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Sequential Monte Carlo Methods for Multiple Target
Tracking and Data Fusion

Carine Hue, Jean-Pierre Le Cadikember, IEEEand Patrick Pérez

Abstract—The classical particle filter deals with the estimation at the current time step. When the association variables are in-
of one state process conditioned on a realization of one observationstead supposed to be statistically independent like in the prob-
process. We extend it here to the estimation of multiple state pro- gpjlistic MHT (PMHT [12], [32]), the complexity is reduced.

cesses given realizations of several kinds of observation processes. ; : ;
The new algorithm is used to track with success multiple targets in ﬁJnfortunater, the abo"‘? algor_lthms do not cope with nonlinear
models and non-Gaussian noises.

a bearings-only context, whereas a JPDAF diverges. Making use

of the ability of the particle filter to mix different types of observa- ~ Under such assumptions (stochastic state equation and non-
tions, we then investigate how to join passive and active measure-linear state or measurement equation non-Gaussian noises), par-
ments for improved tracking. ticle filters are particularly appropriate. They mainly consist of

Index Terms—Bayesian estimation, bearings-only tracking, Propagating a weighted set of particles that approximates the
Gibbs sampler, multiple receivers, multiple targets tracking, probablllty denS|ty of the state conditioned on the observations.

particle filter. Patrticle filtering can be applied under very general hypotheses,
is able to cope with heavy clutter, and is very easy to implement.
Such filters have been used in very different areas for Bayesian
filtering under different names: The bootstrap filter for target
ULTITARGET tracking (MTT) deals with the state esti-tracking in [15] and the Condensation algorithm in computer vi-
mation of an unknown number of moving targets. Availsion [20] are two examples, among others. In the earliest studies,
able measurements may both arise from the targets, if they #re algorithm was only composed of two periods: The particles
detected, and from clutter. Clutter is generally considered to ivere predicted according to the state equation during the pre-
a model describing false alarms. Its (spatio—temporal) statisticittion step; then, their weights were calculated with the likeli-
properties are quite different from those of the target, whidipod of the new observation combined with the former weights.
makes the extraction of target tracks from clutter possible. Foresampling step has rapidly been added to dismiss the parti-
perform multitarget tracking, the observer has at his disposatles with lower weights and avoid the degeneracy of the particle
huge amount of data, possibly collected on multiple receiveset into a unique particle of high weight [15]. Many ways have
Elementary measurements are receiver outputs, e.g., bearibgen developed to accomplish this resampling, whose final goal
ranges, time-delays, Dopplers, etc. is to enforce particles in areas of high likelihood. The frequency
The main difficulty, however, comes from the assignment aff this resampling has also been studied. In addition, the use of
a given measurement to a target model. These assignmentskarael filters [19] has been introduced to regularize the sum of
generally unknown, as are the true target models. This is a nBaiac densities associated with the particles when the dynamic
departure from classical estimation problems. Thus, two distimmise of the state equation was too low [26]. Despite this long
problems have to be solvéaintly: the data association and thehistory of studies, in which the ability of particle filter to track
estimation. multiple posterior modes is claimed, the extension of the par-
As long as the association is considered in a deterministicle filter to multiple target tracking has progressively received
way, the possible associations must be exhaustively enumeraggtkntion only in the five last years. Such extensions were first
This leads to an NP-hard problem because the number of posimed to be theoretically feasible in [2] and [14], but the ex-
sible associations increases exponentially with time, as in tamples chosen only dealt with one single target. In computer
multiple hypothesis tracker (MHT) algorithm [28]. In the jointvision, a probabilistic exclusion principle has been developed
probabilistic data association filter (JPDAF) [11], the associ@ [24] to track multiple objects, but the algorithm is very de-
tion variables are considered to be stochastic variables, and peradent of the observation model and is only applied for two
needs only to evaluate the association probabilities at each tiaigects. In the same context, a Bayesian multiple-blob tracker
step. However, the dependence assumption on the associat{@maMBLe) [6] has just been proposed. It deals with a varying
implies the exhaustive enumeration of all possible associatiamember of objects that are depth-ordered thanks to a 3-D state
space. Lately, in mobile robotic [29], a set of particle filters for
each target connected by a statistical data association has been
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and of the related work on multitarget tracking by particle filThe observation;; enables us to correct this prediction using
tering methods. Then, we present our multitarget particle filt@ayes’s rule:

(MTPF). The new algorithm combines the two major steps (pre-

diction and weighting) of the classical particle filter with a Gibbs

sampler-based estimation of the assignment probabilities. Thén(zt) =

we propose to add two statistical tests to decide if a target has p(Y: = | X: = z4)p(Xe = 3¢|Yo—1 = Yo—1)
appeared or disappeared from the surveillance area. Carryin ’
on with the approach of the MTPF, we finally present an extenj/lgnw p(Ye = w] X = 0)p(Xe = 2[You—1 = you—1) dv
sion to multireceiver data in the context of multiple targets (the

MRMTPF). Section IV is devoted to experiments. Simulatiobinder the specific assumptions of Gaussian nolgesnd W,
results in a bearings-only context with a variable clutter deand linear functionsl; and H,, these equations lead to the
sity validate the MTPF algorithm. A comparison with a JPDAKalman filter's equations. Unfortunately, this modeling is not
based on the extended Kalman filter establishes the superiotippropriate in many problems in signal and image processing,
of the MTPF for the same scenario. Then, a simulation with oghich makes the calculation of the integrals in (3) and (4)
clusion shows how the disappearance of a target can be handiefasible (no closed-form).

The suitable quantity and distribution of active measurementsthe original particle filter, which is called the bootstrap

are then studied in a particular scenario to improve the perfgiiter [15], proposes to approximate the densitiasby a finite

mance obtained with passive measurements only. weighted sum ofV Dirac densities centered on elements of
As far as the notational conventions are concerned, we alw% which are called particles

use the index to refer to one among th& tracked targets. The
index; designates one of the; observations obtained at instani,] _

7 ) . X . ow to do the following:
t. The index» is devoted to theéV particles. The index is used wing- _ _
for indexing the iterations in the Gibbs sampler, anig used * sample from initial prior marg|nqi(X0),
for the different receivers. Finally, the probability densities are * Sample fromp(V}) for all #;

denoted by if they are continuous and Wyif they are discrete. ~ * computep(Y; = v:|X; = =) for all # through a known
functionl; such that,(y; z) x p(Y; = y|X; = x), where

missing normalization must not depend.on

: ... . The algorithm then evolves the particle set =
For the sake of completeness, the basic particle filter is nc{i)/\; ¢ P ‘

4

The application of the bootstrap filter requires that one knows

Il. BASIC SINGLE-TARGET PARTICLE FILTER

. . . . Sy, g )n=1,... n, Wheres, € R" is the particle andy
briefly reviewed. We consider a dynamic system representedi weight, such that the densit§, can be approximated by

H Ny i 7 -
the stochastic procegx;) € R™», whose temporal evolution the densityLs, — 22=1 g6, In the bootstrap filter, the

is given by the state equation: particles are “moved” by samdling from the dynamics (1), and

) importance sampling theory shows that the weighting is only
based on likelihood evaluations. In the most general setting

Itis observed at discrete times via realizations of the stochadié the displacement of particles is obtained by sampling
procesgY;) € R governed by the measurement model from an appropriate density, which rr_nght depe_nd on th_e
data as well. The complete procedure is summarized in Fig. 1.

