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ABSTRACT Target tracking in passive multi-static radar (PMSR) with bistatic range and Doppler frequency

measurements from multiple transmit–receive pairs is gaining increasing interest. For the data association

problem in this scenario, the parallel architecture of a multi-sensor joint probabilistic data association

(P-MSJPDA) filter has been significantly investigated. As an alternative architecture, the sequential

MSJPDA (S-MSJPDA) is rarely discussed in PMSR. In this paper, we evaluate the behaviors of S-MSJPDA

in PMSR target tracking with bistatic range and Doppler frequency measurements. A comprehensive

comparison between the S-MSJPDA and the P-MSJPDA in PMSR is provided. It can be found from the

analysis that S-MSJPDA outperforms its parallel counterpart in terms of computational efficiency, given an

acceptable degradation in position accuracy. The S-MSJPDA is further applied to an experimental passive

multi-static radar for aircrafts tracking. The real data results obtained are rather close to the true trajectories

of the targets. This demonstrates that the S-MSJPDA has great potentials in PMSR target tracking.

INDEX TERMS Passive multi-static radar, target tracking, multi-sensor joint probabilistic data association.

I. INTRODUCTION

Over the last two decades, passive radar has received a

renewed interest for civilian andmilitary applications [1], [2].

Passive radar exploits existing transmitters as illuminators

of opportunity; thus it needs neither frequency allocation

nor extra hardware, and the detection of targets is covert,

continuous, and also inexpensive [3]–[9]. Specifically, when

more than one transmitter is simultaneously exploited, a pas-

sive multi-static radar (PMSR) is formed. In this case the

location and trajectory of a potential target can be deter-

mined by combining measurements from multiple transmit–

receive pairs with overlapping coverage. This provides the

PMSR with great potentials in air surveillance [10]–[13].

The measurements available in PMSR for target tracking are

usually bistatic range, Doppler frequency and direction of

arrival (DOA). In many passive radar systems, DOA is hard to

get with satisfactory accuracy, especially for those equipped

with small antennas. The poor quality of DOA usually results

in great degradation in the estimation accuracy of a target’s

trajectory [14], [15]. Therefore, tracking with only bistatic
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range and Doppler frequency in PMSR is attracting increas-

ing attention.

Target tracking in PMSR is a typical multi-sensor multi-

target tracking problem. In this situation [16], measurements

may originate from one of the various targets whose existence

and trajectories are not known a priori, as well as from

other random sources, which are usually termed as clutter.

In addition, target measurements are only present in a scan

with some probability of detection PD < 1. Targets may

enter and leave the surveillance region at any time, thus at any

given moment the number of targets in the surveillance area

is unknown. More challengingly in PMSR with only range

and Doppler measurements, the position of a target cannot be

determined by using only one transmit-receive pair. To cope

with these difficulties, research has been conducted on track

initiation, track confirm, track maintenance, and track termi-

nate [17]–[20]. In this paper we assume track initiation and

confirm to have been performed beforehand. We only focus

on trackmaintenance, wherewewill evaluate the behaviors of

S-MSJPDA in PMSR, and compare with that of P-MSJPDA,

which has rarely been discussed previously.

In the following we give a review of the multi-sensor

multi-target tracking methods. These methods can be
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classified into two categories, i.e. association-based methods

and non-association methods [21], [22]. The association-

based methods usually involve measurement-to-track associ-

ation and may be grouped into two types, i.e. non-Bayesian

methods and Bayesian approaches. The non-Bayesian meth-

ods include the greedy nearest-neighbor filter and the

multi-dimensional assignment method. The greedy nearest-

neighbor filter assigns a target with the measurement that is

closest to the predicted position of the target [23]. In dense tar-

get or clutter scenario, the closest measurement is usually not

the true measurement from the target, so the nearest-neighbor

filter degrades severely in this case. The multi-dimensional

assignment method finds the best measurement-target asso-

ciation by posing it as a multi-dimensional assignment

problem [24]. Optimal implementation of multi-dimensional

assignment is NP-hard and some approximation schemes

should be invoked, such as Lagrangian relaxation tech-

niques [25]. The Bayesian approaches include the multi-

hypothesis tracker (MHT) and the JPDA filter [26], [27].

MHT enumerates the measurement to target association

hypothesis using measurements from all the scans. The

hypothesis with the highest posterior is returned as a solu-

tion. JPDA formulates measurement-target associations and

computes the association probabilities by exploiting the mea-

surements only from the current scan. Given an association,

the state of a target is estimated by a filtering algorithm and

this conditional state estimate is weighted by the association

probability. Then the state of a target is estimated by summing

over the weighted conditional estimates. Optimal MHT and

JPDA consume excessive time, since the number of asso-

ciation hypothesis increases exponentially with the number

of targets and measurements. Pruning schemes are usually

adopted to reduce the hypothesis number [28]–[30].

