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Sequential Monte Carlo methods for Multi-target

Filtering with Random Finite Sets
Ba-Ngu Vo, Sumeetpal Singh, and Arnaud Doucet

Abstract— Random finite sets are natural representations of
multi-target states and observations that allow multi-sensor
multi-target filtering to fit in the unifying random set framework
for Data Fusion. Although the foundation has been established in
the form of Finite Set Statistics (FISST), its relationship to con-
ventional probability is not clear. Furthermore, optimal Bayesian
multi-target filtering is not yet practical due to the inherent
computational hurdle. Even the Probability Hypothesis Density
(PHD) filter, which propagates only the first moment (or PHD)
instead of the full multi-target posterior, still involves multiple
integrals with no closed forms in general. This article establishes
the relationship between FISST and conventional probability that
leads to the development of a sequential Monte Carlo (SMC)
multi-target filter. In addition, a SMC implementation of the PHD
filter is proposed and demonstrated on a number of simulated
scenarios. Both of the proposed filters are suitable for problems
involving non-linear non-Gaussian dynamics. Convergence results
for these filters are also established.

Index Terms— Multi-target Tracking, Optimal Filtering, Parti-
cle Filter, Point Processes, Random Sets, Sequential Monte Carlo.

I. INTRODUCTION

Multi-target filtering is a class of dynamic state estimation

problems in which the entity of interest is a finite set that is

random in the number of elements as well as the values of in-

dividual elements [4], [5], [6]. Random finite sets are therefore

natural representations of multi-target states and multi-target

measurements. The modelling of multi-target dynamics using

random sets naturally leads to algorithms which incorporate

track initiation and termination, a procedure that has mostly

been performed separately in traditional tracking algorithms.

More importantly, random sets provide a rigorous unified

framework for the seemingly unconnected sub-disciplines of

data fusion [15], [17], [25].

Although stochastic geometrical models, including de-

formable templates and random finite sets (or simple finite

point processes) have long been used by statisticians to de-

velop techniques for object recognition in static images [2],

their use has been largely overlooked in the data fusion and

tracking literature until recently [24]. The earliest published

work using a point process formalism for multi-target filtering
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appears to be [35]. A point process based filter was also

proposed in [47] to estimate an unknown but fixed number of

targets. In [32], [33], [41], a jump process was combined with

stochastic diffusion equations on a non-Euclidean manifold to

track a time varying number of targets. The same problem with

continuous state evolution and marked-point process observa-

tions was considered in [37]. However, the first systematic

treatment of multi-sensor multi-target filtering, as part of a

unified framework for data fusion using random set theory was

finite set statistics (FISST) [15], [17], [24], [25], [27], [28].

The key to a rigorous formulation of multi-target estimation as

a Bayesian filtering problem is to conceptually view the target

set as a single meta-target and the set of observations collected

by the sensor as a single meta-observation. FISST provides

a set of mathematical tools that allows direct application of

Bayesian inferencing to multi-target problems.

From a theoretical standpoint, central FISST concepts such

as set integral and set derivative are not conventional prob-

abilistic concepts. Since measure theoretic probability is the

foundation for Bayesian filtering of any kind, it is important

to understand its connection to FISST. This article establishes

the relationship between FISST and conventional probability.

In particular, it is shown that a unitless set derivative of a belief

mass function is a probability density, and that a set integral is

closely related to the conventional (measure theoretic) integral.

From an implementation view point, analogous to single-

target filtering, Bayes multi-target filtering propagates the

multi-target posterior density recursively in time [15], [25],

[27], [28]. This involves the evaluation of multiple set-integrals

(see Section II-C) and the computational intractability is far

more severe than its single-target counterpart. A more tractable

alternative to optimal multi-target filtering is the Probability

Hypothesis Density (PHD) filter [26], [29], [27]. It is a

recursion propagating the 1st moment, called the intensity

function or PHD, associated with the multi-target posterior.

Since the domain of the intensity function is the space where

individual targets live, its propagation requires much less com-

putational power than the multi-target posterior. Unfortunately,

this still involves multiple integrals that have no closed form

expressions in general. This article proposes Sequential Monte

Carlo (SMC) implementations for both the Bayes multi-target

filter and the PHD filter together with convergence results.

SMC methods are powerful tools in Bayesian filtering

[1], [10], [11], [16] and have been applied to multi-target

problems [3], [12], [21], [22], [30]. However, no principled

SMC implementations have been proposed in the context

of FISST. The relationship between FISST and conventional

probability established in this paper leads to a principled SMC
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implementation of the Bayes multi-target filter, for which the

approximation error is inversely proportional to the number

of samples. The multi-target posterior is represented by a

large set of weighted random samples (particles), possibly of

different dimensions, and are propagated over time using the

importance sampling and resampling strategy of the standard

particle filter. This algorithm was first described in [46].

Around the same time, it was proposed in [39] to truncate

the set integral and apply standard SMC to each of the

ordinary integrals in the truncated expression [39]. However,

convergence analysis for this approach was not available.

Although SMC implementations of the Bayes multi-target

filter are computationally tractable, they are still expensive,

especially when the number of targets is large. Thus, it is

important to search for computationally cheaper alternatives.

The PHD filter is a cheaper alternative. However, direct

application of standard SMC methods to propagate the inten-

sity function would fail because firstly, the intensity function

is not a probability density function; and secondly, the PHD

recursion is not a standard Bayes recursion. In this paper, a

particle interpretation of the PHD recursion is given, which

allows a SMC implementation of the PHD filter. The intensity

function or PHD is represented by a large set of weighted

random samples (of the same dimension) which are propagated

over time using a generalised importance sampling and resam-

pling strategy. It is also shown that the approximation error

vanishes as the number of particles increases. The proposed

algorithm is general enough to cover non-linear non-Gaussian

dynamics. Moreover, the number of particles can be adapted

to maintain a constant ratio of particles to expected number

of targets. This approach first appeared in [46] around the

same time as two other independent works [40] and [48]. In

[40], only the special case without clutter for ground target

filtering was considered. On the other hand, [48] describes

an implementation for the special case with neither birth nor

spawning.

The rest of the paper is organised as follows. Section

II describes the connection between the FISST formulation

and the conventional probabilistic formulation of the multi-

target filtering problem. In addition, the particle multi-target

filter and convergence analysis are also presented. Section III

reviews the PHD filter and describes a particle implementation

of the PHD recursion with convergence analysis. Simulation

results are presented in Section IV. Finally, some conclusions

and potential extensions are discussed in Section V. The nec-

essary probability background for the convergence analysis of

the proposed filters is given in Appendix A. For completeness,

the basics of random finite sets are given in Appendix B and

mathematical proofs are given in Appendix C.

II. RANDOM FINITE SET AND BAYES MULTI-TARGET

FILTERING

This section provides a discussion on the relationships

between FISST and conventional (measure theoretic) prob-

ability which leads to a principled SMC implementation of

the Bayes multi-target filter. The Random Finite Set (RFS)

model for multi-target filtering is first described in subsection

II-A. A measure theoretic Bayes formulation (using conven-

tional probability theory) is then outlined in subsection II-

B. Subsection II-C summarizes central ideas in the FISST

formulation, followed by a discussion of its relationship with

the measure theoretic formulation in subsection II-D. Finally,

subsection II-E presents a SMC implementation of the Bayes

multi-target filter. Readers who are only interested in SMC

implementations can skip subsections II-B, II-C, II-D without

loss of continuity.

A. Random Finite Set Model

In a single-target system, the state and measurement at

time k are two vectors of possibly different dimensions.

These vectors evolve in time, but their dimensions are fixed.

However, this is not the case in a multi-target system, where

the multi-target state and multi-target measurement are two

collections of individual targets and measurements. As the

multi-target state and multi-target measurement evolve in

time, the number of individual targets and measurements may

change, i.e. the dimensions of the multi-target state and multi-

target measurement also evolve in time. Moreover, there is

no ordering for the elements of the multi-target state and

measurement.

The multi-target state and multi-target measurement at time

k are naturally represented as finite subsets Xk and Zk

respectively. For example, if at time k there are M(k) targets

located at xk,1, . . . , xk,M(k) in the single-target state space Es

(e.g. R
nx) then,

Xk = {xk,1, . . . , xk,M(k)} ∈ F(Es)

is the multi-target state, where F(E) denotes the collection

of all finite subsets of the space E. Similarly, if N(k)
observations zk,1, . . . , zk,N(k) in the single-target observation

space Eo (e.g. R
nz ) are received at time k, then

Zk = {zk,1, . . . , zk,N(k)} ∈ F(Eo)

is the multi-target measurement, in which some of the N(k)
observations may be due to clutter.

Analogous to single target systems, where uncertainty is

characterised by modelling the states and measurements by

random vectors, uncertainty in a multi-target system is char-

acterised by modelling multi-target states and multi-target

measurements as random finite sets (RFS) Ξk and Σk on the

(single-target) state and observation spaces Es and Eo respec-

tively. (A formal definition of a RFS is given in Appendix

B).

The multi-target dynamics and observation can be described

as follows. Given a realisation Xk−1 of the RFS Ξk−1 at time

k− 1, the multi-target state at time k is modelled by the RFS

Ξk = Sk(Xk−1) ∪Nk(Xk−1) (1)

where Sk(Xk−1) denotes the RFS of targets that have survived

at time k, Nk(Xk−1) is the RFS of new targets comprising

of the RFS Bk(Xk−1) of targets spawned from Xk−1 and the

RFS Γk of targets that appear spontaneously at time k. i.e.

Nk(Xk−1) = Bk(Xk−1) ∪ Γk.
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Details on how Sk(Xk−1), Bk(Xk−1) and Γk can be deter-

mined from models of individual target dynamics, target births

and deaths, for various assumptions, are available in [15],

[25], [28]. The RFS Ξk encapsulates all aspects of multi-target

motion such as the time-varying number of targets, individual

target motion, target birth, spawning and target interactions.

Similarly, given a realisation Xk of Ξk at time k, the multi-

target observation is modelled by the RFS

Σk = Θk(Xk) ∪ Ck(Xk) (2)

where Θk(Xk) denotes the RFS of measurements generated

by Xk, and Ck(Xk) denotes the RFS of clutter or false

alarms. The reader is referred to [15], [25], [28] for details

on determining Θk(Xk) and Ck(Xk) from the underlying

physical models of the sensors. The RFS Σk encapsulates all

sensor characteristics such as measurement noise, sensor field

of view (i.e. state-dependent probability of detection) and false

alarms.