Y, = Hy(X,, Wy). (2) Some convergence results of the empirical distributions to the
posterior distribution on the path space have been proved when
The two processed/;) € R™ and(W;) € R™« in (1) and (2) the numberN of particles tends toward infinity [25], [10].
are only supposed to be independent white noises. Note thatlthéhe path spacéR™)'+!, each particles} at timet can be
functionsF, and H, are not assumed linear. We will denote bgonsidered to be a discrete path of length- 1. Compared
Yy.: the sequence of the random variab(gs, ..., ;) and by Wwith the particle filter presented in Fig. 1, particle filtering
yo:: ONe realization of this sequence. Note that throughout tite the space of paths consists of incrementing the particle
paper, the first subscript of any vector will always refer to thetate space at each time step and representing each particle
time. by the concatenation of the new position at titnand the set
Our problem consists of computing at each tiftrie condi- 0f previous positions between times 0 ane 1. In [25], the

tional densityL, of the stateX,, given all the observations ac-fluctuations on path space of the so-called interacting particle
cumulated up ta, i.e., L, = p(X;|Yo = vo, ..., Y; = ) and Systems are studied. In the context of sequential Monte Carlo
of estimating any functional(X;) of the state by the expecta-methods [10] that cover most of the particle filtering methods
tion E(g(X;)|Yo.;) as well. The recursive Bayesian filter, whichproposed in the last few years, the convergence and the rate of
is also called the optimal filter, resolves exactly this problem #onvergence of ordet/N of the average mean square error

Xy = Fy(Xi1, V).

two steps at each time is proved. Under more restrictive hypotheses, the almost-sure
Suppose we know.,_;. The prediction stepis done ac- convergence is proved as well [10].

cording to the following equation: To evaluate the degeneracy of the particle set, the effective

sample size has been defined [21], [23]. As advocated in [9], a

p(Xy = 2¢|Yo:—1 = you—1) resampling step is performed in the algorithm presented in Fig. 1

_ X = ol Xo s = VL d 3 in an adaptive way when the effective sample size, estimated by
~ e p(Xe =2 Kooy = 2) Ly s (2) do. - (3) N, s, is under a given threshold. It avoids to obtain a degenerate



HUE et al: SEQUENTIAL MONTE CARLO METHODS FOR MTT AND DATA FUSION 311

« Initialization: { 5 P(Xo) n=1,...,N.

9 =1/N
o Fort=1,...,T:

o Proposal: sample 57 from f(X;| X, =s} ;,Y; =y) forn=1,... ,N.
Compute un-normalized weights: §* = ¢ l%sﬁ forn=1,... ,N.
Normalize weights: ¢ = —,\?f—q forn=1,...,N.

n=1

~ N .
Return EQ(AXt) = Zn_l qr'g(5¢).
Calculate Ness = SN e (q R

R ST N kb -
Resampling: if Neff < Nipreshold qfl _ 1/;“\]:1 7% n=1,...,N,else s} =5 forn=1,... ,N.
P =

[e]

Weighting:

o ©

[e]

Fig. 1. Basic particle filter with adaptive resampling.

particle set composed of only few particles with high weightadicates thay{ is associated with th&h target. In this casg;,{
and all the others with very small ones. is a realization of the stochastic process

Beside the discretization of the filtering integrals, the use of
such particles enables the maintenance of multiple hypotheses

on the position of the target and to keep in the long term on}y ain. the noises{Wtj) and (Wtj’) are supposed only to be

the particles whose position is likely given the whole sequen&%ite noises, independent fgr j/. We assume that the func-
of observations.

tions H; are such that they can be associated with functional
We find more details on the algorithm in [9] or [15] and o'?ormslz such that

adaptive resampling in [9] and [21]. After these recalls, let us
present briefly the multitarget tracking problem and its clas- li(y; =) o< p(Y7 = y|K] =4, X{ = ).
sical solutions, as well as the existing works on particle filtering
methods for MTT. Then, we will propose the MTPF.

Y/ = Hj(X], W{) if K{ =i (6)

We dedicate the model 0 to false alarms. Thuggif = 0,
the jth measurement is associated with the clutter, but we do
not associate any kinematic model to false alarms.
[1l. M ULTITARGET PARTICLE FILTER As the indexing of the measurements is arbitrary, all the mea-
. surements have the saraepriori probability to be associated
A. MTT Problem and Its Classical Treatment with a given modet. At time ¢, these association probabilities

Let M be the number of targets to track that are assumeddgfine the vectorr, = (77, mf, ..., 7)€ [0, 1]M*1. Thus,
be known and fixed for the moment (the case of a varying ufer< = 1, ..., M, «} iz P(K! = L) forallj =1, ..., myis
known number will be addressed in Section 11I-C). The indexthe discrete probablhty that any measurementis associated with
designates one among th¢ targets and is always used as firsthe ith target.
superscript. Multitarget tracking consists of estimating the stateTo solve the data association, some assumptions are com-
vector made by concatenating the state vectors of all targets. itienly made [3].
generally assumed that the targets are moving according toindea1) One measurement can originate from one target or from

pendent Markovian dynamics. AttinieX, = (X}, ..., XM) the clutter.
follows the state equation (1) decomposedvinpartial equa-  A2) One target can produce zero or one measurement at one
tions time.

‘ o ‘ The assumption A1) expresses t that the association is exclusive

Xi=F(X{_,, V) Vi=1.. M (5) and exhaustive. Consequently,”, i = 1.
Assumption A2) implies thatr, may differ from A/ and,
The noisegV;’) and(V;") are supposed only to be white bothabove all, that the association variablés for j = 1, ..., my
temporally and spatially and independentfg# 7'. are dependent.
The observation vector collected at tirmis denoted by, = Under these assumptions, the MHT algorithm [28] builds re-

(yi, ..., y™). The index;j is used as first superscript to refercursively the association hypotheses. One advantage of this al-

to one of them, measurements. The vectgris composed of gorithm is that the appearance of a new target is hypothesized
detection measurements and clutter measurements. The falseach time step. However, the complexity of the algorithm in-
alarms are assumed to be uniformly distributed in the obsereases exponentially with time. Some pruning solutions must
vation area. Their number is assumed to arise from a Poissmnfound to eliminate some of the associations.

