and Patrick Pérez

Abstract—The classical particle filter deals with the estimation
of one state process conditioned on a realization of one observation
process. We extend it here to the estimation of multiple state pro-
cesses given realizations of several kinds of observation processes.
The new algorithm is used to track with success multiple targets in
a bearings-only context, whereas a JPDAF diverges. Making use
of the ability of the particle filter to mix different types of observa-
tions, we then investigate how to join passive and active measure-
ments for improved tracking.

Index Terms—Bayesian estimation, bearings-only tracking,
Gibbs sampler, multiple receivers, multiple targets tracking,
particle filter.

I. INTRODUCTION

M ULTITARGET tracking (MTT) deals with the state esti-
mation of an unknown number of moving targets. Avail-

able measurements may both arise from the targets, if they are
detected, and from clutter. Clutter is generally considered to be
a model describing false alarms. Its (spatio–temporal) statistical
properties are quite different from those of the target, which
makes the extraction of target tracks from clutter possible. To
perform multitarget tracking, the observer has at his disposal a
huge amount of data, possibly collected on multiple receivers.
Elementary measurements are receiver outputs, e.g., bearings,
ranges, time-delays, Dopplers, etc.

The main difficulty, however, comes from the assignment of
a given measurement to a target model. These assignments are
generally unknown, as are the true target models. This is a neat
departure from classical estimation problems. Thus, two distinct
problems have to be solvedjointly: the data association and the
estimation.

As long as the association is considered in a deterministic
way, the possible associations must be exhaustively enumerated.
This leads to an NP-hard problem because the number of pos-
sible associations increases exponentially with time, as in the
multiple hypothesis tracker (MHT) algorithm [28]. In the joint
probabilistic data association filter (JPDAF) [11], the associa-
tion variables are considered to be stochastic variables, and one
needs only to evaluate the association probabilities at each time
step. However, the dependence assumption on the associations
implies the exhaustive enumeration of all possible associations
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at the current time step. When the association variables are in-
stead supposed to be statistically independent like in the prob-
abilistic MHT (PMHT [12], [32]), the complexity is reduced.
Unfortunately, the above algorithms do not cope with nonlinear
models and non-Gaussian noises.

Under such assumptions (stochastic state equation and non-
linear state or measurement equation non-Gaussian noises), par-
ticle filters are particularly appropriate. They mainly consist of
propagating a weighted set of particles that approximates the
probability density of the state conditioned on the observations.
Particle filtering can be applied under very general hypotheses,
is able to cope with heavy clutter, and is very easy to implement.
Such filters have been used in very different areas for Bayesian
filtering under different names: The bootstrap filter for target
tracking in [15] and the Condensation algorithm in computer vi-
sion [20] are two examples, among others. In the earliest studies,
the algorithm was only composed of two periods: The particles
were predicted according to the state equation during the pre-
diction step; then, their weights were calculated with the likeli-
hood of the new observation combined with the former weights.
A resampling step has rapidly been added to dismiss the parti-
cles with lower weights and avoid the degeneracy of the particle
set into a unique particle of high weight [15]. Many ways have
been developed to accomplish this resampling, whose final goal
is to enforce particles in areas of high likelihood. The frequency
of this resampling has also been studied. In addition, the use of
kernel filters [19] has been introduced to regularize the sum of
Dirac densities associated with the particles when the dynamic
noise of the state equation was too low [26]. Despite this long
history of studies, in which the ability of particle filter to track
multiple posterior modes is claimed, the extension of the par-
ticle filter to multiple target tracking has progressively received
attention only in the five last years. Such extensions were first
claimed to be theoretically feasible in [2] and [14], but the ex-
amples chosen only dealt with one single target. In computer
vision, a probabilistic exclusion principle has been developed
in [24] to track multiple objects, but the algorithm is very de-
pendent of the observation model and is only applied for two
objects. In the same context, a Bayesian multiple-blob tracker
(BraMBLe) [6] has just been proposed. It deals with a varying
number of objects that are depth-ordered thanks to a 3-D state
space. Lately, in mobile robotic [29], a set of particle filters for
each target connected by a statistical data association has been
proposed. We propose here a general algorithm for multitarget
tracking in the passive sonar context and take advantage of its
versatility to extend it to multiple receivers.

This work is organized as follows. In Section II, we recall
the principles of the basic particle filter with adaptive resam-
pling for a single target. We begin Section III with a presentation
of the multitarget tracking problem and its classical solutions
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and of the related work on multitarget tracking by particle fil-
tering methods. Then, we present our multitarget particle filter
(MTPF). The new algorithm combines the two major steps (pre-
diction and weighting) of the classical particle filter with a Gibbs
sampler-based estimation of the assignment probabilities. Then,
we propose to add two statistical tests to decide if a target has
appeared or disappeared from the surveillance area. Carrying
on with the approach of the MTPF, we finally present an exten-
sion to multireceiver data in the context of multiple targets (the
MRMTPF). Section IV is devoted to experiments. Simulation
results in a bearings-only context with a variable clutter den-
sity validate the MTPF algorithm. A comparison with a JPDAF
based on the extended Kalman filter establishes the superiority
of the MTPF for the same scenario. Then, a simulation with oc-
clusion shows how the disappearance of a target can be handled.
The suitable quantity and distribution of active measurements
are then studied in a particular scenario to improve the perfor-
mance obtained with passive measurements only.

