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Computing smoothing distributions, the distributions of one or more
states conditional on past, present, and future observations is a recurring prob-
lem when operating on general hidden Markov models. The aim of this paper
is to provide a foundation of particle-based approximation of such distribu-
tions and to analyze, in a common unifying framework, different schemes
producing such approximations. In this setting, general convergence results,
including exponential deviation inequalities and central limit theorems, are
established. In particular, time uniform bounds on the marginal smoothing
error are obtained under appropriate mixing conditions on the transition ker-
nel of the latent chain. In addition, we propose an algorithm approximating
the joint smoothing distribution at a cost that grows only linearly with the
number of particles.

1. Introduction. Statistical inference in general state space hidden Markov
models (HMM) involves computation of the posterior distribution of a set Xs:s′ def=
[Xs, . . . ,Xs′ ] of state variables conditional on a record Y0:T = y0:t of observations.
This distribution will, in the following, be denoted by φs:s′|T where the dependence
of this measure on the observed values y0:T is implicit. The posterior distribution
can be expressed in closed-form only in very specific cases, principally, when the
state space model is linear and Gaussian or when the state space of the hidden
Markov chain is a finite set. In the vast majority of cases, nonlinearity or non-
Gaussianity render analytic solutions intractable [3, 26, 33, 36].

This limitation has led to an increase of interest in alternative computational
strategies handling more general state and measurement equations without con-
straining a priori the behavior of the posterior distributions. Among these, sequen-
tial Monte Carlo (SMC) methods play a central role. SMC methods—in which
the sequential importance sampling and sampling importance resampling meth-
ods proposed by [23] and [35], respectively, are combined—refer to a class of
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algorithms approximating a sequence of probability distributions, defined on a
sequence of probability spaces, by updating recursively a set of random parti-
cles with associated nonnegative importance weights. The SMC methodology has
emerged as a key tool for approximating state posterior distribution flows in gen-
eral state space models; see [9, 10, 12] for general introductions as well as theo-
retical results for SMC methods and [17, 31, 33] for applications of SMC within a
variety of scientific fields.

The recursive formulas generating the filter distributions φT (short-hand nota-
tion for φT :T |T ) and the joint smoothing distributions φ0:T |T are closely related;
thus, executing the standard SMC scheme in the filtering mode provides, as a by-
product, approximations of the joint smoothing distributions. More specifically,
the branches of the genealogical tree associated with the historical evolution of the
filtering particles up to time step T form, when combined with the corresponding
importance weights of these filtering particles, a weighted sample approximating
the joint smoothing distribution φ0:T |T ; see [9], Section 3.4, for details. From these
paths, one may readily obtain a weighted sample targeting the fixed lag or fixed
interval smoothing distribution by extracting the required subsequence of states
while retaining the weights. This appealingly simple scheme can be used success-
fully for estimating the joint smoothing distribution for small values of T or any
marginal smoothing distribution φs|T , with s ≤ T , when s and T are close; how-
ever, when T is large and s � T , the associated particle approximations are inac-
curate since the genealogical tree degenerates gradually as the interacting particle
system evolves [20, 21].

In this article, we thus give attention to more sophisticated approaches and con-
sider instead the forward filtering backward smoothing (FFBSm) algorithm and the
forward filtering backward simulation (FFBSi) sampler. These algorithms share
some similarities with the Baum–Welch algorithm for finite state space models
and the Kalman filter-based smoother and simulation smoother for linear Gaus-
sian state space models [8]. In the FFBSm algorithm, the particle weights obtained
when approximating the filter distributions in a forward filtering pass are modified
in a backward pass; see [18, 24, 27]. The FFBSi algorithm simulates, condition-
ally independently given the particles and particle weights produced in a similar
forward filtering pass, state trajectories being approximately distributed according
to the joint smoothing distribution; see [21].

The computational complexity of the FFBSm algorithm when used for estimat-
ing marginal fixed interval smoothing distributions or of the original formulation
of the FFBSi sampler grows (in most situations) as the square of the number N

of particles multiplied by the time horizon T . To alleviate this potentially very
large computational cost, some methods using intricate data structures for storing
the particles have been developed; see, for example, [28]. These algorithms have a
complexity of order O(N log(N)) and are thus amenable to practical applications;
however, this reduction in complexity comes at the cost of introducing some level
of approximation.
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In this paper, a modification of the original FFBSi algorithm is presented. The
proposed scheme has a complexity that grows only linearly in N and does not
involve any numerical approximation techniques. This algorithm may be seen as
an alternative to a recent proposal by [20] which is based on the so-called two-filter
algorithm [2].

The smoothing weights computed in the backward pass of the FFBSm algo-
rithm at a given time instant s (or the law of the FFBSi algorithm) are statistically
dependent on all forward filtering pass particles and weights computed before and
after this time instant. This intricate dependence structure makes the analysis of
the resulting particle approximation challenging; up to our best knowledge, only
a single consistency result is available in [21], but its proof is plagued by a (sub-
tle) mistake that seems difficult to correct. Therefore, very little is known about
the convergence of the schemes under consideration, and the second purpose of
this paper is to fill this gap.2 In this contribution, we focus first on finite time
horizon approximations. Given a finite time horizon T , we derive exponential de-
viation inequalities stating that the probability of obtaining, when replacing φs:T |T
by the corresponding FFBSm or FFBSi estimator, a Monte Carlo error exceeding a
given ε > 0 is bounded by a quantity of order O(exp(−cNε2)) where c is positive
constant depending on T as well as the target function under consideration. The
obtained inequalities, which are presented in Theorem 5 (FFBSm) and Corollary 6
(FFBSi), hold for any given number N of particles and are obtained by combin-
ing a novel backward error decomposition with an adaptation of the Hoeffding
inequality to statistics expressed as ratios of random variables. We then consider
the asymptotic (as the number N of particles tends to infinity) regime and establish
a central limit theorem (CLT) with rate

√
N and with an explicit expression of the

asymptotic variance; see Theorem 8. The proof of our CLT relies on a technique,
developed gradually in [6, 15, 30], which is based on a CLT for triangular arrays of
dependent random variables; however, since we are required to take the complex
dependence structure of the smoothing weights into account, our proof is signif-
icantly more involved than in the standard filtering framework considered in the
mentioned works.

The second part of the paper is devoted to time uniform results, and we here
study the behavior of the particle-based marginal smoothing distribution approxi-
mations as the time horizon T tends to infinity. In this setting, we first establish,
under the assumption that the Markov transition kernel M of the latent signal is
strongly mixing (Assumption 4), time uniform deviation bounds of the type de-
scribed above which hold for any particle population size N and where the con-
stant c is independent of T ; see Theorem 11. This result may seem surprising,

2Since the first version of this paper has been released, an article [11] has been published. This
work, developed completely independently from ours, complement the results presented in this
manuscript. In particular, this paper presents a functional central limit theorems as well as nonasymp-
totic variance bounds. Additionally, this work shows how the forward filtering backward smoothing
estimates of additive functionals can be computed using a forward only recursion.
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and the nonobvious reason for its validity stems from the fact that the underlying
Markov chain forgets, when evolving conditionally on the observations, its initial
conditions in the forward as well as the backward directions. Finally, we prove
(see Theorem 12), under the same uniform mixing assumption, that the asymp-
totic variance of the CLT for the particle-based marginal smoothing distribution
approximations remains bounded as T tends to infinity. The uniform mixing as-
sumption in Assumption 4 points typically to applications where the state space
of the latent signal is compact; nevertheless, in the light of recent results on filter-
ing stability [14, 29] one may expect the geometrical contraction of the backward
kernel to hold for a significantly larger class of nonuniformly mixing models (see
[14] for examples from, e.g., financial economics). But even though the geomet-
rical mixing rate is supposed to be constant in this more general case, applying
the mentioned results will yield a bound of contraction containing a multiplicative
constant depending highly on the initial distributions as well as the observation
record under consideration. Since there are currently no available results describ-
ing this dependence, applying such bounds to the instrumental decomposition used
in the proof of Theorem 5 seems technically involved. Recently, [39] managed to
derive qualitative time average convergence results for standard (bootstrap-type)
particle filters under a mild tightness assumption being satisfied also in the non-
compact case when the hidden chain is geometrically ergodic. Even though this
technique does not (on the contrary to our approach) supply a rate of convergence,
it could possibly be adopted to our framework in order to establish time average
convergence of the particle-based marginal smoothing distribution approximations
in a noncompact setting.

The paper is organized as follows. In Section 2, the FFBSm algorithm and the
FFBSi sampler are introduced. An exponential deviation inequality for the fixed
interval joint smoothing distribution is derived in Section 3.1, and a CLT is estab-
lished in Section 3.2. In Section 4, time uniform exponential bounds on the error
of the FFBSm marginal smoothing distribution estimator are computed under the
mentioned mixing condition on the kernel M . Finally, under the same mixing con-
dition, an explicit bound on the asymptotic variance of the marginal smoothing
distribution estimator is derived in Section 4.2.

Notation and definitions. For any sequence {an}n≥0 and any pair of integers
0 ≤ m ≤ n, we denote am:n def= (am, . . . , an). We assume in the following that all
random variables are defined on a common probability space (�, F ,P). The sets
X and Y are supposed to be Polish spaces and we denote by B(X) and B(Y) the
associated Borel σ -algebras. Fb(X) denotes the set of all bounded B(X)/B(R)-
measurable functions from X to R. For any measure ζ on (X, B(X)) and any ζ -
integrable function f , we set ζ(f )

def= ∫
X

f (x)ζ(dx). Two measures ζ and ζ ′ are
said to be proportional (written ζ ∝ ζ ′) if they differ only by a normalization
constant.
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A kernel V from (X, B(X)) to (Y, B(Y)) is a mapping from X × B(Y) into
[0,1] such that, for each A ∈ B(Y), x 	→ V (x,A) is a nonnegative, bounded, and
measurable function on X, and, for each x ∈ X, A 	→ V (x,A) is a measure on
B(Y). For f ∈ Fb(X) and x ∈ X, denote by V (x,f )

def= ∫
V (x, dx′)f (x′); we will

sometimes also use the abridged notation Vf (x) instead of V (x,f ). For a measure
ν on (X, B(X)), we denote by νV the measure on (Y, B(Y)) defined by, for any
A ∈ B(Y), νV (A)

def= ∫
X

V (x,A)ν(dx).
Consider now a possibly nonlinear state space model, where the state process

{Xt }t≥0 is a Markov chain on the state space (X, B(X)). Even though t is not
necessarily a temporal index, we will often refer to this index as “time.” We de-
note by χ and M the initial distribution and transition kernel, respectively, of this
process. The state process is assumed to be hidden but partially observed through
the observations {Yt }t≥0 which are Y-valued random variables being conditionally
independent given the latent state sequence {Xt }t≥0; in addition, there exists a σ -
finite measure λ on (Y, B(Y)) and a nonnegative transition density function g on
X × Y such that P[Yt ∈ A|Xt ] = ∫

A g(Xt , y)λ(dy) for all A ∈ B(Y). The mapping
x 	→ g(x, y) is referred to as the likelihood function of the state given an observed
value y ∈ Y. The kernel M as well as the transition density g are supposed to be
known. In the setting of this paper, we assume that we have access to a record of ar-
bitrary but fixed observations y0:T def= [y0, . . . , yT ], and our main task is to estimate
the posterior distribution of (different subsets of) the state vector X0:T given these
observations. For any t ≥ 0, we denote by gt (x)

def= g(x, yt ) (where the dependence
on yt is implicit) the likelihood function of the state Xt given the observation yt .

