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Abstract— We consider a multi-hypothesis testing problem
involving a K-armed bandit. Each arm’s signal follows a distri-
bution from a vector exponential family. The actual parameters
of the arms are unknown to the decision maker. The decision
maker incurs a delay cost for delay until a decision and a
switching cost whenever he switches from one arm to another. His
goal is to minimise the overall cost until a decision is reached
on the true hypothesis. Of interest are policies that satisfy a
given constraint on the probability of false detection. This is a
sequential decision making problem where the decision maker
gets only a limited view of the true state of nature at each stage,
but can control his view by choosing the arm to observe at each
stage. An information-theoretic lower bound on the total cost
(expected time for a reliable decision plus total switching cost) is
first identified, and a variation on a sequential policy based on
the generalised likelihood ratio statistic is then studied. Due to
the vector exponential family assumption, the signal processing at
each stage is simple; the associated conjugate prior distribution
on the unknown model parameters enables easy updates of
the posterior distribution. The proposed policy, with a suitable
threshold for stopping, is shown to satisfy the given constraint on
the probability of false detection. Under a continuous selection
assumption, the policy is also shown to be asymptotically optimal
in terms of the total cost among all policies that satisfy the
constraint on the probability of false detection.

Index Terms— Action planning, active sensing, conjugate prior,
exponential family, hypothesis testing, multi-armed bandit, rela-
tive entropy, search problems, sequential analysis, switching cost.

I. INTRODUCTION

WE CONSIDER a multi-hypothesis testing problem
involving a K-armed bandit. The observations from

each arm i, 1 ≤ i ≤ K , follow a distribution from a
vector exponential family parameterised by its natural (vector)
parameter ηi. The parameters η = (η1, . . . , ηK) of the arms
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are unknown. The parameter η belongs to one of the sets
Θ1, . . . , ΘM . The goal is to identify the set Θl to which
it belongs. At each successive stage or round, the decision
maker chooses exactly one among the K arms for observation.
The decision maker therefore has only a limited view of the
true state of nature at each stage. But the decision maker can
control his view by choosing the arm to observe. The decision
maker also incurs a cost whenever he switches from one arm
to another. Specifically, the decision maker has to minimise
the overall cost of expected time for a reliable decision plus
total switching cost, subject to a constraint on the probability
of false detection.

We can model the above problem as a sequential hypothesis
testing problem with control [1] and unknown distributions [2]
or parameters [3]. The control here is in the choice of arm
for observation at each stage which is determined by the
sampling strategy of the policy. Many problems fall within
the aforementioned framework, for e.g., anomaly detection,
best arm identification, A/B testing, etc.; see Section III for
several examples.

Given a constraint α on the probability of false detection,
let Π(α) be the set of admissible policies that satisfy this con-
straint. Note that the hypotheses are composite, and therefore,
each policy in Π(α) should satisfy the constraint on probability
of false detection for each η ∈ Θl, for each l. Our objective
is to identify a policy π ∈ Π(α) such that it stops within a
finite time and to characterize for each l and each η ∈ Θl,
the asymptotic growth rate of the total cost with respect to
log(1/α) as α goes to 0. For such a sequential composite
hypothesis testing problem with control, a typical sequential
policy has two components: a stopping rule that decides
whether to stop and make a decision or continue sampling,
and, when we continue, a sampling rule that specifies which
arm to sample at each time. The stopping rule is typically
based on the comparison of a test statistic computed from the
observations with a threshold. For our proposed policy, the
design of these components and the methodology leading to
the design are described in Section I-B.

A. Remarks on the Model Assumptions
1) Exponential Families: Our interest in exponential fami-

lies is for three reasons.
• It unifies most of the widely used statistical models such

as the Gaussian, the Binomial, the Poisson, the Gamma
distributions, among countless others.
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• The generalisation forces us to rely on, and therefore
bring out, the key properties of exponential families that
make the analysis tractable. These include the usefulness
of the convex conjugate (or convex dual) of the log parti-
tion function, the existence of easily amenable formulae
for relative entropy, and the usefulness of the conjugate
prior in the analysis.

• The conjugate prior enables extremely easy signal
processing for posterior updates. This is of great value
in practice.

2) Switching Cost: Incorporation of switching cost is moti-
vated by a number of applications.

• In visual search tasks, where one is searching for say
an odd object among many objects, a switching action
implies a change in the location of visual focus via
movement of the eyes. This is called a saccade and results
in a delay cost [4].

• In robotics applications, relocation of robots (or other
autonomous decision makers such as unmanned aerial
vehicles) incurs considerable cost in terms of energy or
delay [5].

• In manufacturing industry applications, switching refers
to reconfiguration of a production line and causes extra
delays [6].

B. Results and Methodology

Converse: We use the results from [7] to obtain an
information-theoretic lower bound on the conditional expected
total cost for any policy that satisfies an upper bound constraint
on the probability of false detection, say α. The lower
bound suggests that the conditional expected total cost is
asymptotically proportional to log(1/α), i.e., it grows as
log(1/α)/D∗(η), where D∗(η) is a relative-entropy based
constant which we shall study in some detail in this paper.
An examination of this lower bound reveals that it may
be viewed as the best performance achievable when a
more informed decision maker that knows the parameters
to be either η ∈ Θl or its ‘nearest alternative’, a suitable

η� ∈ Θ−l :=
M⋃

m=1
Θm\Θl, is attempting to decide which of

these is true, as quickly as possible in a sequential fashion and
with a control on the false alarm probability.

Achievability: A commonly used test in problems with
unknown parameters is the generalised likelihood ratio (GLR)
test; see for example the text book [8]. The basic idea of
the policy, for stopping problems with control, dates back at
least to Chernoff’s Procedure A [1]. In our case, taking a cue
from [3], we use a modified GLR where the numerator of
the generalised likelihood ratio is replaced by an averaged
likelihood function. The average is computed with respect to
an artificial prior on the unknown parameters. Each hypothesis
is tested against its nearest alternative by taking the minimum,
across the alternatives, of the modified GLRs. This yields a
suitable statistic that quantifies the decision maker’s confi-
dence on each hypothesis.

At each stage, then, we choose the hypothesis with the
largest statistic. If the statistic exceeds a pre-defined threshold,
we declare this hypothesis as the one likely to be true and stop

further sampling. Else, we decide randomly, based on a coin
toss, whether to sample the current arm or choose another
one according to the policy’s sampling strategy. This slowed
switching is to handle the switching costs. The bias of the coin
determines the speed of switching thereby providing a control
on the switching cost. The threshold for a decision in our
policy, and therefore stoppage of further sampling, depends
only on the tolerable probability of false detection (α) and
the number of hypotheses (M ); in particular, the threshold
is not time-varying. We show that such a policy meets the
constraint on the probability of false detection (i.e., the policy
is admissible). It is in proving this admissibility where the
modification to the GLR comes in handy.

As remarked earlier, our approach involves the computation
of generalised likelihoods. These provide best estimates of
the unknown parameters obtained by (estimation-theoretic)
constrained optimisation. We then adopt the principle of
certainty equivalence, i.e., we assume that the latest estimated
parameters are correct, solve an associated (decision-theoretic)
optimisation problem for identifying the optimal sampling
strategy, and then take actions according to this optimal
prescription. The estimated parameters, at best, can approach
the true parameters for, after all, the parameters take values in
a continuum. This leads to two requirements. First, to enable
the convergence to the true parameters, there should be
sufficient exploration. Second, the arg-max of the decision-
theoretic optimisation problem at each stage, assuming the
estimated parameters at that stage, may have several solutions
and therefore several sampling prescriptions; we then need a
continuous selection of the arg-max. Otherwise, information
will not be gained at the required rate D∗(η) to meet the
lower bound.

When a continuous selection exists, with just barely suffi-
cient exploration, we show that the sampling strategy of our
proposed policy has performance that is asymptotically close
to the lower bound; the asymptotics is as the target probability
of false detection α goes down to zero. We also show that,
asymptotically, the total cost scales as log (1/α) /D∗(η),
where D∗(η) is the optimal scaling factor suggested by the
lower bound. We then show that the continuous selection
assumption holds for some examples.

Under the vector exponential family assumption, the infor-
mation processing at each stage is extremely simple. The
decision maker maintains the parameters of the associated
conjugate priors, corresponding to the posterior distributions
of the model parameters, via easy-to-implement update rules.

C. Closely Related Prior Works

Two special cases of great interest in literature are the cases
of best arm identification and odd arm identification. Garivier
and Kaufmann [9] have characterised the complexity of best
arm identification in one-parameter bandit problems in the
fixed confidence setting. Kaufmann et al. [7] have discussed
the case of identifying m best arms in a stochastic multi-
armed bandit model for both fixed confidence and fixed budget
settings. In [4], the authors have considered the odd arm
identification problem with switching costs, but the statistics
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of the observations were assumed to be known and Poisson-
distributed. In [3], the authors have considered a learning
setting where the parameters of the Poisson distribution were
not known but the switching costs were not taken into
account. In earlier versions of this work, [10] (a workshop
paper) and [11] (technical report), under some restricting
assumptions, we considered the odd arm identification problem
with switching costs when the distributions are from a vector
exponential family. This work substantially extends the results
in [10], [11] to much more general parameter structure classes.

A related problem is discussed in [12], [13] where the
authors have considered a multi-hypothesis problem with
controlled sensing of the observations. The parameter set is
partitioned into various subsets, one for each hypothesis. Each
subset is further assumed to be a finite union of convex sets;
then projections on closures of such sets exist (uniqueness
holds in each closed convex part). In [14], the authors have
considered the problem of identifying the partition to which
a set of arms belong, given a finitely partitioned universe of
such set of arms. In all these works, [12]–[14], the authors
have assumed that the observations come from a single
parameter exponential family of distributions. The important
and practical issue of switching costs is also not taken into
consideration. Further, their choice of the statistic requires the
employment of a time-varying threshold.

Our work thus provides a significant generalisation of the
results in [12]–[14] to general vector exponential families,
analyses the effect of switching cost on search complexity, all
in the presence of learning. More importantly, we provide a
fuller understanding of the subtleties associated with learning
the true parameters: the use of forced exploration, the useful-
ness of the existence of a continuous selection, and the analysis
methods that show convergence despite the adaptation based
on the estimated parameters that change with time.

For connections to, and limitations of, the classical works
of Chernoff [1] and Albert [2], see a detailed summary in [3,
Sec. I-A].

D. Our Contributions
• We provide a significant generalisation of the odd arm

identification problem in [11] to a much more general
sequential hypothesis testing setting. At least six prob-
lems already studied in the literature are highlighted as
special cases; see Section III-B.

• We provide generalisations of the problems discussed in
closely related papers [12], [13] in three aspects:

– Observations come from a vector exponential family
of distributions.

– We incorporate switching costs based on the idea of
slowed switching; see [4], [15] and [16].

– The threshold for decision is time invariant.
• We show that the proposed policy, which incorporates

learning, is asymptotically optimal even with switching
costs. This is in the sense that the growth rate of the total
cost with switching, as the probability of false detection
and the switching parameter that controls the speed of
switching are both driven to zero, is the same as that
without switching costs. Of course, optimality is only

in terms of the growth rate (slope). As our simulations
indicate, the slowed switching leads to an additional
delay. However, the delay does not affect the growth rate
since it does not show up in the slope.

• We highlight why the continuous selection assumption for
the arg-max over sampling strategies may be essential to
meet, asymptotically, the lower bound.

• We demonstrate the usefulness of forced exploration
for learning the parameters, and suggest a range of
exploration rates useful in our context.

E. Organisation of the Paper

The paper is organised as follows. In Section II we describe
preliminaries related to exponential families. In Section III,
we describe the problem model and discuss several examples
that fall within our framework. We then preview the main
result. In Section IV, we discuss a lower bound on the expected
search time for admissible policies. In Section V, we describe
the proposed policy that can be made to come arbitrarily
close to meeting the lower bound. In Section VI, we provide
insightful simulation results that corroborate the developed
theory. The proofs and the verification of the assumption of
continuous selection for some examples are all relegated to
the appendices.

II. PRELIMINARIES: EXPONENTIAL FAMILY BASICS

In this section we discuss formulae associated with
the exponential family that will help in our analysis.
Those familiar with exponential families may skip this
section.

A probability distribution is a member of a vector exponen-
tial family if its probability density function (or probability
mass function) can be written as

f (x|η) = h (x) exp
(
ηT T(x) −A (η)

) ∀x ∈ R, (1)

where η is the vector parameter of the family, with η in some
open convex subset Ψ of R

d, T(x) ∈ R
d is the sufficient

statistic for the family, and A (η) is the log partition function
given by

A (η) = log
∫

Rd

h (x) exp
(
ηT T(x)

)
dx.

The expression in (1) gives the canonical parameterisation
of the exponential family. We restrict ourselves to minimal
representations [17, p. 40] which enables us to represent the
distributions in the family using the expectation parameter
defined as

θ(η) :=Eη[T(x)] = ∇ηA (η) (2)

whenever A(·) is continuously differentiable.
We now discuss a few members of the family to get familiar

with the notation.
1) Poisson distribution: For the Poisson distribution with

alphabet Z+, we have the probability mass function

p (x|λ) =
e−λ

x!
λx =

1
x!

exp{x log λ − λ}.
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This belongs to the exponential family with η = log λ,
T(x) = x, A (η) = λ = eη, and h (x) = 1

x! . The
expectation parameter θ(η) = ∇ηA (η) = eη = λ.

2) Bernoulli distribution: For the Bernoulli distribution
with parameter p, we have the probability mass function

P (x; p) = px(1 − p)(1−x) (3)

= exp
{(

x log
p

1 − p

)
+ log(1 − p)

}
.

(4)

Here η = p
1−p , T(x) = x, A(η) = − log(1 − p),

h(x) = 1, and θ = p.
3) Gaussian distribution: For the Gaussian distribution

defined by the mean parameter μ and the variance
parameter σ2, the probability density function is

f(x; μ, σ2)

=
1√

2πσ2
exp
{
− (x − μ)2

2σ2

}
=

1√
2π

exp
{

μ

σ2
x − 1

2σ2
x2 − μ2

2σ2
− log σ

}
.