density of parametekV, whereV is the volume of the obser- The JPDAF begins with a gating of the measurements. Only
vation area, and is the number of false alarms per unit volumethe measurements that are inside an ellipsoid around the pre-
As we do not know the origin of each measurement, one hastioted state are kept. The gating assumes that the measurements
introduce the vectaK; to describe the associations between thare distributed according to a Gaussian law centered on the pre-
measurements and the targets. Each compdiigig a random dicted state. Then, the probabilities of each associdtipr=
variable that takes its values amo{tyy ..., M}. Thus,K] = ¢ are estimated. As the variablég§ are assumed dependent by
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A?2), this computation implies the exhaustive enumeration of glves access to their depth ordering, thus solving the association

the possible associatiods! for I # ;. issue during occlusions. Finally, in mobile robotics [29], a par-
The novelty in the PMHT algorithm [12], [32], [33] consiststicle filter is used for each object tracked. The likelihood of the
of replacing the assumption A2) by A3): measurements is written like in a JPDAF. Thus, the assignment

rglbabilities are evaluated according to the probabilities of each
ossible association. Given these assignment probabilities, the
particle weights can be evaluated. The particle filters are then
This assumption is often criticized because it does not match ﬂl‘@pendent through the evaluation of the assignment probabili-
physical reality. However, from a mathematical point of view, ifies. Independently of the two latter works [6] and [29], we have
ensures the stochastic independence of the varidbjesnd it developed the MTPF, where the data association is approached

drastically reduces the complexity of thgvector estimation. jn the same probabilistic spirit as the basic PMHT [12], [32].
The assumptions Al) and A3) will be keptin the MTPF pre- First, to estimate the densitf, = p(X; = (X},

sented later. Let us present now the existing works solving MTT XM) Yo = yo.) With particle filtering methods, we must
with particle filtering methods. choose the state space for the particles. As mentioned before,
a unique particle filter with a single-target state space seemed
B. Related Work: MTT With Particle Filtering Methods to us a poor (_:hoice as the particles tracking an occlude_d object
would be quickly discarded. We have considered using one
In the context of multitarget tracking, particle filteringparticle filter per object but without finding a consistent way
methods are appealing: As the association needs only totbenake them dependent. The stochastic association v&gtor
considered at a given time iteration, the complexity of daiatroduced in Section IlI-A could also be considered to be an
association is reduced. First, two extensions of the bootstragditional particle component. However, as the ordering of the
filter have been considered. In [2], a bootstrap-type algorithmeasurements is arbitrary, it would not be possible to devise a
is proposed in which the sample state space is a “(multitargggnamic prior on it. Moreover, the state space would increase,
state space.” However, nothing is said about the associatforther making the particle filter less effective. Finally, we have
problem that needs to be solved to evaluate the sample weight®sen to use particles whose dimension is the sum of those
It is, in fact, the ability of the particle filtering to deal with of the individual state spaces corresponding to each target, as
multimodality due to (high) clutter that is pointed out compareith [6] and [24]. Each of these concatenated vectors then gives
with deterministic algorithms like the nearest neighbor filtgointly a representation of all targets. Let us describe the MTPF.
or the probabilistic data association (PDA) filter. No exampldsurther details on the motivations for the different ingredients
with multiple targets are presented. The simulations only dezfithe MTPF can be found in [18].
with a single target in clutter with a linear observation model.
In [14], a hybrid bootstrap filter is presented where the particles, MTPF Algorithm
evolve in a single-object state space. Each particle gives
hypothesis on the state of one object. Thus, dhgosteriori
law of the targets, given the measurements, is representeuﬂﬂ)
a Gaussian mixture. Each mode of this law then correspo
to one of the objects. However, as pointed out in [14], the
likelihood evaluation is possible only under the availability of o
t

A3) One target can produce zero or several measurement8
one time. P

aEefore describing the algorithm itself, let us first notice that
association probability! that a measurement is associated
the clutter is a constant that can be computed

" o . e , =P(K! =0) 7
the “prior probabilities of all possible associations between N
the measurements and the targets. It may be why the simulation - P(KI 0 0
example only deals with one single target in clutter. Even if ; (K =0l = PN = D) ®
the likelihood could be evaluated, the way to representathe m AV
posteriori law by a mixture can lead to the loss of one of the = — exp(_)\v)( i ) 9)
My .

targets during occlusions. The particles tracking an occluded 7
target get very small weights and are therefore discarded during
the resampling step. This fact has been pointed out in [29]. Where N is the number of measurements arising from the
In image analysis, the Condensation algorithm has been glutter at timet. Assuming that there arkclutter originated
tended to the case of multiple objects as well. In [24], the caBieasurements among the, measurements collected at
of two objects is considered. The hidden state is the concali@2€ ¢, the a priori probability that any measurement comes
nation of the two single-object states and of a binary variabf@m the clutter is equal té/m.; hence, we get the equality
indicating which object is closer to the camera. This latter vaf( K7 = 0| VY = 1) = I/m, used to derive (9) from (8).
able solves the association during occlusion because the meahe initial setSo = (sg, 1/N)n=1, .., n Of N particles is
surements are affected to the foreground object. MoreoverSieh that each componesf}* for i = 1, ..., M is sampled
probabilistic exclusion principle is integrated to the likelihoodfom p(X) independently from the others. Assume we have
measurement to penalize the hypotheses with the two obje@sainedS; 1 = (s 1, g/ 1 )n=1, ., v With S0 i) = 1.
overlapping. In [6], the state is composed of an integer equalEach particle is a vector of dimensi@f‘i1 n’, where we de-
the number of objects and of a concatenation of the individuabte bys;" theith component o§_, and where:’, designates
states. A three-dimensional (3-D) representation of the objetit® dimension of target

o
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The prediction is performed by sampling from some proposfibm the conditional posterior distribution of each component of
density f. In the bootstrap filter cas¢, coincides with the dy- the partition. Let the index denote the iterations in the Gibbs

namics (5) sampler. The second subscript of the vectors refers to the itera-
(gl i tion counter. Assume that thet 1 first elements of the Markov
CHERAN chain(é, o, . .., 6; ») have been drawn. We sample tReom-
5y = : , n=1,..., N. (10) ponents of;, .1 as follows:
FM (st v ™ 1 1 2 P
t Draw 9t,‘r+l from p(et |Yb:t7 et,‘r? IR et,‘r)
Examine now _the computation of _the likelihood of the obser-  praw 67 1 from p(63|Yo., 608,41, 63, ..., 6F)
vations conditioned on theth particle. We can write for all
n=1..., N
r—1
p(Y; = (y%7 . y;nt)|Xt = §?) Draw etl,)‘r-f—l from p(etp|ybt7 etl,‘r+17 R et,‘r-l—l)'

my my

o M
=[] pilsy) < [ |-+ s 5’?”)?&”] . (1) o
j=1 j=1 14 i=1 9{ = Ktj, for j=1 ..., my

me+i 1T I
Note that the first equality in (11) is true only under the 0 _‘Ht, fori=1,.... M (12)
assumption of conditional independence of the measure- gretMEyi — xio for i=1,..., M.
ments, which we will make. To derive the second equalij