The multi-target filtering problem concerns the estimation

of the multi-target state Xk at time step k given the collection

Z1:k ≡ (Z1, ..., Zk) of all multi-target observations up to time

k.

B. Measure theoretic formulation

This subsection outlines a measure theoretic Bayesian for-

mulation of the multi-target filtering problem. The object of

interest in Bayesian estimation is the posterior probability

density. Hence, the application of Bayesian reasoning to multi-

target estimation hinges on a suitable notion of probability

density for RFS.

The probability density pΞ of a RFS Ξ is given by the

Radon-Nikodým derivative of the probability distribution PΞ

with respect to an appropriate dominating measure µ, i.e.

PΞ(T ) =
∫
T
pΞ(X)µ(dX)1, for any Borel subset T ⊆ F(E).

Suppose that volume in the space E is measured in units of

K . Then, one such µ is the unnormalised distribution of a

Poisson point process with a uniform rate of K−1(see also

Appendix B)

µ(T ) =
∞∑

i=0

λi(χ−1(T ) ∩ Ei)

i!
, (3)

where λi is the ith product (unitless) Lebesque measure, and

χ : ⊎∞
i=0E

i → F(E) is a mapping of vectors to sets defined by

χ([x1, ..., xi]
T
) = {x1, ..., xi}. The measure (3) is commonly

used in point process theory as a dominating measure [13],

[34]. The integral of a non-negative function f : F(E) →
[0,∞) with respect to µ is given by (see also Appendix B)
∫

T

f(X)µ(dX)

=
∞∑

i=0

1

i!

∫

χ−1(T )∩Ei

f({x1, ..., xi})λ
i(dx1...dxi). (4)

For any Borel subsets U ⊆ F(Es), V ⊆ F(Eo) let

Pk|k(U|Z1:k) ≡ P (Ξk ∈ U|Z1:k)

1It is implicitly assumed that PΞ is absolutely continuous with respect to
µ.

denote the (posterior) probability measure of the RFS Ξk given

all the observations Z1:k = (Z1, ..., Zk) up to time k,

Pk|k−1(U|Xk−1) ≡ P (Ξk ∈ U|Xk−1)

denote the probability measure of the RFS Ξk modelled by

(1), and

Pk(V|Xk) ≡ P (Σk ∈ V|Xk)

denote the probability measure of the RFS Σk modelled by

(2). Let µs and µo be dominating measures of the form (3) on

the Borel subsets of F(Es) and F(Eo) respectively. Then,

the multi-target posterior density pk|k(·|Z1:k), multi-target

transition density fk|k−1(·|Xk−1) and multi-target likelihood

gk(·|Xk) are the Radon-Nikodým derivatives of Pk|k(·|Z1:k)
w.r.t. µs, Pk|k−1(·|Xk−1) w.r.t. µs, and Pk(·|Xk) w.r.t. µo

respectively i.e.

Pk|k(U|Z1:k) =

∫

U

pk|k(Xk|Z1:k)µs(dXk),

Pk|k−1(U|Xk−1) =

∫

U

fk|k−1(Xk|Xk−1)µs(dXk),

Pk(V|Xk) =

∫

V

gk(Zk|Xk)µo(dZk).

The statistical behaviour of the RFS Ξk , modelled by (1),

is now characterised by the multi-target transition density

fk|k−1(·|Xk−1) in an analogous fashion to the single-target

transition density. Likewise, the statistical behaviour of the

RFS Σk, modelled by (2), can now be described by the

multi-target likelihood gk(·|Xk) in an analogous fashion to

the single-target likelihood function. The multi-target transi-

tion density fk|k−1(·|·) incorporates all aspects of motion of

multiple targets such as the time-varying number of targets,

individual target motion, target birth, spawning and target

interactions. The multi-target likelihood gk(·|·) incorporates all

sensor behaviour such as measurement noise, sensor field of

view (i.e. state-dependent probability of detection) and clutter

models. Here an existence-type definition for the densities

fk|k−1(·|Xk−1) and gk(·|Xk) has been used. It will be shown

in subsections II-C and II-D how such densities can be

computed from the dynamical model (1)-(2).

The optimal multi-target Bayes filter is given by the recur-

sion

pk|k−1(Xk|Z1:k−1)

=

∫
fk|k−1(Xk|X)pk−1|k−1(X |Z1:k−1)µs(dX) (5)

pk|k(Xk|Z1:k)

=
gk(Zk|Xk)pk|k−1(Xk|Z1:k−1)∫

gk(Zk|X)pk|k−1(X |Z1:k−1)µs(dX)
. (6)

The main difference between the recursion (5)-(6) and standard

clutter-free single-target filtering is that Xk and Zk can change

dimension as k changes. In most cases, the recursion (5)-(6)

cannot be done analytically. In subsection II-E a Sequential

Monte Carlo (SMC) implementation of this recursion is pro-

posed.
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C. Finite Set Statistics

This section summarizes key concepts such as set inte-

grals and set derivatives in the finite set statistics (FISST)

formulation of the multi-target filtering problem. Individual

target motion in a multi-target problem is often modelled by

a transition density on the single-target state space Es while

the measurement process is modelled as a likelihood on the

single-target observation space Eo. Consequently, it is difficult

to construct multi-target transition density and likelihood as

Radon-Nikodým derivatives of probability measures on the

Borel subsets of F(Es) and F(Eo). FISST, on the other hand,

is based on belief mass functions (see Appendix B) defined

directly on the closed subsets of Es and Eo [15], [25]. This

allows descriptions of multi-target motion and measurement

to be systematically constructed from (1) and (2) respectively

(see [25]). However, belief mass functions are non-additive,

hence their Radon-Nikodým derivatives (or densities) are not

defined. FISST introduces a non-measure theoretic notion of

‘density’ through set integrals and set derivatives [15].

Let C(E) denote the collection of closed subsets of E. The

set derivative of a function F : C(E) → [0,∞) at a point

x ∈ E is a mapping (dF )x : C(E) → [0,∞) defined as

(dF )x(S) ≡ lim
λK(∆x)→0

F (S ∪ ∆x) − F (S)

λK(∆x)
,

where λK(∆x) is the volume (Lebesgue measure) of a neigh-

bourhood ∆x of x in units of K (note λK = Kλ). This is

a simplified version of the complete definition given in [15].

Furthermore, the set derivative at a finite set X = {x1, ..., xn}
is defined by the recursion

(dF ){x1,...,xn}(T ) ≡ (d(dF ){x1,...,xn−1})xn
(T ),

where (dF )∅ ≡ F by convention2. Note that (dF )X(S) has

unit of K−|X|, where |X | denote the cardinality or number of

elements of X . Hence, for a fixed S ⊆ E the set derivatives

(dF )X(S) and (dF )Y (S) have different units if |X | 6= |Y |.
The set derivative can also be defined as iterated Frechét

derivatives of the probability generating functional [27], [29].

Let f be a function defined by f(X) = (dF )X(∅). Then

the set integral of f over a closed subset S ⊆ E is defined as

follows [15], [25], [29]3

∫

S

f(X)δX ≡
∞∑

i=0

1

i!

∫

Si

f({x1, ..., xi})λ
i
K(dx1...dxi).

The set integral and set derivative are related by the following

generalised fundamental theorem of calculus,

f(X) = (dF )X(∅) if and only if F (S) =

∫

S

f(X)δX,

which allows the ‘density’ of a non-additive set function to be

determined constructively.

For any closed subsets S ⊆ Es and T ⊆ Eo, let

βk|k(S|Z1:k) ≡ P (Ξk ⊆ S|Z1:k)

2In [15] the notation δF

δX
(S) was used for the set derivative (dF )X(S).

3In [29], [15] pp. 141-142, the set integral is defined for any real or vector
valued function f . This is probably a typographical error as it implies that
the terms in the sum have different unit of measurement.

denote the (posterior) belief mass function of the RFS Ξk

given all the observation sets Z1:k = (Z1, ..., Zk) up to time

k,

βk|k−1(S|Xk−1) ≡ P (Ξk ⊆ S|Xk−1)

denote the belief mass function of the RFS Ξk modelled by

(1), and

βk(T |Xk) ≡ P (Σk ⊆ T |Xk)

denote the belief mass function of the RFS Σk mod-

elled by (2). Then, the FISST multi-target posterior

density πk|k(·|Z1:k), FISST multi-target transition density

ϕk|k−1(·|Xk−1) and FISST multi-target likelihood ρk(·|Xk)
are the set derivatives of βk|k(·|Z1:k), βk|k−1(·|Xk−1) and

βk(·|Xk) respectively. The FISST multi-target Bayes filter

proposed in [15], [25], [29] is given by the recursion

πk|k−1(Xk|Z1:k−1)

=

∫
ϕk|k−1(Xk|X)πk−1|k−1(X |Z1:k−1)δX (7)

πk|k(Xk|Z1:k)

=
ρk(Zk|Xk)πk|k−1(Xk|Z1:k−1)∫
ρk(Zk|X)πk|k−1(X |Z1:k−1)δX

. (8)

Observe the resemblance between the recursions (7)-(8) and

(5)-(6). The difference is that the integrals used in (7)-(8) are

set integrals and the functions involved have units. In partic-

ular, πk|k(X |Z1:k), πk−1|k−1(X |Z1:k−1), πk|k−1(X |Z1:k−1),

ϕk|k−1(X |Xk−1) have units of K
−|X|
s , and ρk(Zk|Xk)

has units of K
−|Zk|
o , whereas the corresponding func-

tions in (5)-(6) namely pk|k(X |Z1:k), pk−1|k−1(X |Z1:k−1),
pk|k−1(X |Z1:k−1), fk|k−1(X |Xk−1) and gk(Z|Xk) are all

unitless.

At this stage the mathematically minded reader might

question the validity of the recursion (7)-(8). Even though the

standard Bayes recursion generalises to more general spaces

with sufficiently ‘nice’ structures and consistent notions of in-

tegration, it is not obvious that Bayes rule for probability den-

sities also applies to set derivatives of belief mass functions.

A rigorous treatment of Bayes rule for probability densities

requires deep results in conditional probability (see [38] pp.

230-231). To the best of our knowledge, no such rigorous

treatment of Bayes rule for set derivatives of belief mass

functions is available. Nevertherless, the result established in

the next subsection allows rigorous justification of the FISST

Bayes recursion for multi-target filtering.