We consider three different cases: a) unknown mean and
known variance, b) known mean and unknown variance,
and c) both mean and variance unknown. In the second
case, we can subtract the mean value and consider them
to be distributions with zero mean.

a) Unknown mean and known variance: In this
case, we have η = μ

σ , A(η) = μ2

2σ2 = η2

2 ,

T(x) = x
σ , h(x) = 1√

2πσ
exp
{

−x2

2σ2

}
, and θ = μ

σ .
b) Zero mean and unknown variance: In this case,

we have η = −1
2σ2 , T(x) = x2, A(η) = log σ,

h(x) = 1√
2π

, and θ = σ2.
c) Both mean and variance unknown, vector para-

meter case: In this case, we have η =
[

μ
σ2

−1
2σ2

]T
,

T(x) =
[
x x2

]T
, and A(η) = μ2

2σ2 + log σ =
− η2

1
4η2

− 1
2 log(−2η2), h(x) = 1√

2π
. The expecta-

tion parameter

θ =
[

μ
μ2 + σ2

]
.

We now continue with some additional observations on
exponential families. The mapping η �→ A(η) is strictly
convex [17, Prop. 3.1], a fact that can be easily verified via the
Hölder inequality. The strictness comes from the minimality
of the representation. If A(·) is twice differentiable, then the
Hessian Hess(A)(η) is just the covariance of T(x) when
the canonical parameter is η. If A(·) twice continuously
differentiable, then the covariance matrix is a continuous
function of its parameter.

The convex conjugate of A(η) evaluated at an arbitrary θ
and denoted F(θ) is given by

F (θ) := sup
η∈Rd

{ηT θ −A (η)}; (5)

this is also a convex function. Since A(·) is convex, we can
recover A(·) as the convex conjugate of F(·), i.e.,

A (η) := sup
κ∈Rd

{ηT θ −F (θ)}. (6)

We will assume henceforth that F(·) and A(·) are strictly
convex and C2 functions (twice continuously differentiable)
at all points in their domains of definition. Optimising (5)
over η, recalling the strict convexity of A(·), we get that the
optimising η is unique and satisfies θ = ∇ηA(η) which is
the expectation parameter (2) evaluated at the optimising η.
Similarly, optimising (6) over θ, we get an equation analogous
to (2), i.e., η = ∇κF(θ). Thus the optimising θ and η
are dual to each other and are in one-to-one correspondence.
Indeed, we can move from η to its corresponding θ and from
θ to its corresponding η via

θ (η) = ∇ηA (η) and η (θ) = ∇κF (θ) . (7)

From this one-to-one relation between η and θ in (7), we also
have

F (θ) = η(θ)T θ −A (η(θ)) ,

A (η) = ηT θ(η) −F (θ(η)) . (8)

When we know that a particular η and a particular θ are dual
to each other, we simplify the notation in (8) to

F (θ) + A(η) = ηT θ. (9)

That the dual parameter θ(η) (respectively, η(θ)) is involved
should be clear from the context since, in (9), the supremum
that appears in (6) (respectively, (5)) is absent. See [18,
Section 3.3.2] for these basic properties on convex duals.

The expressions for Kullback-Leibler (KL) divergence or
relative entropy in terms of the natural parameter and in terms
of the expectation parameter (by (9)) are

D (η1 	 η2) := D (f(·|η1) 	 f(·|η2))

= (η1 − η2)
T

θ1 −A (η1) + A (η2) (10)

= (θ2 − θ1)
T

η2 + F (θ1) −F (θ2) . (11)

Note that we have used the duality relation between θi and ηi,
i.e., θi = θ(ηi), i = 1, 2. Let Hess(A)(·) denote the Hessian
associated with the function A(·). Another useful formula is
obtained by expanding (10) using the Taylor series centred at
η1:

D(η1 	 η2)
= A(η2) −A(η1) − (η2 − η1)

T∇A(η1)

=
1
2
(η2 − η1)

T ·
∫ 1

0

(1 − t)Hess(A)(η1 + t(η2 − η1)) dt

· (η2 − η1). (12)

These useful formulae will be exploited in later sections.

III. PROBLEM MODEL, SPECIFIC EXAMPLES, AND

PREVIEW OF THE MAIN RESULT

In this section, we first discuss the model and explain the
costs under consideration. We then provide several examples
considered in the literature that are encompassed by our
generalised framework. We end the section with a formal
problem statement and a preview of the main result.
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A. Problem Model

Let the set of arms be denoted as K := {1, 2, . . . , K}.
The distribution of the observations from arm i is a member
of the vector exponential family with the natural (canonical)
parameter ηi ∈ Ψi (open, convex subset of a Euclidean space).
Let

Ω = Ψ1 × Ψ2 × . . . × ΨK . (13)

Let η ∈ Ω denote the tuple of vector parameters associated
with the set of arms:

η = (η1, η2, . . . , ηK). (14)

Let M = {1, 2, . . . , M} denote the set of hypotheses. Under
the hypothesis m ∈ M, η ∈ Θm, where Θm ⊂ Ω. We assume
that the sets Θm, m ∈ M are disjoint. In addition, we also
make an assumption that Θm is open in aff(Θm), i.e., Θm =
relint(Θm), where aff(·) is the affine hull and relint(·) is the
relative interior. Recall that we also assume that A(·) is strictly
convex and C2; so the second central moment exists for each
η ∈ Θm and for each m, namely, Eη[(T(x) − θ(η))(T(x) −
θ(η))T ] exists and is finite.

Let P (K) be the set of probability distributions on K. Let
an ∈ K denote the index of the arm chosen for observation at
the instant n, and let xn denote the value of the observation
during instant n. We write xn for (x1, x2, . . . , xn) and an

for (a1, a2, . . . , an). At any stage, say n, given the past
observations and actions up to time n − 1, a policy π must
choose an action An of the form:

• An = (stop, δ) which is a decision to stop and decide
the hypothesis as δ ∈ M, or

• An = (continue, ι, δ = null) which is a decision to
continue and sample the next arm to pull according to a
probability measure ι on the finite set of arms.

We define the stopping time of the policy π as

τ (π) := inf{n ≥ 1 : An = (stop, ·)}. (15)

Given the false detection probability constraint α, with
0 < α < 1, let Π(α) be the set of admissible policies that meet
the following constraint on the probability of false detection:

Π (α) = {π : P (δ �= l | η) ≤ α, ∀η ∈ Θl, ∀l} , (16)

with δ being the decision made when the algorithm stops. It is
important to note that a policy is in Π(α) only if it does well
for each η ∈ Θl, for each l. Policies tuned to specific η’s
or specific Θl will likely fail when other hypotheses are in
vogue.

B. Examples

We discuss several examples already studied in the literature
and show how they fit within our general framework. In each
case, we first pose the problem and show how to embed
it within our framework. The embedding sheds light on the
structural aspects, associated with the parameter sets, of the
specific problem under consideration.

• Generalised best arm identification in a multi-armed ban-
dit setting: We consider a set of K arms, each following

Fig. 1. Scalar best arm identification with K = 2. Under hypothesis 1,
we have η1 > η2 and Θ1 is the shaded region indicated in (a). Under
hypothesis 2, Θ2 is the shaded region in (b). It is assumed that η1 �= η2.

a distribution from the vector exponential family. Our
objective is to identify the best arm i ∈ K such that

cT ηi > cT ηj , ∀j ∈ K\i,
where c ∈ R

d. We assume it is a priori known that there
is exactly one such arm.
We cast this problem into our framework as follows. Let
the number of hypotheses M = K . The parameter set
under hypothesis m can be taken to be

Θm = {η ∈ Ω : cT ηm > cT ηm′ , ∀m� �= m}.
For the scalar parameter case where the parameter is the
mean and c = 1, we have the best arm identification
problem; see Fig. 1.
This problem was posed at least as early as Chernoff [1]
and was subsequently studied by Albert [2]. For a more
recent study with better performance for the best arm
problem see Garivier and Kaufmann [9]. For results in
the nonasymptotic regime see [19], [20].

• Multi-bandit best arm identification: We consider a set
of K arms, each following a distribution from the vector
exponential family. We assume that there are b possi-
bly overlapping group of arms denoted by the subsets
B1, B2, . . . , Bb of {1, 2, . . . , K}. Each arm is present in
at least one of these groups and each group has at least
two arms and a unique best arm. Our objective is to
find the best arm in each of these groups, i.e., to find
m = {m1, m2, . . . , mb} ⊂ K such that for mk ∈ Bk,
and for each k ∈ {1, 2, . . . , b}

cT ηmk
> cT ηj , ∀j ∈ Bk, j �= mk.

We can embed this problem into our setting as follows.
Let the number of hypothesis M = |B1| × |B2| × · · · ×
|Bb|. Take m = (m1, m2, . . . , mb) ∈ B1 × B2×· · ·×Bp.
The parameter set under the hypothesis m can be defined
as

Θm ={η ∈ Ω : cT ηmk
>cT ηj , ∀j ∈ Bk \ {mk}, ∀k}.
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Fig. 2. Odd arm identification with K = 3. Under hypothesis 1,
η2 = η3 �= η1 and Θ1 is the shaded portion indicated in (a) excluding
the line η1 = η2 = η3. In (b) and (c), the shaded portions excluding the line
η1 = η2 = η3 indicate the parameter sets Θ2 and Θ3, respectively.

A special case of this problem was studied in [21], where
η is the mean parameter and the distributions are sub-
Gaussian, i.e., E[esX ] ≤ e

σ2s2
2 , ∀s ∈ R with σ ≤ 1/2.

• Odd arm identification in multi-armed bandit setting: We
consider a set of K arms, each following a distribution
from the vector exponential family, in which all but one
have the same distribution. The objective is to identify
the odd arm, i.e., to find the i ∈ K such that

ηi = θ, and ηj = θ�, ∀j ∈ K\{i} for some θ� �= θ.

The decision maker knows, a priori, that there is such an
odd arm.
This problem too can be embedded in our setting as
follows. Let the number of hypotheses M = K , and let
the parameter set under hypothesis m be defined as

Θm = {η ∈ Ω : ηm = θ, and ηm′ = θ�,
∀m� �= m, θ� �= θ},

where the hypothesis m indicates that the arm m is the
odd one.
This problem was considered in the conference ver-
sion [10] and its accompanying technical report [11] as
the exponential family generalisation of [3], [4] where

the observations were restricted to be Poisson random
variables. Note that the odd arm detection problem is a
particular case of structured best arm identification [22].

• L-anomalous arms identification in the multi-armed ban-
dit setting: Here, we consider the case when we have
multiple anomalous arms, i.e., out of the K arms, L arms
have a distribution different from the rest.
We can embed this problem into our setting as follows.
Let the number of hypothesis M =

(
K
L

)
and enumerate

the subsets as S1, S2, . . . , SM , |Sm| = L, 1 ≤ m ≤ M .
The parameter set under hypothesis m associated with
Sm is defined as

Θm = {η ∈ Ω : ηi = θ, ∀i ∈ Sm and ηj = θ�,

∀j /∈ Sm, θ� �= θ}.

The hypothesis m indicates that the arms in Sm are
anomalous.
This has been considered in [23]. For a summary of vari-
ous other kinds of anomaly detection problems, see [24].

• High reward outlier detection in the multi-armed bandit
setting: Consider the problem of identifying outlier arms
with extremely high expected reward compared to the
other arms. An arm is defined as an outlier if the
expectation parameter is greater than the mean plus k
times standard deviation of the expectation parameters of
all the arms, i.e., arm i is an outlier when

κi > μ + kσ = θ,

where κi is the expectation parameter of arm i, μ and σ
are calculated as

μ =
1
K

K∑
i=1

κi and σ =

√√√√ 1
K

K∑
i=1

(κi − μ)2,

respectively. It is a priori known that this set is nonempty.
We can embed this problem too into our setting as
follows. Consider a set of K arms, each following a
distribution from the exponential family. Let the number
of hypothesis M = 2K−1 and enumerate the subsets Pm

of 2K\∅, m = 1, 2, . . . , M . Let the parameter set under
hypothesis m be defined as, with η = (η1, . . . , ηK),

Θm = {η ∈ Ω : κi > θ, ∀ηi ∈ Pm}.

The hypothesis m indicates that the arms in the set Pm

are outliers.
This problem was studied in [25].

• Partition identification problem in the multi-armed bandit
setting: In this setting, the parameter space is partitioned
into M sets. The goal is to identify the subset of the
partition in which the parameter belongs. The general
problem addressed in this paper does not require the
Θm, m ∈ M, to be a partition of Ω. Two such problems
(with M = 2) and their embedding in our framework are
described below. We take η = (η1, . . . , ηK), where the
ηi are (in this set of examples) scalars.
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– Threshold crossing problem [14]: In this setting, our
objective is to check if there is at least one arm whose
parameter is above a given threshold value u. Define
the parameter set Θ1 to be

Θ1 =
{

η ∈ Ω : max
i≤K

ηi > u

}
,

and Θ2 = relint(Θc
1).

– Half-space identification problem [14]: In this
setting, our objective is to identify the half-
space that contains the parameters. Fix constants
(a1, a2, . . . , ak, b). Define the parameter set Θ1 to
be

Θ1 =

{
η ∈ Ω :

K∑
i=1

aiηi > b

}
,

and Θ2 = relint(Θc
1).

– Norm-threshold problem: For a given set of parame-
ters, the objective here is to check if the norm of
the parameter tuple lies within a threshold. This is
embedded in the above framework as follows. Define
the parameter set Θ1 to be

Θ1 = {η ∈ Ω : ||η||2 < r1},
and Θ2 to be

Θ2 = {η ∈ Ω : r1 < ||η||2 < r2}.
This problem is an example of a situation where
the parameter set is not a finite union of convex
sets.

As one can see from the rich set of examples above, our
framework is sufficiently general to cover all these examples
considered in the literature.

C. Costs

The total cost is the sum of the switching cost and the delay
cost in arriving at a decision, as in [15]. We now make this
precise.

1) Switching Cost: Let g (a, a�) denote the cost of switching
from arm a to arm a�. This is incurred every time a switch of
arms is executed. We assume

g (a, a�) ≥ 0 ∀a, a� ∈ K and g (a, a) = 0 ∀a ∈ K.

The assumption g(a, a) = 0 says there is no switching cost if
the controller does not switch arms. Define gmax as follows
and assume that it is finite:

gmax := max
a,a′∈K

g (a, a�) < ∞.

2) Total Cost: For a policy π ∈ Π(α), the total cost C (π)
is the sum of the stopping time (delay) and the net switching
cost:

C (π) := τ (π) +
τ(π)−1∑

l=1

g (al, al+1) .

Fig. 3. Norm-threshold problem with K = 2. Under hypothesis 1, we have

0 ≤
�

η2
1 + η2

2 < r1, and Θ1 is the shaded portion indicated in (a). Θ2 for
hypothesis 2 is the shaded portion indicated in (b).