As far as the notational conventions are concerned, we always
use the index to refer to one among the tracked targets. The
index designates one of the observations obtained at instant
. The index is devoted to the particles. The index is used

for indexing the iterations in the Gibbs sampler, andis used
for the different receivers. Finally, the probability densities are
denoted by if they are continuous and byif they are discrete.

II. BASIC SINGLE-TARGET PARTICLE FILTER

For the sake of completeness, the basic particle filter is now
briefly reviewed. We consider a dynamic system represented by
the stochastic process , whose temporal evolution
is given by the state equation:

(1)

It is observed at discrete times via realizations of the stochastic
process governed by the measurement model

(2)

The two processes and in (1) and (2)
are only supposed to be independent white noises. Note that the
functions and are not assumed linear. We will denote by

the sequence of the random variables and by
one realization of this sequence. Note that throughout the

paper, the first subscript of any vector will always refer to the
time.

Our problem consists of computing at each timethe condi-
tional density of the state , given all the observations ac-
cumulated up to, i.e., and
of estimating any functional of the state by the expecta-
tion as well. The recursive Bayesian filter, which
is also called the optimal filter, resolves exactly this problem in
two steps at each time.

Suppose we know . The prediction stepis done ac-
cording to the following equation:

(3)

The observation enables us to correct this prediction using
Bayes’s rule:

(4)

Under the specific assumptions of Gaussian noisesand
and linear functions and , these equations lead to the
Kalman filter’s equations. Unfortunately, this modeling is not
appropriate in many problems in signal and image processing,
which makes the calculation of the integrals in (3) and (4)
infeasible (no closed-form).

The original particle filter, which is called the bootstrap
filter [15], proposes to approximate the densitiesby a finite
weighted sum of Dirac densities centered on elements of

, which are called particles.
The application of the bootstrap filter requires that one knows

how to do the following:

• sample from initial prior marginal ;
• sample from for all ;
• compute for all through a known

function such that , where
missing normalization must not depend on.

The algorithm then evolves the particle set
, where is the particle and

its weight, such that the density can be approximated by
the density . In the bootstrap filter, the
particles are “moved” by sampling from the dynamics (1), and
importance sampling theory shows that the weighting is only
based on likelihood evaluations. In the most general setting
[9], the displacement of particles is obtained by sampling
from an appropriate density, which might depend on the
data as well. The complete procedure is summarized in Fig. 1.
Some convergence results of the empirical distributions to the
posterior distribution on the path space have been proved when
the number of particles tends toward infinity [25], [10].
In the path space , each particle at time can be
considered to be a discrete path of length . Compared
with the particle filter presented in Fig. 1, particle filtering
in the space of paths consists of incrementing the particle
state space at each time step and representing each particle
by the concatenation of the new position at timeand the set
of previous positions between times 0 and . In [25], the
fluctuations on path space of the so-called interacting particle
systems are studied. In the context of sequential Monte Carlo
methods [10] that cover most of the particle filtering methods
proposed in the last few years, the convergence and the rate of
convergence of order of the average mean square error
is proved. Under more restrictive hypotheses, the almost-sure
convergence is proved as well [10].

To evaluate the degeneracy of the particle set, the effective
sample size has been defined [21], [23]. As advocated in [9], a
resampling step is performed in the algorithm presented in Fig. 1
in an adaptive way when the effective sample size, estimated by

, is under a given threshold. It avoids to obtain a degenerate
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Fig. 1. Basic particle filter with adaptive resampling.

particle set composed of only few particles with high weights
and all the others with very small ones.

Beside the discretization of the filtering integrals, the use of
such particles enables the maintenance of multiple hypotheses
on the position of the target and to keep in the long term only
the particles whose position is likely given the whole sequence
of observations.

We find more details on the algorithm in [9] or [15] and on
adaptive resampling in [9] and [21]. After these recalls, let us
present briefly the multitarget tracking problem and its clas-
sical solutions, as well as the existing works on particle filtering
methods for MTT. Then, we will propose the MTPF.

III. M ULTITARGET PARTICLE FILTER

A. MTT Problem and Its Classical Treatment

Let be the number of targets to track that are assumed to
be known and fixed for the moment (the case of a varying un-
known number will be addressed in Section III-C). The index
designates one among the targets and is always used as first
superscript. Multitarget tracking consists of estimating the state
vector made by concatenating the state vectors of all targets. It is
generally assumed that the targets are moving according to inde-
pendent Markovian dynamics. At time,
follows the state equation (1) decomposed inpartial equa-
tions

(5)

The noises and are supposed only to be white both
temporally and spatially and independent for .

The observation vector collected at timeis denoted by
. The index is used as first superscript to refer

to one of the measurements. The vector is composed of
detection measurements and clutter measurements. The false
alarms are assumed to be uniformly distributed in the obser-
vation area. Their number is assumed to arise from a Poisson
density of parameter , where is the volume of the obser-
vation area, and is the number of false alarms per unit volume.
As we do not know the origin of each measurement, one has to
introduce the vector to describe the associations between the
measurements and the targets. Each componentis a random
variable that takes its values among . Thus,

indicates that is associated with theth target. In this case,
is a realization of the stochastic process

if (6)

Again, the noises and are supposed only to be
white noises, independent for . We assume that the func-
tions are such that they can be associated with functional
forms such that

We dedicate the model 0 to false alarms. Thus, if ,
the th measurement is associated with the clutter, but we do
not associate any kinematic model to false alarms.