D. Relationship between FISST and conventional probability

This subsection establishes the relationship between finite

set statistics (FISST) and conventional probability theory. In

particular, it is shown that the set derivative of a belief mass

function of a RFS is closely related to its probability density.

This relationship allows the conditional densities fk|k−1(·|·)
and gk(·|·) used in the recursion (5)-(6) to be constructed

from the underlying physical model of the sensors, individual

target dynamics, target births and deaths using the tools of
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FISST. It also consolidates the validity of the FISST multi-

target recursion (7)-(8).

Proposition 1. Suppose that Ξ is a RFS on E with prob-

ability distribution PΞ and belief mass function βΞ. If PΞ

is absolutely continuous with respect to µ, the unnormalised

distribution of a Poisson point process with rate K−1defined

by (3), then

dPΞ

dµ
(X) = K |X|(dβΞ)(X)(∅). (9)

Proof: First, note that using the integral defined in (4), for

any closed S ⊆ E, and any measurable f : F(E) → [0,∞)

∫

χ(⊎∞
i=0Si)

f(X)µ(dX)

=
∞∑

i=0

1

i!

∫

Si

f({x1, ..., xi})λ
i(dx1...dxi)

=

∞∑

i=0

1

i!Ki

∫

Si

f({x1, ..., xi})λ
i
K(dx1...dxi)

=

∫

S

K−|X|f(X)δX, (10)

where ⊎ denotes disjoint union. Let pΞ = dPΞ/dµ. Then, it

follows from Eq. (10) that, for any closed S ⊆ E,

∫

S

K−|X|pΞ(X)δX =

∫

χ(⊎∞
i=0Si)

pΞ(X)µ(dX)

= PΞ(χ(⊎∞
i=0S

i)) = βΞ(S).

Since S is arbitrary, from the FISST fundamental theorem of

calculus K−|X|pΞ(X) = (dβΞ)(X)(∅).

Eq. (10) relates the set integral on the closed sets of E
to a conventional integral on Borel sets of F(E). Recall that

(dβΞ)(X)(∅) has unit of K−|X|, hence K |X|(dβΞ)(X)(∅) is

unitless. Proposition 1 implies that the set derivative of the

belief mass function βΞ without its unit is the probability

density pΞ with respect to the dominating measure µ given in

(3). In other words, the unitless set derivative of the belief mass

function of a RFS is its probability density. It is important to

note that the probability density pΞ is unit dependent, since

the dominating measure µ depends on the choice of units.

Through Proposition 1, FISST converts the construction of

multi-target densities from multi-target models (1)-(2) into

computing set derivatives of belief mass functions. In par-

ticular, fk|k−1(Xk|Xk−1) and gk(Zk|Xk) can be determined

explicitly by

fk|k−1(Xk|Xk−1) = K |Xk|
s (dβk|k−1(·|Xk−1))Xk

(∅),

gk(Zk|Xk) = K |Zk|
o (dβk|k(·|Xk))Zk

(∅).

where Ks and Ko denote the units of volume in the spaces Es

and Eo respectively. Procedures for analytically differentiating

belief mass functions have also been developed in [15], [25] to

facilitate the task for tracking engineers. In general, the multi-

target dynamic model (1)-(2) yields the following multi-target

Markov transition and likelihood

fk|k−1(Xk|Xk−1)

=
∑

W⊆Xk

sk|k−1(W |Xk−1)nk|k−1(Xk −W |Xk−1) (11)

gk(Zk|Xk)

=
∑

W⊆Zk

θk(W |Xk)ck(Zk −W |Xk), (12)

where sk|k−1(·|Xk−1) is the density of the RFS Sk(Xk−1) of

surviving targets, nk|k−1(·|Xk−1) is the density of the RFS

Nk(Xk−1) of new-born targets, θk(·|Xk) is the density of the

RFS Θk(Xk) of target generated observations and ck(·|Xk) is

the density of the RFS Ck(Xk) of false alarms. Note that the

difference operation used in (11)-(12) is the set difference.

Details on how sk|k−1(·|Xk−1), nk|k−1(·|Xk−1), θk(·|Xk)
and ck(·|Xk) are derived from the underlying physical model

of the sensors, individual target dynamics, target births and

deaths, for various assumptions, are available in [15], [25],

[28].

Proposition 1 can also be used to justify the validity of

the FISST Bayes propagation equations (7)-(8). Using (9) to

substitute,

pk−1|k−1(X |Z1:k−1) = K |X|
s πk−1|k−1(X |Z1:k−1),

pk|k−1(X |Z1:k−1) = K |X|
s πk|k−1(X |Z1:k−1),

fk|k−1(X |Xk−1) = K |X|
s ϕk|k−1(X |Xk−1),

pk|k(X |Z1:k) = K |X|
s πk|k(X |Z1:k),

gk(Z|Xk) = K |Z|
o ρk(Z|Xk),

into the Bayes recursion (5)-(6) and using (10) to convert a

conventional integral on F(Es) into a set integral on Es yield

the FISST Bayes recursion.

E. Particle Multi-target Filter

This subsection presents a SMC implementation of the

Bayes multi-target filter. The propagation of the multi-target

posterior density recursively in time involves the evaluation of

multiple set integrals and hence the computational requirement

is much more intensive than single-target filtering. Sequential

Monte Carlo (SMC) filtering techniques permits recursive

propagation of the set of weighted particles that approximate

the posterior density.

Central in Monte Carlo methods is the notion of approxi-

mating the integrals of interest using random samples. In the

context of FISST, what does a sample from a belief mass

function mean? Can these samples be used to approximate

the set integrals of interest? For the purpose of numerical

integration, the FISST multi-target density and its unitless

version are equivalent. Hence, it suffices to implement the

unitless version of the FISST Bayes multi-target filter, i.e. (5)-

(6). Since the unitless FISST multi-target density is indeed a

probability density (see subsection II-D), Monte Carlo approx-

imations of the integrals of interest can be constructed using

random samples. The single-target particle filter can thus be

directly generalised to the multi-target case. In the multi-target
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context however, each particle is a finite set and the particles

themselves can thus be of varying dimensions.

Assume at time k − 1, a set of weighted particles

{w
(i)
k−1, X

(i)
k−1}

N
i=1 representing the multi-target posterior

pk−1|k−1 is available, i.e.

pk−1|k−1(Xk−1|Z1:k−1) ≈
N∑

i=1

w
(i)
k−1δX(i)

k−1

(Xk−1).

The particle filter proceeds to approximate the multi-target

posterior pk|k at time k by a new set of weighted particles

{w
(i)
k , X

(i)
k }N

i=1 as follows

Particle Multi-Target Filter

At time k ≥ 1,
Step 1: Sampling Step

• For i = 1, ..., N , sample X̃
(i)
k ∼ qk

(
·|X

(i)
k−1, Zk

)
and set

w̃
(i)
k =

gk

(
Zk| X̃

(i)
k

)
fk|k−1

(
X̃

(i)
k

∣∣∣X(i)
k−1

)

qk

(
X̃

(i)
k

∣∣∣X(i)
k−1, Zk

) w
(i)
k−1.

(13)

• Normalise weights:
∑N

i=1 w̃
(i)
k = 1.

Step 2: Resampling Step

• Resample

{
w̃

(i)
k , X̃

(i)
k

}N

i=1
to get

{
w

(i)
k , X

(i)
k

}N

i=1
.

The importance sampling density qk (·|Xk−1, Zk) is a multi-

target density and X̃
(i)
k is a sample from a RFS or point

process. Details on sampling from a point process can be

found in the spatial statistics literature, see for example [8],

[43], [44] and references therein. It is implicit in the above

algorithm description that

sup
X,X′

∣∣∣∣
fk|k−1(X |X ′)

qk(X |X ′, Zk)

∣∣∣∣

is finite and so the weights are well-defined.

There are various ways to perform the resampling step. Most

methods consist of making ζ
(i)
k copies of each particle X̃

(i)
k ,

under the constraint
∑N

i=1 ζ
(i)
k = N , to obtain {X

(i)
k }N

i=1. The

(random) resampling mechanism is chosen such that E[ζ
(i)
k ] =

Na
(i)
k where a

(i)
k > 0,

∑N

i=1 a
(i)
k = 1 is a sequence of weights

set by the user. This resampling step could be achieved using

multinomial resampling but the efficient stratified resampling

algorithm described in [23] has better statistical properties.

The new weights are set to w
(i)
k ∝ w̃

(i)
k /a

(i)
k ,
∑N

i=1 w
(i)
k = 1.

Typically, a
(i)
k = w̃

(i)
k but alternatively we can select a

(i)
k ∝

(w̃
(i)
k )ν where ν ∈ (0, 1).
After the resampling step, an optional Markov Chain Monte

Carlo (MCMC) step can also be applied to increase particle

diversity [14]. Since the particles belong in spaces of different

dimensions, a reversible jump MCMC step [18] is required.

Under standard assumptions, the mean squared error of the

SMC approximation is inversely proportional to the number

of particles. This is stated more concisely as follows.

Proposition 2. Consider the particle multi-target filter.

Assuming that for all k ≥ 1 the unnnormalized importance

weights (13) are bounded, then there exists a constant ck

independent of N such that for any bounded Borel measurable

function f on F(Es)

E




(

1

N

N∑

i=1

f(X
(i)
k ) −

∫
f(Xk)Pk|k(dXk|Z1:k)

)2

≤ ck
‖f‖2

∞

N
,

where ‖f‖∞ = supX |f(X)|. Under additional mixing as-

sumptions on the dynamic model, it can be shown that ck ≤ c
for any k [9].4

Having obtained the posterior density, consider the problem

of obtaining an estimate of the multi-target state. There is

no multi-target analogue of the expected a posteriori (EAP)

estimator, since there is no notion of addition for sets. How-

ever, by treating a RFS as a random counting measure, an

alternative estimator can be defined. The EAP estimator Vk|k

of the corresponding random counting measure is a measure

defined by

Vk|k(S) =

∫ (∑

x∈X

1S(x)

)
Pk|k(dX |Z1:k),

for any Borel S ⊆ Es, where 1S denotes the indicator function

1S(x) = 1 if x ∈ S and 1S(x) = 0 otherwise. It is important

to emphasize that Vk|k is not an EAP estimator for RFS (see

Section III-A for more details). However, assuming that the

measure Vk|k admits a density Dk|k, then the peaks of Dk|k

can be used to provide estimates of individual targets. Note

that given a particle approximation
{
w

(i)
k , X

(i)
k

}N

i=1
of pk|k,

the particle approximation of Dk|k can be obtained by

Dk|k(x) ≈
N∑

i=1

w
(i)
k



∑

y∈X
(i)
k

δy(x)




=
N∑

i=1

∑

y∈X
(i)
k

w
(i)
k δy(x).