D. Problem Statement and a Preview of Main Result

Problem Statement: Our goal is to identify, for each l
and for each η ∈ Θl, the asymptotic growth rate of the
cost infπ∈Π(α) E[C(π) | η] with respect to log(1/α) as the
constraint on the probability of false detection α vanishes.
More precisely, we wish to identify

lim
α↓0

inf
π∈Π(α)

E[C(π) | η]
log(1/α)

.

A preview of the main result: We will argue that

lim
α↓0

inf
π∈Π(α)

E[C(π) | η]
log(1/α)

=
1

D∗(η)
,

where D∗(η) is the solution to a max-min problem to be
defined later in (18). The converse, as usual, follows from
a smart application of the data-processing inequality, and
involves the stumbling block of a sequential hypothesis test
between η ∈ Θl and its nearest alternative in Θ−l.

The achievability result, however, requires us to address
several nontrivial and nuanced issues which we now highlight.

• We need the cumulant generating function A(·) to be
strictly convex, a consequence of the minimality of
the representation, and further in C1 (continuously dif-
ferentiable). The former ensures 1-to-1 correspondence
between the η and the θ parameters. The latter ensures
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that the relative entropy is continuous in the parameters
of the problem.

• To ensure that the estimated parameters approach the true
parameters, one needs sufficient exploration. We use an
O(nβ) exploration scheme, where 1/2 < β < 1. See
equation (43) in Section V-G.

• For certain concentration results to hold, we need finite
second central moments and a regularity condition on rel-
ative entropy – that it diverges as the separation between
the associated canonical parameters grows without bound.
If A(·) is twice-differentiable, the former corresponds to
the positive definiteness of the Hessian matrix and the
latter corresponds to its condition number not vanishing
too quickly.

• The optimisation problem leads to a set of maximising
actions. However these may not be singletons. As a
consequence, as we show later, we only get upper semi-
continuity of the maximising set-valued correspondence.
On the other hand, the use of the certainty equivalence
principle involves actions based on maximisers associated
with the estimated parameters. One therefore needs a
continuous selection for the action mapping.

• As the estimated parameters approach the true parame-
ters, the policies used also vary with time. One needs
to show convergence in this complex regime which has
time-varying estimates and certainty equivalence based
actions.

• On account of zero switching cost for no switching and
on account of gmax < ∞, the asymptotic growth rate
of E[C(π) | η] can be made as close to the asymptotic
growth rate without switching cost, i.e., the growth rate
of E[τ(π) | η], as one wishes. This involves the use
of a sluggish policy that switches at a very slow rate,
yet mimics the stationary distribution associated with the
asymptotically optimal policy for no switching costs.

IV. THE CONVERSE (LOWER BOUND ON DELAY)

The following proposition gives an information theoretic
lower bound on the expected conditional stopping time for
any policy that belongs to Π(α), given the true configuration
is η ∈ Θl. The decision maker a priori does not know either
η or l.

Proposition 1: Fix 0 < α < 1. Let η ∈ Θl be the true
configuration. For any π ∈ Π(α), we have

E[τ |η] ≥ db(α 	 1 − α)
D∗(η)

(17)

where db(· 	 ·) is the binary relative entropy function, and
D∗(η) is defined as

D∗(η) = sup
λ∈P(K)

inf
η′∈Θ−l

K∑
i=1

λiD(ηi 	 η�
i), (18)

where η� = (η�
1, η

�
2, . . . , η

�
K).

Proof: The proof follows the steps in the proof of
[3, Prop. 1], which relies on [7, Lem. 1] (see also [26]) and
involves an application of the data processing inequality and
Wald’s lemma. We omit the details. �

The binary relative entropy function is given by the familiar
expression:

db(α 	 1 − α) = α log
α

1 − α
+ (1 − α) log

1 − α

α
.

As the constraint on the probability of false detection α → 0,
we have

db (α 	 1 − α) /(log (1/α)) → 1.

Hence, we get that the conditional expected stopping time of
the optimal policy scales at least as (log (1/α))/D∗ (η).

Corollary 2: Fix 0 < α < 1. Let η ∈ Θl be the true
configuration. For any π ∈ Π(α), we have

E[C (π) |η] ≥ db (α 	 1 − α)
D∗ (η)

. (19)

Proof: With the switching costs added, we have C (π) ≥
τ (π). Hence the corollary follows from Proposition 1. �

Interpretation of the sup-inf optimisation problem in (18):
We can interpret D∗(η) as follows. Consider the simpler
hypothesis testing problem where the decision maker has to
decide between the given η ∈ Θl and any alternative chosen
from Θ−l by an adversary. The decision maker may choose
a sampling strategy ι ∈ P(K). Knowing this, the adversary
may pick, from Θ−l, the nearest alternative to η that minimises
the separation as measured by the ι-weighted average of the
relative entropies of the arms. Realising this, the decision
maker will ensure that his chosen ι maximises the minimum
separation. This is the decision maker’s best guarding policy
against the (more informed) adversary’s strategy of picking
the nearest alternative to η from outside Θl, i.e., Θ−l.

In the next section, we discuss how to convert the above
intuitive interpretation into a policy that achieves this lower
bound.

V. A SLUGGISH AND MODIFIED GLR TEST

WITH FORCED EXPLORATION

In this section, we describe a suitable policy that can achieve
the growth rate in the lower bound in Proposition 1, as the
constraint on the probability of false detection is driven to
zero. The proposed policy is a modification of the policy
πSM discussed in [11] where we replace the random sampling
strategy by a forced exploration technique1 as in [9].

Let us denote by Ai(·) the cumulant generating function
associated with arm i. Recall the assumption that Ai(·) is C2.
This ensures θi(·) is continuous and furthermore that the
relative entropy D(· 	 η�

i) is continuous for each fixed η�.
As a consequence, for any i and any ηi, η

�
i ∈ Ψi such that

ηi �= η�
i, we have D(ηi 	 η�

i) < ∞. Furthermore, on account
of the C2 condition, the observations have finite second central
moments. Indeed, as already highlighted, the Hessian matrix
of Ai(ηi) is just the covariance of T(x) when the parameter
is ηi, the strict convexity of Ai(ηi) at all ηi is the same as
positive definiteness of the associated covariance matrix, and
the C2 condition on Ai(ηi) is the same as saying that the
covariance matrix of T(x) has entries that are continuous in
the parameter ηi.

1The subscript SM in πSM stands for “sluggish” and “modified”. We shall
use πSMF where the added letter F stands for “forced exploration”.
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A. Continuous Selection of the Optimal Sampling Strategy

In this section, we will highlight the usefulness of a
continuous selection of the sampling strategy. To set the stage,
we first prove the following property about the attainment of
the supremum in the definition of D∗(η) in (18) and the upper
semi-continuity of the supremum map. The possibility that this
upper semi-continuity may not extend to continuity in general
leads us to introduce Assumption A on the existence of a
continuous selection of optimal sampling strategies.

Proposition 3: The supremum in (18) is a maximum, i.e.,
for each l and for each η ∈ Θl, we can write

ι∗(η) = argmax
λ∈P(K)

inf
η′∈Θ−l

K∑
i=1

λiD(ηi 	 η�
i). (20)

Furthermore the mapping η �→ ι∗(η) is an upper semi-
continuous convex-valued correspondence.

Proof: See Appendix B. �
In any problem instance of the type considered in this

paper, the learner does not know the true parameters, and
must learn these parameters along the way. Our strategy to
attain the lower bound is to estimate the parameters η, say
via η̂(n) at time instant n, to apply the certainty equivalence
principle by taking the estimated η̂(n) to be true parameter,
and then to apply a sampling strategy from the set ι∗(η̂(n)).
Since the estimated parameter can at best approach the true
parameter as time n → ∞, for our scheme to work, continuity
in the sampling strategy will prove beneficial. If the desired
continuity does not hold, the rate at which information and
therefore confidence is gathered, based on ι∗(η̂(n)) may
not match the rate at which information should be gathered,
as per ι∗(η), to meet the lower bound. Observe however that
the mapping η �→ ι∗(η) is only an upper semicontinuous
correspondence, and may not possess, in general, a continuous
selection [27, Sec. 9.2]. We shall therefore make the following
assumption on the existence of a continuous selection. Let

F (ι, η) := inf
η′∈Θ−l

K∑
i=1

λiD(ηi 	 η�
i). (21)

Then ι∗(η) in (20) optimises F (·, η).
Assumption A: The correspondence η �→ ι∗(η) admits a

continuous selection.
This assumption holds for example when

(i) ι∗(·) is single-valued, a condition that holds when
F (·, η) is strictly concave for each η ∈ Θl, see [28,
Th. 9.17]; or
(ii) ι∗(·) is lower semicontinuous, see [27, Sec. 9.1].

We shall verify in Appendix F that Assumption A holds in the
examples of odd arm and best arm identifications. There are
interesting situations where we have not yet been able to estab-
lish that Assumption A holds, and they involve nonconvex
sets that are not necessarily finite unions of convex sets, e.g.,
two-dimensional independent Gaussians with variances 1 but
unknown means η1 and η2, with Θ1 = {η = (η1, η2) : η2

1 +
η2
2 < 1}, and Θ2 = {η = (η1, η2) : 1 < η2

1 + η2
2 < 2}.

Whether a continuous selection exists for this setting is still
open.

B. Additional Notations

Let Nn
i denote the number of times the arm i was chosen

for observation up to time n, i.e.,

Nn
i =

n∑
t=1

1{at=i}, (22)

where at is the arm chosen at time t. Clearly n =
∑K

i=1 Nn
i .

Let Yn
i denote the sum of sufficient statistic of arm i up to

time n, i.e.,

Yn
i =

n∑
t=1

T(xt)1{at=i}. (23)

We will use the letter f(·) to denote all probability density
functions. Conditional densities will be denoted by f(·|·).
The argument(s) will help identify the appropriate random
variable(s) whose density (conditional density) is being repre-
sented. We also use it to denote likelihoods and conditional
likelihoods without the normalisation needed to make them
probability densities or conditional probability densities.

C. Likelihood Function

Let f(xn|an, η) be the likelihood function of the obser-
vations upto time n, conditioned on the actions and the
parameters η, i.e.,

f(xn|an, η)

=
n∏

t=1

f(xt|at, ηat
) (24)

=
n∏

t=1

h(xt) exp
{
ηT

at
T(xt) −Aat(ηat

)
}

(25)

=

(
n∏

t=1

h(xt)

)
·

K∏
i=1

exp

{
ηT

i

n∑
t=1

T(xt)1{at=i} − Nn
i Ai(ηi)

}
(26)

=

(
n∏

t=1

h(xt)

)
K∏

i=1

exp
{
ηT

i Yn
i − Nn

i Ai(ηi)
}

. (27)

Then the log likelihood function is

log f(xn|an, η)

=
n∑

t=1

log h(xt) + n

K∑
i=1

Nn
i

n

{
ηT

i

Yn
i

Nn
i

−Ai(ηi)
}

(28)

=
n∑

t=1

log h(xt) + n

K∑
i=1

wi

{
ηT

i θ̂i −Ai(ηi)
}

, (29)

where wi := Nn
i /n and θ̂i := Yn

i /Nn
i .

D. Maximum Likelihood Function

Consider a sequence δn → 0. Let the maximum likelihood
estimates of the natural parameters under the hypothesis m be
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defined as

η∗(m) := (η∗
1(m), . . . , η∗

K(m))

∈ argmax
η∈Θm

K∑
i=1

wi

{
ηT

i θ̂i −Ai(ηi)
}

(30)

if the maximum is attained, and as some η∗(m) ∈ Θm so that∣∣∣∣∣ sup
η∈Θm

K∑
i=1

wi

[
ηT

i θ̂i −Ai(ηi)
]

−
K∑

i=1

wi

[
η∗

i (m)T θ̂i −Ai(η∗
i (m))

] ∣∣∣∣∣ ≤ δn (31)

if the maximum is not attained. When the maximum exists,
the expression for relative entropy and some algebraic manip-
ulation shows that

η∗(m) ∈ argmin
η∈Θm

K∑
i=1

wiD(η̂i 	 ηi). (32)

We differ here from Deshmukh et al. [12] in that our estimate
is an ML estimate that recognises that η ∈ Θm while
Deshmukh et al. [12] first optimise over all η and then project
this value on to Θm. So our approach is more direct, but
requires the existence of a continuous selection (Assumption
A). In this context, note that Deshmukh et al. [12] also assume
continuous selection by asking for the ι∗(·) to be single-
valued (sufficient condition (i) for Assumption A to hold).

The log ML function is obtained as

log f̂(xn|an, η ∈ Θm)

=
n∑

t=1

log h(xt)

+n

K∑
i=1

wi

{
η∗T

i (m)θ̂i −Ai(η∗
i (m))

}
. (33)

E. Average Likelihood Function

When the parameters are unknown, a natural conjugate prior
on the parameter ηi enables easy updates of the posterior
distribution based on observations. The conjugate prior, also
denoted f(η|η ∈ Θl), is taken to be a product distribution over
i = 1, . . . , K , with each marginal coming from an exponential
family of the same form characterised by the hyper-parameters
Υ = (Υ1,Υ2, . . . ,ΥK) and n0 = (n01, . . . , n0K), i.e.,

f(η|η ∈ Θl) = (34)⎧⎨⎩Hl(Υ,n0)
K∏

i=1

exp
{
ηT

i Υi − n0iAi(ηi)
}

, if η ∈ Θl

0, otherwise

with

Hl(Υ,n0) =

⎡⎣ ∫
η∈Θl

K∏
i=1

exp
{
ηT

i Υi − n0iAi(ηi)
}

dη

⎤⎦−1

(35)

as the normalising factor. We remark that the conjugate prior
is an artificial prior, used mainly as an analytical artifice for
easy posterior updates.

