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Abstract Spike timing-dependent plasticity (STDP) is under neuromodulatory control, which is

correlated with distinct behavioral states. Previously, we reported that dopamine, a reward signal,

broadens the time window for synaptic potentiation and modulates the outcome of hippocampal

STDP even when applied after the plasticity induction protocol (Brzosko et al., 2015). Here, we

demonstrate that sequential neuromodulation of STDP by acetylcholine and dopamine offers an

efficacious model of reward-based navigation. Specifically, our experimental data in mouse

hippocampal slices show that acetylcholine biases STDP toward synaptic depression, whilst

subsequent application of dopamine converts this depression into potentiation. Incorporating this

bidirectional neuromodulation-enabled correlational synaptic learning rule into a computational

model yields effective navigation toward changing reward locations, as in natural foraging

behavior. Thus, temporally sequenced neuromodulation of STDP enables associations to be made

between actions and outcomes and also provides a possible mechanism for aligning the time scales

of cellular and behavioral learning.

DOI: 10.7554/eLife.27756.001

Introduction
Spike timing-dependent plasticity (STDP) is a form of Hebbian learning that depends on the order

and precise timing of presynaptic and postsynaptic spikes (Gerstner et al., 1996; Markram et al.,

1997; Bi and Poo, 1998; Song et al., 2000). STDP is a computationally attractive mechanism that

has been implicated in several forms of learning and memory including competitive Hebbian learning

(Song et al., 2000; Clopath et al., 2010). Nevertheless, from a theoretical perspective, two proper-

ties complicate its use as a general mechanistic explanation of behavioral learning. Firstly, in contrast

to many forms of behavioral learning, conventional STDP is unsupervised, that is, the resulting plas-

ticity is not informed by the outcome of the activity (Hertz et al., 1991; Gerstner et al., 2014). Sec-

ondly, STDP relies on shorter time scales than most behaviors. Given that STDP is under

neuromodulatory influence (Seol et al., 2007; Zhang et al., 2009; Pawlak et al., 2010), here we

sought to determine whether behaviorally relevant activation of different neuromodulatory signals

could address both of these issues in hippocampus-dependent learning.

A wealth of experimental data has implicated the hippocampus with its constituent place cells

(O’Keefe and Dostrovsky, 1971; O’Keefe and Nadel, 1978) in spatial learning and memory in

non-human animals (Morris et al., 1982) as well as humans (Ekstrom et al., 2003). Hippocampal

synaptic plasticity (Bliss and Lomo, 1973; Bliss and Collingridge, 1993), including STDP (Bi and

Poo, 1998; Debanne et al., 1998; Kwag and Paulsen, 2009; Andrade-Talavera et al., 2016), is

believed to mediate the encoding of spatial memories (Morris et al., 1986; Tsien et al., 1996).
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Different neuromodulatory inputs into the hippocampus are active during distinct behavioral states.

In particular, whilst exploratory behavior coincides with an increased cholinergic tone (Kametani and

Kawamura, 1990; Marrosu et al., 1995; Thiel et al., 1998), rewards are associated with activity of

dopaminergic neurons (Schultz et al., 1997; Suri and Schultz, 1999; Pan et al., 2005). Importantly,

we recently demonstrated that dopamine can convert hippocampal timing-dependent long-term

depression (t-LTD) into timing-dependent long-term potentiation (t-LTP) when applied after a delay

of minutes (Brzosko et al., 2015), thus providing a possible mechanism for a supervisory signal to

associate specific experiences with delayed rewards in hippocampus-dependent reward learning.

Here, we set out to investigate the effect of cholinergic and subsequent dopaminergic activity on

hippocampal STDP. Moreover, we wanted to develop and test an ethologically relevant computa-

tional model of reward-based spatial navigation based on this temporally sequenced neuromodula-

tion of STDP. Specifically, we wished to establish whether the temporal characteristics of cholinergic

and dopaminergic modulation of hippocampal synaptic plasticity can explain key aspects of adaptive

foraging behavior in a changing environment such as exploration and reward-seeking navigation,

including unlearning of previously exploited reward locations.

Results and discussion
To examine the physiological rules governing hippocampal STDP, we first wanted to investigate the

effect of cholinergic modulation on the induction of synaptic plasticity. As before (Brzosko et al.,

2015), we monitored excitatory postsynaptic potentials (EPSPs) evoked by extracellular stimulation

of the Schaffer collateral pathway during whole-cell recordings of CA1 pyramidal cells in mouse hori-

zontal slices (postnatal days 12–18; Materials and methods). Plasticity was induced in current clamp

mode using an induction protocol consisting of 100 pairings of a single EPSP followed by a single

postsynaptic spike (pre-before-post pairing) or a single postsynaptic spike followed by a single EPSP

(post-before-pre pairing) at 0.2 Hz. Consistent with previous studies (Bi and Poo, 1998;

Zhang et al., 2009; Edelmann and Lessmann, 2011; Brzosko et al., 2015), in control condition the

pre-before-post pairing with a time interval between the presynaptic and postsynaptic activity (Dt) of