The main practical problem with the multi-target particle

filter is the need to perform importance sampling in very high

dimensional spaces if many targets are present. Moreover,

it can be difficult to find an efficient importance density. A

naive choice of importance density such as qk( ·|X
(i)
k−1, Zk) =

fk|k−1( ·|X
(i)
k−1) will typically lead to an algorithm whose

efficiency decreases exponentially with the number of targets

for a fixed number of particles. The approached used in [36]

can be adopted to mitigate this problem, but this requires in-

tensive computations and is still inefficient with large number

of targets. Also, the weight update can be expensive due to

the combinatorial nature of the multi-target Markov transition

and likelihood (11)-(12).

4The above result is stated in [9] and [11] for R
n, i.e. f is a Borel measure-

able function on Rn, but the proof for F(Es) follows in a straightforward
manner.



IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS, VOL. X, NO. XXX, JUNE 2005 7

III. SEQUENTIAL MONTE CARLO IMPLEMENTATION OF

THE PHD FILTER

This section describes a novel Sequential Monte Carlo

(SMC) implementation of the Probability Hypothesis Density

(PHD) filter [26], [29]. The idea is to propagate the intensity

function (or PHD) of the multi-target posterior. Sections III-A

and III-B provide a brief review of the PHD filter. A particle

interpretation of the propagation equation is then presented

in Sections III-C, III-D, III-E followed by description of the

algorithm and a convergence result in Section III-F.

A. The 1st Moment of a RFS

The 1st moment of a RFS is the analogue of the expectation

of a random vector. However, the expectation of a RFS has

no meaning since there is no notion of addition for sets.

Nevertheless, the 1st moment can be indirectly constructed

by representing the RFS as a random counting measure or

random density function.

A finite subset X ∈ F(E) can also be equivalently rep-

resented by the counting measure NX (on the Borel subsets

of E) defined by NX(S) =
∑

x∈X 1S(x) = |X ∩ S|, where

the notation |A| is used to denote the number of elements

in A. Consequently, the random finite set Ξ can also be

represented by a random counting measure NΞ defined by

NΞ(S) = |Ξ ∩ S|. This representation is commonly used in

the point process literature [8], [43], [44].

Using the random counting measure representation, the 1st

moment or intensity measure VΞ of a RFS Ξ is defined by

VΞ(S) ≡ E[NΞ(S)] =

∫ (∑

x∈X

1S(x)

)
PΞ(dX), (14)

for each Borel measurable S ⊆ E. The intensity measure

over a region S, i.e. VΞ(S) gives the expected number of

elements of Ξ that are in S. Although the intensity measure

VΞ is an average of counting measures, VΞ itself is not a

counting measure and hence does not necessarily have a finite

set representation. Consequently, VΞ cannot be used as an

expected a posteriori (EAP) estimator for RFS although it can

be defined as the EAP estimator of the corresponding random

counting measure.

The density DΞ of the intensity measure VΞ w.r.t. the

Lebesgue measure (if it exists) i.e.

DΞ =
dVΞ

dλ
, (15)

is called the intensity function, and is also known in the track-

ing literature as the Probability Hypothesis Density (PHD), a

term first introduced in [42] (hence the name PHD filter). It

can be shown that [26], [29]

DΞ(x) = (dβΞ)x(E).

The intensity functionDΞ is a unique function on E, except on

a set of measure zero. Moreover,
∫

S
DΞ(x)λ(dx) = E[|Ξ∩S|]

is the expected number of elements of Ξ that are in a given

measurable region S ⊆ E. Consequently, the peaks of DΞ are

points in E with the highest local concentration of expected

number of targets, and hence, can be used to generate estimates

for the elements of Ξ. Since the total mass of the intensity

VΞ(E) gives the expected number of targets, the simplest

approach is to round VΞ(E) and choose the resulting number

of highest peaks from the intensity function.

B. The PHD Filter

Let Dk|k denote the intensity function associated with the

multi-target posterior pk|k at time k for each k ≥ 0. The

PHD filter involves a prediction step and an update step

that propagates the intensity function Dk|k recursively in time.

This recursion can be succinctly described by introducing the

following prediction and update operators (on the space of

integrable functions on Es).

The PHD prediction operator Φk|k−1 is defined by

(Φk|k−1α)(x) = γk(x) +

∫
φk|k−1(x, ξ)α(ξ)λ(dξ), (16)

for any integrable function α on Es, where γk denotes the

intensity function of the spontaneous birth RFS Γk,

φk|k−1(x, ξ) = bk|k−1(x| ξ) + ek|k−1(ξ)fk|k−1(x| ξ),

with bk|k−1 ( ·| ξ) denoting the intensity function of the RFS

Bk|k−1({ξ}) of targets spawned from the previous state ξ,

ek|k−1 (ξ) denoting the probability that the target still exists

at time k given that it has previous state ξ, and fk|k−1 ( ·| ·)
denoting the transition probability density of individual tar-

gets5.

The PHD update operator Ψk is defined by

(Ψkα)(x) =

[
υ(x) +

∑

z∈Zk

ψk,z(x)

κk(z) + 〈ψk,z , α〉

]
α(x), (17)

for any integrable function α on Es, where κk(·) is the

intensity function of the clutter RFS,

υ(x) = 1 − PD(x),

ψk,z(x) = PD(x)gk(z|x),

〈f, h〉 =

∫
f(x)h(x)λ(dx),

with PD(x) denoting the (state-dependent) probability of de-

tection, gk ( ·| ·) denoting the likelihood of individual targets6.

Note that κk(·) can also be written as rkck(·), where rk is

the average number of clutter points per scan and ck is the

probability distribution of each clutter point.

Assuming that the targets evolve independently of each

other, the intensity function Dk|k−1 associated with the pre-

dicted multi-target density pk|k−1 in the prediction equation

(5) is given by [26], [29]

Dk|k−1 = Φk|k−1Dk−1|k−1. (18)

Moreover, assuming that the predicted multi-target density

pk|k−1 is Poisson, and that the detection and measurement

of a target is independent from that of other targets, it was

5For notational convenience, the same notation as the multi-target transition
density is used. There is no danger of confusion as multi-target densities do
not appear in this section.

6The same notation as the multi-target likelihood is used.
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shown in [26], [29] that the intensity function Dk|k associated

with the posterior density pk|k in the update equation (6) is

Dk|k = (Ψk ◦ Φk|k−1)Dk−1|k−1, (19)

where “◦” denotes composition of functions. It is implicitly

assumed that there are no merged nor split measurements.

The Poisson assumption is a mathematical simplification that

allows a closed-form expression for the update step of the PHD

filter. In using the intensity function Dk|k to characterize the

multi-target posterior density pk|k it is implicitly assumed that

the higher order moments are negligible. These assumptions

are justifiable when the false alarm rate and measurement noise

are small.

Since the intensity function is a function defined on the

space where individual targets live, its propagation requires

much less computational power than the multi-target posterior.

Unfortunately, this still involves multiple integrals that have no

closed form expressions in general. A SMC implementation

of the PHD recursion (16)-(17) is described next.

C. The prediction operator

At time step k−1, consider the prediction of a non-negative

integrable function αk−1 to time k, i.e.

(Φk|k−1αk−1)(xk)

=

∫
φk|k−1(xk, xk−1)αk−1(xk−1)λ(dxk−1)+γk(xk).(20)

Given a particle representation of αk−1 i.e.

α̂k−1(xk−1) =

Lk−1∑

i=1

w
(i)
k−1δx(i)

k−1

(xk−1)

then

(Φk|k−1α̂k−1)(xk) =

Lk−1∑

i=1

w
(i)
k−1φk|k−1(xk, x

(i)
k−1) + γk(xk).

(21)

A particle approximation of Φk|k−1α̂k−1 in (21) can then

be derived by applying importance sampling to each of its

terms. Given the importance (or proposal) densities pk( ·|Zk),
qk( ·|xk−1,Zk) such that γk(xk) > 0 implies pk(xk|Zk) > 0
and φk|k−1(xk, xk−1) > 0 implies qk(xk|xk−1,Zk) > 0, Eq.

(21) can be rewritten as

(Φk|k−1α̂k−1)(xk)

=

Lk−1∑

i=1

w
(i)
k−1

φk|k−1(xk, x
(i)
k−1)

qk(xk|x
(i)
k−1,Zk)

qk(xk|x
(i)
k−1,Zk)

+
γk(xk)

pk(xk|Zk)
pk(xk|Zk).

Thus, the following Monte Carlo (particle) approximation can

be obtained

(Φ̂k|k−1α̂k−1)(xk) ≡

Lk−1+Jk∑

i=1

w
(i)
k|k−1δx(i)

k

(xk)

where

x
(i)
k ∼

{
qk

(
·|x

(i)
k−1, Zk

)
, i = 1, ..., Lk−1

pk ( ·|Zk) , i = Lk−1 + 1, ..., Lk−1 + Jk

w
(i)
k|k−1 =






φk|k−1

“
x
(i)
k

,x
(i)
k−1

”
w

(i)
k−1

qk

“
x
(i)
k

˛̨
˛x(i)

k−1
,Zk

” , i = 1, ..., Lk−1

γk

“
x
(i)
k

”

Jkpk

“
x
(i)
k

˛̨
˛Zk

” , i = Lk−1 + 1, ..., Lk−1 + Jk

It is easy to verify that for any integrable test function h,

E

[〈
Φ̂k|k−1αk−1, h

〉]
=
〈
Φk|k−1αk−1, h

〉
.

Note that we started with αk−1 having Lk−1 particles,

which are then predicted forward by the kernel φk|k−1 to

another set of Lk−1 particles. Additionally, Jk new particles

arise from the birth process. The number of new particles Jk

can be a function of k to accommodate the varying number

of new targets at each time step. Assuming that the total mass

of γk has a closed form, then typically Jk is chosen to be

proportional to this mass, i.e. Jk = ρ
∫
γk(x)dx, so that on

average we have ρ particles per new born target.