The most representative non-association methods are those

based on finite-set statistics (FISST), which provides a set

of mathematical tools that extends the Bayesian filtering

framework to the multi-target tracking problems [31]. This

avoids explicit measurement-to-track associating. The opti-

mal implementation of multi-target tracking based on FISST

is computational intractable, because the propagation of the

multi-target posterior involves the evaluation of multiple

set integrals. A more tractable alternative is the probability

hypothesis density (PHD) filter which propagating the first

moment associated with the multi-target posterior [32]–[34].

It is hard to assert which of the two categories is better, but

one statement is often mentioned in the literatures. That is the

association-based methods are readily to cause ghost targets

which can be handled by the non-association methods at the

cost of requiring more computation [35].

As for multi-target tracking in PMSR with bistatic range

and Doppler frequency measurements, the MSJPDA frame-

work has been widely used and verified. It is known that

there are two implementation architectures of MSJPDA [36],

i.e. P-MSJPDA and S-MSJPDA. The P-MSJPDA exploits

all measurements from all the sensors simultaneously to

update the tracks of potential targets. Most of the PMSR

multi-target tracking methods are based on the P-MSJPDA,

such as those in [37]–[39] developed for target tracking in

digital audio/video broadcasting (DAB/DVB) passive radar.

The disadvantage of P-MSJPDA is that the multi-sensor data

associating consumes excessive time. The S-MSJPDA is to

process the measurements sensor by sensor. That is, it first

exploits the measurements from the first senor to update

the tracks of the targets, and then the measurement from

the second sensor. Repeat this process until the measurements

from the last sensor are processed. S-MSJPDA breaks the

multi-sensor data association problem into several single-

sensor data association problems, of which the treatment

is more efficient. Intuitively, S-MSJPDA has great poten-

tials in target tracking. But it is rarely discussed in PMSR.

In this paper we evaluate the behaviors of S-MSJPDA in

PMSR target tracking with bistatic range and Doppler fre-

quencymeasurements, and give a comprehensive comparison

between the two architectures. It should be noted that the

optimal implementations of the both methods are NP-hard,

and there is no practical value to compare two algorithms

with intractable computation. In this paper the near opti-

mal approximations of the both architectures are proposed

based on the m-best assignment technique. The comparison

is conducted over the approximation versions. Theoretical

analysis of the computational complexity of the both methods

is conducted. It will be found from the later analysis that

the S-MSJPDA is more efficient than P-MSJPDA because

the association event in S-MSJPDA is simpler, of which the

association probabilities is easier to be computed. However,

S-MSJPDA degrades in position accuracy compared to P-

MSJPDA owing to the approximation strategies used in the

both methods. Fortunately, this degradation is rather small

and therefore acceptable. The S-MSJPDA is further verified

by real experiments for aircrafts tracking. An experimental

frequency modulation (FM) based PMSR is utilized for the

experiments. The real data results are presented and analyzed.

More details can be found in the paper below.

The organization of the paper is as follows. Section I

gives the introduction. Section II gives the target track-

ing problem definition in PMSR with bistatic range and

Doppler frequency measurements. Section III introduces the

framework of MSJPDA. The derivations of P-MSJPDA and

S-MSJPDA are presented, with emphasis on the near opti-

mal implementation strategies of the both architectures. The

computational complexity of the both methods are analyzed

theoretically. Section IV provides a comprehensive compar-

ison between the behaviors of the both methods through

simulations. Section V gives the experimental validation of

the S-MSJPDA. The experiment setup and the FM-based

PMSR configuration are introduced. The real data results are

presented and analyzed. Section VI gives the conclusions.

II. TARGET TRACKING PROBLEM DEFINITION

Consider a PMSR configuration depicted in figure 1.N signal

transmitters located in different positions are adopted as the

illuminators of opportunity. One radar receiver is deployed
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FIGURE 1. PMSR configuration.

to receive and process target echoes. We assume in the paper

that signals from different transmitters are resolvable. This is

applicable for many communication signals such as the FM

and many satellite signals [14], [40], [41].

A. TARGET MODEL

In this paper we are interested in tracking K slowly maneu-

vering targets, and we ignore the altitudes of the targets

as many other passive radars although the methods pre-

sented in the paper can be easily extended to 3-dimension

tracking scenario. The state of the τ -th target comprises its

position pτ (k) = [xτ (k), yτ (k)]T and velocity vτ (k) =
[ẋτ (k), ẏτ (k)]T , i.e.

xτ = [xτ (k), ẋτ (k), yτ (k), ẏτ (k)]T

Assuming further a uniform discretization with a sampling

period of Ts seconds, the state evolution equation for the τ -th

target becomes:

xτ
k = Fkx

τ
k−1 + wk (1)

where:

Fk =









1 Ts 0 0

0 1 0 0

0 0 1 Ts
0 0 0 1









wk is the process noise following a zero mean Gaussian

distribution with the covariance matrix:

Q =
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The collection of tracks in time k is denoted by xk =
{x1k , x2k , . . . , xKk }.