In our case, at a given instahwe follow this algorithm with

; e I'heinitialization of the Gibbs sampler consists of assigning uni-
in (11), we Jha\ie /u{sed the total probability theorem wit orm association probabilities, i.ex; , = (1 — 7?)/M for all
the events(K] = i);=0 .. an and under the supplementar ) . _
assumption that the normalization factors betwdgrand ¢=1,---, M,andtakingX; o =3, _, ¢;",5;, i.e., the cen-
(Y7 = y|K! =i, Xi = 1) is the same for all. _trq|_d (_)f_the predicted partlcl_e set. TH€ variables d_o not need
We still need to estimate at each time step the associatipffializing because at the first time step of the Gibbs sampler,
probabilities(x¢);_1 . 1, which can be seen as the stochasti§1ey Will be sampled conditioned or{ ;, 7 = 1, ..., M and
coefficients of thel/ -component mixture. Two main ways havet,o- Then, suppose that atinstanwe have already simulated
been found in the literature to estimate the parameters of thfs 1, - - -» 0, -)- TheT + 1th iteration is handled as follows.
model: the expectation maximization (EM) method (and its sto- * As the (K});=1,.. ., are assumed to be independent,
chastic version the SEM algorithm [5]) and the data augmenta- their individual discrete conditional density reads
tion method. The second one amounts in fact to a Gibbs sampler. ; . i
In[12], [32], and [33], the EM algorithm is extended and ap- PG Yo, Xo, (K iy, W) = P(KG Y, Xo, 1), (13)
plied to multitarget tracking. This method implies that the vec-
tors 7, and X, are considered as parameters to estimate. The
maxi_m_izr_zltion _step can bedeahsily ggn_ductled in tr]:e case_of de- P(K{ _ i|Ytj _ yta" X,, 1)
terministic trajectories, and the additional use of a maximum ; ivi i
a posteriori(l\/fAP) estimate enables the achievement of it for = PO = K7 =i, X, IL)P(KY = i.Xy, 11,)

Assignment variable& are discrete, and we can write

nondeterministic trajectories. Yet, the nonlinearity of the state ’ p(Y{ = 9| X, ILy)

and observation functions makes this step very difficult. Finally, rili(yl; 2, fi=1,.... M

the estimation is done iteratively in a batch approach we would x % ifi—0 (14)
t ’ — Y-

like to avoid. For these reasons, we have not chosen an EM al-

gorithm to estimate the association probabilites. The realizationE{ .41 Ofthe vector, ., are then sam-
. The data augmentation algorithm is qu_|te differentin its prin- pled according to the weighjf{’ 0+1 Y%

ciple. The vectorsY,, K;, andr, are considered to be random 7

variables with prior densities. Samples are then obtained iter-

atively from their joint posterior using a proper Markov chain

Monte Carlo (MCMC) technique, namely, the Gibbs sampler. « Mixture proportion vectoil!} , is drawn from the con-

G i oqigd. i s
pt,‘r—l—l _W;,Tl;(yt7 ‘/E;,‘r) for ¢ = 1? RS M.

This method has been studied in [4], [8], [13], [30], and [31], ditional density SRS

for instance. It can be run sequentially at each time period. The

Gibbs sampler is a special case of the Metropolis—Hasting algo-p(H%:MIKt, 41 Xt, 7, Your)

rithm with the proposal densities being the conditional distribu- =p(I13, ..., Hi\thl,‘r—f—lv . K%H, X7y You)
tions and the acceptance probability being consequently always  _ p(ILk M| Kl KM )

equal to one. See [7] for an introduction to MCMC simulation A

methods and also for a presentation of the EM algorithm. o< Diriehlet(I {1+ n* (K, r41) tim1, . p)  (15)

Let I1, be the stochastic variable associated with the proba-
bility ;. Foré, = (X,, K, II;), the method consists of gener-
ating a Markov chain that converges to the stationary distribu-
tion p(6:|Yo.+), which cannot be sampled directly. For that, we
must get a partitiol;, ..., 8 of §, and to sample alternatively 1Using Bayes's rulep(alb, ¢) = (p(bla, ¢)p(alc))/p(blc).

where we denote by‘(K) the number of’ equal toi

and whereDirichlet(8y, ..., 6p7) denotes the Dirichlet

distribution on the simplex(x}, ..., 7M~1 1 — z} —
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M—1y. M-1 : ; . i .
T )'1(7?1_45' T Mf(él} W_'tlr)' density pro- p(Xiy" 7 Yo, 1) when N tends toward infinity
portmn%tqm ' XX MM*l X (1—mp — remains to be proved. Not being able to sample from
-—m, H)Pu 1 The vectodl; | is first drawn ac- LML ;

o (X7 |y, , Yo.:-1), we draw X} _,, as a real-
ization fromA, ;1.

cording to (15) and then normalized to restore the sum

0
%zﬁl W% T+1 t%1 T led di he densi —  Now, leti be an index in the second product. As we
* Xt,r+1 has to be sampled according to the density do not have any measurement to correct the predicted
articles, we draw a realization from the densit
(Xt Yo, Kt rq1, e 7 41) patces, 5. for X y
M done1 W1 sp 10M Xy~
i After a finite number of iterations, we estimate the veetpr
- XiYou, Ky ry1, 11 . (16 _ ations,
Zl;llp( (Y01, Kirpas ). (16) by the average of its last realizations:
The values ofi(; .., might imply that one target is as- i 1 e, 20
sociated with zero or several measurements. Let us define e = Theg — Tend Z Tt 7 (20)
M o={jel---m]: K] | =i}. Hence, we de- T Tbes
compose the preceding product in two products: Finally, the weights can be computed according to (11) using
‘ o the estimater; of w{. By construction,z! follows the law
i 4,741 . .
H (X [Y0: ¢-1, 4 o 1 r41) p(114|Yo.). Thus, the use of a Gibbs sampler enables us to
ML take into account the current measurements. Consequently,

H P(XiYo: 11, I .41) (17) the est'imates measure in a way theposteriori deFection
probability of each target. It improves the estimation of the
targets because the measurements contribute to the estimation
Mi P ; i roportionally to these probabilities. Moreover, thea priori
wherey, """ = {u;, j € M .;.}. The first product progability o?detectingpa target, which is usually derl)woted by
contains the targets that are associated with at least 08¢ g ot needed in the MTPF. This probability is needed when
measurement under the assomatfggrﬂ. In this case, ¢ a550ciations are considered in classical algorithms like the
the measurements are denotedihy* "™'. The second PMHT or the JPDAF.
product contains the targets that are associated with norhe resampling step is performed in an adaptive way when
measurements undéf, .. the estimated effective sample s, s is under the threshold
—  Let: be an index in the first product. We can write  N,;,,.cs100¢. In [18], we have compared the performance of

particle filtering with systematic and adaptive resampling in

i M;,,—ﬁ»l:w

PXiYor 1o1, vy o7, i, 7 41) a single-object bearings-only synthetic example. The bias on
My ; the estimation error was almost the same, but the standard
p <yt |Xt) pX{ Y0 1) deviation was twice as small using adaptive resampling rather
= M - (18)  than systematic resampling.
P <yt Yo, t—l) Due to the estimation of the, vector needed for the compu-

tation of the particles likelihood, the convergence of the MTPF
We are not able to sample directly from the densitgould be affected. It could be interesting to evaluate the error on
(p(yt/‘/‘i,,-ﬂ | X)p(XE[Yo, t_l))/(p(yt/‘/‘imﬂ Yo.1-1)) the es_tin?ate oi; implied b_y th_e error made on the estimate of
for the same reasons as those exposed in Section Ifto ' NS is not addressed in this work.
justify the use of the particle filter (intractability of ~The complete procedure is summarized in Fig. 2.
the integrals). We propose to build the particle set i
Sri1 = (0741, X1 )net, . v Whose weights™, D. Varying Number of Targets
measure the likelihood of the observations associatedUntil now, the number of target® was assumed known and

by K; .11 to targetX;. More precisely, we let constant. We now make suggestions to relax this constraint. As
) per the disappearance of objects, the vegigorovides useful
on =80 i ion: i il-
T+1 t 3 information: the disappearance of one target from the surveil
b olv . . lance area can be detected by a drop in the corresponding
p <yt | Xy = Ur+1) Q-1 (19) component. We will use the estimate of to decide between
X4l = _ . the two following hypotheses.
Zp <th”“ |X| = a§+1> qr_, * (HP)—The target is present in the surveillance area.
k=1 « (HP)—The target is not present in the surveillance area.