For simplicity, we consider a fully dominated state space model for which there
exists a σ -finite measure ν on (X, B(X)) such that, for all x ∈ X, M(x, ·) has a
transition probability density m(x, ·) with respect to ν. For notational simplicity,
ν(dx) will sometimes be replaced by dx.

For any initial distribution χ on (X, B(X)) and any 0 ≤ s ≤ s′ ≤ T , denote by
φs:s′|T the posterior distribution of the state vector Xs:s′ given the observations
y0:T . For lucidity, the dependence of φs:s′|T on the initial distribution χ is omit-
ted. Assuming that

∫ · · · ∫ χ(dx0)
∏T

u=1 gu−1(xu−1)M(xu−1, dxu)gT (xT ) > 0, this
distribution may be expressed as, for all h ∈ Fb(X

s′−s+1),

φs:s′|T (h) =
∫ · · · ∫ χ(dx0)

∏T
u=1 gu−1(xu−1)M(xu−1, dxu)gT (xT )h(xs:s′)∫ · · · ∫ χ(dx0)

∏T
v=1 gv−1(xv−1)M(xv−1, dxv)gT (xT )

.

In the expression above, the dependence on the observation sequence is implicit.
If s = s′, we use φs|T (the marginal smoothing distribution at time s) as shorthand
for φs:s|T . If s = s′ = T , we denote by φs

def= φs|s the filtering distribution at time s.

2. Algorithms. Conditionally on the observations y0:T , the state sequence
{Xs}s≥0 is a time inhomogeneous Markov chain. This property remains true in
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the time-reversed direction. Denote by Bη the so-called backward kernel given by,
for any probability measure η on (X, B(X)),

Bη(x,h)
def=

∫
η(dx′)m(x′, x)h(x′)∫

η(dx′)m(x′, x)
, h ∈ Fb(X).(1)

The posterior distribution φs:T |T may be expressed as, for any integers T > 0,
s ∈ {0, . . . , T − 1} and any h ∈ Fb(X

T −s+1),

φs:T |T (h) =
∫

· · ·
∫

φT (dxT )BφT −1(xT , dxT −1) · · ·Bφs (xs+1, dxs)h(xs:T ).(2)

Therefore, the joint smoothing distribution may be computed recursively, back-
ward in time, according to

φs:T |T (h) =
∫

· · ·
∫

Bφs (xs+1, dxs)φs+1:T |T (dxs+1:T )h(xs:T ).(3)

2.1. The forward filtering backward smoothing algorithm. As mentioned in
the Introduction, the method proposed by [18, 24] for approximating the smooth-
ing distribution is a two pass procedure. In the forward pass, particle approxima-
tions φN

s of the filter distributions φs are computed recursively for all time steps
from s = 0 up to s = T . The filter distribution flow {φs}s≥0 satisfies the forward
recursion

φs(h) = γs(h)

γs(1)
where γ0(h) = χ(g0h), γs(h)

def= γs−1M(gsh), s ≥ 1,(4)

for h ∈ Fb(X), with 1 being the unity function x 	→ 1 on X. In terms of SMC,
each filter distribution φs is approximated by means of a set of particles {ξ i

s }Ni=1
and associated importance weights {ωi

s}Ni=1 according to

φN
s (h)

def= γ N
s (h)

γ N
s (1)

where γ N
s (h)

def= N−1
N∑

i=1

ωi
sh(ξ i

s ).(5)

Having produced, using methods described in Section 2.4 below, a sequence of
such weighted samples {(ξ i

t ,ω
i
t )}Ni=1, 1 ≤ t ≤ T , an approximation of the smooth-

ing distribution is constructed in a backward pass by replacing, in (2), the filtering
distribution by its particle approximation. This yields

φN
s:T |T (h)

def=
∫

· · ·
∫

φN
T (dxT )BφN

T −1
(xT , dxT −1) · · ·BφN

s
(xs+1, dxs)h(xs:T )(6)

for any h ∈ Fb(X
T −s+1). The approximation above can be computed recursively

in the backward direction according to

φN
s:T |T (h) =

∫
· · ·

∫
BφN

s
(xs+1, dxs)φ

N
s+1:T |T (dxs+1:T )h(xs:T ).(7)
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Now, by definition,

BφN
s
(x, h) =

N∑
i=1

ωi
sm(ξ i

s , x)∑N
�=1 ω�

sm(ξ�
s , x)

h(ξ i
s ), h ∈ Fb(X),

and inserting this expression into (6) gives

φN
s:T |T (h) =

N∑
is=1

· · ·
N∑

iT =1

(
T∏

u=s+1

ω
iu−1
u−1m(ξ

iu−1
u−1 , ξ

iu
u )∑N

�=1 ω�
u−1m(ξ�

u−1, ξ
iu
u )

)
ω

iT
T

�T

h(ξ is
s , . . . , ξ

iT
T ),(8)

of φs:T |T (h), where h ∈ Fb(X
T −s−1) and

�t
def=

N∑
i=1

ωi
t .(9)

The estimator φN
s:T |T is impractical since the cardinality of its support grows ex-

ponentially with the number T − s of time steps; nevertheless, it plays a key role
in the theoretical developments that follow. A more practical approximation of
this quantity will be defined in the next section. When the dimension of the in-
put space is moderate, the computational cost of evaluating the estimator can be
reduced to O(N logN) by using the fast multipole method as suggested in [28];
note, however, that this method involves approximations that introduce some bias.
On the other hand, in certain specific scenarios, such as discrete Markov chains
with sparse transition matrices over large state spaces, the complexity can even be
reduced to O(NT ) without any truncation; see [1].

2.2. The forward filtering backward simulation algorithm. The estimator (8)
may be understood alternatively by noting that the normalized smoothing weights
define a probability distribution on the set {1, . . . ,N}T −s of trajectories associated
with an inhomogeneous Markov chain. Indeed, consider, for t ∈ {0, . . . , T − 1},
the Markov transition matrix {�N

t (i, j)}Ni,j=1 given by

�N
t (i, j) = ω

j
t m(ξ

j
t , ξ i

t+1)∑N
�=1 ω�

t m(ξ�
t , ξ i

t+1)
, (i, j) ∈ {1, . . . ,N}2.(10)

For 1 ≤ t ≤ T , denote by

F N
t

def= σ {Y0:T , (ξ i
s ,ω

i
s);0 ≤ s ≤ t,1 ≤ i ≤ N}(11)

the σ -algebra generated by the observations from time 0 to time T as well as the
particles and importance weights produced in the forward pass up to time t . The
transition probabilities defined in (10) induce an inhomogeneous Markov chain
{Ju}Tu=0 evolving backward in time as follows. At time T , the random index JT

is drawn from the set {1, . . . ,N} such that JT takes the value i with a probability
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proportional to ωi
T . At time t ≤ T − 1 and given that the index Jt+1 was drawn at

time step t + 1, the index Jt is drawn from the set {1, . . . ,N} such that Jt takes
the value j with probability �N

t (Jt , j). The joint distribution of J0:T is therefore
given by, for j0:T ∈ {1, . . . ,N}T +1,

P[J0:T = j0:T |F N
T ] = ω

jT

T

�T

�N
T (JT , jT −1) · · ·�N

0 (j1, j0).(12)

Thus, and this is a key observation, the FFBS estimator (8) of the joint smoothing
distribution may be written as the conditional expectation

φN
0:T |T (h) = E[h(ξ

J0
0 , . . . , ξ

JT

T )|F N
T ], h ∈ Fb(X

T +1).(13)

We may therefore construct an unbiased estimator of the FFBS estimator by draw-
ing, conditionally independently given F N

T , N paths of {J �
0:T }N�=1 of the inhomo-

geneous Markov chain introduced above and then forming the (practical) estimator

φ̃N
0:T |T (h) = N−1

N∑
�=1

h(ξ
J �

0
0 , . . . , ξ

J �
T

T ), h ∈ Fb(X
T +1).(14)

This practical estimator was introduced in [21] (Algorithm 1, page 158). For ease
of notation, we have here simulated N replicates of the backward, index-valued
Markov chain, but it would of course also be possible to sample a number of paths
that is either larger or smaller than N . The estimator φN

0:T |T may be seen as a
Rao–Blackwellized version of φ̃N

0:T |T . The variance of the latter is increased, but
the gain in computational complexity is significant. The associated algorithm is
referred in the sequel to as the forward filtering backward simulation (FFBSi) al-
gorithm. In Section 4, forgetting properties of the inhomogeneous backward chain
will play a key role when establishing time uniform stability properties of the pro-
posed smoothing algorithm.

The computational complexity for sampling a single path of J0:T is O(NT );
therefore, the overall computational effort spent when estimating φ̃N

0:T |T using the
FFBSi sampler is O(N2T ). Following [28], this complexity can be reduced further
to O(N log(N)T ) by means of the fast multipole method; however, here again
computational work is gained at the cost of introducing additional approximations.

2.3. A fast version of the forward filtering backward simulation algorithm. We
are now ready to describe one of the main contributions of this paper, namely a
novel version of the FFBSi algorithm that can be proved to reach linear computa-
tional complexity under appropriate assumptions. At the end of the filtering phase
of the FFBSi algorithm, all weighted particle samples {(ξ i

s ,ω
i
s)}Ni=1, 0 ≤ s ≤ T ,

are available, and it remains to sample efficiently index paths {J �
0:T }N�=1 under

the distribution (12). When the transition kernel m is bounded from above in
the sense that m(x, x′) ≤ σ+ for all (x, x′) ∈ X × X, the paths can be simulated
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recursively backward in time using the following accept–reject procedure. As in
the standard FFBSi algorithm, the recursion is initiated by sampling J 1

T , . . . , JN
T

multinomially with probabilities proportional to {ωi
T }Ni=1. For s ∈ {0, . . . , T }, let

GN
s the smallest σ -field containing F N

T and σ(J �
t : 1 ≤ l ≤ N, t ≥ s); then in or-

der to draw J �
s conditionally on GN

s+1, we draw, first, an index proposal I �
s tak-

ing the value i ∈ {1, . . . ,N} with a probability proportional to ωi
t and, second,

an independent uniform random variable U�
s on [0,1]. Then we set J �

s = I �
s if

U�
s ≤ m(ξ

I�
s

s , ξ
J �
s+1

s+1 )/σ+; otherwise, we reject the proposed index and make another
trial. To create samples of size n ∈ {1, . . . ,N} from a multinomial distribution on
a set of N elements at lines 1 and 6, Algorithm 1 relies on an efficient procedure
described in Appendix B.1 that requires O(n(1 + log(1 + N/n))) elementary op-
erations; see Proposition 14. Using this technique, the computational complexity
of Algorithm 1 can be upper-bounded as follows.