B. MEASUREMENT AND SENSOR MODEL

In this paper we consider collecting the bistatic range and

Doppler frequency measurements in PMSR to determine the

track of a target. We call a transmit-receive pair in the PMSR

as a sensor hereafter. The target measurement of each sensor

at time k is modeled as:

yτ
s,k =

[

γ τ
s

f τ
d,s

]

= hs(x
τ
k ) + υs,k , s=1,2,. . . ,N (2)

where γ τ
s and f

s,τ
d are the bistatic delay and Doppler fre-

quency of target τ measured by sensor s. υs,k is the measure-

ment noise following a zero-mean white Gaussian distribu-

tion with covariance matrix Rk .

hs(x
τ
k ) =







Rτ
tran,s + Rτ

rec

c

− fc,s

c
vτ (k)T (

pτ (k) − ptran,s

Rτ
tran,s

+ pτ (k) − prec

Rτ
rec

)







(3)

Rτ
rec =

√

(xτ (k)-xrec)2 + (yτ (k)-yrec)2 (4)

Rτ
tran,s =

√

(xτ (k)-xtran,s)2 + (yτ (k)-ytran,s)2 (5)

c is the velocity of light, ptran,s = [xtran,s, ytran,s]
T is the

position of the s-th transmitter, and prec = [xrec, yrec]
T is the

position of the receiver.

The collection of measurements at sensor s including

clutter at time k is represented as ys,k = {y1s,k , y2s,k , . . . , yKs,k}
⋃

cs,k , where cs,k is the set of clutter measurements obtained

by the s-th sensor. It is noted that some targets may not

be detected by sensor s at time k , so the corresponding

notations should be removed from ys,k . The measurement

collection of sensor s up to and including timek is denoted by

Yk
s , s = 1, 2, . . . ,N , then we have Yk

s = ys,k
⋃

Yk−1
s , s =

1, 2, . . . ,N . The number of measurements at each sensor

varies with time, and it is usually different from the number of

true targets.We assume that each of the targets can generate at

most one measurement per sensor at a particular time instant,

and each of the measurements per sensor can originate from

at most one target. However, several measurements may be

due to clutter.

To address the data association problem, it is necessary

to introduce association events, each of which is a complete

assignment of measurements to targets or clutter. We add

a dummy track denoted by x0k in the track set xk and a

dummy measurement y0s,k in each measurement set ys,k .

Define an association variable Zτ,i1,...,iN = [τ, i1, . . . , iN ],

which claims that measurements y1,k (i1), . . . , yN ,k (iN ) orig-

inate from target τ (0 ≤ τ ≤ K ), where ys,k (is) is the is-th

measurement in measurement set ys,k and 0 ≤ is ≤ ns. ns
is the total number of measurements in ys,k . It is noted that

τ = 0 means that y1,k (i1), . . . , yN ,k (iN ) are all due to clutter.

is = 0 means that no measurements at sensor s are due to
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target τ . A complete association event θ includes a set of asso-

ciation variables [(Z
(1)
τ,i1,...,iN

)T , . . . , (Z
(L)
τ,i1,...,iN

)T ], such that

measurements at each sensor are assigned to corresponding

targets or claimed as clutter, conditioned on the assumption

that each measurement per sensor originates from at most one

target and that each target generates at most one measurement

per sensor:

θ =













Z
(1)
τ,i1,...,iN

Z
(2)
τ,i1,...,iN

...

Z
(L)
τ,i1,...,iN













=













τ (1), i
(1)
1 , . . . , i

(1)
N

τ (2), i
(2)
1 , . . . , i

(2)
N

...

τ (L), i
(L)
1 , . . . , i

(L)
N













τ (l) 6= τ (j), forl 6= j, τ (l) 6= 0, andτ (j) 6= 0

i(l)s 6= i(j)s , forl 6= j, i(l)s 6= 0, andi(j)s 6= 0 (6)

The subscript (j) in (6) is used to discriminate between

different association variables, and it will be omitted to avoid

the symbol abuse in the following if ambiguity is not induced.

It can be seen in the association matrix that the combination

between column 1 and column s + 1 denoted by εs is an

association event that assigns each measurement at sensor s

to a target or claims it as clutter:

εs =













Z
(1)
τ,is

Z
(2)
τ,is
...

Z
(L)
τ,is













=













τ (1), i
(1)
s

τ (2), i
(2)
s

...

τ (L), i
(L)
s













III. MULTI-SENSOR JPDA

In this section we first introduce theMSJPDA framework and

then give the derivations of P-MSJPDA and S-MSJPDA, with

emphasis on the near optimal implementation strategies of the

both architectures. Theoretical analysis of the computational

complexity of the both methods is also presented.