As the indexing of the measurements is arbitrary, all the mea-
surements have the samea priori probability to be associated
with a given model . At time , these association probabilities
define the vector . Thus,

for , for all is
the discrete probability that any measurement is associated with
the th target.

To solve the data association, some assumptions are com-
monly made [3].

A1) One measurement can originate from one target or from
the clutter.

A2) One target can produce zero or one measurement at one
time.

The assumption A1) expresses that the association is exclusive
and exhaustive. Consequently, .

Assumption A2) implies that may differ from and,
above all, that the association variables for
are dependent.

Under these assumptions, the MHT algorithm [28] builds re-
cursively the association hypotheses. One advantage of this al-
gorithm is that the appearance of a new target is hypothesized
at each time step. However, the complexity of the algorithm in-
creases exponentially with time. Some pruning solutions must
be found to eliminate some of the associations.

The JPDAF begins with a gating of the measurements. Only
the measurements that are inside an ellipsoid around the pre-
dicted state are kept. The gating assumes that the measurements
are distributed according to a Gaussian law centered on the pre-
dicted state. Then, the probabilities of each association
are estimated. As the variables are assumed dependent by
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A2), this computation implies the exhaustive enumeration of all
the possible associations for .

The novelty in the PMHT algorithm [12], [32], [33] consists
of replacing the assumption A2) by A3):

A3) One target can produce zero or several measurements at
one time.

This assumption is often criticized because it does not match the
physical reality. However, from a mathematical point of view, it
ensures the stochastic independence of the variablesand it
drastically reduces the complexity of thevector estimation.

The assumptions A1) and A3) will be kept in the MTPF pre-
sented later. Let us present now the existing works solving MTT
with particle filtering methods.

B. Related Work: MTT With Particle Filtering Methods

In the context of multitarget tracking, particle filtering
methods are appealing: As the association needs only to be
considered at a given time iteration, the complexity of data
association is reduced. First, two extensions of the bootstrap
filter have been considered. In [2], a bootstrap-type algorithm
is proposed in which the sample state space is a “(multitarget)
state space.” However, nothing is said about the association
problem that needs to be solved to evaluate the sample weights.
It is, in fact, the ability of the particle filtering to deal with
multimodality due to (high) clutter that is pointed out compared
with deterministic algorithms like the nearest neighbor filter
or the probabilistic data association (PDA) filter. No examples
with multiple targets are presented. The simulations only deal
with a single target in clutter with a linear observation model.
In [14], a hybrid bootstrap filter is presented where the particles
evolve in a single-object state space. Each particle gives a
hypothesis on the state of one object. Thus, thea posteriori
law of the targets, given the measurements, is represented by
a Gaussian mixture. Each mode of this law then corresponds
to one of the objects. However, as pointed out in [14], the
likelihood evaluation is possible only under the availability of
the “prior probabilities of all possible associations between”
the measurements and the targets. It may be why the simulation
example only deals with one single target in clutter. Even if
the likelihood could be evaluated, the way to represent thea
posteriori law by a mixture can lead to the loss of one of the
targets during occlusions. The particles tracking an occluded
target get very small weights and are therefore discarded during
the resampling step. This fact has been pointed out in [29].

In image analysis, the Condensation algorithm has been ex-
tended to the case of multiple objects as well. In [24], the case
of two objects is considered. The hidden state is the concate-
nation of the two single-object states and of a binary variable
indicating which object is closer to the camera. This latter vari-
able solves the association during occlusion because the mea-
surements are affected to the foreground object. Moreover, a
probabilistic exclusion principle is integrated to the likelihood
measurement to penalize the hypotheses with the two objects
overlapping. In [6], the state is composed of an integer equal to
the number of objects and of a concatenation of the individual
states. A three-dimensional (3-D) representation of the objects

gives access to their depth ordering, thus solving the association
issue during occlusions. Finally, in mobile robotics [29], a par-
ticle filter is used for each object tracked. The likelihood of the
measurements is written like in a JPDAF. Thus, the assignment
probabilities are evaluated according to the probabilities of each
possible association. Given these assignment probabilities, the
particle weights can be evaluated. The particle filters are then
dependent through the evaluation of the assignment probabili-
ties. Independently of the two latter works [6] and [29], we have
developed the MTPF, where the data association is approached
in the same probabilistic spirit as the basic PMHT [12], [32].

First, to estimate the density ,
with particle filtering methods, we must

choose the state space for the particles. As mentioned before,
a unique particle filter with a single-target state space seemed
to us a poor choice as the particles tracking an occluded object
would be quickly discarded. We have considered using one
particle filter per object but without finding a consistent way
to make them dependent. The stochastic association vector
introduced in Section III-A could also be considered to be an
additional particle component. However, as the ordering of the
measurements is arbitrary, it would not be possible to devise a
dynamic prior on it. Moreover, the state space would increase,
further making the particle filter less effective. Finally, we have
chosen to use particles whose dimension is the sum of those
of the individual state spaces corresponding to each target, as
in [6] and [24]. Each of these concatenated vectors then gives
jointly a representation of all targets. Let us describe the MTPF.
Further details on the motivations for the different ingredients
of the MTPF can be found in [18].