For the bootstrap particle filter as well as the fully adapted auxiliary particle
filter (see Section 2.4 for precise descriptions of these SMC filters), it is possible
to derive an asymptotic expression for the number of simulations required at line 8
of Algorithm 1 even if the kernel m is not bounded from below. The following
result is obtained using theory derived in the coming section.

Algorithm 1 FFBSi-smoothing

1: sample J 1
T , . . . , JN

T multinomially with probabilities proportional to {ωi
T }Ni=1

2: for s from T − 1 down to 0 do
3: L ← (1, . . . ,N)

4: while L is not empty do
5: n ← size(L)
6: sample I1, . . . , In multinomially with probabilities proportional to

{ωi
s}Ni=1

7: sample U1, . . . ,Un independently and uniformly over [0,1]
8: nL ← ∅

9: for k from 1 to n do

10: if Uk ≤ m(ξ
I (k)
s , ξ

J
L(k)
s+1

s+1 )/σ+ then

11: J
L(k)
s ← Ik

12: else
13: nL ← nL ∪ {L(k)}
14: end if
15: end for
16: L ← nL

17: end while
18: end for
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PROPOSITION 1. Assume that the transition kernel is bounded from above,
m(x, x′) ≤ σ+ for all (x, x′) ∈ X × X. At each iteration s ∈ {0, . . . , T − 1}, let
ZN

s be the number of simulations required in the accept–reject procedure of Algo-
rithm 1.

• For the bootstrap auxiliary filter, ZN
s /N converges in probability to

α(s)
def= σ+φs|s−1(gs)

∫ · · · ∫ dxs+1
∏T

u=s+2
∫

m(xu−1, dxu)gu(xu)∫ · · · ∫ φs|s−1(dxs)gs(xs)
∏T

u=s+1 m(xu−1, dxu)gu(xu)

as N goes to infinity.
• In the fully adapted case, ZN

s /N converges in probability to

β(s)
def= σ+

∫ · · · ∫ dxs+1
∏T

u=s+2
∫

m(xu−1, dxu)gu(xu)∫ · · · ∫ φs(dxs)gs(xs)
∏T

u=s+1 m(xu−1, dxu)gu(xu)

as N goes to infinity.

A sufficient condition for ensuring finiteness of α(s) and β(s) is that
∫

gu(xu) dxu <

∞ for all u ≥ 0.

If the transition kernel satisfies stronger mixing conditions, it is possible to de-
rive an upper-bound on the computational complexity of the FFBSi for any auxil-
iary particle filter, that is, the total number of computations (and not only the total
number of simulations). Note that this result is not limited to the bootstrap and the
fully adapted cases.

PROPOSITION 2. Assume that the transition kernel is bounded from below and
above, that is, σ− ≤ m(x, x′) ≤ σ+ for all (x, x′) ∈ X×X. Let C(N,T ) denote the
number of elementary operations required in Algorithm 1. Then, there exists a
constant K such that such that E[C(N,T )] ≤ KNT σ+/σ−.

The proofs of Propositions 1 and 2 involve theory developed in the coming
section and are postponed to Section 5.

Before concluding this section on reduced complexity, let us mention that effi-
cient smoothing strategies have been considered by [19] using quasi-Monte Carlo
methods. The smoother (restricted to be one-dimensional) presented in this work
has a complexity that grows quadraticly in the number of particles N ; neverthe-
less, since the variance of the same decays as O(N−2) (or faster) thanks to the use
of quasi-random numbers, the method is equivalent to methods with complexity
growing linearly in N [since the standard Monte Carlo variance is O(N−1)]. This
solution is of course attractive; we are however not aware of extensions of this
approach to multiple dimensions.
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2.4. Auxiliary particle filters. It remains to describe in detail how to produce
sequentially the weighted samples {(ξ i

s ,ω
i
s)}Ni=1, 0 ≤ s ≤ T , which can be done in

several different ways (see [3, 17, 31] and the references therein). Still, most algo-
rithms may be formulated within the unifying framework of the auxiliary particle
filter described in the following. Let {ξ i

0}Ni=1 be i.i.d. random variables such that
ξ i

0 ∼ ρ0 and set ωi
0

def= dχ/dρ0(ξ
i
0)g0(ξ

i
0). The weighted sample {(ξ i

0,ω
i
0)}Ni=1 then

targets the initial filter φ0 in the sense that φN
0 (h) estimates φ0(h) for h ∈ Fb(X). In

order to describe the sequential structure of the auxiliary particle filter, we proceed
inductively and assume that we have at hand a weighted sample {(ξ i

s−1,ω
i
s−1)}Ni=1

targeting φs−1 in the same sense. Next, we aim at simulating new particles from
the target φN,t

s defined as

φN,t
s (h) = γ N

s−1M(gsh)

γ N
s−1M(gs)

, h ∈ Fb(X),(15)

in order to produce an updated particle sample approximating the subsequent filter
φs . Following [32], this may be done by considering the auxiliary target distribu-
tion

φN,a
s (i, h)

def= ωi
s−1M(ξi

s−1, gsh)∑N
�=1 ω�

s−1M(ξ�
s−1, gsh)

, h ∈ Fb(X),(16)

on the product space {1, . . . ,N} × X equipped with the product σ -algebra
P({1, . . . ,N}) ⊗ B(X). By construction, φN,t

s is the marginal distribution of φN,a
s

with respect to the particle index. Therefore, we may approximate the target dis-
tribution φN,t

s on (X, B(X)) by simulating from the auxiliary distribution and then
discarding the indices. More specifically, we first simulate pairs {(I i

s , ξ
i
s )}Ni=1 of

indices and particles from the instrumental distribution

πs|s(i, h) ∝ ωi
s−1ϑs(ξ

i
s−1)Ps(ξ

i
s−1, h), h ∈ Fb(X),(17)

on the product space {1, . . . ,N} × X, where {ϑs(ξ
i
s−1)}Ni=1 are so-called adjust-

ment multiplier weights and Ps is a Markovian proposal transition kernel. In the
sequel, we assume for simplicity that Ps(x, ·) has, for any x ∈ X, a density ps(x, ·)
with respect to the reference measure ν. For each draw (I i

s , ξ
i
s ), i = 1, . . . ,N , we

compute the importance weight

ωi
s

def= m(ξ
I i
s

s−1, ξ
i
s )gs(ξ

i
s )

ϑs(ξ
I i
s

s−1)ps(ξ
I i
s

s−1, ξ
i
s )

,(18)

such that ωi
s ∝ dφN,a

s /dπs|s(I i
s , ξ

i
s ), and associate it to the corresponding particle

position ξ i
s . Finally, the indices {I i

s }Ni=1 are discarded whereupon {(ξ i
s ,ω

i
s)}Ni=1 is

taken as an approximation of φs . The simplest choice, yielding to the so-called
bootstrap particle filter algorithm proposed by [22], consists of setting, for all
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x ∈ X, ϑs(x) ≡ 1 and ps(x, ·) ≡ m(x, ·). A more appealing—but often computa-
tionally costly—choice consists of using the adjustment weights ϑs(x) ≡ ϑ�

s (x)
def=∫

m(x, x′)gs(x
′) dx′, x ∈ X, and the proposal transition density

p�
s (x, x′) def= m(x, x′)gs(x

′)
ϑ�

s (x)
, (x, x′) ∈ X × X.

In this case, the auxiliary particle filter is referred to as fully adapted. Other choices
are discussed in [16] and [7].

3. Convergence of the FFBS and FFBSi algorithms. In this section, the
convergence of the FFBS and FFBSi algorithms are studied. For these two al-
gorithms, nonasymptotic Hoeffding-type deviation inequalities and CLTs are ob-
tained. We also introduce a decomposition, serving as a basis for most results ob-
tained in this paper, of the error φN

0:T |T − φ0:T |T and some technical conditions
under which the results are derived.

For any function f : Xd → R, we define by |f |∞ def= supx∈Xd |f (x)| and

osc(f )
def= sup(x,x′)∈Xd×Xd |f (x) − f (x′)| the supremum and oscillator norms, re-

spectively. Denote N̄
def= N∪{∞} and consider the following assumptions where T

is the time horizon which can be either a finite integer or infinity.

ASSUMPTION 1. For all 0 ≤ t ≤ T , gt (·) > 0 and sup0≤t≤T |gt |∞ < ∞.

Define for t ≥ 0 the importance weight functions

ω0(x)
def= dχ

dρ0
(x)g0(x) and ωt(x, x′) def= m(x, x′)gt (x

′)
ϑt (x)pt (x, x′)

, t ≥ 1.(19)

ASSUMPTION 2. sup1≤t≤T |ϑt |∞ < ∞ and sup0≤t≤T |ωt |∞ < ∞.

The latter assumption is rather mild; it holds in particular under Assumption 1
for the bootstrap filter (pt = m and ϑt ≡ 1) and is automatically fulfilled in the
fully adapted case (ωt ≡ 1).

The coming proofs are based on a decomposition of the joint smoothing dis-
tribution that we introduce below. For 0 ≤ t < T and h ∈ Fb(X

T +1), define the
kernel Lt,T : X

t+1 × B(X)⊗T +1 → [0,1] by

Lt,T (x0:t , h)
def=

∫
· · ·

∫ (
T∏

u=t+1

M(xu−1, dxu)gu(xu)

)
h(x0:T )(20)

and set LT,T (x0:T , h)
def= h(x0:T ). By construction, for every t ∈ {0, . . . , T }, the

joint smoothing distribution may be expressed as

φ0:T |T (h) = φ0:t |t [Lt,T (·, h)]
φ0:t |t [Lt,T (·,1)] .(21)
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This expression extends the classical forward–backward decomposition to the joint
smoothing distribution; here Lt,T (·, h) plays the role of the so-called backward
variable. This suggests to decompose the error φN

0:T |T (h) − φ0:T |T (h) as the fol-
lowing telescoping sum:

φN
0:T |T (h) − φ0:T |T (h) = φN

0 [L0,T (·, h)]
φN

0 [L0,T (·,1)] − φ0[L0,T (·, h)]
φ0[L0,T (·,1)]

(22)

+
T∑

t=1

{φN
0:t |t [Lt,T (·, h)]

φN
0:t |t [Lt,T (·,1)] − φN

0:t−1|t−1[Lt−1,T (·, h)]
φN

0:t−1|t−1[Lt−1,T (·,1)]
}
.