Instead of maintaining the posterior probability density

of the joint state p(xk |Yk ), the JPDA updates the marginal

density for each target p(xτ
k |Yk ), τ = 1, 2, . . . ,K through the

Bayesian sequential estimation recursion, which effectively

combats the curse of dimensionality. For the multi-sensor

case we described above, the posterior density of target τ

given measurements at all the sensors can be written as

follows:

p(xτ
k |Yk

1, . . . ,Y
k
N )

=
∑

θ

p(θ |Yk
1, . . . ,Y

k
N )p(x

τ
k |θ ,Yk

1, . . . ,Y
k
N ) (7)

where θ is the association event as described in section

II. p(θ |Yk
1, . . . ,Y

k
N ) is the posterior probability density of

association event θ conditioned on the measurements at the

current instant, and:

p(θ |Yk
1, . . . ,Y

k
N ) ∝ p(y1,k , . . . , yN ,k |θ ,Yk−1

1 , . . . ,Yk−1
N )

(8)

Actually, both P-MSJPDA and S-MSJPDA are designed to

compute (7).

A. PARALLEL MSJPDA

Assuming a Gaussian distribution of xτ
k , (7) can be repre-

sented as

p(xτ
k |Yk

1, . . . ,Y
k
N ) = N (xτ

k |x̂τ
k , P̂

τ
k )

P-MSJPDA exploits all the measurements from all the

sensors associated with target τ simultaneously to update the

target state with the association probabilities

x̂τ
k =

N
∑

s=1

ns
∑

is=0

βτ
is
x̃τ
k (is)

P̂τ
k =

N
∑

s=0

ns
∑

is=0

βτ
is

{

P̃τ
k (is) + (x̃τ

k (is) − x̂τ
k )(x̃

τ
k (is) − x̂τ

k )
T
}

(9)

where x̃τ
k (is) is the result of updating target τ by only using

measurement ys,k (is), and P̃
τ
k (is) is the corresponding covari-

ance matrix. Since the bistatic range and Doppler frequency

equations in PMSR are non-linear, conventional Kalmanfilter

(KF) is not applicable to compute the statistical quantities

above [42]. This can be overcomewith a non-linear filter such

as the unscented Kalman filter (UKF) [43]. βτ
is
is the proba-

bility of associating measurement ys,k (is) to target τ , and is

the summation of the posterior probabilities of the association

events θ in which measurement ys,k (is) is assigned to target

τ

βτ
is

∝
∑

θ

p(θ |Yk
1, . . . ,Y

k
N ) (10)

where

p(θ |Yk
1, . . . ,Y

k
N )

∝
L

∏

j=1

p(y1,k (i
(j)
1 ), . . . , yN ,k (i

(j)
N )|Z(j)

τ,i1...iN
,Yk−1

1 , . . . ,Yk−1
N )

=
L

∏

j=1

N
∏

s=1

p(ys,k (i
(j)
s ))|τ (j),Yk−1

s ) (11)

p(ys,k (is)|τ,Yk−1
s ) is the predictedmeasurement likelihood

corresponding to target τ , and can also be easily obtainedwith

UKF.

In order to compute the association probabilities βτ
is
,

the optimal MSJPDA enumerates all the association events θ ,

which is NP-hard especially for the multi-sensor case.

In practice, many association events only have very low

probabilities and contribute little to the solution. A prac-

tical and near optimal approximation is to select the

m-best association events with the m-largest probabilities.

Suppose θ (1), θ (2), . . . , θ (m) are them-best association events,

thus (10) becomes

βτ
is

∝
∑

1≤i≤m
p(θ (i)|Yk

1, . . . ,Y
k
N ) (12)

VOLUME 7, 2019 34491



X. Lyu, J. Wang: Sequential Multi-Sensor JPDA for Target Tracking in PMSR

In the multi-sensor scenario we describe above, finding the

m-best association events is a typicalm-best (N+1)-D assign-

ment problem, which can be solved within polynomial time.

To formulate them-best (N +1)-D assignment problem, each

of the association event θ is assigned with a cost measured as

its generalized likelihood ratio, i.e.

c(θ ) =
L

∏

j=1

N
∏

s=1

p(ys,k (i
(j)
s ))|τ (j),Yk−1

s )

Vs
(13)

where Vs is the volume of the view filed of sensor s. Let

4 denote the association event space, which contains all the

feasible association events θ . Then the m-best (N + 1)-D

assignment problem is casted in the following:

θ (1) = argmin
θ∈4

{c(θ )}

θ (2) = arg min
θ∈4\θ (1)

{c(θ )}

...

θ (m) = arg min
θ ∈ 4\θ (n)

n = 1, 2, . . . ,m− 1

{c(θ )} (14)

It is noted that each optimization problem in (14) repre-

sents a (N +1)-D assignment problem. Therefore, the m-best

(N +1)-D assignment is accomplished by conducting several

(N + 1)-D assignments, each of which can be solved within

a polynomial time by the successive Lagrangian relaxation

technique in [44]. The worst-case complexity for comput-

ing (14) is O(m(N + 1)ρL4), where L is the number of the

(N+1)-tuples in θ and ρ is the number of relaxation iterations

in a single (N+1)-D assignment. This complexity can further

be reduced to O(m(N + 1)ρL3) with some preprocessing and

optimization steps [45]. However, this complexity does not

take into account the calculation of assignment cost c(θ ),

which still has a great complexity of (K + 1)
N
∏

s=1

(ns + 1).