C. MTPF Algorithm

Before describing the algorithm itself, let us first notice that
the association probability that a measurement is associated
with the clutter is a constant that can be computed

(7)

(8)

(9)

where is the number of measurements arising from the
clutter at time . Assuming that there areclutter originated
measurements among the measurements collected at
time , the a priori probability that any measurement comes
from the clutter is equal to ; hence, we get the equality

used to derive (9) from (8).
The initial set of particles is

such that each component for is sampled
from independently from the others. Assume we have
obtained with .
Each particle is a vector of dimension , where we de-
note by the th component of and where designates
the dimension of target.
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The prediction is performed by sampling from some proposal
density . In the bootstrap filter case, coincides with the dy-
namics (5)

... (10)

Examine now the computation of the likelihood of the obser-
vations conditioned on theth particle. We can write for all

(11)

Note that the first equality in (11) is true only under the
assumption of conditional independence of the measure-
ments, which we will make. To derive the second equality
in (11), we have used the total probability theorem with
the events and under the supplementary
assumption that the normalization factors betweenand

is the same for all.
We still need to estimate at each time step the association

probabilities , which can be seen as the stochastic
coefficients of the -component mixture. Two main ways have
been found in the literature to estimate the parameters of this
model: the expectation maximization (EM) method (and its sto-
chastic version the SEM algorithm [5]) and the data augmenta-
tion method. The second one amounts in fact to a Gibbs sampler.

In [12], [32], and [33], the EM algorithm is extended and ap-
plied to multitarget tracking. This method implies that the vec-
tors and are considered as parameters to estimate. The
maximization step can be easily conducted in the case of de-
terministic trajectories, and the additional use of a maximum
a posteriori(MAP) estimate enables the achievement of it for
nondeterministic trajectories. Yet, the nonlinearity of the state
and observation functions makes this step very difficult. Finally,
the estimation is done iteratively in a batch approach we would
like to avoid. For these reasons, we have not chosen an EM al-
gorithm to estimate the association probabilities.

The data augmentation algorithm is quite different in its prin-
ciple. The vectors , , and are considered to be random
variables with prior densities. Samples are then obtained iter-
atively from their joint posterior using a proper Markov chain
Monte Carlo (MCMC) technique, namely, the Gibbs sampler.
This method has been studied in [4], [8], [13], [30], and [31],
for instance. It can be run sequentially at each time period. The
Gibbs sampler is a special case of the Metropolis–Hasting algo-
rithm with the proposal densities being the conditional distribu-
tions and the acceptance probability being consequently always
equal to one. See [7] for an introduction to MCMC simulation
methods and also for a presentation of the EM algorithm.

Let be the stochastic variable associated with the proba-
bility . For , the method consists of gener-
ating a Markov chain that converges to the stationary distribu-
tion , which cannot be sampled directly. For that, we
must get a partition of and to sample alternatively

from the conditional posterior distribution of each component of
the partition. Let the index denote the iterations in the Gibbs
sampler. The second subscript of the vectors refers to the itera-
tion counter. Assume that the first elements of the Markov
chain have been drawn. We sample thecom-
ponents of as follows:

...
...

In our case, at a given instant, we follow this algorithm with

for

for

for

(12)

The initialization of the Gibbs sampler consists of assigning uni-
form association probabilities, i.e., for all

, and taking , i.e., the cen-
troid of the predicted particle set. The variables do not need
initializing because at the first time step of the Gibbs sampler,
they will be sampled conditioned on and

. Then, suppose that at instant, we have already simulated
. The th iteration is handled as follows.

• As the are assumed to be independent,
their individual discrete conditional density reads

(13)

Assignment variables are discrete, and we can write1

if

if
(14)

The realizations of the vector are then sam-
pled according to the weights

for

• Mixture proportion vector is drawn from the con-
ditional density

Dirichlet (15)

where we denote by the number of equal to
and whereDirichlet denotes the Dirichlet
distribution on the simplex , ,

1Using Bayes’s rule,p(ajb; c) = (p(bja; c)p(ajc))=p(bjc).
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: with density pro-
portional to

. The vector is first drawn ac-
cording to (15) and then normalized to restore the sum

to .
• has to be sampled according to the density

(16)

The values of might imply that one target is as-
sociated with zero or several measurements. Let us define

: . Hence, we de-
compose the preceding product in two products:

(17)

where , . The first product
contains the targets that are associated with at least one
measurement under the association . In this case,

the measurements are denoted by . The second
product contains the targets that are associated with no
measurements under .

— Let be an index in the first product. We can write

(18)

We are not able to sample directly from the density

for the same reasons as those exposed in Section II to
justify the use of the particle filter (intractability of
the integrals). We propose to build the particle set

, , whose weights
measure the likelihood of the observations associated
by to target . More precisely, we let

(19)

As the predicted empirical law
is “close” to the predicted law , we ex-
pect the empirical distribution

to be close to .
However, the weak convergence of to

, when tends toward infinity
remains to be proved. Not being able to sample from

, , we draw as a real-
ization from .

— Now, let be an index in the second product. As we
do not have any measurement to correct the predicted
particles, we draw a realization from the density

for .
After a finite number of iterations, we estimate the vector

by the average of its last realizations:

(20)

Finally, the weights can be computed according to (11) using
the estimate of . By construction, follows the law

. Thus, the use of a Gibbs sampler enables us to
take into account the current measurements. Consequently,
the estimates measure in a way thea posteriori detection
probability of each target. It improves the estimation of the
targets because the measurements contribute to the estimation
proportionally to these probabilities . Moreover, thea priori
probability of detecting a target, which is usually denoted by

, is not needed in the MTPF. This probability is needed when
the associations are considered in classical algorithms like the
PMHT or the JPDAF.