The average likelihood function at time n, averaged accord-
ing to the artificial prior in (34), is

f̃l(xn|an)

:=
∫

η∈Θl

f(xn|an, η) · f(η|η ∈ Θl)dη (36)

=

(
n∏

t=1

h(xt)

)
Hl(Υ,n0)

∫
η∈Θl

exp

{
K∑

i=1

ηT
i (Yn

i +Υi)−(Nn
i + n0i)Ai(ηi)

}
dη

(37)

=

(
n∏

t=1

h(xt)

)
Hl(Υ,n0)

Hl(Y + Υ,N + n0)
, (38)

where Y = (Yn
1 , . . . ,Yn

K) and N = (Nn
1 , . . . , Nn

K) (with the
dependence of Y and N on n understood and suppressed).
The equality in (37) is obtained by substituting (27) and (34)
in (36). We then use (35) in (37) to get the final expression
in (38). Taking the log, we get

log f̃l(xn|an) =
n∑

t=1

log h(xt) + logHl(Υ, n0)

− logHl(Y + Υ,N + n0). (39)

F. Modified GLR Statistic

We define the modified GLR of hypothesis l against hypoth-
esis m as

Zlm(n) = log
f̃l(xn|an)

f̂(xn|an, η ∈ Θm)
(40)

= logHl(Υ,n0) − logHl(Y + Υ,N + n0)

−n

K∑
i=1

wi

{
η∗T

i (m)θ̂i −Ai(η∗
i (m))

}
, (41)

which is obtained using (33) and (39). The modification to
the standard GLR is that the numerator contains an averaged
likelihood function, averaged with respect to the artificial prior,
rather than the maximum likelihood function. As we shall soon
see, it is this modification that enables us to make the resulting
policy admissible (i.e., a policy in Π(α)).

Now let
Zl(n) = min

m �=l
Zlm(n) (42)

denote the modified GLR of hypothesis l against its nearest
alternative. The value of Zl(n) is a measure of the decision
maker’s confidence in the hypothesis l.

G. Policy

Let us denote our policy as πSMF (L, γ, β) with SMF
standing for Sluggish, Modified GLR based test with Forced
exploration, where L is a threshold parameter, γ is a switching
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Policy πSMF (L, γ, β):

Fix L ≥ 1, 0 < γ ≤ 1, 1/2 < β < 1.
Initialize: Sample the first arm a1 = 1, set na = 1, Nn,a

1 = 1, Nn,a
i = 0 ∀i �= 1, Nn

1 = 1, Nn
i = 0 ∀i �= 1.

For n = 1, 2, . . ., do:
• l∗(n) = argmaxl Zl(n). Resolve ties uniformly at random.
• If Zl∗(n) < log((M − 1)L) then choose an+1 via the following, and make the associated updates:

– Generate Un+1 ∼ Bern(γ), independent of all other random variables.
– If Un+1 = 0, an+1 = an.
– If Un+1 = 1, then update na = na + 1 and choose an+1 according to

an+1 ∈
⎧⎨⎩argmin

i
Nn,a

i if � i : Nn,a
i < (na)β − (βK)β/(1−β)

argmax
i

{naλ∗
i (η

∗(l∗(n)) − Nn,a
i } otherwise.

(43)

Resolve ties uniformly at random.
Update Nn,a

i as Nn,a
i = Nn,a

i + 1, whenever an+1 = i.
– Nn

i = Nn
i + 1, whenever an+1 = i.

• If Zl∗(n) ≥ log((M − 1)L), then stop and declare δ = l∗(n) as the decision.

parameter, and β is a forced exploration parameter, to be
explained soon. The policy will involve some new variables:
na is the number of instants when the decision maker actively
samples using (43) above, and Nn,a

i is the number of times
the arm i is actively sampled. These will be clear from the
pseudo-code.

We now explain the sampling rule in words. When
Un+1 = 0, the sampling arm is not changed for the next
instant, i.e., there is no switching. Our policy is sluggish
because of this possibility of no switching. When Un+1 = 1,
we actively sample based on the sampling rule in (43). This is a
variation on the D-tracking sampling rule of [9] that includes a
forced exploration component. In the above policy, as already
described, na is the number of instants when the decision
maker actively samples using (43) and Nn,a

i is the number
of times the arm i is actively sampled. Nn

i is the number of
times arm i is sampled, actively or otherwise, up to time n.
The threshold to stop is log((M − 1)L) which depends on
the threshold parameter L. Observe that the threshold is fixed
upfront and does not change over time. It is important to note
that the switching parameter γ cannot be chosen to be 0 (for
ergodicity considerations).

H. Main Result

We can now state and prove the main result.
Theorem 4: Let Assumption A hold. Fix l. Consider K arms

with the configuration η ∈ Θl. Let (αn)n≥1 be a sequence of
tolerances such that lim

n→∞αn = 0. Then, for each n and for

each γ > 0, the policy πSMF (Ln, γ, β) with Ln = 1/αn

belongs to Π(αn). Furthermore,

lim inf
n→∞ inf

π∈Π(αn)

E[C (π) |η]
log (Ln)

(44)

= lim
γ↓0

lim
n→∞

E[C (πSMF (Ln, γ, β)) |η]
log (Ln)

=
1

D∗ (η)
.

Proof: The main steps of the proof are to verify that the
n-indexed sequence of policies πSMF (Ln, γ, β) satisfies the
following.

1) For each n, πSMF (Ln, γ, β) stops in finite time.
2) For each n, πSMF (Ln, γ, β) ∈ Π(αn), i.e., it is

admissible with error tolerance αn.
3) As n → ∞, the sequence of policies πSMF (Ln, γ, β)

indexed by n can be made arbitrarily close to being
asymptotically optimal by a suitable choice of γ.

We proceed to show these in the Propositions 5, 6, and 7
next.

Let us begin with the assertion that the proposed policy
almost surely (a.s.) stops in finite time.

Proposition 5 (Probability of Stopping in Finite Time): Fix
the threshold parameter L > 1 and switching parameter
0 < γ ≤ 1. Fix l ∈ {1, · · · , M}. Let η ∈ Θl be the true
configuration. Then, the policy πSMF (L, γ, β) stops in finite
time with probability 1, i.e.,

P (τ (πSMF (L, γ, β)) < ∞|η) = 1.

Proof: To prove this, we show that under the true
hypothesis, almost surely, the test statistic Zl (n) grows as
Ω(nβ) and, therefore, crosses the threshold log ((M − 1)L)
in finite time. See Appendix C for details. �

We next assert the admissibility of the proposed policy.
Proposition 6 (Admissibility): Fix α > 0, γ > 0, and let

L = 1/α. We then have πSMF (L, γ, β) ∈ Π(α).
Proof: The proof exploits the properties of the modi-

fied GLR and involves a change of measure argument. See
Appendix D. �

We next assert that our policy is not only admissible, but is
also asymptotically arbitrarily close to the lower bound.

Proposition 7 (Achievability): Fix γ > 0. Consider the
policy πSMF (L, γ, β). Let η ∈ Θl be the true configuration.
Under Assumption A, we have

lim sup
L→∞

τ(πSMF (L, γ, β))
log(L)

≤ 1
D∗(η)

a.s., (45)

lim sup
L→∞

E[τ(πSMF (L, γ, β)) | η]
log(L)

≤ 1
D∗(η)

, (46)
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and furthermore,

lim sup
L→∞

E [C(πSMF (L, γ, β)) | η]
log(L)

≤ 1
D∗(η)

+
gmaxγ

D∗(η)
(47)

Proof: The main ideas are as follows.
The key to showing (45) is that, as the target probability of

false alarm goes to 0, the policy must wait longer and longer
to decide. But this, along with the chosen sampling strategy
and forced exploration, ensures that the estimated parameters
approach the true parameters. By Assumption A, the con-
tinuously evolving sampling strategy approaches the desired
sampling strategy that guards the correct hypothesis against
its nearest alternative. Since relative entropy is continuous in
its parameters, the logarithm of the GLR grows at the correct
rate, almost surely, and reaches the threshold for a decision
within the desired time duration.

The main idea behind (46) is to leverage the second moment
condition for uniform integrability. This then helps us turn
an almost-sure bound into a bound on the expectation. For
the second moment condition itself, concentration inequalities
play a crucial role.

The proof of (47) leverages the fact that the total cost is
upper bounded by (1+gmaxγ) times the delay cost. Since the
gmax is finite and γ > 0 is arbitrary, we obtain this inequality
as well.

See Appendix E for the proof of each of these. �
Propositions 5, 6, and 7 combined with Corollary 2 establish

Theorem 4. �
Finally, even when the observations are not from the

exponential family, we anticipate the expected delay to be
Θ(log(1/α)) except in degenerate cases (e.g. D∗(·) = ∞).
The lower bound is applicable even for this case. However,
a new approach would be required for the analysis of the
proposed policy.

VI. SIMULATION RESULTS

We end the main body of the paper with some simulation
results.

A. Odd Arm Identification

In Figs. 4(a) and 4(b), we plot the average delay and
average cost versus log(L), where α = 1/L, for the odd arm
identification problem with 8 arms. The observations from the
arms are Gaussian with unknown means but known variance.
The odd arm has mean 1 while the other arms are zero mean.
All arms have unit variance. The forced exploration parameter
β = 0.5. Each plot contains the asymptotic lower bound
(dashed curve) and five other curves for different values of the
sluggishness parameter γ ∈ {0.1, 0.2, 0.4, 0.5, 1.0}. Smaller
values of γ correspond to the sluggish implementation, while
γ = 1 permits switching at each stage. Each simulation point
is obtained by averaging over 5000 realizations.

We observe that the slope of the empirical average delay
matches the slope of the lower bound, thereby validating the
asymptotic optimality of the policy. The slope of the empirical
average values of cost also matches the slopes of the lower

bounds, as expected, for small γ. For smaller values of γ, the
average delay in arriving at a decision increases (due to limited
exploration). As γ decreases, the total cost first decreases due
to reduced switching. But, as the value of γ further decreases,
we observe that the policy becomes sluggish, thereby resulting
in an increased average cost. A value of γ of around 0.2 seems
to be the best choice for the chosen settings. In our analysis,
we noted that the forced exploration parameter can be chosen
between 0.5 and 1. In Figs. 4(c) and 4(d), we plot the results
when the forced exploration parameter β = 0.75. As expected,
the results are similar to the case when β = 0.5.

In Figs. 5(a)-(d), we show the results for the odd arm
identification problem with 8 arms where the observations are
Gaussian with unknown variance but known mean. Here we
choose μ1 = 0, σ2

1 = 5, μ2 = 0, σ2
2 = 1. Once again,

we observe that the slope of the empirical average delay
matches the slope of the lower bound, and the slope of the
empirical average values of cost also matches the slope of the
lower bound, as expected, for small γ. A value of γ of around
0.2 seems to be the best choice for this setting as well.

In Figs. 6(a)-(d), we show the results for the odd arm
identification problem with both mean and variance unknown.
This is an example of a vector parameter exponential family.
Again, there is a total of K = 8 arms. The observations are
similar to those for Figs. 4 and 5.

B. Norm-Threshold Problem

Now, we present results for the norm-threshold problem.
In this problem, we have two arms with Gaussian observations
and mean and variance parameters μ1 = 0, σ2

1 = 1, μ2 =
0.5, σ2

2 = 1. The means are unknown but the variance is
known.The problem is to decide if μ2

1 + μ2
2 < 1 or 1 < μ2

1 +
μ2

2 < 2. As mentioned immediately after Assumption A, we do
not know if a continuous selection exists for this problem.
Therefore, it is not known if our policy is asymptotically
optimal for this problem. In Figs. 7(a)-(b), we plot the average
delay and average cost versus log(L). The forced exploration
parameter β = 0.5. The plot contains the asymptotic lower
bound (dashed curve) and four other curves for γ of 0.01,
0.05, 0.2, or 1.0. Even for this setting, we observe that the
slope of the empirical average delay of the proposed policy
roughly matches the slope of the lower bound, and the slope of
the empirical average values of cost also matches the slope of
the lower bound, as expected, for small γ. The values of γ
of 0.05 and 0.2 seem to good.

C. Best Arm Identification

In Fig. 8, we compare the performance of our proposed
policy for best arm identification with that of the policy
discussed in [9] and the lower bound. There are 3 arms and
the observations are i.i.d. Gaussian with means 0, 2, and 4 and
unit variance. We make the following observations.

• We observe that for both policies the slopes of the
empirical average delays match the slope given by the
lower bound, thereby validating the asymptotic optimality
of the policies.

Authorized licensed use limited to: J.R.D. Tata Memorial Library Indian Institute of Science Bengaluru. Downloaded on September 09,2022 at 06:23:07 UTC from IEEE Xplore.  Restrictions apply. 



4802 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 68, NO. 7, JULY 2022

Fig. 4. Gaussian distribution with unknown means and known variances. The true parameters are μ1 = 0, σ2
1 = 1, μ2 = 1, σ2

2 = 1, K = 8, gmax = 1 and
D∗ = 0.1156.

• While the policy in [9] is specifically designed for the best
arm identification setting under single parameter expo-
nential family observations, our policy works for more
general settings as discussed in detail earlier. Therefore,
for the best-arm setting, the higher average delay of our
proposed policy is tolerable given the generality as long
as the slopes match.

D. Dependence of D∗ on K

We now study the performance for odd arm identification
as a function of the number of arms K . Note that for this
setting, the number of hypotheses is also K . We consider
the same observation model for the odd and non-odd arms
as in Section VI-A. Figs. 9(a)-(c) show the results for odd
arm identificaton with unknown means and known variances
among K arms, with K varying in the range 3 to 50.
Fig. 9(a) shows the variation of D∗ with K . We observe
that with increase in number of arms K , D∗ increases and
then converges to the average of D(η1||η̃) and D(η2||η̃).
This means that as the number of arms increases, identifying
the odd arm becomes easier. Figs. 9(b) and 9(c) show the
variation of average delay and average cost versus K for a
different values of log (L). The average delay for log(L) =
1 corresponds mainly to the initial exploration overhead, and
increases with K . However, based on the convergence of D∗

for large K , and our asymptotic result for large L, we expect

this increase in delay with K to be less significant for large
L. This can also be observed in the simulations as log(L) is
increased to 5 and 10.

It is worth noting that the dependence of D∗ on K is
different for different special cases of the general problem we
have addressed. For odd arm identification D∗ increases with
K and converges to a constant. For best arm identification,
D∗ decreases with K , i.e., identifying the best arm among a
larger number of arms is harder. Fig. 10 shows the variation
of D∗ for best arm problem for Gaussian observations with
unknown means and known variances among K arms, with
K varying in the range 2 to 50. The means for the K arms
are taken to be 1, 2, . . . , K , and the variance is 1 for each
arm. We observe that with increase in number of arms K , D∗

decreases. Therefore, the variation of D∗ with K is problem
instance dependent whereas our focus is on the general setting.

APPENDIX A
A REGULARITY LEMMA

In this appendix, we prove the following regularity lemma.
Lemma 8: For any i, for any compact set C,

inf
ηi∈C

	η�
i − ηi	 → ∞ ⇒ inf

ηi∈C
D(ηi 	 η�

i) → ∞.

In other words, the relative entropy of (the distribution
associated with) a confined parameter ηi with respect to
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Fig. 5. Gaussian distribution with known means and unknown variances. The true parameters are μ1 = 0, σ2
1 = 5, μ2 = 0, σ2

2 = 1, K = 8, gmax = 1 and
D∗ = 0.1392.