The first term on RHS of the decomposition above can be easily dealt with since
φN

0 is a weighted empirical distribution associated to i.i.d. random variables.
To cope with the terms in the sum of the RHS in (22), we introduce some kernels

(depending on the past particles) that stress the dependence with respect to the
current particules. More precisely, φN

0:t |t [Lt,T (·, h)] is expressed as

φN
0:t |t [Lt,T (·, h)] = φN

t [LN
t,T (·, h)] = γ N

t [LN
t,T (·, h)]

γ N
t (1)

,(23)

where the random kernels LN
t,T : X × B(X)⊗(T +1) → [0,1] are defined by: for all

0 < t ≤ T , and xt ∈ X,

LN
t,T (xt , h)

def=
∫

· · ·
∫

BφN
t−1

(xt , dxt−1) · · ·BφN
0
(x1, dx0)Lt,T (x0:t , h),(24)

and

LN
0,T (x, h)

def= L0,T (x, h).(25)

We stress that the kernels LN
t,T depend on the particles and weights (ξ i

s ,ω
i
s)

N
i=1,

0 ≤ s ≤ t − 1, through the particle approximations φN
t−1, . . . , φ

N
0 of the filter dis-

tributions. When proving the CLT for the FFBS algorithm, it will be crucial to
establish that for any h ∈ Fb(X

T +1), LN
t,T (·, h) converges (see Lemma 7 below),

as the number N of particles tends to infinity, to a deterministic function Lt,T (·, h)

given by

Lt,T (xt , h)
def=

∫
· · ·

∫
Bφt−1(xt , dxt−1) · · ·Bφ0(x1, dx0)Lt,T (x0:t , h).(26)

In the sequel, the case h = 1 will be of particular importance; in that case,
Lt,T (x0:t ,1) does not depend on x0:t−1, yielding

LN
t,T (xt ,1) = Lt,T (xt ,1) = Lt,T (x0:t ,1)(27)
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for all x0:t ∈ X
t+1. Using these functions, the difference appearing in the sum in

(22) may then be rewritten as

φN
0:t |t [Lt,T (·, h)]

φN
0:t |t [Lt,T (·,1)] − φN

0:t−1|t−1[Lt−1,T (·, h)]
φN

0:t−1|t−1[Lt−1,T (·,1)]

= 1

γ N
t [LN

t,T (·,1)]
(
γ N
t [LN

t,T (·, h)] − φN
t−1[LN

t−1,T (·, h)]
φN

t−1[LN
t−1,T (·,1)]γ

N
t [LN

t,T (·,1)]
)

(28)

= N−1 ∑N
�=1 ω�

t G
N
t,T (ξ�

t , h)

N−1 ∑N
�=1 ω�

t Lt,T (ξ�
t ,1)

,

where the kernel GN
t,T : X × B(X)T +1 → [0,1] is defined by, for x ∈ X,

GN
t,T (x,h)

def= LN
t,T (x,h) − φN

t−1[LN
t−1,T (·, h)]

φN
t−1[LN

t−1,T (·,1)] LN
t,T (x,1).(29)

Similarly to LN
t,T (·, h), the functions GN

t,T (·, h) depend on the past particles; it will
however be shown (see Lemma 7 below) that GN

t,T (·, h) converges to the deter-
ministic function given by, for x ∈ X,

Gt,T (x,h)
def= Lt,T

(
x,h − φ0:T |T (h)

)
.(30)

The key property of this decomposition is stated in the following lemma.

LEMMA 3. Assume that Assumptions 1–2 hold for some T < ∞. Then, for
any 0 ≤ t ≤ T , the variables {ω�

t G
N
t,T (ξ�

t , h)}N�=1 are, conditionally on the σ -field

F N
t−1, i.i.d. with zero mean. Moreover, there exists a constant C (that may depend

on t and T ) such that, for all N ≥ 1, � ∈ {1, . . . ,N}, and h ∈ Fb(X
T +1),

|ω�
t G

N
t,T (ξ�

t , h)| ≤ |ωt |∞|GN
t,T (ξ�

t , h)| ≤ C osc(h).

PROOF. By construction, all pairs of particles and weights of the weighted
sample {(ξ�

t ,ω�
t )}N�=1 are i.i.d. conditionally on the σ -field F N

t−1. This implies im-
mediately that the variables {ω�

t G
N
t,T (ξ�

t , h)}N�=1 are also i.i.d. conditionally on the
same σ -field F N

t−1. We now show that E[ω1
t G

N
t,T (ξ1

t , h)|F N
t−1] = 0. Using the defi-

nition of GN
t,T and the fact that φN

t−1[LN
t−1,T (·, h)] and φN

t−1[LN
t−1,T (·,1)] are F N

t−1-
measurable, we have

E[ω1
t G

N
t,T (ξ1

t , h)|F N
t−1]

= E[ω1
t LN

t,T (x,h)|F N
t−1] − φN

t−1[LN
t−1,T (·, h)]

φN
t−1[LN

t−1,T (·,1)]E[ω1
t LN

t,T (x,1)|F N
t−1],



SMC SMOOTHING FOR HMM 2123

which is equal to zero provided that the relation

E[ω1
t LN

t,T (ξ1
t , h)|F N

t−1] = φN
t−1[LN

t−1,T (·, h)]
φN

t−1(ϑt )
(31)

holds for any h ∈ Fb(X). We now turn to the proof of (31). Note that for any
f ∈ Fb(X),

E[ω1
t f (ξ1

t )|F N
t−1] =

∑N
�=1 ω�

t−1

∫
M(ξ�

t−1, dx)gt (x)f (x)∑N
�=1 ω�

t−1ϑt(ξ
�
t−1)

(32)

= φN
t−1[M(·, gtf )]

φN
t−1(ϑt )

.

It turns out that (31) is a consequence of (32) with f (·) = LN
t,T (·, h), but since

LN
t−1,T (·, h) is in general different from M(·, gt LN

t,T (·, h)), we have to prove di-
rectly that

φN
t−1[LN

t−1,T (·, h)] = φN
t−1[M(·, gt LN

t,T (·, h))].(33)

Write

φN
t−1[M(·, gt LN

t,T (·, h))]

= �−1
t

N∑
�=1

ω�
t−1

∫
· · ·

∫
m(ξ�

t−1, xt )gt (xt )

(
t∏

u=1

BφN
u−1

(xu, dxu−1)

)
(34)

× Lt,T (x0:t , h) dxt .

To simplify the expression in the RHS, we will use the two following equalities:(
N∑

�=1

ω�
t−1m(ξ�

t−1, xt )

)
BφN

t−1
(xt , dxt−1) =

N∑
�=1

ω�
t−1m(xt−1, xt )δξ�

t−1
(dxt−1),(35)

∫
M(xt−1, dxt )gt (xt )Lt,T (x0:t , h) = Lt−1,T (x0:t−1, h).(36)

The first relation is derived directly from the definition (1) of the backward kernel,
the second is a recursive expression of Lt,T which is straightforward from the
definition (20). Now, (35) and (36) allow for writing

N∑
�=1

ω�
t−1

∫
· · ·

∫
m(ξ�

t−1, xt )gt (xt )

t∏
u=1

BφN
u−1

(xu, dxu−1)Lt,T (x0:t , h) dxt

=
N∑

�=1

ω�
t−1

∫
· · ·

∫
M(xt−1, dxt )gt (xt )δξ�

t−1
(dxt−1)
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×
t−1∏
u=1

BφN
u−1

(xu, dxu−1)Lt,T (x0:t , h)

=
N∑

�=1

ω�
t−1

∫
· · ·

∫
δξ�

t−1
(dxt−1)

t−1∏
u=1

BφN
u−1

(xu, dxu−1)Lt−1,T (x0:t−1, h)

=
N∑

�=1

ω�
t−1LN

t−1(ξ
�
t−1, h).

By plugging this expression into (34), we obtain (33) from which (31) follows
via (32). Finally, E[ω1

t G
N
t,T (ξ1

t , h)|F N
t−1] = 0. It remains to check that the random

variable ω1
t G

N
t,T (ξ1

t , h) is bounded. But this is immediate since

|ω1
t G

N
t,T (ξ1

t , h)| = |ωt |∞
∣∣∣∣LN

t,T (·, h) − φN
t−1[LN

t−1,T (·, h)]
φN

t−1[LN
t−1,T (·,1)] Lt,T (·,1)

∣∣∣∣∞
(37)

≤ 2|ωt |∞|LN
t,T (·,1)|∞ osc(h) ≤ 2|ωt |∞|Lt,T (·,1)|∞ osc(h).

�

3.1. Exponential deviation inequality. We first establish a nonasymptotic de-
viation inequality. Considering (28), we are led to prove a Hoeffding inequality for
ratios. For this purpose, we use the following elementary lemma which will play a
key role in the sequel. The proof is postponed to Appendix A.

LEMMA 4. Assume that aN , bN and b are random variables defined on the
same probability space such that there exist positive constants β , B , C and M

satisfying:

(I) |aN/bN | ≤ M , P-a.s. and b ≥ β , P-a.s.,
(II) for all ε > 0 and all N ≥ 1, P[|bN − b| > ε] ≤ Be−CNε2

,
(III) for all ε > 0 and all N ≥ 1, P[|aN | > ε] ≤ Be−CN(ε/M)2

.

Then

P

(∣∣∣∣aN

bN

∣∣∣∣ > ε

)
≤ B exp

(
−CN

(
εβ

2M

)2)
.

THEOREM 5. Assume that Assumptions 1–2 hold for some T < ∞. Then,
there exist constants 0 < B and C < ∞ (depending on T ) such that for all N ,
ε > 0, and all measurable functions h ∈ Fb(X

T +1),

P[|φN
0:T |T (h) − φ0:T |T (h)| ≥ ε] ≤ Be−CNε2/osc2(h).(38)
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In addition,

N−1
N∑

�=1

ω�
t Lt,T (ξ�

t ,1)
P−→N→∞

φt−1[Lt−1,T (·,1)]
φt−1(ϑt )

.(39)

REMARK 1. As a by-product, Theorem 5 provides an exponential inequality
for the particle approximation of the filter. For any h ∈ Fb(X), define the function
h0:T : X

T +1 → R by h0:T (x0:T ) = h(xT ). By construction, φ0:T |T (h0:T ) = φT (h)

and φN
0:T |T (h0:T ) = φN

T (h). With this notation, equation (38) may be rewritten as

P[|φN
T (h) − φT (h)| ≥ ε] ≤ Be−CNε2/osc2(h).

An inequality of this form was first obtained by [12] (see also [9], Chapter 7).

PROOF. We prove (38) by induction on T using the decomposition (22). As-
sume that (38) holds at time T − 1, for φN

0:T −1|T −1(h). Let h ∈ Fb(X
T +1) and

assume without loss of generality that φ0:T |T (h) = 0. Then (21) implies that
φ0[L0,T (·, h)] = 0 and the first term of the decomposition (22) thus becomes

φN
0 [L0,T (·, h)]

φN
0 [L0,T (·,1)] = N−1 ∑N

i=0
dχ
dρ0

(ξ i
0)g0(ξ

i
0)L0,T (ξ i

0, h)

N−1 ∑N
�=0

dχ
dρ0

(ξ�
0 )g0(ξ

�
0 )L0,T (ξ�

0 ,1)
,(40)

where {ξ i
0}Ni=1 are i.i.d. random variables with distribution ρ0. We obtain an expo-

nential inequality for (40) by applying Lemma 4 with⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

aN = N−1
N∑

i=0

dχ

dρ0
(ξ i

0)g0(ξ
i
0)L0,T (ξ i

0, h),

bN = N−1
N∑

i=0

dχ

dρ0
(ξ i

0)g0(ξ
i
0)L0,T (ξ i

0,1),

b = β = χ [g0(·)L0,T (·,1)].
Condition (I) is trivially satisfied and conditions (II) and (III) follow from the Ho-
effding inequality for i.i.d. variables.