B. SEQUENTIAL MSJPDA

Instead of updating the probability density of target τ with the

measurements at all sensors simultaneously, S-MSJPDA uses

the measurements at different sensors sequentially. Suppose

x̂τ
k−1 is the estimated state of target τ at the previous time

instant, and P̂τ
k−1 is the covariance matrix. The sequential

updating scheme is presented as follows.

Step 1: use measurements at sensor 1 to update x̂τ
k−1 and

P̂τ
k−1, yielding x̂

τ
k,1:1 and P̂τ

k,1:1 (1 ≤ τ ≤ K );

Step 2: use measurements at sensor 2 to update x̂τ
k,1:1 and

P̂τ
k,1:1, yielding x̂τ

k,1:2 and P̂τ
k,1:2 (1 ≤ τ ≤ K ). Repeat this

process until step N .

Step N: , use measurements at sensor N to update x̂τ
k,1:N−1

and P̂τ
k,1:N−1, yielding x̂

τ
k,1:N and P̂τ

k,1:N (1 ≤ τ ≤ K ).

x̂τ
k,1:N and P̂τ

k,1:N are the estimates of the target state

and covariance matrix at time k , i.e. x̂τ
k = x̂τ

k,1:N , and

P̂τ
k = P̂τ

k,1:N . Therefore (7) can be computed as

p(xτ
k |Yk

1, . . . ,Y
k
N ) = N (xτ

k |x̂τ
k,1:N , P̂τ

k,1:N )

In the following we will show how to update x̂τ
k,1:s−1 and

P̂τ
k,1:s−1 by using measurements at sensor s, i.e. ys,k .

With x̂τ
k,1:s−1 and P̂τ

k,1:s−1, the probability density of xτ
k

conditioned on measurements at the first s-1 sensors is

approximated as

p(xτ
k |Yk

1, . . . ,Y
k
s−1,Y

k−1
s . . . ,Yk−1

N )

= N (xτ
k |x̂τ

k,1:s−1, P̂
τ
k,1:s−1)

Thus x̂τ
k,1:s−1 and P̂τ

k,1:s−1 (1 ≤ τ ≤ K ) contain all the

statistical information inYk
1, . . . ,Y

k
s−1,Y

k−1
s . . . ,Yk−1

N . The

probability density of xτ
k conditioned on measurements at the

first s sensors is thus

p(xτ
k |ys,k ,Yk

1, . . . ,Y
k
s−1,Y

k−1
s . . . ,Yk−1

N )

= p(xτ
k |ys,k , x̂1k,1:s−1, . . . , x̂

K
k,1:s−1)

=
∑

εs

p(xτ
k |εs, ys,k , x̂τ

k,1:s−1)p(εs|ys,k , x̂1k,1:s−1, . . . , x̂
K
k,1:s−1)

≈ N (xτ
k |x̂τ

k,1:s, P̂
τ
k,1:s) (15)

where

x̂τ
k,1:s =

ns
∑

is=0

ατ
is
x̃τ
k,1:s−1(is)

P̂τ
k,1:s =

ns
∑

is=0

ατ
is

{

P̃τ
k,1:s−1(is) + (x̃τ

k,1:s−1(is) − x̂τ
k,1:s)

×(x̃τ
k,1:s−1(is) − x̂τ

k,1:s)
T
}

(16)

x̃τ
k,1:s−1(is) and P̃τ

k,1:s−1(is) are the results of updat-

ing x̂τ
k,1:s−1 by suing measurement ys,k (is). Similar to the

P-MSJPDA, KF is not applicable to compute the statistical

quantities above owing to the nonlinearity of the measure-

ment equation in PMSR. A sequential UKF for computing

x̃τ
k,1:s−1(is) and P̃

τ
k,1:s−1(is) with ys,k (is), x̂

τ
k,1:s−1, and P̂

τ
k,1:s−1

is proposed in this paper and shown in the appendix.

In (15), εs is an association event that assigns each mea-

surement at sensor s to a target or claims it as clutter, as shown

in section II. ατ
is
is the probability of associating ys,k (is) to

target τ , and is the summation of the posterior probabilities

of all the association events εs in which ys,k (is) is assigned to

target τ , i.e.

ατ
is

∝
∑

εs

p(εs|x̂1k,1:s−1, . . . , x̂
K
k,1:s−1, ys,k ) (17)

where

p(εs|x̂1k,1:s−1, . . . , x̂
K
k,1:s−1, ys,k )

∝ p(ys,k |εs, x̂1k,1:s−1, . . . , x̂
K
k,1:s−1)

∝
L

∏

j=1

p(ys,k (i
(j)
s )|Z(j)

τ,is
, x̂τ (j)

k,1:s−1) (18)
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p(ys,k (is)|Zτ,is , x̂
τ
k,1:s−1) is the predicted measurement

likelihood and can also be computed by using the procedure

in the appendix.