The resampling step is performed in an adaptive way when
the estimated effective sample size is under the threshold

. In [18], we have compared the performance of
particle filtering with systematic and adaptive resampling in
a single-object bearings-only synthetic example. The bias on
the estimation error was almost the same, but the standard
deviation was twice as small using adaptive resampling rather
than systematic resampling.

Due to the estimation of the vector needed for the compu-
tation of the particles likelihood, the convergence of the MTPF
could be affected. It could be interesting to evaluate the error on
the estimate of implied by the error made on the estimate of

. This is not addressed in this work.
The complete procedure is summarized in Fig. 2.

D. Varying Number of Targets

Until now, the number of targets was assumed known and
constant. We now make suggestions to relax this constraint. As
per the disappearance of objects, the vectorprovides useful
information: the disappearance of one target from the surveil-
lance area can be detected by a drop in the corresponding
component. We will use the estimate of to decide between
the two following hypotheses.

• —The target is present in the surveillance area.
• —The target is not present in the surveillance area.

If the target is still present in the surveillance area, the fall of
can only be due to its nondetection, which occurs with a

probability . Let be the binary variable equal to 1 if
the th target has been detected at timeand 0 otherwise. Over
a test interval and for a given target, the variables

are distributed according to a binomial law of
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Fig. 2. MTPF: Particle filter algorithm for multiple targets with adaptive resampling.

parameters . These variables are unknown, but we
can use the estimates to estimate them. Let us define

if

otherwise
(21)

where is a probability threshold. The test with
the obtained variables decides on the true hy-
pothesis. This test consists of computing the distance

between the expected size and the
obtained size of each class (here, the class 0 and the class 1).
When tends toward infinity, is asymptotically distributed
as a law. One admits that is reasonably approximated by a

law under the conditions that the expected size of each class

is higher than 4. That is why in practice, the length of the in-
terval must be chosen such that .

As far as the algorithm is concerned, this reduction only leads
to update (the number of targets) and to remove the compo-
nents of the particles related to the disappeared target. It can be
integrated to the MTPF as described in Fig. 3.

On the other hand, the arrival of a new target might be related
to an observation whose likelihood is low, whatever target it is
associated with. As a result, assignment variables simulated by
the Gibbs sampler might be more often equal to 0. We propose
to use the values of the assignment variables to decide between
the two following hypotheses.

• —A new target is arriving inside the surveillance
area.

• —No new target is arriving inside the surveillance
area.
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Fig. 3. Particle filter algorithm for multiple targets with adaptive resampling and varying target number.

Let be the estimate of , which is the number of measure-
ments arising from the clutter at time, supplied by the Gibbs
sampler

(22)

where . Over an interval ,
a test enables us to measure the adequation between the
Poisson law of parameter followed by and
the empirical law of the variables . This test can
also be integrated to the MTPF, as described in Fig. 3. Neverthe-
less, the initialization of the new target based on the observation
sets is a tricky problem, which we have not solved yet.

E. Multireceiver Multitarget Particle Filter—MRMTPF

A natural extension of the MTPF is to consider that ob-
servations can be collected by multiple receivers. Letbe
their number. We will see that we can easily adapt the particle
filter to this situation. We always consider that the targets
(their number is fixed again) obey the state equation (5). Some

useful notations must be added to modify the measurement
equations. The observation vector at timewill be denoted
by , where refers to the receiver
that received the th measure. This measurement is then a
realization of the stochastic process

if (23)

We assume the independence of the observations collected by
the different receivers. We denote by the functions

that are proportional to . The
likelihood of the observations conditioned by theth particle is
readily obtained as

(24)
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There is no strong limitation on the use of the particle filter
for multireceiver and multitarget tracking: the MRMTPF is ob-
tained from the MTPF by replacing the likelihood functions

by the functions .
Moreover, it can deal with measurements of varied periodic-

ities. We present in Section IV-B a scenario mixing active and
passive measurements.

IV. SIMULATIONS RESULTS

For all the following simulations, the burn-in period of the
Gibbs sampler has been fixed to and the total
number of iterations to . The resampling threshold
has been fixed to .

A. Application to Bearings-Only Problems With Clutter

To illustrate theMTPF algorithm, we first deal with classical
bearings-only problems with three targets. In the context of a
slowly maneuvering target, we have chosen a nearly-constant-
velocity model (see [22] for a review of the principal dynamical
models used in this domain).

1) Model and the First Scenario Studied:The state vectors
represent the coordinates and the velocities in the– plane:

for . For each target, the
discretized state equation associated with time periodis

(25)

where is the identity matrix in dimension 2, and is
a Gaussian zero-mean vector with covariance matrix

. Let be the estimate of computed by the particle

filters with , i.e., .
A set of measurements is available at discrete times and

can be divided in two subsets.

• A subset of “true” measurements that follow (26). A mea-
surement produced by theth target is generated according
to

(26)

where is a zero-mean Gaussian noise with covariance
independent of , and and are the Cartesian

coordinates of the observer, which are known. We assume
that the measurement produced by one target is available
with a detection probability .

• A subset of “false” measurements whose number follows
a Poisson distribution with mean , where is the mean
number of false alarms per unit volume. We assume these
false alarms are independent and uniformly distributed
within the observation volume .

Fig. 4. Trajectories of the three targets and of the observer for experiments in
Section IV-A.