By (22) and (28), it is now enough to establish an exponential inequality for

φN
0:t |t [Lt,T (·, h)]

φN
0:t |t [Lt,T (·,1)] − φN

0:t−1|t−1[Lt−1,T (·, h)]
φN

0:t−1|t−1[Lt−1,T (·,1)] = N−1 ∑N
�=1 ω�

t G
N
t,T (ξ�

t , h)

N−1 ∑N
�=1 ω�

t Lt,T (ξ�
t ,1)

,(41)

where 0 < t ≤ T . For that purpose, we use again Lemma 4 with⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

aN = N−1
N∑

�=1

ω�
t G

N
t,T (ξ�

t , h),

bN = N−1
N∑

�=1

ω�
t Lt,T (ξ�

t ,1),

b = β = φt−1[Lt−1,T (·,1)]
φt−1(ϑt )

.

(42)
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By considering the LHS of (41), |aN/bN | ≤ 2|h|∞, verifying condition (I) in
Lemma 4. By Lemma 3, Hoeffding’s inequality implies that there exist constants
B and C such that for all N , ε > 0, and all measurable function h ∈ Fb(X

T +1),

P

[∣∣∣∣∣N−1
N∑

�=1

ω�
t G

N
t,T (ξ�

t , h)

∣∣∣∣∣ ≥ ε

]

= E

[
P

[∣∣∣∣∣N−1
N∑

�=1

ω�
t G

N
t,T (ξ�

t , h)

∣∣∣∣∣ ≥ ε
∣∣∣F N

t−1

]]
≤ Be−CNε2/osc2(h),

verifying condition (III) in Lemma 4. It remains to verify condition (II). Since
the pairs of particles and weights of the weighted sample {(ξ�

t ,ω�
t )}N�=1 are i.i.d.

conditionally on F N
t−1, Hoeffding’s inequality implies that

P

[∣∣∣∣∣bN − E

[
N−1

N∑
�=1

ω�
t Lt,T (ξ�

t ,1)
∣∣∣F N

t−1

]∣∣∣∣∣ ≥ ε

]
≤ Be−CNε2

.(43)

Moreover, by (32), (27), and the definition (20), we have

E

[
N−1

N∑
�=1

ω�
t Lt,T (ξ�

t ,1)
∣∣∣F N

t−1

]
− b

(44)

= φN
t−1[Lt−1,T (·,1)]

φN
t−1(ϑt )

− φt−1[Lt−1,T (·,1)]
φt−1(ϑt )

= φN
t−1(H)

φN
t−1(ϑt )

,

with H(·) def= Lt−1,T (·,1) − φt−1[Lt−1,T (·,1)]ϑt(·)/φt−1(ϑt ). To obtain an expo-
nential deviation inequality for (44), we apply again Lemma 4 with⎧⎪⎨

⎪⎩
a′
N = φN

t−1(H),

b′
N = φN

t−1(ϑt ),

b′ = β ′ = φt−1(ϑt ).

By using the inequality

Lt−1,T (xt−1,1)

= ϑt(xt−1)

∫
m(xt−1, xt )gt (xt )

ϑt (xt−1)pt (xt−1, xt )
pt (xt−1, xt )Lt,T (xt ,1) dxt

≤ ϑt(xt−1)|ωt |∞|Lt,T (·,1)|∞,

we obtain the bound |φN
t−1(H)/φN

t−1(ϑt )| ≤ 2|ωt |∞|Lt,T (·,1)|∞ which verifies
condition (I). Now, since t − 1 ≤ T − 1 and φt−1(H) = 0, the induction assump-
tion implies that conditions (II) and (III) are satisfied for |b′

N −b′| and |a′
N |. Hence,

Lemma 4 shows that

P

[∣∣∣∣∣E
[
N−1

N∑
�=1

ω�
t Lt,T (ξ�

t ,1)
∣∣∣F N

t−1

]
− b

∣∣∣∣∣ > ε

]
≤ Be−CNε2

.(45)
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Finally, (43) and (45) ensure that condition (II) in Lemma 4 is satisfied and an
exponential deviation inequality for (41) follows. The proof of (38) is complete.
The last statement (39) of the theorem is a consequence of (43) and (45). �

The exponential inequality of Theorem 5 may be more or less immediately ex-
tended to the FFBSi estimator.

COROLLARY 6. Under the assumptions of Theorem 5 there exist constants
0 < B and C < ∞ (depending on T ) such that for all N , ε > 0, and all measurable
functions h,

P[|φ̃N
0:T |T (h) − φ0:T |T (h)| ≥ ε] ≤ Be−CNε2/osc2(h),(46)

where φ̃N
0:T |T (h) is defined in (14).

PROOF. Using (13) and the definition of φ̃N
s:T |T (h), we may write

φ̃N
0:T |T (h) − φN

0:T |T (h)

= N−1
N∑

�=1

[
h(ξ

J �
0

0 , . . . , ξ
J �
T

T ) − E[h(ξ
J0
0 , . . . , ξ

JT

T )|F N
T ]],

which implies (46) by the Hoeffding inequality and (38). �

3.2. Asymptotic normality. We now extend the theoretical analysis of the
forward-filtering backward-smoothing estimator (6) to a CLT. Consider the fol-
lowing mild assumption on the proposal distribution.

ASSUMPTION 3. |m|∞ < ∞ and sup0≤t≤T |pt |∞ < ∞.

CLTs for interacting particle models have been established in [9, 12, 15]; the
application to these results to auxiliary particle filters is presented in [25] and [16],
Theorem 3.2. Here, we base our proof on techniques developed in [15] (extending
[6] and [30]). As noted in the previous section, it turns out crucial that GN

t,T (·, h)

converges to a deterministic function as N → ∞. This convergence is stated in the
following lemma.

LEMMA 7. Assume Assumptions 1–3. Then, for any h ∈ Fb(X) and x ∈ X,

lim
N→∞ LN

t,T (x,h) = Lt,T (x, h), P-a.s.,

lim
N→∞GN

t,T (x,h) = Gt,T (x,h), P-a.s.,
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where LN
t,T , Lt,T , GN

t,T and Gt,T are defined in (24), (26), (29) and (30). Moreover,
there exists a constant C (that may depend on t and T ) such that for all N ≥ 1,
� ∈ {1, . . . ,N}, and h ∈ Fb(X),

|ω�
t Gt,T (ξ�

t , h)| ≤ |ωt |∞|Gt,T (ξ�
t , h)| ≤ C osc(h), P-a.s.

PROOF OF LEMMA 7. Let h ∈ Fb(X) and xt ∈ X. By plugging (1) with η =
φN

t−1 into the definition (24) of LN
t,T (xt , h), we obtain immediately

LN
t,T (xt , h)

=
∫ · · · ∫ φN

t−1(dxt−1)
∏t−2

u=0 BφN
u
(xu+1, dxu)m(xt−1, xt )Lt,T (x0:t , h)∫

φN
t−1(dxt−1)m(xt−1, xt )

= φN
0:t−1|t−1[H([·, xt ])]

φN
t−1[m(·, xt )]

with H(x0:t ) def= m(xt−1, xt )Lt,T (x0:t , h).

The convergence of LN
t,T (·, h) follows from Theorem 5. The proof of the con-

vergence of GN
t,T (·, h) follows the same lines. Finally, the final statement of the

lemma is derived from Lemma 3 and the almost sure convergence of GN
t,T (·, h) to

Gt,T (·, h). �

Now, we may state the CLT with an asymptotic variance given by a finite sum
of terms involving the limiting kernel Gt,T .

THEOREM 8. Assume Assumptions 1–3. Then, for any h ∈ Fb(X
T +1),

√
N

(
φN

0:T |T (h) − φ0:T |T (h)
) D−→ N (0,�0:T |T [h])(47)

with

�0:T |T [h] def= ρ0[ω2
0(·)G2

0,T (·, h)]
ρ2

0 [ω0(·)L0,T (·,1)] +
T∑

t=1

φt−1[υt,T (·, h)]φt−1(ϑt )

φ2
t−1[Lt−1,T (·,1)] ,(48)

υt,T (·, h)
def= ϑt(·)

∫
Pt(·, dx)ω2

t (·, x)G2
t,T (x, h).(49)

PROOF. Without loss of generality, we assume that φ0:T |T (h) = 0. We show
that

√
NφN

0:T |T (h) may be expressed as

√
NφN

0:T |T (h) =
T∑

t=0

V N
t,T (h)

WN
t,T

,(50)

where the sequence of random vectors [V N
0,T (h), . . . , V N

T,T (h)] is asymptotically

normal and [WN
0,T , . . . ,WN

T,T ] converge in probability to a deterministic vector.
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The proof of (47) then follows from Slutsky’s lemma. Actually, the decomposition
(50) follows immediately from the backward decomposition (22) by setting, for
t ∈ {1, . . . , T },

V N
0,T (h)

def= N−1/2
N∑

�=1

dχ

dρ0
(ξ�

0 )g0(ξ
�
0 )G0,T (ξ�

0 , h),

V N
t,T (h)

def= N−1/2
N∑

�=1

ω�
t G

N
t,T (ξ�

t , h),

WN
0,T

def= N−1
N∑

�=1

dχ

dρ0
(ξ�

0 )g0(ξ
�
0 )L0,T (ξ�

0 ,1),

WN
t,T

def= N−1
N∑

�=1

ω�
t Lt,T (ξ�

t ,1).

The convergence

WN
0,T

P−→N→∞ χ [g0(·)L0,T (·,1)],

WN
t,T

P−→N→∞
φt−1[Lt−1,T (·,1)]

φt−1(ϑt )

of [WN
0,T , . . . ,WN

T,T ] to a deterministic vector is established immediately using

(39) and noting that the initial particles (ξ i
0)

N
i=1 are i.i.d. We devote the rest of the

proof to showing that the sequence of random vectors [V N
0,T (h), . . . , V N

T,T (h)] is
asymptotically normal. Proceeding recursively in time, we prove by induction over
t ∈ {0, . . . , T } (starting with t = 0) that [V N

0,T (h), . . . , V N
t,T (h)] is asymptotically

normal. More precisely, using the Cramér–Wold device, it is enough to show that
for all scalars (α0, . . . , αt ) ∈ R

t+1,

t∑
r=0

αrV
N
r,T (h)

D−→N→∞ N
(

0,

t∑
r=0

α2
r σ

2
r,T [h]

)
,(51)

where, for r ≥ 1,

σ 2
0,T [h] def= ρ0[ω2

0G
2
0,T (·, h)], σ 2

t,T [h] def= φt−1[υt,T (·, h)]
φt−1(ϑt )

.