D. The update operator

For the update step of the recursion, assume that pre-

diction step yields a function αk|k−1 characterised by

{w
(i)
k|k−1, x

(i)
k }

Lk−1+Jk

i=1 . Applying the update operator gives

(Ψkαk|k−1)(x) =

Lk−1+Jk∑

i=1

w
(i)
k δ

x
(i)
k

(x),

where

w
(i)
k =

[
υ(x(i)) +

∑

z∈Zk

ψk,z(x
(i)
k )

κk(z) + Ck(z)

]
w

(i)
k|k−1, (22)

Ck(z) =

Lk−1+Jk∑

j=1

ψk,z(x
(j)
k )w

(j)
k|k−1. (23)

The update operator maps the function with particle rep-

resentation {w
(i)
k|k−1, x

(i)
k }

Lk−1+Jk

i=1 into one with particle rep-

resentation {w
(i)
k , x

(i)
k }

Lk−1+Jk

i=1 by modifying the weights of

these particles according to Eq. (22).

E. Particle propagation

For any k ≥ 0, let α̂k = {w
(i)
k , x

(i)
k }Lk

i=1 denote a particle

approximation of Dk|k. The algorithm is designed such that

the concentration of particles in a given region of the single-

target state space, say S, represents the expected number of

targets in S, i.e. E[ |Ξk ∩ S||Z1:k] ≈
∑Lk

j=1 1S(x
(i)
k )w

(j)
k .

Using the PHD recursion, a particle approximation of the

intensity function at time step k > 0 can be obtained from a

particle approximation at the previous time step by

α̂k = (Ψk ◦ Φ̂k|k−1)α̂k−1. (24)

Note that since α̂k has Lk = Lk−1 +Jk particles, the number

Lk of particles may increase over time even if the number of

targets does not. This is very inefficient, since computational
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resource is wasted in exploring regions of the (single-target)

state space where there are no targets. On the other hand if Lk

is fixed then the ratio of particles to targets would fluctuate as

the number of targets changes. Consequently, at times there

may be an insufficient number of particles to resolve the targets

(up to the PHD filter limitations) while at other times there

may be an excess of particles for a small number of targets

or no target at all. It would be computationally more efficient

to adaptively allocate say ρ particles per target at each time

epoch.

Since the expected number of targets Nk|k (given by the

total mass
∫
Dk|k(ξ)λ(dξ)) can be estimated by N̂k|k =∑Lk−1+Jk

j=1 w
(j)
k , it is intuitive to have the number of parti-

cles Lk
∼= ρN̂k|k. Furthermore, we also want to eliminate

particles with low weights and multiply particles with high

weights to focus on the important zones of the space. This

can be achieved by resampling Lk ≈ ρN̂k|k particles from

{w
(i)
k , x

(i)
k }

Lk−1+Jk

i=1 and redistributing the total mass N̂k|k

among the Lk resampled particles.

F. Algorithm

Based on the elements presented above, it is possible to

propose the following generic particle filtering algorithm for

the PHD recursion.

Particle PHD filter

At time k ≥ 1,
Step 1: Prediction

• For i = 1, ..., Lk−1, sample x̃
(i)
k ∼ qk(·|x

(i)
k−1, Zk) and

compute the predicted weights

w̃
(i)
k|k−1 =

φk|k−1(x̃
(i)
k , x

(i)
k−1)

qk(x̃
(i)
k |x

(i)
k−1, Zk)

w
(i)
k−1. (25)

• For i = Lk−1 + 1, ..., Lk−1 + Jk, sample x̃
(i)
k ∼ pk ( ·|Zk)

and compute the weights of new born particles

w̃
(i)
k|k−1 =

1

Jk

γk(x̃
(i)
k )

pk(x̃
(i)
k |Zk)

. (26)

Step 2: Update

• For each z ∈ Zk , compute

Ck(z) =

Lk−1+Jk∑

j=1

ψk,z(x̃
(j)
k )w̃

(j)
k|k−1. (27)

• For i = 1, ..., Lk−1 + Jk, update weights

w̃
(i)
k =

[
υ(x̃

(i)
k ) +

∑

z∈Zk

ψk,z(x̃
(i)
k )

κk(z) + Ck(z)

]
w̃

(i)
k|k−1. (28)

Step 3: Resampling

• Compute the total mass N̂k|k =
∑Lk−1+Jk

j=1 w̃
(j)
k ,

• Resample

{
ew(i)

k

bNk|k

, x̃
(i)
k

}Lk−1+Jk

i=1

to get

{
w

(i)
k

bNk|k

, x
(i)
k

}Lk

i=1

,

• Rescale (multiply) the weights by N̂k|k to get

{
w

(i)
k , x

(i)
k

}Lk

i=1
.

It is implicit in the prediction step of the above algorithm

that for each k,

sup
ξ,x

∣∣∣∣
φk|k−1(x, ξ)

qk(x|ξ, Zk)

∣∣∣∣ ≤ Qk, (29)

sup
x

∣∣∣∣
γk(x)

pk(x|Zk)

∣∣∣∣ ≤ Pk, (30)

where Qk and Pk are finite and so the weights (25)-(26) are

well-defined.

Care must be taken when implementing the resampling

step for the particle PHD filter. In this case, the new

weights {w
(i)
k }Lk

i=1 are not normalised to 1 but sum to

N̂k|k =
∑Lk−1+Jk

i=1 w̃
(i)
k . Similar to the standard particle filter,

each particle x̃
(i)
k is copied ζ

(i)
k times under the constraint∑Lk−1+Jk

i=1 ζ
(i)
k = Lk to obtain {x

(i)
k }Lk

i=1. The (random)

resampling mechanism is chosen such that E[ζ
(i)
k ] = Lka

(i)
k

where a
(i)
k > 0,

∑Lk−1+Jk

i=1 a
(i)
k = 1 is a sequence of weights

set by the user. However, the new weights are set to w
(i)
k ∝

w̃
(i)
k /a

(i)
k with

∑Lk

i=1 w
(i)
k = N̂k|k instead of

∑Lk

i=1 w
(i)
k = 1.

Typically, a
(i)
k = w̃

(i)
k /N̂k|k but alternatively we can select

a
(i)
k ∝ (w̃

(i)
k )ν where ν ∈ (0, 1).

It is standard to assume (see [7]) that, for all |qi| ≤ 1 and

for some constant ck

Lk−1+Jk∑

i=1

Lk−1+Jk∑

j=1

qi [Ak]i,j qj ≤ Lkck, (31)

where

[Ak]i,j = E

[(
ζ
(i)
k −

Lkw̃
(i)
k

N̂k|k

)(
ζ
(j)
k −

Lkw̃
(j)
k

N̂k|k

)]
. (32)

For example, in the popular multinomial resampling scheme

of [7],

E

[
ζ
(i)
k −

Lkw̃
(i)
k

N̂k|k

]
= 0

and (31) is satisfied for ck = 1. Additionally, the branching

scheme proposed in [7] also satisfies this assumption.

Under standard assumptions a similar result to that of [7]

also holds for the particle PHD filter.

Proposition 3. Suppose that for all k ≥ 1, ek|k−1 is con-

tinuous, the single-target transition fk|k−1 ( ·| ·), the spawning

intensity bk|k−1 ( ·| ·) are Feller7, and that the single-target

likelihood gk is bounded, continuous and strictly positive.

Consider the particle PHD filter. If the weights (25)-(26) are

bounded, the resampling satisfies (31) and the number of

particles Lk is fixed to L, such that L/Jk is finite for all

k ≥ 1, then for any bounded and continuous function f on

Es

lim
L→∞

E

[∣∣∣∣∣

L∑

i=1

f(x
(i)
k )w

(i)
k −

∫
f(x)Dk|k(x)λ(dx)

∣∣∣∣∣

]
= 0.

The proof of this result is detailed in Appendix C. A

stronger result for the particle PHD filter showing the mean

7See Appendix C for the Feller property.



IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS, VOL. X, NO. XXX, JUNE 2005 10

squared error diminishing at a rate inversely proportional to

the number of samples has also been established and will be

published elsewhere.

For initialisation, importance sampling can be applied to ob-

tain a particle approximation of the initial intensity function. If

no prior information is available, the initial intensity function

can be set to zero and hence no particles are needed. In this

case the algorithm starts to sample from the birth process at

the next iteration. A better strategy is to guess the number of

targets N̂0 (from the observations) and set the initial intensity

function to a uniform intensity with total mass N̂0.

Remark: The particle PHD filter reduces to the standard

particle filter in the case where there is only one target with

no birth, no death, no clutter and unity probability of detection.

In the standard particle filtering context, choosing the impor-

tance distribution so as to minimise the (conditional) variance

of the weights is well known. In the context of the PHD filter,

this becomes much more difficult and is the subject of further

study.

IV. SIMULATIONS

A. Linear-Gaussian examples

For illustration purposes, consider a two-dimensional sce-

nario with an unknown and time varying number of targets

observed in clutter over the region [−100, 100]× [−100, 100].
The state of each target consists of position and velocity, while

only position measurements are available. Each target moves

according to the following linear Gaussian dynamics i.e.

xk =




1 T 0 0
0 1 0 0
0 0 1 T
0 0 0 1


xk−1 +




T 2

2 0
T 0

0 T 2

2
0 T



[
v1,k

v2,k

]

where xk = [x1,k, x2,k, x3,k, x4,k]T ; [x1,k, x3,k]T is the posi-

tion, while [x2,k, x4,k]T is the velocity at time k, and T = 1
is the sampling period. The process noise {v1,k}, {v2,k} are

mutually independent zero-mean Gaussian white noise with

respective standard deviations σv1 = 1 and σv2 = 0.1.

Targets can appear or disappear in the scene at any time.

Each existing target has a (state independent) probability of

survival ek|k−1 = 0.95. For simplicity no spawning is consid-

ered in these examples. New targets can appear spontaneously

according to a Poisson point process with intensity function

γk = 0.2N (·; x̄, Q), where

x̄ =




0
3
0

−3


 , Q =




10 0 0 0
0 1 0 0
0 0 10 0
0 0 0 1




and N (·; x̄, Q) denotes a normal density with mean x̄ and

covariance Q.