The initial positions of the targets and of the observer are the
following:

m
m

ms
ms

m
m

ms
ms

m
m

ms
ms

m
m

ms
ms

The dynamic noise is a normal zero-mean Gaussian vector with
ms . We use the same dynamic noise to

predict the particle. The observer is following a leg-by-leg tra-
jectory. Its velocity vector is constant on each leg and modified
at the following instants so that

(27)

The trajectories of the three targets and of the observer are rep-
resented in Fig. 4, where the arrows indicate the direction of the
motion. The measurements are simulated as follows.

• For each target, a “true” bearing is simulated with a prob-
ability using a Gaussian noise of standard de-
viation rad (about 3) every time period, i.e.,
every 6 s.

• The Poisson density mean used is varying between 0 (no
clutter) and 3. We consider a total observation volume, i.e.,
the interval .

The measurement sets simulated for clutter parameters equal
to 0, 1, and 3 are plotted in Fig. 5. In this scenario, the data
association is particularly difficult: The differences between two
bearings issued from two different targets is often lower than the
standard deviation of the observation noise.
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Fig. 5. Measurements simulated with a detection probabilityP = 0:9. (a)�V = 0. (b)�V = 1. (c)�V = 3.

2) Results of the MTPF:First, the initialization of the par-
ticle set has been done according to a Gaussian law whose mean
vector and covariance matrix are
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ms

(28)

and

for

(29)
To evaluate the performance of the algorithm according to the
clutter density, we have performed different runs of the
MTPF with 1000 particles for . The scenario
is the same for each run, i.e., the true target trajectories and
the simulated measurements are identical. At each time, the
bias and the standard deviation for theth component of are
defined by

bias

std (30)

To avoid the compensation of elementary bias of opposite signs,
we average the absolute values of the biasbias . Then, we
define, for each target, and for theth component

bias bias (31)

and we average the standard deviations

std std (32)

These different quantities, which are normalized by their values
obtained with no clutter, are plotted against the clutter param-
eter in Fig. 6. Except for the and components of the third
target, the standard deviation is not very sensitive to clutter. In
Fig. 7, the MTPF estimate averaged over the 20 runs have been
plotted with the confidence ellipsoid on position given by

. In particular, the component of the third target
seems well estimated, which counterbalances the variations ob-
served in Fig. 6.

The ellipsoids plotted in Fig. 7 represent the variance over the
20 runs of the posterior mean estimates and enable us to assess
the variance of the MTPF estimator for particles. The
posterior covariance of the estimate from one particular run is
also a useful indicator to assess the quality of the estimation.
The confidence ellipsoids corresponding to the covariance
of the posterior estimate are presented for one particular run in
Fig. 8(a). As the covariance of dynamic noise is not very high
and especially as the prior at time zero is narrow, one might think
that the estimates obtained without measurements2 could be as
good. However, the posterior covariance obtained without using
the measurements increase a lot as presented in Fig. 8(b).

With a Pentium III 863 MHz, particles, a burn-in
period , and a total amount of itera-
tions in the Gibbs sampler, it takes around 1 s per time step to
compute the MTPF estimate of three targets with bearings-only
measurements.

The next section shows the ability of the MTPF to recover
from a poor initialization.

3) Effect of a Highly Shifted Initialization:The initial posi-
tions and velocities of the objects are the same as in the previous
section. The observer is still following a leg-by-leg trajectory,
but its initial position is now

m
m

ms
ms

Its velocity vector is constant on each leg and modified at the
following instants so that

2Such estimates are obtained by applying the prediction step and by giving
constant weights to the particles instead of computing them given the measure-
ments.
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Fig. 6. Bias, resp. std, for clutter parameter= 1; 2; 3 over bias, resp. std, obtained with no clutter obtained with 1000 particles for 20 runs. (a) Bias onx andy
position for the three targets. (b) Bias onvx andvy position for the three targets. (c) std onx andy position for the three targets. (d) std onvx andvy position
for the three targets.

Fig. 7. Averaged MTPF estimate of the posterior means (dashed lines) over 20 runs and associated2� confidence ellipsoids for the three targets withN = 1000

particles and with a detection probabilityP = 0:9. (a)�V = 0. (b)�V = 1. (c)�V = 2. (d)�V = 3. The solid lines are the true trajectories.

(33)

The trajectories of the three targets and of the observer are rep-
resented in Fig. 9. Compared with the previous section, the first
maneuver occurs earlier to make the targets resolvable earlier.
The initialization of the particle set has been done according to
a Gaussian law whose mean vector and covariance ma-
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Fig. 8. Single run performance withN = 1000 particles. (a) MTPF estimate (dashed lines) and2� confidence ellipsoids of the posterior means with a detection
probabilityP = 0:9 and�V = 0. (b) Estimate obtained without measurements and2� confidence ellipsoids. The solid lines are the true trajectories.

Fig. 9. Trajectories of the three targets and of the observer for experiments in
Section IV-A3.

trix are
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(34)

and

for

(35)
The measurements have been simulated without any clutter and
with a Gaussian noise of standard deviation (about
1.15 ). The averaged estimates obtained with the MTPF over 20
runs are presented in Fig. 10(a) with the correspondingel-
lipsoids. The particles recover very quickly from their shifted

Fig. 10. (a) Averaged MTPF estimate of the posterior means (dashed lines)
over 20 runs and associated2� confidence ellipsoids for the three targets with
N = 1000 particles and with a detection probabilityP = 0:9 and�V =

0. (b) MTPF estimate for one particular run (dashed lines) and2� confidence
ellipsoids. The solid lines are the true trajectories.

initialization. As in the previous section, the posterior covari-
ance of each MTPF estimate rapidly decreases as shown for
one particular run in Fig. 10(b). As the initialization is really far
from the true initial positions, the estimates obtained without
using any measurements are not acceptable. They are presented
in Fig. 11.