(the distribution associated with) a parameter η�
i approaches

infinity as the parameter separation between η�
i and ηi grows

without bound.
Proof: The lemma holds vacuously when the parameter

set is bounded. Let d := η�
i − ηi and assume that ||d|| > 1.

Then, from the formula (12) for relative entropy, we get

D(ηi 	 η�
i) =

1
2
(η�

i − ηi)
T[∫ 1

0

(1 − t)Hess(Ai)(ηi + t(η�
i − ηi))dt

]
(η�

i − ηi)

≥ dT

2

[∫ 1
||d||

0

(1 − t)Hess(Ai)(ηi + t(η�
i − ηi))dt

]
d

(48)

≥ 	d	2

2

(
1 − 1

	d	
)

∫ 1/||d||

0

λmin (Hess(Ai)(ηi + t(η�
i − ηi))) dt (49)

≥ 1
2

(	d	 − 1) ×

min{λmin

(
Hess(Ai)(ηi + s

d
	d	)

)
: s ∈ [0, 1]}

(50)

→ ∞ as 	d	 → ∞. (51)

In the above sequence of inequalities, (48) follows because
of the positive definiteness of the Hessian of Ai. Next,
(49) follows from 1−t ≥ 1 − 1/	d	 in the interval under
consideration and the fact that dT Hd ≥ λmin(H)	d	2 where
λmin(H) is the smallest eigenvalue of any positive definite
matrix H . Finally, (51) follows because λmin(Hess(Ai)(·)
is strictly positive in the unit neighbourhood around ηi;
indeed, λmin(Hess(Ai)(·)) is a continuous function of η̃i and
therefore cannot attain the value zero on account of the strict
convexity of A(·) leading to λmin(A(·)) being strictly positive
in the unit neighbourhood around ηi. �

APPENDIX B
PROOF OF PROPOSITION 3

Define

F (ι, η) := inf
η′∈Θ−l

K∑
i=1

λiD(ηi 	 η�
i).

Lemma 9: Let (ι, η) → F (ι, η) be a continuous function
with ι ∈ P(K) and η ∈ Θl. Let D∗(η) and ι∗(η) be defined
by

D∗(η) = max
λ∈P(K)

F (ι, η),

ι∗(η) = arg max
λ∈P(K)

F (ι, η).
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Fig. 6. Gaussian distribution with unknown means and unknown variances. The true parameters are μ1 = 0, σ2
1 = 2, μ2 = 1, σ2

2 = 10, K = 8,
gmax = 1 and D∗ = 0.1653.

Fig. 7. Norm-threshold problem: Gaussian distribution with unknown means and known variances. The true parameters are μ1 = 0, σ2
1 = 1, μ2 = 0.5,

σ2
2 = 1, K = 2, gmax = 1, r1 = 1, r2 = 2 and D∗ = 0.125.

Then D∗(η) is a continuous function of η, and η �→ ι∗(η) is
a compact valued, upper semicontiuous correspondence. Also,
if ι �→ F (ι, η) is concave for each η, then η �→ ι∗(η) is a
convex valued correspondence.

Proof: This result is a special case of Berge’s maximum
theorem [28, Theorems 9.14 and 9.17(2)] for the function
F (ι, η). The proof is given in [28, Theorems 9.14 and
9.17(2)]. �

To prove Proposition 3, it suffices show that (ι, η) �→
F (ι, η) is continuous everywhere on its domain and that
ι �→ F (ι, η) is concave for each η. Then by Lemma 9
the set ι∗(η) where the maximum is attained is nonempty,
and the set-valued map η �→ ι∗(η) is upper semi-continuous,
compact-valued and convex-valued.

Fix η ∈ Θl. Since ι �→ F (ι, η) is an infimum of linear
functions parameterised by η�, concavity immediately follows.
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Fig. 8. Best arm identification: Gaussian distribution with unknown means
and known variances. The true parameters are K = 3, μ = {0, 2, 4},
σ2
1 = σ2

2 = σ2
3 = 1.

We now proceed to show that (ι, η) �→ F (ι, η) is
continuous. On account of concavity, the issue of continuity
arises only at a boundary. Nevertheless, we give a general
proof.

(i) Fix an arbitrary ε > 0. Fix η� ∈ Θ−l so that∑
i

λiD(ηi 	 η�
i) ≤ F (ι, η) + ε. (52)

Observe that, for each i,

η �→ D(ηi 	 η�
i)=(ηi−η�

i)
T θi(ηi)−Ai(ηi)+Ai(η�

i)

is a continuous function of η ∈ Θl by virtue
of the continuity of θi(·) and the continuously
differentiable property of Ai(·). (Indeed, the con-
tinuity of θi(·) itself follows from the continuous
differentiability of Ai(·).) Now consider a sequence
(ι(n), η(n)) → (ι, η) ∈ P(K) × Θl as n → ∞.
We then have, for all sufficiently large n,

ι(n)≤ι+ε1 and D(ηi(n) 	 η�
i)≤D(ηi 	 η�

i)+ε ∀i,

(53)

where the first inequality is to be taken component-
wise with 1 being the all-1 vector. Hence, for all
sufficiently large n, we have

F (ι(n), η(n))

≤
∑

i

λi(n)D(ηi(n) 	 η�
i)

(left-side is an infimum, for each fixed n)

≤
∑

i

(λi + ε)(D(ηi 	 η�
i) + ε)

=
∑

i

λiD(ηi 	 η�
i)

+ε

(
1 +
∑

i

D(ηi 	 η�
i)

)
+ ε2K

≤ F (ι, η) + ε

(
2 +
∑

i

D(ηi 	 η�
i) + εK

)
,

where the last inequality follows from (52). Since∑
i D(ηi 	 η�

i) is finite for any η ∈ Θl and

η� ∈ Θ−l, and since ε was arbitrary, we get

lim sup
n→∞

F (ι(n), η(n)) ≤ F (ι, η). (54)

(ii) Once again fix ε > 0, and consider a sequence
(ι(n), η(n)) → (ι, η) ∈ P(K) × Θl as n → ∞,
but this time choose a convergent sequence2

η�(n) ∈ Θ−l, such that for every n, we have:

F (ι(n), η(n)) ≥
∑

i

λi(n)D(ηi(n) 	 η�
i(n)) − ε,

(55)

and η�(n) → η�. Analogous to (53), using the bound-
edness of the sequence η�(n), for all sufficiently
large n, we have

ι(n) ≥ ι − ε1 and (56)

D(ηi(n) 	 η�
i(n)) ≥ D(ηi 	 η�

i(n)) − ε ∀i.

Using (56) in (55), we get

F (ι(n), η(n))

≥
∑

i

λiD(ηi 	 η�
i(n))

−ε

(
2 +
∑

i

D(ηi 	 η�
i(n)) − εK

)

≥ F (ι, η)−ε

(
2 +
∑

i

D(ηi 	 η�
i(n))−εK

)
,

where the last inequality follows from the observa-
tion that η�(n) ∈ Θ−l for all n and by then taking the
infimum over all η� ∈ Θ−l. Since η�(n) → η�, the
quantity

∑
i D(ηi 	 η�

i(n)) converges to
∑

i D(ηi 	
η�

i) and is therefore bounded. Since ε was arbitrary,
we obtain

lim inf
n→∞ F (ι(n), η(n)) ≥ F (ι, η). (57)

From (54) and (57), we have the continuity of F (ι, η).

APPENDIX C
FINITE STOPPING TIME

We show in a series of steps that the proposed policy stops
in finite time. We begin with the proof of ML estimates of
the parameters converging to the true parameter values and
then show that the statistic grows as Ω(nβ) as time n → ∞.
We then show that, with this growth, the statistic crosses any
fixed threshold in finite time and, hence, the stopping time is
finite almost surely.

Before we begin with the proof, as done in [3], we also
consider two variants of πSMF (L, γ, β) which are useful in
the analysis.

2Observe that if, for some i, η′
i(n) → ∞, since ηi(n) is confined to

a compact neighbourhood of ηi, by Lemma 8, we must have D(ηi(n) ‖
η′

i(n)) → ∞. On account of (55), we can replace the offending η′
i(n) with

another bounded quantity yielding a bounded D(ηi(n) ‖ η′
i(n)), without

affecting inequality (55). Hence, without loss of generality, we may take that
η′(n) is bounded. Furthermore, by passing to a subsequence if necessary,
we may further take η′(n) → η′ for some limit η′.
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Fig. 9. Odd arm Identification: Gaussian distribution with unknown means and known variances. The true parameters are μ1 = 0, σ2
1 = 1, μ2 = 1, σ2

2 = 1,
γ = 1 and gmax = 1.

Fig. 10. Best arm Identification: Gaussian distribution with unknown
means and known variances. μi’s are chosen from the set {1, 2, . . . , K} and
σi

2 = 1 for i = 1, 2, . . . , K .

1) Policy πl
SMF (L, γ, β) is like policy πSMF (L, γ, β)

but stops only at decision l, when Zl (n) ≥
log ((M − 1)L).

2) Policy π̃SMF (γ, β) is also like πSMF (L, γ, β) but
never stops. So the policy does not depend on the policy
parameter L.

The policy π̃SMF (γ, β) will be used in Proposition 13
and the policy πl

SMF (L, γ, β) will be used in the proof of
Proposition 5.

A. Convergence Results

Let us begin with a Lemma from [9].
Lemma 10: [9, Lemma 17] Let K be a positive integer and

let ΣK be a simplex of dimension K − 1. Let g : N → R be
a non-decreasing function such that g(0) = 0, g(n)/n → 0 as
n → ∞ and for all k ≥ 1 and ∀m ≥ 1,

inf{k ∈ N : g(k) ≥ m} > inf{k ∈ N : g(k) ≥ m − 1} + K.

Let ι̂(k) be a sequence of elements in ΣK such that there
exists ι∗ ∈ ΣK , there exists � > 0 and an integer n0(�) such
that

∀n ≥ n0, sup
1≤i≤K

|ι̂i(k) − ι∗
i | ≤ �.

Define Nn,a(0) = 0, and for every k ∈ {0, . . . , n − 1},
Uk = {i : Nn,a

i (k) < g(k)} and

Ik+1 ∈

⎧⎪⎨⎪⎩
argmin

i∈Uk

Nn,a
i if Uk �= Φ

argmax
i∈{1,2,...,K}

{naλ∗
i (η

∗(l∗(n)) − Nn,a
i } otherwise,

and for all i, Nn,a
i (k + 1) = Nn,a

i (k) + 1(Ik+1=i). Then for
all i ∈ {1, 2, . . . , K}, Nn,a

i (n) > g(n) − 1 and there exists
n1 ≥ n0 (that depends on �) such that for all n ≥ n1,

max
1≤i≤K

∣∣∣∣Nn,a
i

na
− ι∗

i

∣∣∣∣ ≤ 3(K − 1)�.
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Proof: This Lemma is the same as [9, Lemma 17] and is
included here for easy reference. See [9, Appendix B.2] for
proof. �

Next, we show a preliminary result about the forced
exploration rule.

Lemma 11: Let η ∈ Θl be the true configuration. The
proposed sampling rule ensures that

Nn,a
i ≥ [(na)β − (β(K + 1))β/(1−β)]+ − 1.

Furthermore, for all � > 0 and for all n0, setting
n	 = max{n0, �

−1}/(3�), we have the implication:

sup
na≥n0

max
i

|ι∗(η∗(l)) − ι∗(η)| ≤ �

⇒ sup
na≥nε

max
i

∣∣∣∣Nn,a
i

na
− λ∗

i (η)
∣∣∣∣ ≤ 3(K − 1)�. (58)

Proof: The proof follows from Lemma 10. Specifically,
we need to check that, if g(n) = [nβ − (β(K + 1))β/(1−β)]+,
then g(0) = 0, g(n)/n → 0 as n → ∞, and for every m ≥ 1

inf{k ∈ N : g(k) ≥ m} > inf{k ∈ N : g(k) ≥ m − 1} + K.

The first two conditions are straightforward. To check the third
condition, observe that inf{k ∈ N : g(k) ≥ m} = �[m +
(β(K + 1))β/(1−β)]1/β�. Thus, with u = m − 1 + (β(K +
1))β/(1−β), we have

inf{k ∈ N : g(k) ≥ m} − inf{k ∈ N : g(k) ≥ m − 1}
≥ (u + 1)1/β − �u1/β�
>

1
β

u(1−β)/β − 1

≥ 1
β

u
(1−β)/β
min − 1

= K

where the strict inequality follows from strict convexity of
the function u1/β , the following inequality follows from
monotonicity of u(1−β)/β , and the last equality follows from
the observation that umin = (β(K+1))β/(1−β) (obtained when
m = 1). Since the conditions for [9, Lemma 17] hold, the rest
of the proof follows [9, Appendix B.2], whose examination
indicates that we may take n	 = max{n0, �

−1}/(3�). �
We next establish a concentration lemma. The notation

a � b stands for component-wise strict inequality.
Lemma 12: Let � ∈ R

d be made of strictly positive entries.
Then there exists a finite positive constant C such that

P

(∣∣∣∣Yn
i

Nn
i

− θi

∣∣∣∣ � �

)
≤ C

n4
.