Position ground truth of 4 tracks over 40 scans are displayed

in Figure 1. These 4 tracks start in the vicinity of the origin

and move radially outwards. The start and finish times of the

tracks can be seen from Figure 2, which plots the individual

x and y components of each track against time. Note that the

−60 −40 −20 0 20 40 60
−60

−40

−20

0

20

40

60
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Y

track 1
track 2
track 3
track 4

Fig. 1. Ground truth: position plots of 4 tracks superimposed over 40 time
steps.
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Fig. 2. Ground truth: plots of x and y components of the 4 true tracks against
time, showing the different start and finish times of the tracks.

velocity is relatively constant in the y-direction while the x-

direction shows more fluctuations.

The target-originated measurements are given by

yk =

[
1 0 0 0
0 0 1 0

]
xk +

[
w1,k

w2,k

]

with {w1,k} and {w2,k} mutually independent zero-mean

Gaussian white noise with standard deviations σw1 = σw1 =
2.5. The measurement noise is assumed independent of the

process noise. To demonstrate the mechanics of the particle

PHD filter, we can consider a unity probability of detection

without loss of generality from an algorithmic viewpoint.

Clutter is uniformly distributed over the region [−100, 100]×
[−100, 100] with an average rate of r points per scan, i.e.

a Poisson point process with a uniform intensity function

κ = r/2002. Hence, we have an average of 0.0005r clutter

points per σ-gate.
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Fig. 3. x and y components of position observations immersed in clutter of
rate r = 10.
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Fig. 4. Filter output (r = 10), position estimates (⊕) superimposed on
ground truth (solid-line) over 40 time steps.

1000 particles per expected target are used in the pro-

posed particle PHD filter, thus, the number of particles varies

throughout the simulation. Also, the number of particles is

hard-limited so that it does not fall below 500 when the

expected number of target is less than 0.5. The importance

sampling densities used are qk = fk|k−1 and pk = N (·; x̄, Q).
Target state estimates are extracted from the particle ap-

proximation of the intensity function by applying standard

clustering techniques [19] to the set of particles at each time

step.

The x and y coordinates of observations in clutter with

an average rate of r = 10 points per scan are shown for

each time step in Figure 3. Figure 4 shows the position

estimates superimposed on the true tracks over 40 time steps.

Figure 5 shows the individual x and y coordinates of the true

tracks and the estimated targets at each time step. Observe

the close proximity of the estimated positions to the true

0 5 10 15 20 25 30 35 40
−10

0

10

20

30

40

50

60

X

time

0 5 10 15 20 25 30 35 40
−40

−20

0

20

40

60

Y

time

Fig. 5. Filter output (r = 10), plots of x and y components of position
estimates (circle) against time, superimposed on ground truth (solid-line).
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Fig. 6. Target number estimate and multi-target miss-distance at each time
step (r = 10).

tracks. Quantitatively, the standard root-mean-squared error

used in single target problems is not appropriate as a measure

of performance since this requires correct association. It was

proposed in [20] to use the Wasserstein distance as a multi-

target miss-distance. The Wasserstein distance is defined for

any two non-empty subsets X̂ , X as

dp(X̂,X) = min
C

p

√√√√√
|X̂|∑

i=1

|X|∑

j=1

Ci,j ‖x̂i − xj‖
p
,

where the minimum is taken over the set of all transportation

matrices C, (a transportation matrix is one whose entries Ci,j

satisfy Ci,j ≥ 0,
∑|X|

j=1 Ci,j = 1/|X̂|,
∑|X̂|

i=1 Ci,j = 1/|X |).
Note that the Wasserstein miss-distance is not defined if either

the estimate X̂ or the ground truth X is empty. When X̂
and X have the same number of elements, the Wasserstein

distance gives the distance for the best association. Figure 6

plots the estimated target number (obtained by rounding the

total intensity measure) and true target number along with

the Wasserstein distance between the positions estimates of
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the multi-target state and ground truth at each time step.

When the estimated number is incorrect, the clustering output

becomes unreliable. Moreover, the Wasserstein distance tends

to penalise sets of different cardinalities. This results in high

peaks in the multi-target miss-distance at the instances where

the estimated number is incorrect as indicated in Figure 6.

When the estimated number of targets is correct, the Wasser-

stein miss-distance stays below 3.5, which turns out to be

approximately equal to the root-mean-squared measurement

noise. The PHD filter is effective in this scenario because the

false alarm rate and measurement noise are sufficiently small

(0.005 clutter points per σ-gate) so that it is unlikely for a

false alarm to fall within a one σ-gate surrounding any target

track.
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Fig. 7. x and y components of position observations immersed in clutter of
rate r = 50.

−60 −40 −20 0 20 40 60
−60

−40

−20

0

20

40

60

X

Y

Fig. 8. Filter output (r = 50), position estimates (⊕) superimposed on
ground truth (solid-line) over 40 time steps.

Figure 7 shows the observations for the tracks of Figure 2

observed in denser clutter with rate r = 50. The degradation
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Fig. 9. Filter output (r = 50), plots of x and y components of position
estimates (circle) against time, superimposed on ground truth (solid-line).
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Fig. 10. Target number estimate and multi-target miss-distance at each time
step (r = 50).

in performance of the proposed particle PHD filter is evident

from Figures 8 and 9. This is confirmed in Figure 10, which

shows an increased error in the estimated target number and

the Wasserstein multi-target miss-distance. The degradation in

performance can be attributed to the increased average number

of 0.025 clutter points per σ-gate.

B. Bearing and range tracking example

To demonstrate the versatility of the proposed particle PHD

filter on nonlinear problems, consider a bearing and range

tracking application. The same target tracks as in the linear

example over the region [−100, 100] × [−100, 100] are used

(see Figure 2). The sensor is located at [0,−100]T and the

measurement equations are

θk = arctan

(
[ 1 0 0 0 ]xk

[ 0 0 1 0 ]xk + 100

)
+ w1,k,

rk =

∥∥∥∥
[

1 0 0 0
0 0 1 0

]
xk −

[
0

−100

]∥∥∥∥+ w2,k.
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The measurement noise {w1,k} and {w2,k} are zero-mean

Gaussian white noise with respective standard deviations

σw1 = 0.05 (i.e. approximately 3 degrees) and σw2 = 2,

are independent of each other and the process noise. Without

loss of generality we use a unity probability of detection.

Clutter is uniformly distributed over the observation space

[−π/2, π/2] × [0, 200] with an average rate of r points per

scan, i.e. a Poisson point process on [−π/2, π/2] × [0, 200]
with a uniform intensity function κ = r/200π. Again this

gives an average of 0.0005r clutter points per σ-gate as in the

linear example.
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Fig. 11. Bearing and range observations immersed in clutter of rate r = 10.
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Fig. 12. Filter output for bearing and range tracking (r = 10), position
estimates (⊕) superimposed on ground truth (solid-line) over 40 time steps.

Figure 11 shows, at each time step, the bearing and range

observations in clutter with an average rate of r = 10 points

per scan. Figure 12 shows the positions of the estimated

targets superimposed on the tracks over 40 time steps. The

individual x and y coordinates of the tracks and estimated

targets for each time step are shown in Figure 13. Similar to
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Fig. 13. Filter output for bearing and range tracking (r = 10), plots of x
and y components of position estimates (circle) against time, superimposed
on ground truth (solid-line).
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Fig. 14. Target number estimate and multi-target miss-distance for bearing
and range tracking (r = 10).

the linear example for r = 10, the estimated positions are

close to the true tracks. This is quantified in Figure 14, which

compares the estimated targets against ground truth in terms

of target number and Wasserstein multi-target miss distance

at each time step. The multi-target miss distance exhibits

peaks at the instances where the estimated number is incorrect.

The peaking in Figure 14 from the 25th to 33rd time steps

coincides with the approximate alignment of targets and clutter

along a single bearing. When the estimated number of targets

is correct, the Wasserstein miss-distance is approximately 5

(higher than that for the linear example). Again the PHD

filter is effective in this low clutter scenario because the false

alarm rate and measurement noise are sufficiently small (0.005
clutter points per σ-gate) so that it is unlikely for a false alarm

to fall within a one σ-gate surrounding any target track.

Figure 15 shows the observations for the same tracks

observed in denser clutter of rate r = 50. In this case the

average number of clutter points per σ-gate is 0.025. The

degradation in performance can be seen from Figures 16 and
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Fig. 15. Bearing and range observations immersed in clutter of rate r = 50.
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Fig. 16. Filter output for bearing and range tracking (r = 50), position
estimates (⊕) superimposed on ground truth (solid-line) over 40 time steps.

17. Figure 18 compares the estimated targets against ground

truth in terms of target number and Wasserstein multi-target

miss-distance. Note the much larger error in the estimated

target number and the Wasserstein miss-distance.

Remark: The Wasserstein miss-distance provides a measure

of the overall performance of the PHD filter and the point

estimate extraction process. Since the PHD filter only produces

an intensity function estimate, the measure of performance

(using the Wasserstein miss-distance) depends on the extrac-

tion of point estimates from the filter output. The extraction

of point estimates from the particle approximation using

standard clustering [19] or peak finding techniques can be

unreliable, especially when the estimated number of targets is

incorrect. A fundamental measure of performance for the PHD

filter should not depend on the quality of the point estimate

extractions. To directly measure the performance of the PHD

filter, it is possible to treat the PHD filter output and ground

0 5 10 15 20 25 30 35 40
−40

−20

0

20

40

60

80

X

time

0 5 10 15 20 25 30 35 40
−80

−60

−40

−20

0

20

40

60

Y

time

Fig. 17. Filter output for bearing and range tracking (r = 50), plots of x
and y components of position estimates (circle) against time, superimposed
on ground truth (solid-line).
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Fig. 18. Target number estimate and multi-target miss-distance for bearing
and range tracking (r = 50).

truth as multi-dimensional images and use the Wasserstein

distance as a similarity measure between these two images.

In this approach, the miss-distance can be defined for filter

estimates and ground truth that involve empty sets. However,

the similarity measure between two images can expensive to

compute.

V. CONCLUSION

This paper has established that FISST concepts such as set

integral and set derivative are closedly related to the measure

theoretic integral and density. This provides an important

connection between Finite Set Statistics (FISST) and standard

probability theory. In particular, it has been shown that the

difficult task of computing probability densities of Random

Finite Sets can be achieved via FISST. This result also allows

us to develop a principled and computationally tractable SMC

implementation of the Bayes multi-target filter. In addition, we

developed a generalised importance sampling and resampling

strategy to implement the Probability Hypothesis Density
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(intensity function) filter, a much cheaper alternative than

the Bayes multi-target filter. Convergence results for these

SMC implementations have also been established. Both of

the proposed approaches are general enough to handle non-

linear non-Gaussian target dynamics. Bearing in mind that no

multi-target filtering algorithm is capable of performing well

in an arbitrarily adverse environment, the PHD filter shows

good promise under a reasonable level of measurement noise

and false alarm rates. However, the viability of the proposed

approach needs to be tested in real applications.