4) Estimation With a JPDAF-EKF Algorithm:We have
compared the MTPF with a classical association algorithm: the
JPDAF [3]. Since the measurement equation (26) is nonlinear,
we cannot use a classic Kalman filter. According to [1], the
modified polar coordinates extended Kalman filter (EKF) gives
the best performance among the four single-filter trackers
compared. This is the one we used in the JPDAF (see [16],
[17], and [27] for details on the implementation of the modified
polar coordinates EKF).



HUE et al.: SEQUENTIAL MONTE CARLO METHODS FOR MTT AND DATA FUSION 321

Fig. 11. (a) Averaged estimate obtained without any measurements (dashed
lines) over 20 runs and associated2� confidence ellipsoids for the three targets
withN = 1000 particles. (b) Estimate obtained without any measurements for
one particular run (dashed lines) and2� confidence ellipsoids. The solid lines
are the true trajectories.

The validation test of the JPDAF has been performed with a
validation probability . The generation of all the fea-
sible association matrices has been implementing according to
a depth-first search algorithm [34]. A JPDAF has then been per-
formed using the simulated bearings of the scenario presented
in Section IV-A1 with the clutter density . Results ob-
tained in this casewith the MTPF are presented in Fig. 7(b). As
already noted, the scenario is particularly difficult as the mea-
surements are very close. For instance, the second measurement
set contains four measurements that have been simulated such
that for and . The associated
likelihood matrix is

(36)

where . The vali-
dation matrix associated with using a validation probability

is , which means that the gating does not
suppress any measurements. Fig. 12 shows the true trajectories
simulated during 1000 time periods and the estimate obtained
wih the JPDAF. For each object, a given mark indicates the true
and estimate positions every 100 times. Note that at time 0, the
estimate and the true positions are the same and are indicated
by one common mark.

At the end of the scenario, the estimate for target 3 has clearly
deteriorated because of the false alarms; some of them are val-
idated as true. A major difference between classical algorithms
based on Kalman filtering and particle filtering methods is high-
lighted here. For a single process to estimate, knowing the
state equation (1) and the measurement model (2) with Gaussian

Fig. 12. JPDAF-MPEKF estimates (dotted lines). The solid lines stand for the
real trajectories. The true and estimated positions at times 0, 100, and 200 are
marked with “+” for target 1, “�” for target 2, and “ ” for target 3.

noises, Kalman filtering first computes the predicted estimate
according to the following equation:

(37)

The measurements are then taken into account through the mea-
surement innovation, i.e., the difference between the measure-
ments and the predicted measurements. The measurement inno-
vation, multiplied by the filter gain , is added to the predicted
state

(38)

Hence, a high gain or a high measurement noise imply a drastic
discrepancy between the predicted and the updated state. Note
that the densities of the random variables are no longer Gaussian
if or are not linear. In this case, the EKF uses the same
equations (37) and (38), where is computed with lineariza-
tions of and/or around the predicted state and/or predicted
measurement. The obtained estimates are no longer optimal.

In the updating step of particle filtering, the weights of the
particles are updated according to the measurements, but the
predicted positions are not modified. Consequently, if the pre-
diction is correct, few informative measurements do not deteri-
orate the MTPF estimate, whereas they cause the divergence of
the JPDAF-EKF.

5) Varying Number of Targets:To study how the removal of
a target can be detected, we have simulated a scenario with a
detection hole for one target.3 The true trajectories of the three
targets and of the observer are the same as in Fig. 4(a). Each
target produces one measurement at each time period according
to (26), except during the time interval [600; 700], where the
first target does not produce any measurement, and the second
produces two measurementsand according to (26). One
particular run of the particle filter with 1000 particles is pre-
sented in Fig. 13(a). The differences between the three pairs of
bearings simulated are plotted in Fig. 14. The plot of the three
estimated trajectories shows that the difficulty of data associa-
tion has been overcome. Fig. 15 shows the results of the esti-
mation of the three components of, whereas the average of
each component over successive intervals of 100 time steps
and over 20 trials are represented in Fig. 13(b). When there is an

3Note that in the following simulations, where we want to focus only on the
issue of varying the number of targets, as well as in those of next section, where
we focus on multiple receivers, the clutter is not taken into account.



322 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 50, NO. 2, FEBRUARY 2002

Fig. 13. (a) Target trajectories and their estimate with 1000 particles. (b) Average of the estimated components of the vector� over the consecutive ten time
intervals of length 100 and over 20 trials.

Fig. 14. Differences between the three pairs of target bearings at each time period compared with the standard deviation of the observation noise. (a)Measurements
1 and 2. (b) Measurements 1 and 3. (c) Measurements 2 and 3.

Fig. 15. Estimated components of the vector� obtained with 1000 particles. (a)̂� . (b) �̂ . (c) �̂ .

ambiguity about the origin of the measurements (i.e., when the
differences between the bearings are lower than the standard de-
viation noise), the components ofvary in average around one
third for targets, and they stabilize at uniform estimates
(one third for targets) when the ambiguity disappears.
The momentary measurement gap for the first target is correctly
handled as the first component is instantaneously estimated
as 0.15 from instant 600 to 700.