h ) irical N i [Ifthe target is still present in the surveillance area, the fall of
As the predicted empirical laws, = 2on=1 %-15"" 1, can only be due to its nondetection, which occurs with a
is “close” to the predicted law(.X;[Yo. +—1), We €X- probability 1 — P;. Let D be the binary variable equal to 1 if
pect the empirical d'St”bUt'omfj\Jz} = 2=t theith target has been detected at titrand O otherwise. Over
Xr41007,, t0 be close top(Xily, """, Yo.¢+_1). atestintervalty, ..., ty] and for a given target the variables
However, the weak convergence oh,;; to Djl, e, Did are distributed according to a binomial law of
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sg ~ p(X
. Initialization: 0 P 1 &
9% =1/N
e Fort=1,...,T:
o Proposal: sample §f from f(X| X1 =s},Yi=w)forn=1,... ,N.
o Weighting:
EURT . . W§o=17\;{0 Z=1a aM;
1. Initialization of the Gibbs sampler: - .y
0 = Zn—ﬂh 1§ =1, M.
2. Fort=0,...,Tepa:
‘ . i Uiyl ifi=1,...,M;
a. Kgﬂ_+1 ~ p(Kt],'r+1 = Z) x I;,T t(yt t,T) o
np/V ifi=0.

b. wiM, ~ Dirichlet(1 + n*(Kyr41))iz1,...m) , 0 (K) £ 4{j : K7 = i},
c. For each 4 such that M}, Z{je(l...my: Kf’TH =i} #0,

~nz
0741 =5
> n=1,...,N.

p(yt t T+1 |X1—0'n

%ﬁ:ﬂ’(yt t'r+11Xf=‘7r+1)‘h_1
1 n
> Xt,‘r+1 ~ Zn:l XT+1502+1

+1) 451

n —
XT+1 -

d. For each i such that Mi ., =0, Xi . ~ >N, a1 Bgpi.

3. ﬁ'ti = Tbegi‘rend Z:ef:beg 7T§T i=1,..., M.
v S
L= o aPNSE) =TT B 50, B 509 m= 1,
p(3P)lsp_1) Le(YI87)
5"11:“%"1% n=1,...,N.

o Return Eg(Xt) = 22;1 a7 9(3%).

o Calculate Nsf = m

N
DN gk
¢ =1/N
else st =57 forn=1,... /N

o Resampling: if N, £f < Nihreshold

Fig. 2. MTPF: Particle filter algorithm for multiple targets with adaptive resampling.

Di=1,
D=0,

can use the estimatés$ to estimate them. Let us define terval¢, — t; must be chosen such th@t; — ¢1)(1 — P,) > 4.
If Ai D resio
Ty >. threshold 1)
otherwise : )
On the other hand, the arrival of a new target might be related
3 ctasses((Oe—E.)?)/ E. between the expected sigk and the  the two following hypotheses.

parameter$P;, 1 — P;). These variables are unknown, but wés higher than 4. That is why in practice, the length of the in-
As far as the algorithm is concerned, this reduction only leads
to updateM (the number of targets) and to remove the compo-
nents of the particles related to the disappeared target. It can be
integrated to the MTPF as described in Fig. 3.
to an observation whose likelihood is low, whatever target it is
where Dy csno1a is @ probability threshold. The? test with associated with. As a result, assignment variables simulated by
the obtained variable®; , ..., Di decides on the true hy- the Gibbs sampler might be more often equal to 0. We propose
pothesis. This test consists of computmg the distamte= 10 use the values of the assignment variables to decide between
obtained siz®.. of each class (here, the class 0 and the class 1). ¢
Whent, tends toward infinityn? is asymptotically distributed
as ay? law. One admits that? is reasonably approximated by a
x2 law under the conditions that the expected size of each class

* (H{)—

(Hg")—A new target is arriving inside the surveillance
area.
No new target is arriving inside the surveillance
area.
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s ~ p(X,
» Initialization: 8~ p(Xo) n=1,...,N.
9 =1/N
eFort=1,...,7T:
o Proposal: sample 3} from f(X;|Xem1 = s, Yi=w)forn=1,... N

o Weighting

1-3. 7= Tbegi'rcnd Z:;"ibeg mi, i=1,..., M obtained by Gibbs sampling (see Fig. 2)

n 0 i ni
4 (Y = by I8 = TIP3 + S B 50904 m=1,... N,

2157y b(Yil37)
5. ¢ q;l_l”————-(Stf(“;tlslt_:’y;)st n=1,... N.

6. Disappearance test:

D; =1if ﬁ’: > Dthreshold

A Calculate i=1,..., M

Di = 0 otherwise
A Fori=1,...,M, test the hypothesis (HP) against (H_) with a x2.
If (HP) is decided, replace M by M — 1 and remove the particle components related to

target 1.
7. Appearance test:
A Calculate N = Tbegfm — o e (Ker)-

A Test the hypothesis (Hg') against (H{!) with a x2.
If (H{') is decided, replace M by M + 1 and initialize the new particle components.

o Return IEg(Xt) = Zi;l q79(87).
o Calculate Neff = W
n=1\1¢

Nk
N st~ G bk
o Resampling: if Nefs < Nipreshold : E Zk“l 9t % n=1,...,N.
gt =1/N

Fig. 3. Particle filter algorithm for multiple targets with adaptive resampling and varying target number.

Let N? be the estimate of?, which is the number of measure-useful notations must be added to modify the measurement
ments arising from the clutter at tintesupplied by the Gibbs equations. The observation vector at timevill be denoted

sampler by 4 = (Up jus -y Ui ) wherer’ refers to the receiver
_ that received thejth measure. This measurement is then a
NO = 1 Z nd(K;, ) (22) realization of the stochastic process
Tbeg — Tend T=Theg . ) ) . .
. | Y/, = H (XL W), K =i (29
wherenf(K) = #{j: K’ = 0}. Over an interva[ti, ..., t4], ’ ’

a x* test enables us to measure the adeguation between \Wig assume the independence of the observations collected by
Poisson law of parametev” followed by (N;')i—,, ..., @nd  the different receivers. We denote by (y; =) the functions

the empirical law of the variablesVy )., . .. +,. This test can that are proportional t@(Yj = ylK} =i, Xi = 2). The

. . . . t,rd
also be integrated to the MTPF, as described in Fig. 3. Neverthiga ihgod of the observations conditioned by i particle is
less, the initialization of the new target based on the observatllgéd"y obtained as

sets is a tricky problem, which we have not solved yet.
P = (U s s Ui )| X = 7))

my

E. Multireceiver Multitarget Particle Filter—MRMTPF
A natural extension of the MTPF is to consider that ob-

servations can be collected by multiple receivers. Rebe
their number. We will see that we can easily adapt the particle
filter to this situation. We always consider that thé targets
(their number is fixed again) obey the state equation (5). Some

=11 r .s1s1)
j=1

my

0 M
v i j n,i\ 1
O(H Vt—i- E ltjrj(yirﬁ CAREH (24)
j=1 i=1
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There is no strong limitation on the use of the patrticle filter 500

for multireceiver and multitarget tracking: the MRMTPF is ob- 1000

tained from the MTPF by replacing the likelihood functions g s

li(y; =) by the functiond! , (y; ). £ o

Moreover, it can deal with measurements of varied periodic- g °r

e . . . .o . B -1000 b

ities. We present in Section 1V-B a scenario mixing active and 2 el

passive measurements. oo e
2500 /\/\ observer
3000 =~ .