The case t = 0 is elementary since the initial particles {ξ i
0}Ni=1 are i.i.d. Assume

now that (51) holds for some t − 1 ≤ T ; for all scalars (α1, . . . , αt−1) ∈ R
t−1,

t−1∑
r=s

αrV
N
r,T (h)

D−→N→∞ N
(

0,

t−1∑
r=s

α2
r σ

2
r,T [h]

)
.(52)
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The sequence of random variable V N
t,T (h) may be expressed as an additive function

of a triangular array of random variables,

V N
t,T (h) =

N∑
�=1

UN,�, UN,�
def= ω�

t G
N
t,T (ξ�

t , h)/
√

N,

where GN
t,T (x,h) is defined in (29). Lemma 3 implies that E[V N

t,T (h)|F N
t−1] = 0,

yielding

E

[
t∑

r=0

αrV
N
r,T (h)

∣∣∣F N
t−1

]
=

t−1∑
r=0

αrV
N
r,T (h)

D−→N→∞ N
(

0,

t−1∑
r=1

α2
r σ

2
r,T [h]

)
,

where the last limit follows by the induction assumption hypothesis (52). By [15],
Theorem A.3, page 2360, as the random variables {UN,�}N�=1 are centered and con-
ditionally independent given F N

t−1, (51) holds provided that the asymptotic small-
ness condition

N∑
�=1

E
[
U2

N,�1{|UN,�|≥ε}|F N
t−1

] P−→N→∞ 0(53)

holds for any ε > 0 and that the conditional variance converges:

N∑
�=1

E[U2
N,�|F N

t−1] P−→N→∞ σ 2
t,T [h].(54)

Lemma 3 implies that |UN,�| ≤ C osc(h)/
√

N , verifying immediately the asymp-
totic smallness condition (53). To conclude the proof, we thus only need to estab-
lish the convergence (54) of the asymptotic variance. Via Lemma 3 and straight-
forward computations, we conclude that

N∑
�=1

E[U2
N,�|F N

t−1] = E[(ω1
t G

N
t,T (ξ1

t , h))2|F N
t−1]

=
∫ N∑

�=1

ω�
t−1ϑt(ξ

�
t−1)Pt (ξ

�
t−1, dx)∑N

j=1 ω
j
t−1ϑt(ξ

j
t−1)

(ωt (ξ
�
t−1, x)GN

t,T (x,h))2

(55)

=
(

�t−1∑N
j=1 ω

j
t−1ϑt(ξ

j
t−1)

)(
1

�t−1

N∑
�=1

ω�
t−1υ

N
t,T (ξ�

t−1, h)

)

= φN
t−1[υN

t,T (·, h)]
φN

t−1(ϑt )
,

where �t is defined in (9) and

υN
t,T (·, h)

def= ϑt(·)
∫

Pt(·, dx)ω2
t (·, x)[GN

t,T (x,h)]2.
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The denominator in on RHS of (55) converges evidently in probability to φt−1(ϑt )

by Theorem 5. The numerator is more complex since υN
t,T depends on GN

t,T

whose definition involves all the approximations φN
t−1, . . . , φ

N
0 of the past fil-

ters. To obtain its convergence, note that, by Theorem 5, φN
t−1(υt,T (·, h))

P−→
φt−1(υt,T (·, h)) as N tends to infinity; hence, it only remains to prove that

φN
t−1[υN

t,T (·, h) − υt,T (·, h)] P−→N→∞ 0.(56)

For that purpose, introduce the following notation: for all x ∈ X,

AN(x)
def= φN

t−1[ϑt(·)pt (·, x)ω2
t (·, x)|(GN

t,T (x,h))2 − G2
t,T (x, h)|],

BN(x)
def= φN

t−1[ϑt(·)pt (·, x)].
Applying Fubini’s theorem,

lim
N→∞ E

[∫
AN(x)dx

]
= lim

N→∞

∫
E[AN(x)]dx = 0,(57)

where the last equality is due to the generalized Lebesgue convergence the-
orem [34], Proposition 18, page 270, with fN(x) = E[AN(x)] and gN(x) =
2C osc(h)E[BN(x)] provided that the following conditions hold:

(i) for any x ∈ X, E[AN(x)] ≤ 2C2 osc2(h)E[BN(x)],
(ii) for any x ∈ X, limN→∞ E[AN(x)] = 0, P-a.s.,

(iii) limN→∞
∫

E[BN(x)]dx = ∫
limN→∞ E[BN(x)]dx.

Proof of (i). The bound follows directly from Lemmas 7 and 3.
Proof of (ii). Using again Lemmas 7 and 3, for any x ∈ X,

AN(x) ≤ 2C2|ϑt |∞|pt |∞ osc2(h),

lim sup
N→∞

AN(x) ≤ |ϑtptω
2
t |∞ lim sup

N→∞
|(GN

t,T (x,h))2 − G2
t,T (x, h)| = 0, P-a.s.

These two inequalities combined with AN(x) ≥ 0 allow for applying the Lebesgue
dominated convergence theorem, verifying condition (ii).

Proof of (iii). We have

lim
N→∞

∫
E[BN(x)]dx

(a)= lim
N→∞ E

[
φN

t−1

(
ϑt(·)

∫
pt(·, x) dx

)]

(b)= φt−1(ϑt )
(c)=

∫
φt−1(ϑt (·)pt (·, x)) dx

(d)=
∫

lim
N→∞ E[φN

t−1(ϑt (·)pt (·, x))]dx

=
∫

lim
N→∞ E[BN(x)]dx,
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where (a) and (c) are consequences of Fubini’s theorem and (b) and (d) follows
from the L1-convergence of φN

t (h) to φt(h) (see Theorem 5) with h(·) = ϑt(·) and
h(·) = ϑt(·)pt (·, x).

Thus, (57) holds, yielding that
∫

AN(x)dx
P−→ 0 as N tends to infinity. This in

turn implies (56) via the inequality

|φN
t−1[υN

t,T (·, h) − υt,T (·, h)]| ≤
∫

AN(x)dx.

This establishes (51) and therefore completes the proof. �

The weak convergence of
√

N(φN
0:T |T (h) − φ0:T |T (h)) for the FFBS algorithm

implies more or less immediately the one of
√

N(φ̃N
0:T |T (h) − φ0:T |T (h)) for the

FFBSi algorithm.

COROLLARY 9. Under the assumptions of Theorem 8,
√

N
(
φ̃N

0:T |T (h) − φ0:T |T (h)
)

(58)
D−→ N

(
0, φ2

0:T |T [h − φ0:T |T (h)] + �0:T |T [h − φ0:T |T (h)]).
PROOF. Using (13) and the definition of φ̃N

0:T |T (h), we may write

√
N

(
φ̃N

0:T |T (h) − φ0:T |T (h)
)

= N−1/2
N∑

�=1

[
h(ξ

J �
0

0 , . . . , ξ
J �
T

T ) − E[h(ξ
J0
0 , . . . , ξ

JT

T )|F N
T ]]

+ √
N

(
φN

0:T |T (h) − φ0:T |T (h)
)
.

Note that since {J �
0:T }N�=1 are i.i.d. conditional on F N

T , (58) follows from (47) and
direct application of [15], Theorem A.3, page 2360, by noting that

N−1
N∑

�=1

E
[{h(ξ

J �
0

0 , . . . , ξ
J �
T

T ) − E[h(ξ
J0
0 , . . . , ξ

JT

T )|F N
T ]}2|F N

T

]

= (
φN

0:T |T [h − φN
0:T |T (h)])2 P−→ (

φ0:T |T [h − φ0:T |T (h)])2
. �

4. Time uniform bounds. Most often, it is not required to compute the joint
smoothing distribution but rather the marginal smoothing distributions φs|T . Con-
sidering (8) for a function h that depends on the component xs only, we obtain
particle approximations of the marginal smoothing distributions by associating the
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set {ξj
s }Nj=1 of particles with weights obtained by marginalizing the joint smooth-

ing weights according to

ω
is
s|T =

N∑
is+1=1

· · ·
N∑

iT =1

t∏
u=s+1

ω
iu−1
u−1m(ξ

iu−1
u−1 , ξ

iu
u )∑N

�=1 ω�
u−1m(ξ�

u−1, ξ
iu
u )

ω
iT
T

�T

.

It is easily seen that these marginal weights may be recursively updated backward
in time as

ωi
s|T =

N∑
j=1

ωi
sm(ξ i

s , ξ
j
s+1)∑N

�=1 ω�
sm(ξ�

s , ξ
j
s+1)

ω
j
s+1|T .(59)

In this section, we study the long-term behavior of the marginal fixed-interval
smoothing distribution estimator. For that purpose, it is required to impose a type
of mixing condition on the Markov transition kernel; see [5] and the references
therein. For simplicity, we consider elementary but strong conditions which are
similar to the ones used in [9], Chapter 7.4, or [3], Chapter 4; these conditions,
which points to applications where the state space X is compact, can be relaxed,
but at the expense of many technical difficulties [4, 37, 38, 40].

ASSUMPTION 4. There exist two constants 0 < σ− ≤ σ+ < ∞, such that, for
any (x, x′) ∈ X × X,

σ− ≤ m(x, x′) ≤ σ+.(60)

In addition, there exists a constant c− > 0 such that,
∫

χ(dx0)g0(x0) ≥ c− and for
all t ≥ 1,

inf
x∈X

∫
M(x,dx′)gt (x

′) ≥ c− > 0.(61)

Assumption 4 implies that ν(X) < ∞; in the sequel, we will consider without
loss of generality that ν(X) = 1. Note also that, under Assumption 4, the average
number of simulations required in the accept–reject mechanism per sample of the
FFBSi algorithm is bounded by σ+/σ−.

The goal of this section consists in establishing, under the assumptions men-
tioned above, that the FFBS approximation of the marginal fixed interval smooth-
ing probability satisfies an exponential deviation inequality with constants that are
uniform in time and, under the same assumptions, that the variance of the CLT is
uniformly bounded in time.

For obtaining these results, we will need upper-bounds on GN
t,T and Gt,T that

are more precise than the ones stated in Lemmas 3 and 7. For any function h ∈
Fb(X) and s ≤ T , define the extension �s,T h ∈ Fb(X

T +1) of h to X
T +1 by

�s,T h(x0:T )
def= h(xs), x0:T ∈ X

T +1.(62)
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LEMMA 10. Assume that Assumptions 1–4 hold with T = ∞. Let s ≤ T .
Then, for all t ,T , N ≥ 1, and h ∈ Fb(X),

|GN
t,T (·,�s,T h)|∞ ≤ ρ|t−s| osc(h)|Lt,T (·,1)|∞,(63)

where Lt,T is defined in (26) and

ρ = 1 − σ−
σ+

.(64)

Moreover, for all t , T ≥ 1, and h ∈ Fb(X),

|Gt,T (·,�s,T h)|∞ ≤ ρ|t−s| osc(h)|Lt,T (·,1)|∞.(65)

PROOF. Using (27) and (29),

GN
t,T (x,�s,T h)

Lt,T (x,1)
= LN

t,T (x,�s,T h)

LN
t,T (x,1)

− φN
t−1[LN

t−1,T (·,�s,T h)]
φN

t−1[LN
t−1,T (·,1)] .(66)

To prove (63), we will rewrite (66) and obtain an exponential bound by either
using ergodicity properties of the “a posteriori” chain (when t ≤ s), or by using
ergodicity properties of the backward kernel (when t > s).