Proof: Thanks to the union bound, it suffices to focus on
one component, say l where 1 ≤ l ≤ d. Let the lth components
be represented as Y n

i (l), κi(l), and �l. We will show that

P

(∣∣∣∣Y n
i (l)
Nn

i

− κi(l)
∣∣∣∣ > �l

)
≤ Cl

n4

for some finite positive constant Cl.
Fix l. Observe that Mn := Y n

i (l)−κi(l)Nn
i is a martingale

whose quadratic variation process �M�n has the following

property:

n∑
t=1

E
[
((Yi,t(l) − κi(l))1{at = i})2 | Yt−1

i , At−1
]
≤ nσ2(l),

a consequence of the existence of the second central moment
for the observations. Hence, we have the following inequalities
for all sufficiently n:

P

(∣∣∣∣Y n
i (l)
Nn

i

− κi(l)
∣∣∣∣ > �l

)
≤ P

(
|Y n

i (l) − κi(l)Nn
i | > Nn

i �l

)
≤ P

(
|Y n

i (l) − κi(l)Nn
i | > (na)β�l/2

)
(since Nn

i ≥ Nn,a
i ≥ (na)β/2 for all suff. large n)

≤ P
(
|Y n

i (l) − κi(l)Nn
i | > (γn/2)β�l/2, na ≥ γn/2

)
+P
(
na < γn/2

)
≤ P

(
sup

1≤t≤n
|Y t

i (l) − κi(l)N t
i | > nβ(γ/2)β�l/2

)
+P
(
na − γn < −γn/2

)
≤ E[

(
sup1≤t≤n |Y t

i (l)−κi(l)N t
i |
)p]

(�l/2)p(γ/2)βpnβp
(Markov inequality)

+ e−nγ2/16 (Bernstein inequality)

≤ cp

(�l/2)p(γ/2)βpnβp
E[|�M�n|p/2] + e−nγ2/16

(Burkholder inequality)

≤ cp

(�l/2)p(γ/2)βpnβp
· σp(l)np/2 + e−nγ2/16

(from quadratic variation bound)

≤ Cl

n4
(taking p=4/(β−1/2) and choosing Cl suitably);

recall that in the inequality above where the Burkholder
inequality [29, p.414] is employed with p = 4/(β − 1/2),
we made use of finiteness of the variances of the observations.
This establishes the lemma. Choosing a suitably larger Cl

if needed, we can make the probability inequality be upper
bounded by Cl/n4 for all n. �

Proposition 13: Let η ∈ Θl be the true configuration.
Consider the non-stopping policy π̃SMF (γ, β). Then, the
following convergences hold almost surely as n → ∞:

θ̂i :=
Yn

i

Nn
i

→ θi for all i, (59)

η̂i → ηi for all i, (60)

η∗
i (l) → ηi for all i, (61)

lim inf
n→∞

Zlm(n)
nβ

> 0. (62)

Proof: We prove the statements one after another.
(i) Proof of (59): This follows from Lemma 12 and the

Borel-Cantelli lemma, since the series involving the upper
bound in Lemma 12 is summable.

(ii) Proof for (60): follows from (59) and the continuity of
the function θ �→ η(θ).
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(iii) Proof for (61): Since η ∈ Θl, an open set, by (60), η̂ ∈
Θl for all sufficiently large n. From (32), it follows η∗(l) = η̂
for all sufficiently large n, and hence (60) implies (61).

(iv) Proof for (62): Consider the expression for Zlm(n)
in (41). See (63)-(66), as shown at the bottom of the page. Note
that ηi(θi) optimises the function η�

i �→ (η�)T θi − Ai(η�
i),

for each i = 1, . . . , K , over the set Θl, since η ∈ Θl. We now
leverage this.

Write Br(η(θ)) for the open Euclidean ball of radius
r around η(θ). Fix � > 0. There is then an
δ > 0 and a Cδ > 0 such that, almost surely, for all sufficiently
large n and all η� ∈ Bδ(η(θ)), we have:

||θ̂i − θi||∞ ≤ ε

and since η∗
i (m) is bounded (see footnote 2),∣∣∣∣((η�
i − η∗

i (m))T (θ̂i − θi) + (η�
i)

T Υi

Nn
i

)∣∣∣∣ < Cδε

|n0iAi(η�
i)| ≤ Cδ∣∣(η�

i)
T θi −Ai(η�

i) − (ηi(θi))T θi + Ai(ηi(θi))
∣∣ ≤ ε.

Furthermore, we can lower bound the integral in (66) by
restricting the integral to the set Θl ∩ Bδ(η(θ)). Putting
these ideas together, we get that (66) is lower bounded
as in (67)-(70), as shown at the bottom of the next page,
where the last inequality in (70) holds because the Lebesgue
measure Leb (η� ∈ Θl ∩ Bδ(η(θ))) > 0. Continuing with the

inequality in (70), by virtue of our sampling rule and by
choosing ε sufficiently small, almost surely, for some constant
a > 0, the lower bound becomes

≥ a

(
inf

η′∈Θm

K∑
i=1

D(ηi 	 η�
i) − K(1 + Cδ)ε

)
(71)

> 0, (72)

where the last strict inequality holds because

inf
η′∈Θm

K∑
i=1

D(ηi 	 η�
i) > 0, ∀m �= l,

a fact that comes from the assumptions that Θl and Θm

are disjoint and open. This completes the proof of the
Proposition. �

B. Proof of Proposition 5

Proof: The following inequalities hold almost surely:

τ(πSMF (L, γ, β))
≤ τ(πl

SMF (L, γ, β))
= inf{n ≥ 1|Zl(n) > log((M − 1)L)}
≤ inf{n ≥ 1|Zlm(n�) > log((M − 1)L), ∀n� ≥ n, ∀m �= l}
< ∞,

where the last inequality follows because of (62) in
Proposition 13. �

lim inf
n→∞

Zlm(n)
nβ

= lim inf
n→∞

(
1
nβ

logHl(Υ,n0) +
1
nβ

log

⎧⎪⎨⎪⎩
∫

η′∈Θl

exp

{
K∑

i=1

[
(η�

i)
T (Yn

i + Υi) − (Nn
i + n0i)Ai(η�

i)
]}

dη�

⎫⎪⎬⎪⎭
− 1

nβ
· n

K∑
i=1

wi

{
η∗T

i (m)θ̂i −Ai(η∗
i (m))

})
(63)

≥ lim inf
n→∞

(
1
nβ

log

⎧⎪⎨⎪⎩
∫

η′∈Θl

exp

{
K∑

i=1

[
(η�

i)
T (Yn

i + Υi) − (Nn
i + n0i)Ai(η�

i)
]}

dη�

⎫⎪⎬⎪⎭
− 1

nβ
· n

K∑
i=1

wi

{
η∗T

i (m)θ̂i −Ai(η∗
i (m))

})
(since the first term in (63) is inconsequential)

(64)

= lim inf
n→∞

(
1
nβ

log
∫

η′∈Θl

exp

{
n

K∑
i=1

[
Nn

i

n
(η�

i)
T

(
Yn

i

Nn
i

+
Υi

Nn
i

)
− (Nn

i + n0i)
n

Ai(η�
i)
]}

dη�

− 1
nβ

log exp

{
n

K∑
i=1

Nn
i

n

{
(η∗

i (m))T θ̂i −Ai(η∗
i (m))

}})
(65)

= lim inf
n→∞

1
nβ

log
∫

η′∈Θl

exp

{
n

K∑
i=1

Nn
i

n

(
(η�

i − η∗
i (m))T

θi −Ai(η�
i) + Ai(η∗

i (m))
)

+n

K∑
i=1

[
Nn

i

n

(
(η�

i − η∗
i (m))T (θ̂i − θi) + (η�

i)
T Υi

Nn
i

)
− n0i

n
Ai(η�

i)
}]

dη�.

(66)
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APPENDIX D
PROOF OF PROPOSITION 6 ON ADMISSIBILITY

Proof: Fix η ∈ Θl as the true configuration. We begin
with

P (δ �= l|η)

=
∑
m �=l

P (δ = m|η) + P (τ(πSMF (L, γ, β)) = ∞|η)

=
∑
m �=l

P (δ = m|η), (73)

where (73) follows from Proposition 5. Let Δn
m =

{(xn, an) : τ(πSMF (L, γ, β)(xn, an) = n, δ(xn, an) = m}
denote the sample paths for which the decision maker stops
sampling after n time slots and decides in favour of H = m.
The decision region in favour of m is denoted Δm :=

⋃
n≥1

Δn
m.

Note that
Δn

m ∩ Δk
m = ∅ for all k �= n. (74)

We then have

P (δ �= l|η)

=
∑
m �=l

P (δ = m|η) (75)

=
∑
m �=l

∑
n≥1

∫
(xn,an)∈Δn

m

dP ((xn, an)|η) (76)

=
∑
m �=l

∑
n≥1

∫
(xn,an)∈Δn

m

n∏
t=1

[
P
(
at|at−1, xt−1

)
· f(xt|at, ηat

)
]
d(xn, an) (77)

=
∑
m �=l

∑
n≥1

∫
(xn,an)∈Δn

m

n∏
t=1

f(xt|at, ηat
)

·
[

n∏
t=1

P
(
at|at−1, xt−1

)]
d(xn, an)

(78)

≤
∑
m �=l

∑
n≥1

∫
(xn,an)∈Δn

m

f̂(xn|an, η̃ ∈ Θl)
f̃m(xn|an)

f̃m(xn|an)

·
[

n∏
t=1

P
(
at|at−1, xt−1

)]
d(xn, an)

(79)

≤
∑
m �=l

1
(M − 1)L

∑
n≥1

∫
(xn,an)∈Δn

m

f̃m(xn|an)

n∏
t=1

P
(
at|at−1, xt−1

)
d(xn, an) (80)

≤
∑
m �=l

1
(M − 1)L

· P̃ (δ = m|η̃ ∈ Θm) (81)

≤ 1
L

. (82)

In (77), the term P
(
at|at−1, xt−1

)
indicates the probability

of choosing arm at, with the convention that at time t = 1,
the term represents P (a1). Inequality (79) follows from
the definition of maximum likelihood function, in particular
n∏

t=1
f(xt|at, η̃at

) = f(xn|an, η̃) ≤ f̂(xn|an, η̃ ∈ Θl). In (80),

we have used

f̂(xn|an, η̃ ∈ Θl)
f̃m(xn|an)

≤ 1
(M − 1)L

for (xn, an) ∈ Δn
m. In (81), P̃ is the probability under Θm

when the prior on η̃ is f(η̃|η̃ ∈ Θm). Inequality (82) follows
from P̃ (δ = m|η̃ ∈ Θm) ≤ 1 and the union bound. Choosing
L = 1/α completes the proof. �

≥ lim inf
n→∞

1
nβ

log
∫

η′∈Θl∩Bδ(η(κ))

exp

{
n

K∑
i=1

Nn
i

n

(
(η�

i − η∗
i (m))T

θi −Ai(η�
i) + Ai(η∗

i (m))
)

(67)

+n

K∑
i=1

[
Nn

i

n

(
(η�

i − η∗
i (m))T (θ̂i − θi) + (η�

i)
T Υi

Nn
i

)
− n0i

n
Ai(η�

i)
]}

dη�

≥ lim inf
n→∞

1
nβ

log exp

{
n

K∑
i=1

Nn
i

n

(
(ηi(θi) − η∗

i (m))T θi −Ai(ηi(θi)) + Ai(η∗
i (m))

)}
(68)

+ lim inf
n→∞

1
nβ

log
∫

η′∈Θl∩Bδ(η(κ))

exp

{
n

K∑
i=1

Nn
i

n
(−ε) + n

K∑
i=1

Nn
i

n
(−Cδε) − Cδ

}
dη�

≥ lim inf
n→∞

K∑
i=1

Nn
i

nβ
D(ηi(θi) 	 η∗

i (m)) + lim inf
n→∞

1
nβ

log (Leb (η� ∈ Θl ∩ Bδ(η(θ))))

− lim sup
n→∞

(
K∑

i=1

Nn
i

nβ
(ε) +

K∑
i=1

Nn
i

nβ
(Cδε) +

Cδ

nβ

)
(69)

≥ lim inf
n→∞

K∑
i=1

Nn
i

nβ
(D(ηi(θi) 	 η∗

i (m)) − (1 + Cδ)ε) , (70)
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APPENDIX E
ACHIEVABILITY

We first show some preliminary results before we get to
achievability. In the following Proposition, we assert that
several statements hold almost surely. We show that the
hypothesis l∗(n) chosen by the policy is eventually the correct
one. In addition, we show that the parameters η∗

i (l
∗(n))

chosen by the policy converge to the true or the actual
parameters. Furthermore, we will strengthen (62) to show that
Zlm(n) is linear in n and that the drift is at least D∗(η).

Proposition 14: Let Assumption A hold. Let η ∈ Θl

be the true configuration. Consider the non-stopping policy
π̃SMF (γ). Then, the following convergences hold almost
surely:

l∗(n) → l, (83)

η∗
i (l

∗(n)) → ηi for all i, (84)

λ∗
i (η

∗(l∗(n)) → λ∗
i (η) for all i, (85)

Nn,a
i

na
→ λ∗

i (η) for all i (86)

Nn
i

n
→ λ∗

i (η) for all i (87)

lim inf
n→∞

Zl(n)
n

≥ D∗(η). (88)

Proof: From (62), we have

lim inf
n→∞ Zl(n) = lim inf

n→∞ Zlm(n) > 0 almost surely. (89)

Fix m �= l. Then, the following inequalites hold almost surely:

lim sup
n→∞

Zm(n) = lim sup
n→∞

min
p�=m

Zmp(n) (90)

≤ lim sup
n→∞

Zml(n) (91)

≤ lim sup
n→∞

−Zlm(n) (92)

(a property of the modified GLR)

= − lim inf
n→∞ Zlm(n) (93)

≤ − lim inf
n→∞ min

p�=l
Zlp(n) (94)

= − lim inf
n→∞ Zl(n) (95)

< 0. (96)

This further implies that a.s. l∗(n) = max
p

Zp(n) = l, for all

sufficiently large n. This completes the proof for (83).
For (84), we use (83) to get, a.s.,

η∗
i (l

∗(n)) = η∗
i (l) (97)

for all sufficiently large n, and then Proposition 13 to get
η∗

i (l) → ηi, which then yields η∗
i (l

∗(n)) → ηi.
The convergence in (85) follows from (84) and

Assumption A.
The convergence in (86) follows from (85) and Lemma 11.
Proof of (87): Let {V1, V2, . . . , Vna} be such that Vk is

the number of sluggish instants plus one active instance
corresponding to the kth active instance, k = 1, 2, . . . , na.
Then Vt’s are independent and identical random variables
with the geometric distribution of parameter γ. Additionally,

to make the total of n arm pulls at time instant n, the last
‘sluggish run’ should also be accounted. We do this by re-
writing the expression in (22) as

Nn
i =

na∑
t=1

Vt1{at=i} + V i (98)

where V i is nonzero for at most for one i and corresponds to
the latest sluggish run at time instant n. To study the limit of
Nn

i /n, it suffices to study

1
n

na∑
t=1

Vt1{at=i} =
na

n
· Nn,a

i

na
· 1
Nn,a

i

na∑
t=1

Vt1{at=i}. (99)

We consider each term on the right-hand side of (99) in detail.
Note that na/n → γ and from (86) we get Nn,a

i /na → λ∗
i (η).

Also by Lemma 11 we have Nn,a
i → ∞ as n → ∞. Note

that the summation in (99) has Nn,a
i terms, and hence the

sample mean converges to the expected value of Vt which is
1/γ. Hence,we get, almost surely,

lim
n→∞

Nn
i

n
= γ · λ∗

i (η) · 1
γ

= λ∗
i (η). (100)

This concludes the proof of (87).
Proof of (88): In the proof of (62), instead of scaling by

1/nβ, rescale by 1/n, and arrive at

lim inf
n→∞

Zl(n)
n

≥ inf
η′∈Θm

lim inf
n→∞

K∑
i=1

Nn
i

n
D(ηi 	 η�

i),

which is the equivalent of (70) with an additional infimum
over all η� ∈ Θm. The result in (88) then follows from (87).