-1000 [} 1000 2000 3000 4000 5000 6000 7000

IV. SIMULATIONS RESULTS

x-coordinate in meters

Fig. 4. Trajectories of the three targets and of the observer for experiments in

For all the following simulations, the burn-in period of theSeCtlon IV-A.

Gibbs sampler has been fixed 19., = 100 and the total

number of iterations te.,,; = 1000. The resampling threshold The initial positions of the targets and of the observer are the

has been fixed tV;1-esnota = 0.9. following:
A. Application to Bearings-Only Problems With Clutter 200 m 0m
. . _ _ _ n 1500 m 5 om
To illustrate themTPF algorithm, we first deal with classical Xy = 1ms-1 X5 = 1ms
bearings-only problems with three targets. In the context of a —0.5 ms-L 0ms-!
slowly maneuvering target, we have chosen a nearly-constant- —200m 200 m
velocity model (see [22] for a review of the principal dynamical 1500 m 3000 m
models used in this domain). X3 = L met X5t = 12 msl
1) Model and the First Scenario Studied’he state vectors - 1 1
0.5 ms™ 0.5ms

X} represent the coordinates and the velocities in-theplane:
X} = (2, yi, val, vyi) for i = 1, 2, 3. For each target, the
discretized state equation associated with time pedods

At?

) I Atl ) - I
i, = < 2%2 2><2) X4 5 22
0 I
2Xx2 AtIQXQ

The dynamic noise is a normal zero-mean Gaussian vector with
o, = o, = 0.0005 ms~2. We use the same dynamic noise to
predict the particle. The observer is following a leg-by-leg tra-
jectory. Its velocity vector is constant on each leg and modified
at the following instants so that

vasey \ _ ( —06
vush 03)°
~1, T

<w:g§% ) _ < —0.6) <vx§§% )
~. ; obs obs
filters with g(z) = =, i.e., Xi = S, ¢na! VY00 0.3/ \ vgon

A set of m; measurements is available at discrete times and <va:§‘53) B <—0.6>

can be divided in two subsets. vysts 0.3

Vi (29)

where I>» is the identity matrix in dimension 2, and, is

a Gaussian zero-mean vector with covariance mafjx =

(% %]. Let X} be the estimate of; computed by the particle
Y

[
TN
en
w o
—

(27)

» A subset of “true” measurements that follow (26). A mea-

surement produced by thih target is generated accordingrpg trajectories of the three targets and of the observer are rep-

to resented in Fig. 4, where the arrows indicate the direction of the
e motion. The measurements are simulated as follows.

Y, = arctan <u (26) + For each target, a “true” bearing is simulated with a prob-
ability P; = 0.9 using a Gaussian noise of standard de-
viation o, = 0.05 rad (about 3 every time period, i.e.,
every 6 s.

« The Poisson density mean used is varying between 0 (no
clutter) and 3. We consider a total observation volume, i.e.,

the interval[—; 7).

Z; _ .’L’fbs

>+Wt

whereW; is a zero-mean Gaussian noise with covariance
o2 independent o¥;, andz,;, andy,, are the Cartesian
coordinates of the observer, which are known. We assume
that the measurement produced by one target is available
with a detection probability’;.

» A subset of “false” measurements whose number follows The measurement sets simulated for clutter parameters equal
a Poisson distribution with meaxl”, wherel is the mean to 0, 1, and 3 are plotted in Fig. 5. In this scenario, the data
number of false alarms per unit volume. We assume thesgsociation is particularly difficult: The differences between two
false alarms are independent and uniformly distributdzbarings issued from two different targets is often lower than the
within the observation volum¥’. standard deviation of the observation noise.
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Fig. 5. Measurements simulated with a detection probabfify= 0.9. (@) AV = 0. (b)) AV = 1. () AV = 3.

2) Results of the MTPFFirst, the initialization of the par- These different quantities, which are normalized by their values
ticle set has been done according to a Gaussian law whose maatained with no clutter, are plotted against the clutter param-

vector X ,,...n and covariance matriX.,,, are eter in Fig. 6. Except for the andvz components of the third
—10m target, the standard deviation is not very sensitive to clutter. In
. . 100 m Fig. 7, the MTPF estimate averaged over the 20 runs have been
Xean =Xo T | g mst plotted with the2o confidence ellipsoid on position given by
_0oms! o = stdy ;. In particular, thex component of the third target
seems well estimated, which counterbalances the variations ob-
—10m served in Fig. 6.
2 o =X2+ _1007T The ellipsoids plotted in Fig. 7 represent the variance over the
' 0 ms_l 20 runs of the posterior mean estimates and enable us to assess
0ms the variance of the MTPF estimator fdf = 1000 particles. The
20 m posterior covariance of the estimate from one particular run is
3 u3 100 m also a useful indicator to assess the quality of the estimation.
Xmean =Xo + 0ms! (28) The 20 confidence ellipsoids corresponding to the covariance
O0ms! of the posterior estimate are presented for one particular run in
and Fig. 8(a). As the covariance of dynamic noise is not very high
and especially as the prior attime zero is narrow, one might think
20 00 0 that the estimates obtained without measuremergsld be as
X, = 01000 . 0 ; for i=1, 2, 3. good. However, the posterior covariance obtained without using
8 8 8'0‘) 8 05 the measurements increase a lot as presented in Fig. 8(b).