Similar to the P-MSJPDA, in order to compute the associ-

ation probabilities ατ
is
, the optimal JPDA enumerates all the

association events εs, which is NP-hard. Still, many asso-

ciation events only have very small probabilities and con-

tribute little to the solution, thus them-best association events

with the m-largest probabilities are utilized instead, which

results in a practical and near optimal approximation method.

Suppose ε
(1)
s , ε

(2)
s , . . . , ε

(m)
s are them-best association events,

thus (17) becomes

ατ
is

∝
∑

1≤i≤m
p(ε(i)s |x̂1k,1:s−1, . . . , x̂

K
k,1:s−1, ys,k ) (19)

Finding them-best association events in this subsection is a

typical m-best 2-D assignment problem, which can be solved

optimally in polynomial time. Assigning a cost to each of the

association events εs with its generalized likelihood ratio, i.e.

c(εs) =
L

∏

j=1

p(ys,k (i
(j)
s )|Z(j)

τ,is
, x̂τ (j)

k,1:s−1)

Vs
(20)

and denoting2 as the association event space which contains

all the feasible association events εs, the m-best 2-D assign-

ment problem is casted in the following

ε(1)s = arg min
εs∈2

{c(εs)}

ε(2)s = arg min
εs∈2\ε(1)s

{c(εs)}

...

ε(m)s = arg min

εs ∈ 2\ε(n)s
n = 1, 2, . . . ,m− 1

{c(εs)} (21)

(21) can be solved efficiently by anm-best 2-D assignment

algorithm described in [46] with the worst case complexity

of O(mL4), where L is the number of two-tuples in εs. This

complexity can further be reduced to O(mL3) with some

optimization steps [46].

We need to perform this m-best 2-D assignment in each

step. The overall complexity is O(mNL3), which is better

than the m-best (N + 1)-D assignment case, since there are

no relaxation iterations in 2-D assignment. If we take into

account the complexity of the computation of the assignment

cost, which is (K+1)
N
∑

s=1

ns in this subsection, the S-MSJPDA

well outperforms its parallel counterpart in computation time.

IV. SIMULATION

In this section we will compare the performance of

P-MSJPDA and S-MSJPDA in an FM-based PMSR scenario

through simulations. We consider a simulation setup shown

is figure 2.

Three FM transmitters are used with the carrier frequen-

cies of 93.1 MHz, 90.9 MHz and 99.9 MHz respectively.

FIGURE 2. Sketch of the simulation scenario.

Four targets fly parallel over the surveillance region from

k = 1 s to k = 50 s with the same initial velocities of

vτ (k) = [200, 244.1]Tm/s, τ = 1, 2 . . . , 4, and they are

about 2 km to each other. In this case the bistatic range and

Doppler frequency of the four targets are similar to each

other, so both gating and clustering cannot separate the four

targets, and then the multi-sensor multi-target tracking prob-

lem holds. The relative positions of the transmitters and the

receiver, and the trajectories of the four targets are depicted

in figure 2, which reveals the real distribution of three FM

broadcasting stations in northwest China. The measurement

noise follows a Gaussian distribution for bistatic range and

Doppler frequency. We set the deviation of the bistatic range

to 1000 m, and that of the Doppler frequency to 1 Hz, typical

values for FM based passive radar. Under this setup, the four

parallel targets in figure 2 cannot be resolved in the bistatic

range domain because of the poor range resolution of FM

signals. However, they can usually be resolved in the Doppler

frequency domain given the excellent Doppler frequency res-

olution. We thus assume the four targets are resolved. Since

the track initiating is not within the scope of this paper, we set

the initial state of each track as the true state plus some

random noise. Gating and clustering are performed to reduce

the computational complexity. It is noted that the same gating

and clustering procedures are used in both tracking methods.

We set the detection probability PD and the number of

clutter at each sensor per scan as 0.8 and 50 respectively.

100 independent trials are conducted. The root mean square

position error (RMSE) of each target is given as

ςτ (k) = 1√
M

√

√

√

√

M
∑

i=1

[σ iτ (k)]
2 (22)

where M is the number of Monte Carlo trails, and σ iτ (k) is

the position error of target τ at time k corresponding to the

i-th trails. The RMSEs of target 1 and 4 are shown in figure 3.

It can be seen that the RMSE achieved by P-MSJPDA is close

to the true assignment case, however S-MSJPDA degrades
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FIGURE 3. RMSEs of target 1and 2. (a) Target 1, (b) target 2.

slightly. For P-MSJPDA, the converged RMSEs of the two

targets are blew 120 m. For S-MPJPDA, the converged

RMSEs are between 120 m and 140 m. This is due to the

fact that the S-MSJPDA only considers measurements from

one sensor per step, and the assignment result will affect that

of the next step. For example, if a target is assigned with a

dummy measurement or a measurement from another target

at sensor s, the updated target state at step s will have a poor

quality, which is not good for the assignment of the next step.

Fortunately, the RMSE degradation of S-MSJPDA is quite

small compared to the surveillance region size.