�
In the next three subsections we prove each of the three

claims in Proposition 7.

A. Proof of (45)

Proof: We begin by proving that, as the probability of
false detection constraint goes to zero, the stopping time of
the policy goes to infinity (Lemma 15). We then combine
this result with Proposition 14 to complete the required
proof.

Lemma 15: Let η ∈ Θl be the true configuration. Consider
the policy πSMF (L, γ, β). Then,

lim inf
L→∞

τ(πSMF (L, γ, β)) → ∞ a.s. (101)

Proof: It suffices to show that, as L → ∞,

P (τ(πSMF (L, γ, β)) < n) → 0 for all n. (102)
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Fix some η�(m) ∈ Θ−m, for each m. We begin with

lim sup
L→∞

P (τ(πSMF (L, γ, β)) < n)

= lim sup
L→∞

P
(

max
1≤t≤n

Zm(t) > log((M − 1)L)

for some m
)

(103)

≤ lim sup
L→∞

M∑
m=1

n∑
t=1

P (Zm(t) > log((M − 1)L)) (104)

≤ lim sup
L→∞

1
log((M − 1)L)

·
M∑

m=1

n∑
t=1

E

[
K∑

i=1

N t
i D(η̂i 	 η�

i(m))

]
(105)

≤ lim sup
L→∞

1
log((M − 1)L)

M∑
m=1

n∑
t=1

K∑
i=1

E
[
t(η̂T

i θ̂i

−Ai(η̂i) − η�
i(m)T θ̂i + Ai(η�

i(m)))
]

(106)

≤ lim sup
L→∞

1
log((M − 1)L)

M∑
m=1

n∑
t=1

K∑
i=1

t
(
E
[
η̂T

i θ̂i

]
−Ai(ηi) − η�

i(m)T θi + Ai(η�
i(m))

)
(107)

= 0. (108)

Inequality in (104) follows from union bound. Inequality (105)
is discussed below. Equality in (106) is obtained using the
expression for relative entropy and the fact that N t

i ≤ t. The
inequality in (107) is obtained from the observation that Ai(·)
is convex and by an application of Jensen’s inequality. The
final equality in (108) follows because E

[
η̂T

i θ̂i

]
is finite.

Inequality in (105) is obtained using the following result

Zm(t)

= min
p�=m

log
f̃m(xt|at)

f̂(xt|xt, η ∈ Θp)

= min
p�=m

inf
η′∈Θp

log
f̃m(xt|at)

f(xt|at, η�)

≤ log
f̃m(xt|at)

f(xt|at, η�(m))
, using the chosen η�(m) ∈ Θ−m

≤ log

sup
η̃∈Ω

f(xt|at, η̃)

f(xt|at, η�(m))

=
K∑

i=1

N t
i

[
η̂T

i θ̂i −Ai(η̂i) − η�
i(m)T θ̂i + Ai(η�

i(m))
]

=
K∑

i=1

N t
i D(η̂i 	 η�

i(m)).

The last quantity being positive, we can now apply the Markov
inequality and (105) follows. This finishes the proof of the
lemma. �

Lemma 16: Let Assumption A hold. Let η ∈ Θl be the true
configuration. Consider the policy πSMF (L, γ, β). We then

have

lim inf
L→∞

Zl(τ(πSMF (L, γ, β)))
τ(πSMF (L, γ, β))

≥ D∗(η) a.s., (109)

lim inf
L→∞

Zl(τ(πSMF (L, γ, β)) − 1)
τ(πSMF (L, γ, β)) − 1

≥ D∗(η) a.s. (110)

Proof: The proofs of the two statements follow by
focusing on sample paths that satisfy (88) of Proposition 14
and (101) of Lemma 15. The argument goes as follows.
For any such sample path ω and any � > 0, there is an
N(ω, �), independent of L, such that Zl(n)/n ≥ D∗(η) − �
for all n ≥ N(ω, �). Now take L to infinity and employ
Lemma 15 to get that τ(πSMF (L, γ, β)) is eventually bigger
than N(ω, �) + 1, and so τ(πSMF (L, γ, β)) − 1 ≥ N(ω, �).
So both (109) and (110) hold. �

We now begin the proof for (45). Using the definition for
τ(πSMF (L, γ, β)), at the time slot prior to stoppage, we must
have Zl(τ(πSMF (L, γ, β)) − 1) < log((M − 1)L). So,

lim sup
L→∞

Zl(τ(πSMF (L, γ, β)) − 1)
log(L)

≤ lim sup
L→∞

log((M − 1)L)
log(L)

= 1. (111)

Thus

1 ≥ lim sup
L→∞

Zl(τ(πSMF (L, γ, β)) − 1)
log(L)

(112)

≥ lim inf
L→∞

Zl(τ(πSMF (L, γ, β)) − 1)
τ(πSMF (L, γ, β)) − 1

· lim sup
L→∞

τ(πSMF (L, γ, β)) − 1
log L

(113)

≥ D∗(η) · lim sup
L→∞

τ(πSMF (L, γ, β)) − 1
log L

, (114)

where in the last inequality, we have used (109). Finally,

lim sup
L→∞

τ(πSMF (L, γ, β))
log(L)

= lim sup
L→∞

τ(πSMF (L, γ, β)) − 1
log(L)

(115)

≤ 1
D∗(η)

a.s.. (116)

This completes the proof of (45). �

B. Proof of (46)

We begin with a couple of lemmas.
Lemma 17: For every l, for every i, the mapping

Θl � ηi �→ inf
η′∈Θ−l

D(ηi 	 η�
i)

is continuous.
Proof: Write Gl(ηi) := inf

η′∈Θ−l

D(ηi 	 η�
i). Observe that

Gl ≥ 0. Fix � > 0.
(i) Consider a sequence ηi(n) → ηi with all of them being

in Θl. By the definition of Gl(ηi), there exists η�
i ∈ Θ−l such
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that D(ηi 	 η�
i) ≤ Gl(ηi) + �. We then have

Gl(ηi(n))
≤ D(ηi(n) 	 η�

i) (since the left-side is an infimum)

≤ D(ηi 	 η�
i) + � (for all sufficiently large n,

using continuity of relative entropy)

≤ Gl(ηi) + 2� (by the choice of η�
i).

Thus lim supn→∞ Gl(ηi(n)) ≤ Gl(ηi).
(ii) Since Gl(ηi(n)) is bounded, by Lemma 8 (see foot-

note 2) there exists a convergent sequence of η�
i(n) → η�

i.
By the same argument that led to (57), using the bounded of
the η�

i(n) sequence, for all sufficiently large n, we have

Gl(ηi(n)) ≥ D(ηi 	 η�
i(n)) − 2� ≥ Gl(ηi) − 2�.

This establishes that lim infn→∞ Gl(ηi(n)) ≥ Gl(ηi).
Together, (i) and (ii) establish the continuity of Gl(·). �
The next lemma provides an estimate of the probability that

the likelihood for the correct hypothesis is small.
Lemma 18: Let Assumption A hold. Fix L > 1. Let

η ∈ Θl be the true configuration. Then there exists a constant
0 < B < ∞ and a constant N0, both independent of L, such
that for all n ≥ max{2 log((M − 1)L)/D∗(η),N0}, we have

P (Zl(n) < log((M − 1)L)) <
B

n3
. (117)

Proof: Before we start with the proof, let us note that

D∗(η)

= inf
η′∈Θ−l

K∑
i=1

λ∗
i D(ηi 	 η�

i) (118)

= inf
η′∈Θ−l

K∑
i=1

λ∗
i

[
(ηi − η�

i)
T θi −Ai(ηi) + Ai(η�

i)
]

(119)

=
K∑

i=1

λ∗
i

(
ηT

i θi −Ai(ηi)
)

− sup
η′∈Θ−l

K∑
i=1

λ∗
i

(
η�T

i θi −Ai(η�
i)
)
. (120)

Let us now turn to the probability of interest. Observe that
Zl(n) = minm �=l Zlm(n). Using (41), we obtain the following
inequality:

P (Zl(n) < log((M − 1)L))
≤ P

(
logHl(Υ,n0) < −��n

)
+P
(− logHl(Y + Υ,N + n0)

−n

K∑
i=1

λ∗
i [η

T
i θi −Ai(ηi)] < −��n

)

+P

(
− sup

η′∈Θ−l

K∑
i=1

Nn
i

(
η�T

i θ̂i −Ai(η�
i)
)

+ sup
η′∈Θ−l

n

K∑
i=1

λ∗
i

(
η�T

i θi −Ai(η�
i)
)

< −��n

)
+P (nD∗(η) − 3��n < log((M − 1)L)) ; (121)

the inequality in (121) is obtained using union bound together
with adding and subtracting D∗(η). Our goal is now to show
that each of the terms on the right-hand side above is either
0 or O(n−3).

(i) We begin with the last term in (121). Let

� =
D∗(η)

D∗(η) − 3��
− 1, (122)

and

n0 =
2 log((M − 1)L)

D∗(η)
>

(1 + �) log((M − 1)L)
D∗(η)

. (123)

This is n0 is one of the values that n must exceed in the
statement of the lemma. Then for n > n0, we have

n(D∗(η) − 3��) >
(1 + �) log((M − 1)L)

D∗(η)
[D∗(η) − 3��]

= log((M − 1)L). (124)

Hence, we get that for n > n0,

P (nD∗(η) − 3��n < log((M − 1)L)) = 0. (125)

(ii) Consider next the first term in (121):

P
(
logHl(Υ,n0) < −��n

)
. (126)

The right-hand side inside the probability goes to negative
infinity whereas, the left-hand side is a constant. Hence, the
probability of the event under study is zero for all sufficiently
large n (independent of L).

(iii) Next consider the second term in (121). For conve-
nience define Fi(θi) := ηT

i θi −Ai(ηi), the Fenchel dual of
Ai evaluated at θi. We then have

P

(
− 1

n
logHl(Y + Υ,N + n0) −

K∑
i=1

λ∗
iFi(θi) < −��

)

≤ P

(
− 1

n
logHl(Y+Υ,N + n0) −

K∑
i=1

λ∗
iFi(θi)<−��,∣∣∣∣Nn

i′

n
− λ∗

i′

∣∣∣∣ ≤ �1,

∥∥∥∥Yn
i′

Nn
i′
− θi′

∥∥∥∥
∞

≤ �2, ∀i�
)

+
∑
i′

P

(∣∣∣∣Nn
i′

n
− λ∗

i′

∣∣∣∣ > �1

)
+
∑
i′

P

(∥∥∥∥Yn
i′

Nn
i′
− θi′

∥∥∥∥
∞

> �2

)
, (127)

where �1, �2 are suitable constants that will be specified soon.
Under the conditions∣∣∣∣Nn

i′

n
− λ∗

i′

∣∣∣∣ < �1 and

∥∥∥∥Yn
i′

Nn
i′
− θi′

∥∥∥∥
∞

≤ �2,

we will follow the steps leading to (69) to lower bound
− 1

n logHl(Y + Υ,N + n0). First observe that (128)-(129),
as shown at the bottom of the next page, hold.

Note that ηi(θi) optimises the function η�
i �→ (η�)T θi −

Ai(η�
i), for each i = 1, . . . , K , over the set Θl, since η ∈ Θl.

As before, we leverage this.
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Fix δ > 0. Almost surely, there is a Cδ > 0 such that for
all sufficiently large n, ||θ̂i − θi||∞ ≤ �2, and further, for all
η� ∈ Bδ(η), we have:∣∣∣∣∣

K∑
i=1

(
Nn

i

n
− λ∗

i

)
((η�

i)
T θi −Ai(η�

i))

∣∣∣∣∣ ≤ Cδ�1∣∣(η�
i)

T Υi − n0iAi(η�
i)
∣∣ ≤ Cδ∣∣∣∣∣

K∑
i=1

Nn
i

n
(η�

i)
T (θ̂i − θi)

∣∣∣∣∣ ≤ Cδ�2∣∣∣∣∣
K∑

i=1

(
(η�

i)
T θi −Ai(η�

i) −
(
ηT

i θi −Ai(ηi)
))∣∣∣∣∣

=

∣∣∣∣∣
K∑

i=1

(
(η�

i)
T θi −Ai(η�

i) −F(θi)
)∣∣∣∣∣ ≤ τ(δ)

where in the last inequality τ(δ) → 0 as δ → 0 due to the
continuity of Ai(·). Further, we can lower bound the integral
in (129) by restricting the integral to the set Θl∩Bδ(η). Putting
these ideas together, we get that (129) is lower bounded
by (130)-(133), as shown at the bottom of the page. Using this
lower bound, we can now upper bound the first term in (127)
with

P

(
1
n

log
(

Leb (η� ∈ Θl ∩ Bδ(η(θ)))
)
− τ(δ)

−Cδ�1−KCδ�2 − KCδ

n
< −��

)
; (134)

the event inside the probability argument on the right-hand side
of the above inequality will not occur, via suitable choices of δ,
�1 and �2, for all sufficiently large n dependent on δ, �1, �2, �

�

but independent of L. For all such n, the probability on the
left-hand side of (134) is zero.

The third term in (127) is upper bounded by C/n3 for some
constant C by Lemma 12 (in fact it decays faster, O(1/n4)).
The constant C is independent of L.

We now argue that there is an N0 independent of L such
that, for all n ≥ N0, the second term in (127) is upper bounded
by C1/n3 for a suitable constant C1 which is also independent
of L.