Assume first that t ≤ s. The quantity Lt,T (x0:t ,�s,T h) does not depend on
x0:t−1 so that by (24) and definition (20) of Lt,T ,

LN
t,T (xt ,�s,T h) = Lt,T (x0:t ,�s,T h)

=
∫

· · ·
∫ (

T∏
u=t+1

M(xu−1, dxu)gu(xu)

)
h(xs)(67)

= Lt,T (xt ,�s,T h).

Now, by construction, for any t ≤ s,

Lt−1,T (xt−1,�s,T h) =
∫

M(xt−1, dxt )gt (xt )Lt,T (xt ,�s,T h).(68)

The relations (66), (67) and (68) imply that

GN
t,T (x,�s,T h)

Lt,T (x,1)
= μ[Lt,T (·,�s,T h)]

μ[Lt,T (·,1)] − μ′[Lt,T (·,�s,T h)]
μ′[Lt,T (·,1)] ,(69)

where μ
def= δx and μ′ is the nonnegative finite measure defined by

μ′(A)
def=

∫∫
φN

t−1(dxt−1)M(xt−1, dxt )gt (xt )1A(xt ), A ∈ B(X).
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Now, for any finite measure μ on (X, B(X)), the quantity

μ[Lt,T (·,�s,T h)]
μ[Lt,T (·,1)]

=
∫ · · · ∫ μ(dxt )

∏T
u=t+1 M(xu−1, dxu)gu(xu)h(xs)∫ · · · ∫ μ(dxt )
∏T

u=t+1 M(xu−1, dxu)gu(xu)

=
∫ · · · ∫ μ(dxt )

∏s
u=t+1 M(xu−1, dxu)gu(xu)h(xs)Ls,T (xs,1)∫ · · · ∫ μ(dxt )
∏s

u=t+1 M(xu−1, dxu)gu(xu)Ls,T (xs,1)

may be seen as the expectation of h(Xs) conditionally on Yt :T , where Xt is dis-
tributed according to A 	→ μ(A)/μ(X). Under the strong mixing condition (As-
sumption 4), it is shown in [12] (see also [9]) that, for any t ≤ s ≤ T , any finite
measure μ and μ′ on (X, B(X)), any function h ∈ Fb(X), that

∣∣∣∣
∫ · · · ∫ μ(dxt )

∏s
u=t+1 M(xu−1, dxu)gu(xu)h(xs)Ls,T (xs,1)∫ · · · ∫ μ(dxt )
∏s

u=t+1 M(xu−1, dxu)gu(xu)Ls,T (xs,1)

−
∫ · · · ∫ μ′(dxt )

∏s
u=t+1 M(xu−1, dxu)gu(xu)h(xs)Ls,T (xs,1)∫ · · · ∫ μ′(dxt )
∏s

u=t+1 M(xu−1, dxu)gu(xu)Ls,T (xs,1)

∣∣∣∣
≤ ρs−t osc(h),

where ρ is defined in (64). This shows (63) when t is smaller than s.
Consider now the case s < t ≤ T . By definition,

LN
t,T (xt ,�s,T h) =

∫
· · ·

∫
Lt,T (x0:t ,�s,T h)

t∏
u=s+1

BφN
u−1

(xu, dxu−1)

(70)

=
∫

· · ·
∫

Lt,T (xt ,1)

t∏
u=s+1

BφN
u−1

(xu, dxu−1)h(xs),

where the last expression is obtained from the following equality, valid for s < t :

Lt,T (x0:t ,�s,T h) = h(xs)

∫
· · ·

∫ T∏
u=t+1

M(xu−1, dxu)gu(xu)

= h(xs)Lt,T (xt ,1).

Moreover, combining (33) and (70),

φN
t−1[LN

t−1,T (·,�s,T h)]
=

∫
· · ·

∫
φN

t−1(dut−1)M(ut−1, dxt )gt (xt )LN
t,T (xt ,�s,T h)
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=
∫

· · ·
∫

φN
t−1(dut−1)M(ut−1, dxt )gt (xt )Lt,T (xt ,1)

×
t∏

u=s+1

BφN
u−1

(xu, dxu−1)h(xs).

By plugging this expression and (70) into (66), we obtain

GN
t,T (x,�s,T h)

Lt,T (x,1)
=

∫
· · ·

∫ {
μ(dxt )

μ(X)
− μ′(dxt )

μ′(X)

} t∏
u=s+1

BφN
u−1

(xu, dxu−1)h(xs),

with μ(dxt ) = δx(dxt )Lt,T (xt ,1) and μ′ being the nonnegative measure defined
by

μ′(A) =
∫

φN
t−1[m(·, xt )]gt (xt )Lt,T (xt ,1)1A(xt ) dxt .

Under the uniform ergodicity condition (Assumption 4) it holds, for any probabil-
ity measure η on (X, B(X)), and any A ∈ B(X),

Bη(x,A) =
∫
A η(dx′)m(x′, x)∫
η(dx′)m(x′, x)

≥ σ−
σ+

η(A);

thus, the transition kernel Bη is uniformly Doeblin with minorizing constant
σ−/σ+ and the proof of (63) for s < t ≤ T follows. The last statement of the
Lemma follows from (63) and the almost-sure convergence

lim
N→∞GN

t,T (x,h) = Gt,T (x,h), P-a.s.,

for all x ∈ X, which was established in Lemma 7. �

4.1. A time uniform exponential deviation inequality. Under the strong mixing
Assumption 4, a time uniform deviation inequality for the marginal smoothing
approximation can be derived using the exponentially decreasing bound on the
quantity GN

t,T obtained in Lemma 10.

THEOREM 11. Assume Assumptions 1–4 hold with T = ∞. Then, there exist
constants 0 ≤ B, C < ∞ such that for all integers N , s, T , with s ≤ T , and for all
ε > 0,

P[|φN
s|T (h) − φs|T (h)| ≥ ε] ≤ Be−CNε2/osc2(h),(71)

P[|φ̃N
s|T (h) − φs|T (h)| ≥ ε] ≤ Be−CNε2/osc2(h),(72)

where φN
s|T (h) and φ̃N

s|T (h) are defined in (6) and (14).
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Letting s = T in Theorem 11 provides, as a special case, the (already known)
time uniform deviation inequality for the filter approximation; however, the nov-
elty of the bounds obtained here is that these confirm the stability of the FFBSm
and FFBSi marginal smoothing approximations also when s is fixed and T tends
to infinity (see [9] for further discussion).

PROOF OF THEOREM 11. Combining (27) with the definition (20) and As-
sumption 4 yields, for all x ∈ X,

σ−
σ+

≤ Lt,T (x,1)

|Lt,T (·,1)|∞ ≤ 1.(73)

Let h ∈ Fb(X
T +1) and assume without loss of generality that φ0:T |T (h) = 0. Then,

(21) implies that φ0[L0,T (·, h)] = 0 and the first term of the decomposition (22)
thus becomes

φN
0 [L0,T (·, h)]

φN
0 [L0,T (·,1)] = N−1 ∑N

i=0
dχ
dρ0

(ξ i
0)g0(ξ

i
0)L0,T (ξ i

0, h)

N−1 ∑N
�=0

dχ
dρ0

(ξ�
0 )g0(ξ

�
0 )L0,T (ξ�

0 ,1)
,(74)

where (ξ�
0 )N�=1 are i.i.d. random variables with distribution ρ0. Noting that L0,T =

L0,T we obtain an exponential deviation inequality for (74) by applying Lemma 4
with ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

aN = N−1
N∑

i=0

dχ

dρ0
(ξ i

0)g0(ξ
i
0)L0,T (ξ i

0, h)/|L0,T (·, h)|∞,

bN = N−1
N∑

i=0

dχ

dρ0
(ξ i

0)g0(ξ
i
0)L0,T (ξ i

0,1)/|L0,T (·, h)|∞,

b = χ [g0(·)L0,T (·,1)]/|L0,T (·, h)|∞,

β = χ(g0)σ−/σ+.

Here, condition (I) is trivially satisfied and conditions (II) and (III) follow from the
Hoeffding inequality for i.i.d. variables.

According to (22) and (28), it is now required, for any 1 ≤ t ≤ T , to derive an
exponential inequality for

AN
t,T

def= N−1 ∑N
�=1 ω�

t G
N
t,T (ξ�

t ,�s,T h)

N−1 ∑N
�=1 ω�

t Lt,T (ξ�
t ,1)

.

Note first that, using (73), we have

|AN
t,T | ≤

(
σ+
σ−

)
N−1 ∑N

�=1 ω�
t G

N
t,T (ξ�

t ,�s,T h)/|Lt,T (·,1)|∞
N−1 ∑N

�=1 ω�
t

.
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We use again Lemma 4 with⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

aN = N−1
N∑

�=1

ω�
t G

N
t,T (ξ�

t ,�s,T h)/|Lt,T (·,1)|∞,

bN = N−1
N∑

�=1

ω�
t ,

b = E[ω1
t |F N

t−1] = φN
t−1[M(·, gt )]/φN

t−1(ϑt ),

β = c−/|ϑt |∞.

Assumption 4 shows that b ≥ β and Lemma 10 shows that |aN/bN | ≤ M
def=

ρ|t−s| osc(h), where ρ is defined in (64). Therefore, condition (I) of Lemma 4
is satisfied and the Hoeffding inequality gives

P[|bN − b| ≥ ε] ≤ E

[
P

[∣∣∣∣∣N−1
N∑

�=1

(ω�
t − E[ω1

t |F N
t−1])

∣∣∣∣∣ ≥ ε
∣∣∣F N

t−1

]]

≤ 2 exp(−2Nε2/|ωt |2∞),

establishing condition (II) in Lemma 4. Finally, Lemma 10 and the Hoeffding in-
equality imply that

P[|aN | ≥ ε] ≤ E

[
P

[∣∣∣∣∣N−1
N∑

�=1

ω�
t G

N
t,T (ξ�

t ,�s,T h)/|Lt,T (·,1)|∞
∣∣∣∣∣ ≥ ε

∣∣∣F N
t−1

]]

≤ 2 exp
(
−2

Nε2

|ωt |2∞ρ2|t−s| osc2(h)

)
= 2 exp

(
−2

Nε2

|ωt |2∞M2

)
.

Lemma 4 therefore yields

P

(∣∣∣∣aN

bN

∣∣∣∣ ≥ ε

)
≤ 2 exp

(
− Nε2c2−

2 osc2(h)ρ2|t−s||ωt |2∞|ϑt |2∞
)
,

so that

P(|AN
t,T | ≥ ε) ≤ 2 exp

(
− Nε2c2−σ 2−

2 osc2(h)ρ2|t−s||ωt |2∞|ϑt |2∞σ 2+

)
.