In the following we will test the performance of the two

tracking methods in terms of position accuracy, loss probabil-

ity and running time versus detection probability and clutter

density. We average ςτ (k) over timek and target index τ to

denote the position accuracy, i.e. ς = 1
4

4
∑

τ=1

[ 1
50

50
∑

k=1

ςτ (k)].

Furthermore, we use a strategy similar to that in [38] to

report the loss of a target. That is, for each target, if the

dummy measurement has the largest association probability

for successive four scans, or the target gate is larger than

a certain threshold, the target is declared lost. We take the

averaging loss probabilities over the four targets as the loss

FIGURE 4. Tracker accuracy versus detection probability 50 clutters each
sensor per scan.

FIGURE 5. Loss probability versus detection probability. 50 clutters each
sensor per scan.

probability of the tracking method. Finally, we run all the

simulations on a PC with four 3.3-GH Intel processors, and

use the averaging running time over theM Monte Carlo trails

to examine the running time of the two tracking methods.

We first study the performance of the two tracking meth-

ods versus the detection probability PD. We set the number

of clutters at each time instant per sensor as 50. For each

PD, 100 independent trials are conducted. The results are

displayed in figure 4, 5 and table I. Figure 4 depicts the

position accuracy of the two tracking methods. It is seen

that the position accuracy of the both methods increases with

detection probability PD. This is because more true measure-

ments are available to update the targets as PD increases.

The position accuracy of the S-MSJPDA degrades slightly

compared to the P-MSJPDA. Figure 5 depicts the loss prob-

abilities of the two methods. It can be seen that the loss

probabilities of the both methods decrease with the increase

of PD where more true measurements are available. Since

the S-MSJPDA only degrades slightly in position accuracy,

the loss detection performance of thismethod is similar to that

of the P-MSJPDA. Table I shows the running time of the two

tracking methods. It can be seen that the S-MSJPDA is much

faster than the P-MSJPDA. This verifies the previous analysis
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TABLE 1. Running time versus detection probability.

FIGURE 6. Tracker accuracy versus clutter density (PD = 0.8).

that the computation of the assignment costs in S-MSJPDA

is more efficient. It can also be seen that as PD increases the

S-MSJPDA becomes slow while the P-MSJPDA goes fast.

This is because of the nature of the 2-D and S-D assignments

as PD increases [45], [46]. Anyway, the S-MSJPDA is much

faster than its parallel counterpart for all PD tested.

There are 50 clutters at each sensor per scan

We then test the performance of both tracking methods

versus the clutter density. We set the detection probability as

0.8. We vary the number of clutter at each sensor per scan

from 100 to 500. For each clutter density, 100 independent

trials are conducted. The results are displayed in figure 6,

7 and table II. Figure 6 shows the position accuracy of the two

tracking methods. It can be seen that the position accuracy of

bothmethods degrades with the increase of the clutter density.

However, this degradation is quite small compared with the

surveillance region size because of the pre-performing of the

gating procedure. It can also be seen that the P-MSJPDA is

still slightly better than the S-MSJPDA. Figure 7 displays a

similar performance of the both methods in loss probabilities.

Table II shows the running time of the two methods. It can be

seen that the S-MSJPDA is much faster than the P-MSJPDA.

It is noted that since gating and clustering are performed,

the performance of both methods only degrades slightly in

terms of position accuracy, loss probability, and running time

with the increase of clutter density.

FIGURE 7. Loss probability versus clutter density (PD = 0.8).

TABLE 2. Running time versus clutter density.

We have also tried to reduce the distance between targets

to see the behaviors of the two tracking methods and found

that the tracks obtained tend to switch to the trajectories of

the other targets as their distance decreases especially when

it is smaller than 1 km, the deviation of the bistatic range. The

closer the targets are to each other, the more frequent the track

switch is. This is quite expectable since the measurements

from one target may be closer to another target if the distance

between the two targets are smaller than the measurement

deviation. In this case the measurements will be assigned to

a false target and the track switch occurs.

It can be concluded from the above simulations that the

S-MSJPDA is much more efficient than the P-MSJPDA in

PMSR target tracking, with acceptable degradation in posi-

tion accuracy and loss probability.

V. EXPERIMENTAL RESULTS

In this section we will apply the S-MSJPDA to an experimen-

tal FM-based PMSR for aircraft tracking in real life scene.

The distribution of the transmitters and receiver is the same

with that shown in figure 2. The signal processing procedure

of the radar is shown in figure 8.

The radar is equipped with an 8-element uniform circu-

lar antenna array to collect the reference signal and target

echoes. Each array element is connected to a digital chan-

nelized receiver to resolve signals coming from different

FM transmitters. For each transmit-receive pair, the refer-

ence signal is extracted by using the beamforming technique.

VOLUME 7, 2019 34495



X. Lyu, J. Wang: Sequential Multi-Sensor JPDA for Target Tracking in PMSR

FIGURE 8. Signal processing diagram of the experimental FM-based
PMSR.