10 ms induced t-LTP (+ Pairing – ACh: 135 ± 7%, t(7) = 4.7, p=0.0022 vs. 100%, n = 8; Figure 1a,b;

Figure 1—source data 1). However, when acetylcholine (1 mM) was bath-applied for 10 min from 1

to 2 min before and during the same pre-before-post pairing in interleaved experiments, robust

t-LTD was induced (+ Pairing + ACh: 63 ± 8%, t(5) = 4.9, p=0.0046 vs. 100%, n = 6; t(12) = 6.6,

p<0.0001 vs. + Pairing – ACh; Figure 1a,b; Figure 1—source data 1). To exclude the possibility

that acetylcholine by itself could induce LTD in the test pathway, control experiments with ongoing

synaptic stimulation over 60 min at 0.2 Hz, but without pairing with postsynaptic action potentials,

were performed. In accordance with earlier reports (Sugisaki et al., 2011), application of acetylcho-

line for 10 min had no significant effect on the basal Schaffer collateral transmission (– Pairing +

ACh: 90 ± 6%, t(6) = 1.8, p=0.1220 vs. 100%, n = 7; Figure 1a,b; Figure 1—source data 1). Since

muscarinic acetylcholine receptors are highly expressed in the hippocampus (Levey et al., 1995),

the specificity of this cholinergic modulation of STDP was assessed using the muscarinic acetylcho-

line receptor antagonist atropine (100 nM). The application of atropine prevented acetylcholine-facil-

itated t-LTD, resulting in significant t-LTP instead (Dt =+10 ms; +ACh: 63 ± 9%, t(4) = 4.1, p=0.0146

vs. 100%, n = 5; +ACh + Atropine: 141 ± 8%, t(5) = 5.1, p=0.0037 vs. 100%, n = 6; t(9) = 6.5,

p<0.0001 vs. +ACh; Figure 1c,d; Figure 1—source data 1). This implies that the facilitation of

t-LTD was due to specific muscarinic acetylcholine receptor activation. Input-specific t-LTD was also

induced when acetylcholine was applied during the pairing protocol with Dt = 0 ms (Control: 160 ±

17%, t(4) = 3.6, p=0.0238 vs. 100%, n = 5; + ACh: 64 ± 13%, t(7) = 2.9, p=0.0245 vs. 100%, n = 8; t

(4) = 5.9, p=0.0041 vs. Control; Figure 1e; Figure 1—source data 1; unpaired control pathway not

shown) and Dt = �20 ms (Control: 66 ± 10%, t(6) = 3.5, p=0.0124 vs. 100%, n = 7; + ACh: 63 ± 12%,

t(5) = 3.0, p=0.0292 vs. 100%, n = 6; t(5) = 0.7, p=0.5265 vs. Control; Figure 1e; Figure 1—source

data 1). However, pairing protocols with spike timing interval extended to ±50 ms during application

of acetylcholine did not lead to a significant change in synaptic weights (Dt =+50 ms: 84 ± 11%, t(6)

= 1.5, p=0.1852 vs. 100%, n = 7; Dt = �50 ms: 113 ± 15%, t(5) = 0.8, p=0.4409 vs. 100%, n = 6;

Figure 1e; Figure 1—source data 1). Together, our results suggest that the activation of muscarinic

acetylcholine receptors during the coordinated spiking activity biases STDP toward synaptic depres-

sion at the Schaffer collateral pathway. Hence, both dopamine (Brzosko et al., 2015) and
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Figure 1. Acetylcholine biases STDP toward depression. (a) In control condition, the pre-before-post pairing protocol with Dt =+10 ms induced t-LTP

(red), whereas in the presence of 1 mM acetylcholine (ACh), the same pairing protocol induced t-LTD (black). In the absence of the pairing protocol,

ACh had no effect on baseline EPSPs (blue). Traces show an EPSP before (1) and 40 min after pairing (2) for each condition. (b) Summary of results

(mean ± s.e.m.). (c) Application of muscarinic ACh receptor antagonist, 100 nM atropine, at the beginning of the recordings prevented ACh-facilitated

Figure 1 continued on next page
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acetylcholine (Figure 1) modulate synaptic plasticity to yield synaptic potentiation (Figure 1—figure

supplement 1a,c; Figure 1—source data 2; Brzosko et al., 2015) and depression (Figure 1e),

respectively, irrespective of the precise spike order during pairing. Each of the two neuromodulators

effectively converts a spike timing-dependent learning rule into a correlation-based learning rule but

they do so in opposite directions. We also investigated the effect of co-application of acetylcholine

and dopamine. We found that co-activation of dopaminergic and cholinergic receptors results in syn-

aptic depression with post-before-pre pairing and leads to an initial synaptic depression followed by

a gradual reversal of the synaptic weights back toward baseline with pre-before-post pairing (Fig-

ure 1—figure supplement 1b,c; Figure 1—source data 2).