29) With a Pentium 111 863 MHz N = 1000 particles, a burn-in

To evaluate the performance of the algorithm according to tﬂgr'othg = é?)o and thot.aI alinounvtmd d: 1000 of itera-
clutter density, we have performad= 20 different runs of the UONS In the Gibbs sampler, it takes around 1 s per time step to

MTPF with 1000 particles foAV = 0, 1, 2, 3. The scenario compute the MTPF estimate of three targets with bearings-only

is the same for each run, i.e., the true target trajectories gasurements. ) .
the simulated measurements are identical. At each tirtfee The next section shows the ability of the MTPF to recover

bias and the standard deviation for ftiecomponent ofX* are from a poor initiali.zation. . . . .
defined by 3) Effect of a Highly Shifted InitializationThe initial posi-

tions and velocities of the objects are the same as in the previous

bias, 1 — 1 & Xip i section. The observer is still following a leg-by-leg trajectory,
st =5 Z( i t,0) but its initial position is now
p=1
5 3500 m
1L o 1 i yobs _ | —2500m
Sl‘,dt?l - F t:l - F Z Xt:l . (30) 0 B —05 mS_l
p=1 p=1 0mst

To avoid the compensation of elementary bias of opposite Sigi§, velocity vector is constant on each leg and modified at the
we average the absolute values of the bias ;. Then, we fq|iowing instants so that

define, for each target, and for thth component

. <vx§85> B <1.2>. <vx<fgg) B <—3.0>
. 1 ., obs - . 9 obs - .
bias; = T ; |bias, i (31) VY30 0.3 VY100 0.3

vty \ (1.2 [(vzgy\ [ —3.0
and we average the standard deviations vyses ) \03 )7 \wyghe )\ 03
1 T 2Such estimates are obtained by applying the prediction step and by giving
std; = — Z stdy q. (32) constant weights to the particles instead of computing them given the measure-
r ments.

t=1
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Fig. 6. Bias, resp. std, for clutter parameterl, 2, 3 over bias, resp. std, obtained with no clutter obtained with 1000 particles for 20 runs. (a) Biasdny
position for the three targets. (b) Bias om andvy position for the three targets. (c) std erandy position for the three targets. (d) std em andvy position
for the three targets.

3000 3000
2000 2000
1000} 1000}
oF o}
1000 -1000[
~2000F -20001
-1000 a 1000 0 1000 2000 3000 4000 5000 6000 7000 b
9000 aooo’r
2000 20004
1000 1000}
or oF
~1000 ~1000 -
<2000 ~2000
~1000 ) 7000 2000 200 w000 5000 000 7000 C "-tooo o 000 2000 2000 4000 5000 %000 7000 d

Fig. 7. Averaged MTPF estimate of the posterior means (dashed lines) over 20 runs and askodatdidience ellipsoids for the three targets wikh= 1000
particles and with a detection probabiliigy, = 0.9. (Q)AV = 0. (b) A\V = 1. (c) AV = 2. (d) A\V = 3. The solid lines are the true trajectories.

<U$§8% ) _ < 12) <W§8%> _ < —4-()) The trajectories of the three targets and of the observer are rep-
vygss ) \03) \wygss ) — \| 03 resented in Fig. 9. Compared with the previous section, the first
vobs 12 maneuver occurs earlier to. make the targets resolvable (_aarlier.
<Uy§§§> = <0.3> . (33) The initialization of the particle set has been done according to

a Gaussian law whose mean vecty,...., and covariance ma-
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Fig. 8. Single run performance with = 1000 particles. (a) MTPF estimate (dashed lines) 2nconfidence ellipsoids of the posterior means with a detection
probability P, = 0.9 andA\V = 0. (b) Estimate obtained without measurements Zmaonfidence ellipsoids. The solid lines are the true trajectories.
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Fig. 9. Trajectories of the three targets and of the observer for experiments in

Section IV-A3.

trix X.,, are

200 m
1 w1 200 m
Xrnean _XO + 0 mS—l
Oms!
—200m
9 2 —200m
Xrnean XO + 0 ms—l
oms?
—100 m
200 m
Xglean = Xg + 0 ms—l (34)
oms?
and
1502 0 0 0
. =2
X = 8 1"00 8.12 8 . fori=1,23.
0 00 0.12
(35)

~“Zioo0 o 1000 2000 3000 4000 5000 6000 7000 b

Fig. 10. (a) Averaged MTPF estimate of the posterior means (dashed lines)
over 20 runs and associated confidence ellipsoids for the three targets with

N = 1000 particles and with a detection probabilify, = 0.9 andAV =

0. (b) MTPF estimate for one particular run (dashed lines) an@onfidence
ellipsoids. The solid lines are the true trajectories.

initialization. As in the previous section, the posterior covari-
ance of each MTPF estimate rapidly decreases as shown for
one particular run in Fig. 10(b). As the initialization is really far
from the true initial positions, the estimates obtained without
using any measurements are not acceptable. They are presented
in Fig. 11.

4) Estimation With a JPDAF-EKF AlgorithmWe have
compared the MTPF with a classical association algorithm: the
JPDAF [3]. Since the measurement equation (26) is nonlinear,
we cannot use a classic Kalman filter. According to [1], the

The measurements have been simulated without any clutter amadified polar coordinates extended Kalman filter (EKF) gives
with a Gaussian noise of standard deviatign= 0.02 (about the best performance among the four single-filter trackers
1.15’). The averaged estimates obtained with the MTPF over 26mpared. This is the one we used in the JPDAF (see [16],

runs are presented in Fig. 10(a) with the correspondingl-

[17], and [27] for details on the implementation of the modified

lipsoids. The particles recover very quickly from their shiftegolar coordinates EKF).
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Fig. 12. JPDAF-MPEKF estimates (dotted lines). The solid lines stand for the
real trajectories. The true and estimated positions at times 0, 100, and 200 are
marked with 4+ for target 1, “x” for target 2, and ‘®” for target 3.

noises, Kalman filtering first computes the predicted estimate
according to the following equation:
XM =F/(XH ) 0). (37)

tlt—1
The measurements are then taken into account through the mea-
surement innovation, i.e., the difference between the measure-
ments and the predicted measurements. The measurement inno-

Fig. 11. (a) Averaged estimate obtained without any measurements (da : Sl . ; ; :
lines) over 20 runs and associated confidence ellipsoids for the three targetzoa?lon’ mUItlp“ed by the filter galt;, I addedto the predICted
with NV = 1000 particles. (b) Estimate obtained without any measurements fétate
one particular run (dashed lines) aha confidence ellipsoids. The solid lines

are the true trajectories. thf — thii

K.Y - H(XEL0). (38)

t|t—1°

The validation test of the JPDAF has been performed with4£1C€; & high gain or a high measurement noise imply a drastic
validation probability?, = 0.99. The generation of all the fea- diSCrepancy between the predicted and the updated state. Note
sible association matrices has been implementing accordind1gt the densities of the random variables are no longer Gaussian
a depth-first search algorithm [34]. A JPDAF has then been pdr£ OF H; are not linear. In this case, the EKF uses the same
formed using the simulated bearings of the scenario presenfiéfations (37) and (38), wherg, is computed with lineariza-
in Section IV-A1 with the clutter densit}V’ = 1. Results ob- tions of F; and/orH, around the pr_ed|cted state and/or pred_lcted
tained in this casewith the MTPF are presented in Fig. 7(b). Aasurement. The obtained estimates are no longer optimal.
already noted, the scenario is particularly difficult as the mea-!n the updating step of particle filtering, the weights of the

surements are very close. For instance, the second measurem@ficles are updated according to the measurements, but the
gficted positions are not modified. Consequently, if the pre-