There are various potential extensions to this work. First,

choosing the importance distributions so as to minimise the

(conditional) variance of the weights is a challenging problem.

Second, the PHD filter output is an intensity function estimate,

not point estimates of individual target states. As end users

may only be interested in the number of targets, their locations

and the associated confidence, efficient and reliable algorithms

for computing point estimates from intensity function estimate

become important. Thirdly, as the FISST framework does

not yield track-valued estimates, it would be useful in many

applications to incorporate association functionality to random

set based filters to yield track-valued estimates rather than

point estimates of the states.

VI. APPENDIX A (MEASURE AND PROBABILITY)

The pair (X , σ(X )) in which σ(X ) denotes a σ-algebra of

subsets of X is called a measurable space. If X is equipped

with a topology τ(X ), then the σ-algebra of interest is the

smallest one that contains τ(X ), and is called the Borel σ-

algebra or Borel sets of X . A set T ⊆ X is said to be

measurable if T ∈ σ(X ). A function f : X →R is said to

be measurable if the inverse images of the Borel sets of R

under f are measurable. The triple (X , σ(X ), µ) in which µ is

a measure on σ(X ) is called a measure space. If X =∪∞
i=0 Ti

for some countable sequence of Ti ∈ σ(X ) with µ(Ti) < ∞,

then µ is said to be σ-finite.

The integral of a measurable function f : X →R,
∫
f(X)µ(dX),

is defined as a limit of integrals of simple (or step) functions.

The integral of f over any measurable T ⊆ X is defined as
∫

T

f(X)µ(dX) =

∫
1T (X)f(X)µ(dX),

where 1T denotes the indicator function 1T (X) = 1 if X ∈ T
and 1T (X) = 0 otherwise.

Two σ-finite measures µ1 and µ2 on the same measurable

space (X , σ(X )) may be given in terms of the other by

µ2(T ) =

∫

T

g(X)µ1(dX), ∀T ∈ σ(X ),

if µ1(T ) = 0 implies µ2(T ) = 0. In this case µ2 is said

to be absolutely continuous with respect to (w.r.t.) µ1 (or

equivalently µ2 << µ1) and g : X →[0,∞) is called the

Radon-Nikodým derivative or density of µ2 with respect to

µ1, which is also denoted as g = dµ2/dµ1.

Let (Ω, σ(Ω), P ) be a probability space, i.e. a measure

space with P (Ω) = 1, and (X , σ(X ), µ) be a measure

space. An X -valued random variable (or random variable for

simplicity) Ξ is a measurable mapping

Ξ : Ω → X .

The probability distribution of the random variable Ξ is a

measure PΞ on σ(X ) defined for each T ∈ σ(X ) by PΞ(T ) =
P (Ξ−1(T )). If PΞ is absolutely continuous w.r.t. the measure

µ, then pΞ = dPΞ/dµ is called the probability density of Ξ.

w.r.t. µ.

Let the measurable spaces (X , σ(X )) and (Z, σ(Z)) denote

the state space and observation space respectively. The joint

probability distribution PΞ,Σ(·, ·) of the random variables Ξ on

X and Σ on Z is a probability measure on σ(X )⊗σ(Z), the

σ-algebra generated by measurable rectangles T ×U withT ∈
σ(X ) and U ∈ σ(Z), that satisfies

PΞ,Σ(T ,U) = P (Ξ−1(T ) ∩ Σ−1(U)).

The joint probability distribution of a finite number of

random variables can be defined in a similar way.

VII. APPENDIX B (RANDOM FINITE SETS)

For completeness, this Appendix outlines the basics of

random finite sets (RFS) or simple finite point processes8.

Background material on RFS are abundant in the point pro-

cesses literature; see for example [8], [43]. However, works

with an inclination to multi-target filtering are quite new;

the major body of work appears to be that of Mahler [15],

[24]. The monograph [25] and the thesis [45] are excellent

introductions accessible to a wide range of readers.

Given a locally compact Hausdorff separable space E (e.g.

R
n), let F(E) denote the collection of finite subsets of E.

The topology on F(E) is taken to be the myopic or Mathéron

topology [31]. A random finite set Ξ on E is defined as a

measurable mapping

Ξ : Ω → F(E),

where Ω is a sample space with a probability measure

P defined on σ(Ω). The probability measure P induces a

probability law for Ξ, which can be specified in terms of a

probability distribution, a void probability or a belief function.

The most natural description of the probability law for Ξ is

the probability distribution PΞ defined for any Borel subset T
of F(E) by

PΞ(T ) = P (Ξ−1(T )) = P ({ω : Ξ(ω) ∈ T }).

However, from random set theory [15], [31], the probability

law for Ξ can also be given in terms of the belief mass function

βΞ defined for any closed subset S of E by

βΞ(S) = P ({ω : Ξ(ω) ⊆ S}).

8A simple finite point process set does not allow repeated elements and
only contains a finite number of elements.
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A third equivalent description, closely related to the belief

mass function, is the void probability ςΞ [8], [43], [44], which

is defined for any closed subset S of E by

ςΞ(S) = P ({ω : |Ξ(ω) ∩ S| = 0}) = βΞ(Sc),

where |X | denotes the number of elements in X .

The simplest class of RFSs are the Poisson point processes.

A Poisson point process Υ is a RFS characterised by the

property that for any k disjoint Borel subsets S1, ..., Sk of E,

the random variables |Υ ∩ S1| , ..., |Υ ∩ Sk| are independent

and Poisson. Let vΥ(S) denote the mean of the Poisson

random variable |Υ ∩ S|. Then vΥ defines a (unitless) measure

on the Borel subsets of E, and is called the intensity measure

of Υ [8], [43], [44]. The probability distribution of Υ is given

by [13], [34]

PΥ(T ) = e−vΥ(E)
∞∑

i=0

vi
Υ(χ−1(T ) ∩ Ei)

i!
, (33)

where vi
Υ denotes the ith product measure of vΥ and χ :

⊎∞
i=0E

i → F(E) is the mapping of vectors to finite sets

defined for each i by χ([x1, ..., xi]
T
) = {x1, ..., xi}. The

mapping χ is measurable [44] and hence PΥ is well defined.

A word of caution, it is common practice in the stochastic ge-

ometry literature to write the measure (33) with the following

abuse of notation [13], [34]

PΥ(T ) = e−vΥ(E)
∞∑

i=0

vi
Υ(T ∩ Ei)

i!
, (34)

where it is implicit that T := χ−1(T ), i.e. vectors are

considered as finite sets and vice-versa depending on the

context of the expression.

The integral of a measurable function f : F(E) → R with

respect to the measure

µ(T ) =

∞∑

i=0

vi
Υ(χ−1(T ) ∩ Ei)

i!
, (35)

is given by [13], [34]
∫

T

f(X)µ(dX)

=

∞∑

i=0

1

i!

∫

χ−1(T )∩Ei

f({x1, ..., xi})v
i
Υ(dx1...dxi). (36)

This is straight forward to verify using the countable additivity

of measure. Decompose T = ⊎∞
i=0 Ti, where Ti is the subset

of T which contains all (finite) subsets with i elements, and

note that χ−1(Ti) ∩Ei = χ−1(T ) ∩ Ei, then
∫

T

f(X)µ(dX)

=

∞∑

i=0

∫

Ti

f(X)µ(dX)

=

∞∑

i=0

1

i!

∫

χ−1(Ti)∩Ei

f({x1, ..., xi})v
i
Υ(dx1...dxi)

=

∞∑

i=0

1

i!

∫

χ−1(T )∩Ei

f({x1, ..., xi})v
i
Υ(dx1...dxi).

For any Borel subset S of E, let λK(S) denote the Lebesgue

measure (or volume) of S in units of K . The density of

vΥ w.r.t. λK (if one exists) is called an intensity function

or rate of Υ and has units of K−1. A Poisson point

process is completely characterised by its intensity measure

(or equivalently its rate). A Poisson point process with a

uniform rate of K−1 has intensity measure λ = λK/K and

its probability distribution is given by [13], [34] i.e.

PΥ(T ) = e−λ(E)
∞∑

i=0

λi(χ−1
i (T ) ∩Ei)

i!
. (37)

VIII. APPENDIX C (PROOF OF PROPOSITION 3)

To simplify notations, let αk = Dk|k, πk = Dk|k−1, φk =

φk|k−1, αL
k =

∑L

i=1 w
(i)
k δ

x
(i)
k

, α̃L+J
k =

∑L+J

i=1 w̃
(i)
k δ

x̃
(i)
k

,

πL+J
k =

∑L+J

i=1 w̃
(i)
k|k−1δx̃(i)

k

and dL
k = N̂k|k. Note that dL

k =
∑L

i=1 w
(i)
k =

∑L+J
i=1 w̃

(i)
k .

Given φ : Es × Es → R, for a function f : Es → R

and a density9 α on Es, define fα ∈ R, φα : Es → R and

fφ : Es → R by

fα =

∫
f(x)α(x)λ(dx),

(φα) (x) =

∫
φ(x, ξ)α(ξ)λ(dξ),

(fφ) (x) =

∫
f(ξ)φ(ξ, x)λ(dξ).

Note that fφα = f(φα) = (fφ)α, and Φk|k−1α = φkα.

Since fk|k−1 and bk|k−1 are Feller (a standard assumption [11,

Chapter 2]) φk = φk|k−1 is also Feller, i.e. fφk ∈ Cb(Es) for

all f ∈ Cb(Es), where Cb(Es) denotes the space of bounded

and continuous functions on Es.

Define the σ-algebras

F̄k = σ
{
x(i)

r , x̃(i)
s ; r < k, s ≤ k, i = 1, . . . , L+ J

}
, (38)

Fk = σ
{
x(i)

r , x̃(i)
s ; r ≤ k, s ≤ k, i = 1, . . . , L+ J

}
. (39)

Observe that
(
w̃

(i)
k

)L+J

i=1
are F̄k-measurable. All expectations

defined in this Appendix assume a fixed sequence of obser-

vations Z1:k. Conditioning on Z1:k is omitted to simplify the

notation.