With the reference signal, clutter cancellation and range-

Doppler cross correlation is performed and a constant false

alarm ratio (CFAR) procedure is conducted to detect potential

targets. If a target is detected on the range-Doppler sur-

face, its bistatic range and Doppler frequency are collected

and sent to the target tracking procedure. A comprehensive

software is developed based on the compute unified device

architecture (CUDA) to perform the beam scanning, clutter

cancellation, range-Doppler cross correlation, CFAR detec-

tion, and target tracking. The software runs on a Graphic

Processing Unit (GPU), thus the radar system can output

tracking results at each second. In the target tracking proce-

dure, the m/n logic [22] is designed to initiate new tracks. The

S-MSJPDA is developed to maintain the confirmed tracks

because of its high efficiency in computation time compared

to the P-MSJPDA. The deviation of bistatic range is set to

1000 m. The deviation of Doppler frequency is set to 1 Hz.

During the experiment, a lot of tracking results are obtained,

among which we only pick out a typical one and depict it

in figure 9 by using MATLAB. Figure 9 also displays the

ADS-B result. It can be seen that the tracks of the three

targets obtained by our radar are rather close to the ADS-B

tracks. We take the ADS-B tracks as the real trajectories and

use the time average of the absolute difference between the

S-MSJPDA tracks and the real trajectories to approximate

the RMS track errors. We also count the track length of the

three targets. The results are shown in table III. It is seen

that the maximum track length maintained by our radar is

75.9 km, and themaintained length of the other tracks exceeds

20 km. The maximum track error is about 0.7 km and the

minimum one is 0.45 km, which seam slightly worse than the

simulation ones. This may be because we neglect the target’s

altitude. In addition, we found during the experiment that

one of the FM transmitters had poor detection probabilities

FIGURE 9. Experimental result.

TABLE 3. Track errors and length of the three captured targets.

over the targets, which also causes the degradation of the

position accuracy. It is of limited improvement to include the

target altitude into the state vector, since the FM transmitters

are not sufficiently distinct in altitudes and in this case it is dif-

ficult to estimate a target’s altitude with satisfactory accuracy.

Adoption of more transmitters and better transmitter-receiver

distribution is a reliable way to increase the position accuracy.

VI. CONCLUSION

In this paper we evaluated the behaviors of S-MSJPDA in

PMSR target tracking with bistatic range and Doppler fre-

quency measurements. We provided a comprehensive com-

parison between S-MSJPDA and P-MSJPDA in terms of

tracker accuracy, loss probability, and running time.We found

from the comparison that the rarely discussed S-MSJPDA

is much more efficient than the widely used P-MSJPDA in

PMSR, with acceptable degradation in position accuracy and

loss probability. We further apply the S-MSJPDA to real life

aircrafts tracking using an experimental FM-based PMSR.

The tracks of three targets are shown in the paper, among

which the maximal track length is up to 75.9km. The track

accuracy of the targets is slightly worse than the simulation

case, for which the reasons have been analyzed, i.e. neglec-

tion of the target’s altitude in the tracking system and poor

detection probability of one of the three FM transmitters

during the experiments. Simulation and experimental results

verify that S-MSJPDA has great potentials in target tracking

in passive multi-static radar.

APPENDIX

1. Input:ys,k (is ),x̂
τ
k,1:s−1,P̂

τ
k,1:s−1,Rk ,and hs;

2. Determine sigma points χ1,χ2, . . . ,χQ and weights

w1,w2, . . . ,wQ to match mean x̂τ
k,1:s−1 and covariance

matrix P̂τ
k,1:s−1;
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3. Compute the transformed sigma points ξ i = hs(χ i);

4. Compute the predicted measurement statistics:

ŷτ
s/1:s−1,k =

Q
∑

i=1

wiξi

6̂
τ

s/s:s−1,k = Rk+
Q

∑

i=1

wi(ξ i−ŷτ
s/1:s−1,k )(ξi−ŷτ

s/1:s−1,k )
T

ψk =
Q

∑

i=1

wi(χ i − x̂τ
k,1:s−1)(ξ i − ŷτ

s/1:s−1,k )
T

The predicted measurement likelihood is computed as:

p(ys,k (is)|Zτ,is , x̂
τ
k,1:s−1)

= N (ys,k (is)|ŷτ
s/1:s−1,k , 6̂

τ

s/s:s−1,k )

5. Compute the posterior mean and covariance matrix:

x̃τ
k,1:s−1(is) = x̂τ

k,1:s−1 + ψk (6̂
τ

s/s:s−1,k )
−1

×(ys,k (is) − ŷτ
s/1:s−1,k )

P̃τ
k,1:s−1(is) = P̂τ

k,1:s−1 − ψk (6̂
τ

s/s:s−1,k )
−1(ψk )

T

6. Output:

x̃τ
k,1:s−1(is), P̃

τ
k,1:s−1(is), p(ys,k (is)|Zτ,is , x̂

τ
k,1:s−1).
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