set contains four measurements that have been simulated JU/&§Ct€ : - g
thatk? = jforj = 1,...,3 andK* = 0. The associated diction is correct, few informative measurements do not deteri-
orate the MTPF estimate, whereas they cause the divergence of
1.7836 1.6928 0.8758 the JPDAF-EKF. _
5) Varying Number of TargetsTo study how the removal of
16724 1.7808 1.2863 - . .
L= B (36) a target can be detected, we have simulated a scenario with a
0'43§7 0'6922 1.5691 detection hole for one targ@tThe true trajectories of the three
0.9852 1.3055 1.7784 targets and of the observer are the same as in Fig. 4(a). Each
whereL(i, j) = p(Y} = /|K} = i, X} = ). The vali- target produces one measurement at each time period according
dation matrix associated with using a validation probability to (26), except during the time interval [600; 700], where the
P, =0.99isV = I3, which means that the gating does nofirst target does not produce any measurement, and the second
suppress any measurements. Fig. 12 shows the true trajectdpl@sluces two measuremengsandy? according to (26). One
simulated during 1000 time periods and the estimate obtaing@rticular run of the particle filter with 1000 particles is pre-
wih the JPDAF. For each object, a given mark indicates the treented in Fig. 13(a). The differences between the three pairs of
and estimate positions every 100 times. Note that at time 0, tp@arings simulated are plotted in Fig. 14. The plot of the three
estimate and the true positions are the same and are indica&gidmated trajectories shows that the difficulty of data associa-
by one common mark. tion has been overcome. Fig. 15 shows the results of the esti-
Atthe end of the scenario, the estimate for target 3 has cleaation of the three components of, whereas the average of
deteriorated because of the false alarms; some of them are galch component; over successive intervals of 100 time steps
idated as true. A major difference between classical algorithragd over 20 trials are represented in Fig. 13(b). When there is an
based on Kalman filtering and particle filtering methods is high- 3Note that in the following simulations, where we want to focus only on the

lighted her?- For a single process to estimate, knOV_Ving the issue of varying the number of targets, as well as in those of next section, where
state equation (1) and the measurement model (2) with Gaussialfocus on multiple receivers, the clutter is not taken into account.

likelihood matrix is
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ambiguity about the origin of the measurements (i.e., when tfie difference between the two simulated bearings is very often
differences between the bearings are lower than the standardiderer than the measurement noise std as shown in Fig. 16(b).
viation noise), the components ofvary in average around onein the following simulations, all the particle clouds have been
third for M = 3 targets, and they stabilize at uniform estimateitialized around the true positions with the covariance matrix
(one third forA = 3 targets) when the ambiguity disappearsy, . defined in (29). In addition, the observer does not follow a
The momentary measurement gap for the first target is corregdyy-by-leg trajectory. This makes the estimation of the trajecto-
handled as the first componen is instantaneously estimatedries quite difficult, and a lot of runs of the MTPF lost the track.

as 0.15 from instant 600 to 700. Consequently, the standard deviation over 20 runs increases a lot
through time, as illustrated by Fig. 16(d). To improve tracking

B. Application to Problems With Active and Passive performance, we study the impact of adding active measure-

Measurements ments (here, ranges). We assume that noisy ranges are available

In the following scenario, we consider two targets and oreriodically during time intervals of lengffiwith periodP, i.e.,
observer whose trajectories are plotted in Fig. 16(a). The initilese measurements are present at tifhé mod P € [0; 7.

positions are A noisy range associated with tfta target is supposed to follow
500 m 500m the equation
2000 m —2000 m j T ot PR
X(]JL = 0.3 ms-! ; Xg = | 03mst Ry = \/(xt — )+ (Y — 9 + Z (39)
—1 —1 . . . . .. ;
—0.7ms 0.7ms whereZ; is a Gaussian noise with standard deviatiof{+} —
600 m 29%%)2 4 (v — y2¥*)2|, whereo, = 10~¢. This noise modeling
obs _ | —7000m seems more realistic than the constant standard deviation mod-
X = 0.5mst |- eling generally used in such contexts. For instance/fer 30

0.3ms! andP = 100, the simulated ranges of the two targets are shown
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Fig. 16. (a) Trajectories of the targets and of the observer. (b) Difference between the noisy bearings associated with the targets comparthaatid the s
deviation of the measurement noise 0.05, i.e., 2.8. (c) Noisy ranges simulated f& = 30 and P = 100. (d)-(f) Averaged estimates (dashed lines) and

20 confidence ellipsoids obtained with bearings measurements and 0%, 20%, and 50% of range measurements, respectively. The solid lines st@nd for the re
trajectories.

in Fig. 16(c). The evolution of the bias and the standard deviafthe two targets is very high, the range measurements are very
tion of the estimation errors has been studied according to hiéerent. They thus help a lot to distinguish the targets and to
quantity of active measurements on the one hand and to thentve the data association.
temporal distribution on the other. The percentage of 20% of active measurements appears to be
1) Quantity of Active Measurementgior these experimen- a good compromise between a significant improvement of the
tations, we have fixe@® = 100 and taker?” = 0, 10, ..., 100. estimation and a reasonable quantity of active measurements.
Fig. 17 summarizes the evolution of the bias and the standard dewith a Pentium 111 863 MHz /N = 1000 particles, a burn-in
viation of the estimation errors as a function of the active meperiod 7., = 100, and a total amount.,. = 1000 of itera-
surement percentage. Fig. 16(e) and (f) shows the MRMTHRiBnNs in the Gibbs sampler, it takes around 840 ms per time step
estimated posterior means averaged over 20 runs an#lstheto compute the MTPF estimates of two targets with bearings
confidence ellipsoids with, respectively, 20% and 50% of aceasurements and 20% of range measurements.
tive measurements. 2) Temporal Distribution of Active Measurementé/e now
First, the addition of active measurements particularly inbeok at the impact of the temporal distribution of the active
proves the estimation of the componentandwvy for the two measurements: the ratio of passive over active measurements
targets. Fig. 16(d)—(f) also shows the drastic reduction of the sizdixed to 5 (i.e., to 20% of active measurements). The interval
of the confidence ellipsoids along thyeaxis when range mea- lengths considered af& = 10, 20, 40, and100. The averaged
surements are added. Thendvz-positions of the two targets MRMTPF estimates and thzr confidence ellipsoids obtained
are actually very close, and the bearings measurements dowith 20 runs and 1000 particles are represented in Fig. 18 for
help to dissociate the targets because of the difficulty of dadéferentZ” values. First of all, if the state evolution was deter-
association. However, as the difference betweenthesitions ministic, the better choice would be to consider active measure-
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ments at the beginning and at the end of the scenario. In our caddhe target states (emitting or not). Even if the MTPF is quite
the state evolution is stochastic. We observe that the bias iswersatile, it can suffer from initialization problems. This draw-
dependent of the temporal distribution of range measuremetttack cannot be completely avoided in the multitarget context.
The size of the2s confidence ellipsoids increases with The  This will be addressed in future studies. Finally, MTPF has been
active measurements should then be available as frequenthezgended to multiple receivers and multiple measurements (here
possible to improve the estimation performance. passive and active). In this context, the effects of the temporal
distribution of active measurement have been investigated. Pre-
liminary results on this aspect show all the importance of mea-
surement scheduling.

Two major extensions of the classical particle filter have been
presented in order to deal first with multiple targets (MTPF) and
then with multiple receivers (MRMTPF). Considering the data
association from a stochastic point of view, Gibbs sampling is[1]
the workhorse for estimating association vectors, thus avoiding

V. CONCLUSION
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