Proposition 3 is established by proving Lemma C.1 below,

and then showing that the premises for Lemma C.1 are

satisfied.

Lemma C.1: If the following three conditions hold for all

f ∈ Cb(Es):

lim
L→∞

E
[∣∣fαL

0 − fα0

∣∣] = 0, (40)

lim
L→∞

E
[∣∣fπL+J

k − f(φkα
L
k−1)

∣∣] = 0, (41)

lim
L→∞

E
[∣∣fαL

k − fα̃L+J
k

∣∣] = 0. (42)

Then, for all f ∈ Cb(Es),

lim
L→∞

E
[∣∣fπL+J

k − fπk

∣∣] = 0, (43)

lim
L→∞

E
[∣∣fαL

k − fαk

∣∣] = 0. (44)

9All densities on Rnx are with respect to the Lebesgue measure.



IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS, VOL. X, NO. XXX, JUNE 2005 17

Proof: To establish (43), recall that fπk = fφkαk−1,

and write

∣∣fπL+J
k − fπk

∣∣ ≤
∣∣fπL+J

k − fφkα
L
k−1

∣∣
+
∣∣fφkα

L
k−1 − fφkαk−1

∣∣ . (45)

The expectation of the first term on the right of (45) converges

to zero as L → ∞ by virtue of (41). Since fφk ∈ Cb(Es)
for all f ∈ Cb(Es), the expected value of the second term

converges to zero by induction and (40).

Similarly, to establish (44) write

∣∣fαL
k − fαk

∣∣ ≤
∣∣fαL

k − fα̃L+J
k

∣∣+
∣∣fα̃L+J

k − fαk

∣∣ . (46)

Using (42), the expectation of the first term on the right of

(46) converges to zero. For the second term, write

∣∣fα̃L+J
k − fαk

∣∣

=
∣∣f(Ψkπ

L+J
k ) − f(Ψkπk)

∣∣

≤
∣∣(f×υk) π

L+J
k − (f×υk)πk

∣∣

+
∑

z∈Zk

∣∣∣∣∣
(f×ψk,z)π

L+J
k

κk(z) + Ck(z)
−

(f×ψk,z)πk

κk(z) + ψk,zπk

∣∣∣∣∣ . (47)

Using (43) just established, the expected value of the first term

on the right of (47) converges to zero. Moreover, each term

in the sum over Zk is bounded by

∣∣∣∣∣
(f × ψk,z)π

L+J
k

κk(z) + Ck(z)
−

(f × ψk,z)πk

κk(z) + ψk,zπk

∣∣∣∣∣

≤

∣∣∣∣∣
(f × ψk,z)π

L+J
k

κk(z) + Ck(z)
−

(f × ψk,z)π
L+J
k

κk(z) + ψk,zπk

∣∣∣∣∣

+

∣∣∣∣∣
(f × ψk,z)π

L+J
k

κk(z) + ψk,zπk

−
(f × ψk,z)πk

κk(z) + ψk,zπk

∣∣∣∣∣ . (48)

Again using (43), the expectation of the second term on

the right of (48) converges to zero. The first term on

the right of (48) can be rearranged to give (49). Noting

that
∣∣(f × ψk,z)π

L+J
k

∣∣ ≤ ‖f‖∞
∣∣ψk,zπ

L+J
k

∣∣, and Ck(z) =

ψk,zπ
L+J
k yields (50)

∣∣∣∣∣
(f × ψk,z)π

L+J
k

κk(z) + Ck(z)
−

(f × ψk,z)π
L+J
k

κk(z) + ψk,zπk

∣∣∣∣∣

≤

∣∣∣∣∣
(f × ψk,z)π

L+J
k

κk(z) + Ck(z)

∣∣∣∣∣

∣∣∣∣
ψk,zπk − Ck(z)

κk(z) + ψk,zπk

∣∣∣∣ (49)

≤ ‖f‖∞

∣∣∣∣∣
ψk,zπk − ψk,zπ

L+J
k

κk(z) + ψk,zπk

∣∣∣∣∣ . (50)

The expectation of the term on right of (50) converges to zero

by virtue of (43). Consequently, the expectation of the sum

over Zk in (47) converges to zero and hence, (44) follows.

The premises of Lemma C.1 are now established by the

following lemmas.

Lemma C.2: If limL→∞ L−1
E

[(
dL

k−1

)2]
= 0 then,

limL→∞ L−1
E

[(
dL

k

)2]
= 0.

Proof: Substitute for w̃
(i)
k from (28) into dL

k =∑L+J

i=1 w̃
(i)
k and using (27) for Ck(z) gives.

dL
k =

L+J∑

i=1

w̃
(i)
k|k−1υk(x̃

(i)
k ) +

∑

z∈Zk

Ck(z)

κk(z) + Ck(z)

≤
L+J∑

i=1

w̃
(i)
k|k−1υk(x̃

(i)
k ) + |Zk| (51)

Substituting for w̃
(i)
k|k−1 from (25-26) into the first term on the

right of (51) and using w
(i)
k−1 = dL

k−1/L for i = 1, ..., L gives

dL
k ≤

dL
k−1

L

L∑

i=1

[
φk(x̃

(i)
k , x

(i)
k−1)

qk(x̃
(i)
k |x

(i)
k−1)

]
υk(x̃

(i)
k )

+
1

J

L+J∑

i=L+1

[
γk(x̃

(i)
k )

pk(x̃
(i)
k )

]
υk(x̃

(i)
k ) + |Zk|

≤ dL
k−1 sup

ξ,x

∣∣∣∣
φk(x, ξ)

qk(x|ξ)
υk(x)

∣∣∣∣

+ sup
x

∣∣∣∣
γk(x)

pk(x)
υk(x)

∣∣∣∣+ |Zk| .

Using the bounds (29)-(30), the result then follows.

Lemma C.3: For all f ∈ Cb(Es),
limL→∞ E

[∣∣fαL
k − fα̃L+J

k

∣∣].
Proof:

EF̄k

[∣∣fα̃L+J
k − fαL

k

∣∣2
]

= EF̄k




(
dL

k

L

)2
(

L+J∑

i=1

f(x̃
(i)
k )

(
Lw̃

(i)
k

dL
k

− ζ
(i)
k

))2




=

(
dL

k

L

)2 L+J∑

i=1

L+J∑

j=1

f(x̃
(i)
k )EF̄k

[(
Lw̃

(i)
k

dL
k

− ζ
(i)
k

)

×

(
Lw̃

(j)
k

dL
k

− ζ
(j)
k

)]
f(x̃

(j)
k )

=

(
dL

k

L

)2

‖f‖2
∞

L+J∑

i=1

L+J∑

j=1

f(x̃
(i)
k )

‖f‖∞
[Ak]i,j

f(x̃
(j)
k )

‖f‖∞

≤

(
dL

k

L

)2

‖f‖2
∞ Lck,

where the last 2 steps follow from (31) and (32). Thus, using

Lemma C.2, E

[∣∣fα̃L+J
k − fαL

k

∣∣2
]
→ 0 as L→ ∞.

Lemma C.4: For all f ∈ Cb(Es),
limL→∞ E

[∣∣fπL+J
k − f(φkα

L
k−1)

∣∣] = 0.

Proof:

fπL+J
k − fφkα

L
k−1

=

L+J∑

i=1

f(x̃
(i)
k )w̃

(i)
k|k−1 −

L∑

i=1

(fφk)(x
(i)
k−1)w

(i)
k−1 − fγk

=

L∑

i=1

[
f(x̃

(i)
k )w̃

(i)
k|k−1 − (fφk)(x

(i)
k−1)w

(i)
k−1

]

+

L+J∑

i=L+1

f(x̃
(i)
k )w̃

(i)
k|k−1 − fγk. (52)
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For the first term on the right of (52), substitute for w̃
(i)
k|k−1

from (25) and w
(i)
k−1 = dL

k−1/L. Take the expectation of

its square and using the independence of the cross terms

conditional on Fk−1 gives (53). Expanding the square inside

the expectation on the right of (53) and taking the expectation

inside this expansion gives (54)

EFk−1





[
L∑

i=1

(
f(x̃

(i)
k )w̃

(i)
k|k−1 − (fφk)(x

(i)
k−1)w

(i)
k−1

)]2




=

(
dL

k−1

L

)2 L∑

i=1

EFk−1

[(
f(x̃

(i)
k )

φk(x̃
(i)
k , x

(i)
k−1)

qk(x̃
(i)
k |x

(i)
k−1)

− (fφk) (x
(i)
k−1)

)2
]

(53)

=

(
dL

k−1

L

)2 L∑

i=1

[∫
f2(x)φ2

k(x, x
(i)
k−1)

qk(x|x
(i)
k−1)

dx

−

(
(fφk) (x

(i)
k−1)

)2
]

(54)

≤

(
dL

k−1

)2

L
‖f‖2

∞ sup
ξ,x

∣∣∣∣
φk(ξ, x)

qk(ξ|x)

∣∣∣∣+
(
dL

k−1

)2

L
sup

x
(fφk)2 (x).

Using (29), it follows that the expectation of the first term on

the right of (52) converges to zero as L→ ∞.

Similarly, for the second term on the right of (52), sub-

stitute for w̃
(i)
k|k−1 from (26) and take the expectation of its

square, keeping in mind the independence of the cross terms

conditional on Fk−1, gives (55). Expanding the square inside

the expectation on the right of (55) and taking the expectation

inside this expansion gives (56)

EFk−1




(

1

J

L+J∑

i=L+1

f(x̃
(i)
k )

γk(x̃
(i)
k )

pk(x̃
(i)
k )

− fγk

)2




=
1

J2

L+J∑

i=1

EFk−1




(
f(x̃

(i)
k )

γk(x̃
(i)
k )

pk(x̃
(i)
k )

− fγk

)2


 (55)

=
1

J2

L+J∑

i=1

[∫
f2(x)γ2

k(x)

pk(x)
dx− (fγk)2

]
(56)

≤
‖f‖2

∞

J

[∫
γ2

k(x)

pk(x)
dx

]
−

(fγk)
2

J
.

Using (30),
∫ γ2

k(x)
pk(x)dx ≤ Pk

∫
γk(x)dx. Moreover, J → ∞

as L → ∞, hence, the above expectation converges to zero.

Consequently, the second term on the right of (52) also

converges to zero.
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