Let us use the notation na(m) to be the number of active
samplings up to time m. First observe that, by triangle
inequality,

∣∣∣∣Nn
i′

n
− λ∗

i′

∣∣∣∣ > �1 ⇒
∣∣∣∣ Nn,a

i′

na(n)
− λ∗

i′

∣∣∣∣ > �1
2

or

∣∣∣∣Nn
i′

n
− Nn,a

i′

na(n)

∣∣∣∣ > �1
2

. (135)

Choose a sufficiently small �3, and a sufficiently small �2
(a new �2 that may depend on �3), so that the following hold:

• 3(K − 1)�3 < �1/2;
• for every θ� with maxi 	θ�

i − θi	∞ < �2, we have
η(θ�) ∈ Θl (due to the openness of Θl and continuity of
the η(·) mapping);

− 1
n

logHl(Y + Υ,N + n0) =
1
n

log

⎧⎪⎨⎪⎩
∫

η′∈Θl

exp

{
K∑

i=1

(
(η�

i)
T (Yn

i + Υi) − (Nn
i + n0i)Ai(η�

i)
)}

dη�

⎫⎪⎬⎪⎭ (128)

=
1
n

log
∫

η′∈Θl

exp

{
n

K∑
i=1

(
Nn

i

n

(
(η�

i)
T Yn

i

Nn
i

−Ai(η�
i)
)

+ (η�
i)

T Υi

n
− n0i

n
Ai(η�

i)
)}

dη�. (129)

− 1
n

logHl(Y + Υ,N + n0)

≥ 1
n

log
∫

η′∈Θl∩Bδ(η)

exp

{
n

K∑
i=1

Nn
i

n

(
(η�

i)
T Yn

i

Nn
i

−Ai(η�
i)
)
−KCδ

}
dη� (130)

=
1
n

log
∫

η′∈Θl∩Bδ(η)

exp

{
n

K∑
i=1

λ∗
i

(
(η�

i)
T θi −Ai(η�

i)
)

+ n

K∑
i=1

(
Nn

i

n
− λ∗

i

)
((η�

i)
T θi −Ai(η�

i)) + n

K∑
i=1

Nn
i

n
(η�

i)
T (θ̂i − θi)−KCδ

}
dη� (131)

=
1
n

log
∫

η′∈Θl∩Bδ(η)

exp

{
n

K∑
i=1

λ∗
i F(θi) + n

K∑
i=1

λ∗
i

(
(η�

i)
T θi −Ai(η�

i) −F(θi)
)

+ n

K∑
i=1

(
Nn

i

n
− λ∗

i

)
((η�

i)
T θi −Ai(η�

i)) + n

K∑
i=1

Nn
i

n
(η�

i)
T (θ̂i − θi)−KCδ

}
dη� (132)

≥
K∑

i=1

λ∗
i F(θi) +

1
n

log (Leb (η� ∈ Θl ∩ Bδ(η))) − τ(δ) − Cδ�1 − Cδ�2 − KCδ

n
. (133)
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• for every θ� with maxi 	θ�
i − θi	∞ < �2, we have

maxi |λ∗
i (η(θ)) − λ∗

i | < �3 (due to the continuities of
the ι∗(·) and the η(·) mappings).

Consider the conditions

sup
m≥n

∣∣∣∣na(m)
m

− γ

∣∣∣∣ ≤ γ�1 and

sup
m:na(m)≥3	3γ(1−	1)n

max
i′

∥∥∥∥Ym
i′

Nm
i′

− θi′

∥∥∥∥
∞

≤ �2. (136)

Under these conditions, apply Lemma 11 with � = �3, n0 =
3�3γ(1 − �1)n, and n	3 = γ(1 − �1)n for n ≥ N0 :=
1/(3�23(1 − �1)γ), use the second and the third bullets above,
and we get

sup
m:na(m)≥γ(1−	1)n

∣∣∣∣ Nm,a
i′

na(m)
− λ∗

i′

∣∣∣∣ ≤ 3(K − 1)�3.

In particular, since we are operating under na(m)/m ≥ γ(1−
�1) for all m ≥ n, taking m = n in the above displayed
equation, we get∣∣∣∣ Nn,a

i′

na(n)
− λ∗

i′

∣∣∣∣ ≤ 3(K − 1)�3,

a condition which is incompatible with
∣∣∣ Nn,a

i′
na(n) − λ∗

i′

∣∣∣ >

�1/2 in view of the first bullet above. This contradiction, along
with (135), (136), shows that, for n ≥ N0,∣∣∣∣Nn

i′

n
− λ∗

i′

∣∣∣∣ > �1

⇒ sup
m≥n

∣∣∣∣na(m)
m

− γ

∣∣∣∣ > γ�1 (137)

or
[

sup
m≥n

na(m)
m

≤ γ(1 + �1) and

sup
m:na(m)≥3	3γ(1−	1)n

max
i′

∥∥∥∥Ym
i′

Nm
i′

− θi′

∥∥∥∥
∞

> �2

]
(138)

or

∣∣∣∣Nn
i′

n
− Nn,a

i′

na(n)

∣∣∣∣ > �1
2

. (139)

(a) By Bernstein inequality and the union bound, the first event
has probability decaying exponentially in n.

(b) Using na(m) ≤ γm(1 + �1), if the second event above
holds, then we have

sup
m:m≥3 n	3(1−	1)/(1+	1)

max
i′

∥∥∥∥Ym
i′

Nm
i′

− θi′

∥∥∥∥
∞

> �2;

by Lemma 12 and the union bound, its probability is upper
bounded by ∑

m:m≥3 n	3(1−	1)/(1+	1)

C

m4
≤ C2

n3

for some suitable constant C2.
(c) Let us now address the third term in (138). Using (99),

we get∣∣∣∣Nn
i′

n
− Nn,a

i′

na(n)

∣∣∣∣= Nn,a
i′

na(n)

∣∣∣∣∣∣n
a(n)
n

1
Nn,a

i′

⎛⎝Nn,a

i′∑
k=1

V
(i′)
k +V i

⎞⎠−1

∣∣∣∣∣∣

where k runs over the indices involving the choice of i� in an

active slot. Using
Nn,a

i′
na(n) ≤ 1, we get∣∣∣∣Nn

i′

n
− Nn,a

i′

na(n)

∣∣∣∣ > �1
2

⇒
∣∣∣∣∣∣n

a(n)
n

1
Nn,a

i′

⎛⎝Nn,a

i′∑
k=1

V
(i′)
k + V i

⎞⎠− 1

∣∣∣∣∣∣ > �1
2

⇒
∣∣∣∣na(n)

n
− γ

∣∣∣∣ > γδ (for a δ to be chosen soon)

or

[∣∣∣∣na(n)
n

− γ

∣∣∣∣ ≤ γδ and∣∣∣∣∣∣ 1
Nn,a

i′

Nn,a

i′∑
k=1

V
(i′)
k − 1

γ

∣∣∣∣∣∣ > δ

γ

⎤⎦
or

[∣∣∣∣na(n)
n

− γ

∣∣∣∣ ≤ γδ and∣∣∣∣∣∣ 1
Nn,a

i′

Nn,a

i′∑
k=1

V
(i′)
k − 1

γ

∣∣∣∣∣∣ ≤ δ

γ

and
na(n)

n

V i

Nn,a
i′

>
�1
4

]
or

[∣∣∣∣na(n)
n

− γ

∣∣∣∣ ≤ γδ and∣∣∣∣∣∣ 1
Nn,a

i′

Nn,a

i′∑
k=1

V
(i′)
k − 1

γ

∣∣∣∣∣∣ ≤ δ

γ

and

∣∣∣∣∣∣n
a(n)
n

1
Nn,a

i′

Nn,a

i′∑
k=1

V
(i′)
k − 1

∣∣∣∣∣∣ > �1
4

⎤⎦ .

Choose δ sufficiently small so that (1 + δ)2 < 1 + �1/4 and
(1−δ)2 > 1−�1/4. The first of these events has exponentially
(in n) small probability for all n (Bernstein inequality).
By Lemma 11, for all n ≥ N0, we have Nn,a

i′ ≥ (na(n))β/2.
The Chernoff bound then gives that the second event too has
exponentially (in n) small probability. The random variable V i

is stochastically dominated by a geometric random variable
and hence the third event has exponentially small probability
for all n ≥ N0 and Lemma 11. Finally, by the choice of δ,
the fourth event cannot occur.

The above arguments (a)-(c) establish that the probability
of the event

∣∣∣Nn
i′

n − λ∗
i′

∣∣∣ > �1, i.e., the second term in

(127), is also upper bounded by C1/n3 for some constant
C1 independent of L, for all n ≥ N0.

Note that, with the above, we have also established that the
second term in (121) is upper bounded by C/n3, for some
C3, for all n ≥ N0.

(iv) Finally, consider the third term in (121). The chain
of inequalities (140)-(143), as shown at the bottom of the
next page, are self-evident: Following the approach that led
to the bound for (127), since ηi �→ inf

η′∈Θ−l

D(ηi 	 η�
i) is a

continuous function by Lemma 17, we obtain that (143) is
also bounded by C�/n3. This establishes Lemma 18. �
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Proof of result in (46): A sufficient condition to establish the
convergence of expected stopping time is to show the second
moment condition:

lim sup
L→∞

E

[(
τ(πSMF (L, γ, β))

log(L)

)2
]

< ∞.

We now proceed to establish this. Define

u(L) :=
(

(1 + �) log((M − 1)L)
D∗(η) log(L)

+
1

log(L)

)2

.

We then have

lim sup
L→∞

E

[(
τ(πSMF (L, γ, β))

log(L)

)2
]

= lim sup
L→∞

∫
x≥0

P

(
τ(πSMF (L, γ, β))

log(L)
>

√
x

)
dx

≤ lim sup
L→∞

∫
x≥0

P
(
τ l(πSMF (L, γ, β)) > �√x log(L)�) dx,

which is upperbounded in inequalities (144)-(146), as shown at
the bottom of the next page. The inequality in (145) is obtained
using the fact that P

(
τ l(πSMF (L, γ, β)) > �√x log(L)�) is

constant in the interval

x ∈
[(

n

log(L)

)2

,

(
n + 1
log(L)

)2
]

;

for inequality (146), we have from Lemma 18 that

for all n ≥ (1 + �) log((M − 1)L)
D∗(η)

, (147)

P (Zl(n) < log((M − 1)L)) < B/n3. This completes the
proof.

C. Proof of (47)

To prove this, observe that

E[C (πSMF (L, γ))]

= E
[
τ (πSMF (L, γ)) +

τ(πSMF (L,γ))−1∑
l=1

g (Al, Al+1)
]

≤ E[τ (πSMF (L, γ))]

+gmaxE
[ τ(πSMF (L,γ))−1∑

l=1

1{Al �=Al+1}
]

≤ E[τ (πSMF (L, γ))] + gmaxE
[ τ(πSMF (L,γ))∑

l=1

Ul+1

]
= E[τ (πSMF (L, γ))] + gmaxγE[τ (πSMF (L, γ))]
= E[τ (πSMF (L, γ))] (1 + gmaxγ) ,

where in the penultimate equality, we have used Doob’s
optional stopping theorem. Divide by log L and let L → ∞
to get the required result. This completes the proof of (47),
completes the proof of all three results in the proposition, and
thus finishes the proof of Proposition 7.
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n
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(
η�T

i θi −Ai(η�
i)
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< −��n
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(
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η�T
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i

(
η�T

i θi −Ai(η�
i)
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(
sup

η′∈Θ−l

K∑
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i
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(140)

= P

(
K∑

i=1

Nn
i

n

(
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D(η̂i 	 η�
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APPENDIX F
VERIFICATION OF CONTINUOUS SELECTION

IN SOME EXAMPLES

In this section we shall show that the odd arm identifica-
tion problem and the best arm identification problem admit
continuous selections.

A. Odd Arm Identification Problem

In order to show that the correspondence ι �→ ι∗(η) admits
a continuous selection, we show that the function F (·, η)
defined in (21) is strictly concave for each η ∈ Θl. We begin
with

ι∗(η)=argmax
λ∈P(K)

F (ι, η)=argmax
λ∈P(K)

inf
η′∈Θ−l

K∑
i=1

λiD(ηi 	 η�
i).

(148)

Recall the example discussed in Section (III-B). We observe
from [10] that ι∗(η) is of the form[

1 − λl

K − 1
, · · · 1 − λl

K − 1
, λl,

1 − λl

K − 1
, · · · ,

1 − λl

K − 1

]
and the expression for D∗(·) in (18) can be reduced to

D∗(η)= max
λl∈[0,1]

λlD(η1||η̃)+(1−λl)
K − 2
K − 1

D(η2||η̃)

(149)

where η̃ = η(θ̃) and

θ̃ =
λlθ1 + (1 − λl)K−2

K−1θ2

λl + (1 − λl)K−2
K−1

. (150)

To establish the strict concavity, we show that the second
derivative of the objective function in (148) is strictly negative
for all values of λl. Using the result in (149), we redefine the
objective function in (148) as

Φ(λl) = λlD(η1||η̃) + (1 − λl)
K − 2
K − 1

D(η2||η̃). (151)

Taking the first derivative,

dΦ
dλl

= D (η1||η̃) − K − 2
K − 1

D (η2||η̃)

+
[
λl∇η̃D (η1||η̃)+(1−λl)

K − 2
K − 1

∇η̃D (η2||η̃)
]T

dη̃

dλl

= D (η1||η̃) − K − 2
K − 1

D (η2||η̃) . (152)

The equality in (152) follows from the fact that the η� that
attains the infimum in (148) is η̃. Differentiating again by
applying chain rule and using the result that ∇η2

D(η1||η2) =
θ2 − θ1 we get

d2Φ
dλ2

l

=
[
(θ̃ − θ1) − K − 2

K − 1
(θ̃ − θ2)

]T
dη̃

dλl
. (153)

Observe that

dη̃

dλl
= Dκ̃η̃ · dθ̃

dλl
(154)

= Hess(F(θ̃)) · −1
λl + K−2

K−1(1 − λl)

·
(

(θ̃ − θ1) − K − 2
K − 1

(θ̃ − θ2)
)

. (155)

Equality in (154) is obtained using chain rule for differen-
tiation and Dκ̃η̃ is the matrix

(
∂

∂κ̃j
η̃i

)
1≤i,j≤d

. From (7),

we recognise that Dκ̃η̃ = Hess(F (θ̃)), the Hessian of the
function F (θ) with respect to θ evaluated at θ̃. Using this
and a straightforward calculation of the derivative dθ̃/dλl,
we get (155).

Substituting (155) in (153) and using the fact that the
Hessian of the strictly convex function F(·) is positive definite,
we get the required inequality as

d2Φ
dλ2

l

< 0 (156)

lim sup
L→∞

E

[(
τ(πSMF (L, γ, β))

log(L)

)2
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(144)
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(145)

≤
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P (Zl(n) < log((M − 1)L))
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B

n3
(for L sufficiently large) (146)

< ∞;
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thereby completing the proof of strict concavity. Using this
and the first sufficient condition for Assumption A to hold
(see the first bullet after Assumption A), the correspondence
ι �→ ι∗(η) admits a continuous selection.

B. Best Arm Identification Problem

That the continuous selection assumption, Assumption A,
holds for this problem has been proved by Garivier and
Kaufmann [9, Prop. 6.2].
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