B. Application to Problems With Active and Passive
Measurements

In the following scenario, we consider two targets and one
observer whose trajectories are plotted in Fig. 16(a). The initial
positions are
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ms
ms

m
m

ms
ms

The difference between the two simulated bearings is very often
lower than the measurement noise std as shown in Fig. 16(b).
In the following simulations, all the particle clouds have been
initialized around the true positions with the covariance matrix

defined in (29). In addition, the observer does not follow a
leg-by-leg trajectory. This makes the estimation of the trajecto-
ries quite difficult, and a lot of runs of the MTPF lost the track.
Consequently, the standard deviation over 20 runs increases a lot
through time, as illustrated by Fig. 16(d). To improve tracking
performance, we study the impact of adding active measure-
ments (here, ranges). We assume that noisy ranges are available
periodically during time intervals of lengthwith period , i.e.,
these measurements are present at timeif .
A noisy range associated with theth target is supposed to follow
the equation

(39)

where is a Gaussian noise with standard deviation
, where . This noise modeling

seems more realistic than the constant standard deviation mod-
eling generally used in such contexts. For instance, for
and , the simulated ranges of the two targets are shown
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Fig. 16. (a) Trajectories of the targets and of the observer. (b) Difference between the noisy bearings associated with the targets compared with the standard
deviation of the measurement noise= 0:05, i.e., 2.8�. (c) Noisy ranges simulated forT = 30 andP = 100. (d)–(f) Averaged estimates (dashed lines) and
2� confidence ellipsoids obtained with bearings measurements and 0%, 20%, and 50% of range measurements, respectively. The solid lines stand for the real
trajectories.

in Fig. 16(c). The evolution of the bias and the standard devia-
tion of the estimation errors has been studied according to the
quantity of active measurements on the one hand and to their
temporal distribution on the other.

1) Quantity of Active Measurements:For these experimen-
tations, we have fixed and taken .
Fig. 17 summarizes the evolution of the bias and the standard de-
viation of the estimation errors as a function of the active mea-
surement percentage. Fig. 16(e) and (f) shows the MRMTPF
estimated posterior means averaged over 20 runs and the
confidence ellipsoids with, respectively, 20% and 50% of ac-
tive measurements.

First, the addition of active measurements particularly im-
proves the estimation of the componentsand for the two
targets. Fig. 16(d)–(f) also shows the drastic reduction of the size
of the confidence ellipsoids along the-axis when range mea-
surements are added. Theand -positions of the two targets
are actually very close, and the bearings measurements do not
help to dissociate the targets because of the difficulty of data
association. However, as the difference between the-positions

of the two targets is very high, the range measurements are very
different. They thus help a lot to distinguish the targets and to
solve the data association.

The percentage of 20% of active measurements appears to be
a good compromise between a significant improvement of the
estimation and a reasonable quantity of active measurements.

With a Pentium III 863 MHz, particles, a burn-in
period , and a total amount of itera-
tions in the Gibbs sampler, it takes around 840 ms per time step
to compute the MTPF estimates of two targets with bearings
measurements and 20% of range measurements.

2) Temporal Distribution of Active Measurements:We now
look at the impact of the temporal distribution of the active
measurements: the ratio of passive over active measurements
is fixed to 5 (i.e., to 20% of active measurements). The interval
lengths considered are and . The averaged
MRMTPF estimates and the confidence ellipsoids obtained
with 20 runs and 1000 particles are represented in Fig. 18 for
different values. First of all, if the state evolution was deter-
ministic, the better choice would be to consider active measure-



324 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 50, NO. 2, FEBRUARY 2002

Fig. 17. Bias on the estimation of the hidden states(x; y; v ; v ) of the two targets with 1000 particles over 20 runs. (a) Bias onx andy. (b) Bias onvx andvy.

Fig. 18. AveragedMRMTPFestimates (dotted lines) and2� confidence ellipsoids (dashed lines) with 1000 particles: (a)T = 10,P = 50; (b)T = 20,P = 100;
(c) T = 40, P = 200; (d) T = 100, P = 500. The solid lines are the true trajectories.

ments at the beginning and at the end of the scenario. In our case,
the state evolution is stochastic. We observe that the bias is in-
dependent of the temporal distribution of range measurements.
The size of the confidence ellipsoids increases with. The
active measurements should then be available as frequently as
possible to improve the estimation performance.

V. CONCLUSION

Two major extensions of the classical particle filter have been
presented in order to deal first with multiple targets (MTPF) and
then with multiple receivers (MRMTPF). Considering the data
association from a stochastic point of view, Gibbs sampling is
the workhorse for estimating association vectors, thus avoiding
combinatorial drawbacks. Moreover, the particle filtering per-
forms satisfactorily, even in the presence of dense clutter. A next
step would be to deal with more realistic clutter models. Two
statistical tests have also been proposed for detecting changes

of the target states (emitting or not). Even if the MTPF is quite
versatile, it can suffer from initialization problems. This draw-
back cannot be completely avoided in the multitarget context.
This will be addressed in future studies. Finally, MTPF has been
extended to multiple receivers and multiple measurements (here
passive and active). In this context, the effects of the temporal
distribution of active measurement have been investigated. Pre-
liminary results on this aspect show all the importance of mea-
surement scheduling.
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