A time uniform exponential deviation inequality for
∑T

t=1 At,T then follows from
Lemma 13 and the proof is complete. �

4.2. A time uniform bound on the variance of the marginal smoothing distri-
bution. Analogous to the result obtained in the previous section, a time uniform
bound on the asymptotic variance in the CLT for the marginal smoothing approxi-
mations can, again under the strong mixing Assumption 4, be easily obtained from
the exponentially decreasing bound on Gt,T stated and proved in Lemma 10 for
the quantity.
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THEOREM 12. Assume Assumptions 1–4 hold with T = ∞. Then, for all
s ≤ T ,

�0:T |T [�s,T h] ≤
(

σ+
σ−

(
1 ∨ sup

t≥1
|ϑt |∞

)
sup
t≥0

|ωt |∞ osc(h)

)2 1 + ρ2

1 − ρ2 ,

where �0:T |T is defined in (48).

In accordance with the results of the previous section, letting s = T in the pre-
vious theorem provides a time uniform bound on the asymptotic variance for the
filter approximation; nevertheless, as mentioned previously, the situation of inter-
est for us is when s is fixed and T goes to infinity.

PROOF OF THEOREM 12. Combining (73) and (65) with ρ0(ω0) = 1 yields

ρ0(ω
2
0(·)G2

0,T (·,�s,T h))

ρ2
0 [ω0(·)L0,T (·,1)] ≤

(
σ+
σ−

|ω0|∞ osc(h)ρs

)2

.

Moreover, by inserting, for any 0 < t ≤ T , the bound obtained in (65) into the
expression (49) of υt,T we obtain

φt−1(υt,T (·,�s,T h)))φt−1(ϑt )

φ2
t−1[Lt−1,T (·,1)] ≤

(
σ+
σ−

|ϑt |∞|ωt |∞ osc(h)ρ|t−s|
)2

.

Finally, plugging the two bounds above into (48) gives

�0:T |T [�s,T h] ≤
(

σ+
σ−

(
1 ∨ sup

t≥1
|ϑt |∞

)
sup
t≥0

|ωt |∞ osc(h)

)2
( ∞∑

t=0

ρ2|t−s|
)
,

which completes the proof. �

5. Proofs of Propositions 1 and 2. Having at hand the theory established in
the previous sections, we are now ready to present the proofs of Propositions 1
and 2.

PROOF OF PROPOSITION 1. The average number of simulations required to

sample J �
s conditionally on GN

s+1 is σ+�s/
∑N

u=1 ωu
s m(ξu

s , ξ
J �
s+1

s+1 ). Hence, the num-
ber of simulations ZN

s required to sample {J �
s }N�=1 has conditional expectation

E[ZN
s |GN

s+1] =
N∑

�=1

σ+�s∑N
i=1 ωi

sm(ξ i
s , ξ

J �
s+1

s+1 )

.
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We denote ωi
s|T

def= P[J 1
s = i|F N

T ] and ω�i
s:s+1|T

def= P[J 1
s = �, J 1

s+1 = i|F N
T ] and

write

E[ZN
s |F N

T ] =
N∑

i=1

ωi
s+1|T

σ+�s∑N
j=1 ω

j
s m(ξ

j
s , ξ i

s+1)

= σ+�s

N∑
i=1

N∑
�=1

ωi
s+1|T ω�

sm(ξ�
s , ξ i

s+1)∑N
j=1 ω

j
s m(ξ

j
s , ξ i

s+1)
× 1

ω�
sm(ξ�

s , ξ i
s+1)

= σ+�s

N∑
i=1

N∑
�=1

ω�i
s:s+1|T

1

ω�
sm(ξ�

s , ξ i
s+1)

.

For the bootstrap particle filter, ω�
s ≡ gs(ξ

�
s ); Theorem 5 then implies that �s/

N
P−→N→∞ φs|s−1(gs) and

N∑
i=1

N∑
�=1

ω�i
s:s+1|T

1

ω�
sm(ξ�

s , ξ i
s+1)

P−→N→∞
∫∫

φs:s+1|T (dxs:s+1)
1

gs(xs)m(xs, xs+1)
.

Besides, ∫∫
φs:s+1|T (dxs:s+1)

1

gs(xs)m(xs, xs+1)

=
∫

· · ·
∫

φs|s−1(dxs)
gs(xs)M(xs, dxs+1)

gs(xs)m(xs, xs+1)
gs+1(xs+1)

×
T∏

u=s+2

M(xu−1, dxu)gu(xu)

/∫
· · ·

∫
φs|s−1(dxs)gs(xs)

T∏
u=s+1

M(xu−1, dxu)gu(xu)

=
∫ · · · ∫ dxs+1

∏T
u=s+2

∫
M(xu−1, dxu)gu(xu)∫ · · · ∫ φs|s−1(dxs)gs(xs)

∏T
u=s+1 M(xu−1, dxu)gu(xu)

.

Similarly, in the fully adapted case we have ωi
s ≡ 1 for all i ∈ {1, . . . ,N}; thus,

�s = N and
N∑

i=1

N∑
�=1

ω�i
s:s+1|T

1

ω�
sm(ξ�

s , ξ i
s+1)

P−→N→∞
∫∫

φs:s+1|T (dxs:s+1)
1

m(xs, xs+1)
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=
∫ · · · ∫ gs+1(xs+1) dxs+1

∏T
u=s+2

∫
M(xu−1, dxu)gu(xu)∫ · · · ∫ φs(dxs)

∏T
u=s+1 M(xu−1, dxu)gu(xu)

.

In both cases, the numerator can be bounded from above by

σT −s−1+
∏T

u=s+1
∫

gu(xu) dxu∫ · · · ∫ φs|s−1(dxs)gs(xs)
∏T

u=s+1 M(xu−1, dxu)gu(xu)

if
∫

gu(xu) dxu < ∞ for all u ≥ 0. �

PROOF OF PROPOSITION 2. Fix a time step s of the algorithm and denote by
Cs the number of elementary operations required for this step. For k ∈ {1, . . . , n},
let T k

s be the number of times that k appears in list L at time s in the ‘while’ loop.
Let also Nu

s
def= ∑N

k=1 1{T k
s ≥u} be the size of L (i.e., the value of n at line 6) after

u iterations of the ‘while’ loop, with N0
s

def= N . Then, using Proposition 14 there
exists a constant C such that

Cs ≤ C

∞∑
u=0

Nu
s

(
1 + log

(
1 + N

Nu
s

))
.

As n → n(1+ log(1+N/n)) is a concave, increasing function, it holds by Jensen’s
inequality that

E[Cs] ≤ C

∞∑
u=0

E[Nu
s ]

(
1 + log

(
1 + N

E[Nu
s ]

))
.

Besides,

E[Nu
s ] =

N∑
k=1

P(T k
s ≥ u) ≤ N

(
1 − σ−

σ+

)u

as σ−/σ+ is a lower bound on the acceptation probability. Thus,

E[Cs] ≤ CN

∞∑
u=0

(
1 − σ−

σ+

)u(
1 + log

(
1 + 1

(1 − σ−/σ+)u

))
≤ KNσ+

σ−
.

�

APPENDIX A: PROOF OF LEMMA 4

Write∣∣∣∣aN

bN

∣∣∣∣ ≤ b−1
∣∣∣∣aN

bN

∣∣∣∣|b − bN | + b−1|aN | ≤ β−1M|b − bN | + β−1|aN |, P-a.s.

Thus, {∣∣∣∣aN

bN

∣∣∣∣ ≥ ε

}
⊆

{
|b − bN | ≥ εβ

2M

}
∪

{
|aN | ≥ εβ

2

}
,

from which the proof follows.
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APPENDIX B: TECHNICAL RESULTS

LEMMA 13. Let {Yn,i}ni=1 be a triangular array of random variables such
that there exist constants B > 0, C > 0, and ρ with 0 < ρ < 1 satisfying, for all n,
i ∈ {1, . . . , n}, and ε > 0,

P(|Yn,i | ≥ ε) ≤ B exp(−Cε2ρ−2i).

Then, there exist constants B̄ > 0 and C̄ > 0 such that, for any n and ε > 0,

P

(∣∣∣∣∣
n∑

i=1

Yn,i

∣∣∣∣∣ ≥ ε

)
≤ B̄e−C̄ε2

.

PROOF. Set S
def= ∑∞

�=1

√
�ρ�; one easily concludes that

P

(∣∣∣∣∣
n∑

i=1

Yn,i

∣∣∣∣∣ ≥ ε

)
≤

n∑
i=1

P
(|Yn,i | ≥ εS−1

√
iρi) ≤ B

n∑
i=1

exp(−CS−1ε2i).

Set ε0 > 0. The proof follows by noting that, for any ε ≥ ε0,
n∑

i=1

exp(−CS−1ε2i) ≤ exp(CS−1ε2
0) exp(−CS−1ε2)/

(
1 − exp(CS−1ε2

0)
)
.

�

B.1. Description of the sampling procedure. In this section, we describe
and analyze an efficient multinomial sampling procedure, detailed in Algorithm 2.
Given a probability distribution (p1, . . . , pN) on the set {1, . . . ,N}, it returns a
sample of size n of that distribution. Compared to the procedure described in Sec-
tion 7.4.1 in [3], its main virtue is to be efficient for both large and small samples
sizes: if n = 1, the complexity is O(log(N)), while if n = N , the complexity is
O(N).

PROPOSITION 14. The number of elementary operations required by Algo-
rithm 2 is O(n + n log(1 + N/n)).

PROOF. The order statistics at line 5 and the permutation at line 6 can be
sampled using O(n) operations; see [13], Chapter V and XIII. For each value of
k between 1 and n, denote by Gk the number of times lines 11–13 are executed.
Observe that line 18 is executed the same number of times, and thus the number
of elementary operations required by call to Algorithm 2 is O(n + ∑n

k=1 Gk). But
the value of l is increased during iteration k by at least 2Gk − 1, and as the final
value of l is at most equal to N , it holds that

n∑
k=1

2Gk ≤ N + n.
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Algorithm 2 Multinomial sampling
1: q1 ← p1
2: for k from 1 to N do
3: qk ← qk−1 + pk

4: end for
5: sample an order statistics U(1), . . . ,U(n) of an i.i.d. uniform distribution
6: uniformly sample a permutation σ on {1, . . . , n}
7: l ← 0, r ← 1
8: for k from 1 to n do
9: d ← 1

10: while U(k) ≥ qr do
11: l ← r

12: r ← min(r + 2d,N)

13: d ← d + 1
14: end while
15: while r − l > 1 do
16: m ← �(l + r)/2�
17: if U(k) ≥ qm then
18: l ← m

19: else
20: r ← m

21: end if
22: end while
23: Iσ(k) ← r

24: end for

By convexity,

exp

(
log(2)

n

n∑
k=1

Gk

)
≤ 1

n

n∑
k=1

2Gk ≤ 1 + N

n
,

which implies that
n∑

k=1

Gk ≤ n log
(

1 + N

n

)
/ log(2).

�
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