While several previous studies using plasticity induction protocols other than STDP showed that

acetylcholine, primarily via activation of muscarinic M1 receptors, facilitates hippocampal LTP

(Boddeke et al., 1992; Huerta and Lisman, 1995; Ovsepian et al., 2004; Shinoe et al., 2005;

Buchanan et al., 2010; Connor et al., 2012; Digby et al., 2012; Dennis et al., 2016), acetylcholine

has also been found to induce LTD, particularly at higher concentrations (Scheiderer et al., 2006;

Volk et al., 2007; Dickinson et al., 2009; Jo et al., 2010; Kamsler et al., 2010) — likely through

the activation of a number of muscarinic receptor subtypes (Teles-Grilo Ruivo and Mellor, 2013).

Thus, the polarity of acetylcholine-modulated plasticity can depend on the concentration of agonist

used and specific cholinergic receptor subtype activated (Müller et al., 1988; Auerbach and Segal,

1996; Dennis et al., 2016). Under our experimental conditions, a lower concentration of acetylcho-

line (100 nM) during pre-before-post pairing did not result in synaptic depression, but it prevented

significant potentiation from developing (Dt =+10 ms; � ACh: 162 ± 16%, t(5) = 3.8, p=0.0127 vs.

100%, n = 6; + ACh: 113 ± 9%, t(9) = 1.4, p=0.1888 vs. 100%, n = 10; t(14) = 2.9, p=0.0119 vs. �

ACh; Figure 1—figure supplement 2; Figure 1—source data 3). Our findings are consistent with

previous reports using STDP induction protocols, showing that cholinergic receptor activation ena-

bles t-LTD in the visual cortex (Seol et al., 2007) and facilitates t-LTD in the dorsal cochlear nucleus

(Zhao and Tzounopoulos, 2011), but appear to contrast with results from studies in the rat hippo-

campus (Adams et al., 2004; Sugisaki et al., 2011, 2016).

A crucial aspect of foraging involves reward-seeking behavior. Most reinforcement learning mod-

els rely on the ability of the reinforcing signal to strengthen active synapses, also when it arrives after

the activity has occurred (Sutton and Barto, 1981). Therefore, we next wanted to extend our previ-

ous finding that the reinforcing signal dopamine can retroactively convert t-LTD into t-LTP

(Brzosko et al., 2015) by investigating whether dopamine also modulates acetylcholine-facilitated

t-LTD. Bath-application of atropine (100 nM) to block muscarinic acetylcholine receptors immediately

after acetylcholine washout did not affect the expression of acetylcholine-facilitated t-LTD (Dt =+10

ms; 79 ± 9%, t(9) = 2.4, p=0.0399 vs. 100%, n = 10; Figure 2a,c; Figure 2—source data 1). Atropine

also did not significantly affect baseline EPSPs (83 ± 8%, t(6) = 2.2, p=0.0747 vs. 100%, n = 7;

Figure 1 continued

t-LTD (Dt =+10 ms; black) and pre-before-post pairing resulted in significant t-LTP (red). Traces are presented as in a. (d) Summary of results. (e)

Summary of the STDP induction with various spike timing intervals (Dt in ms) in control condition (� ACh; red) and in the presence of ACh (+ ACh;

black). Each data point is the group mean percentage change from baseline of the EPSP slope. Error bars represent s.e.m. Significant difference

(*p<0.05, **p<0.01, ***p<0.001) compared with the baseline or between the indicated two groups (two-tailed Student’s t-test). The total numbers of

individual cells (blue data points) are shown in parentheses.

DOI: 10.7554/eLife.27756.002

The following source data and figure supplements are available for figure 1:

Source data 1. Source data for Figure 1.

DOI: 10.7554/eLife.27756.003

Source data 2. Source data for Figure 1—figure supplement 1.

DOI: 10.7554/eLife.27756.004

Source data 3. Source data for Figure 1—figure supplement 2.

DOI: 10.7554/eLife.27756.005

Figure supplement 1. Neuromodulation of STDP by dopamine and co-application of dopamine and acetylcholine.

DOI: 10.7554/eLife.27756.006

Figure supplement 2. Low concentration of acetylcholine prevents development of t-LTP.

DOI: 10.7554/eLife.27756.007
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Figure 2. Dopamine retroactively converts acetylcholine-facilitated t-LTD into t-LTP. (a) Application of muscarinic

acetylcholine receptor antagonist, 100 nM atropine, following acetylcholine (ACh; 1 mM) washout after the pre-

before-post pairing protocol with Dt = +10 ms did not affect the development of ACh-facilitated t-LTD (black).

Dopamine (DA; 100 mM) applied, together with atropine, immediately after ACh washout at the end of the same

Figure 2 continued on next page
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Figure 2c; Figure 2—source data 1). Notably, when, in the presence of atropine (100 nM) to pre-

vent sustained muscarinic receptor activation, dopamine (100 mM) was added to the superfusion

fluid, for 10–12 min starting within 1 min after the pairing protocol in interleaved experiments, it con-

verted acetylcholine-facilitated t-LTD into t-LTP (Dt =+10 ms; ACh + Atropine + DA: 145 ± 15%, t(6)

= 3.0, p=0.0244 vs. 100%, n = 7; t(15) = 4.0, p=0.0011 vs. ACh + Atropine; Figure 2a,c; Figure 2—

source data 1). Similarly, the adenylyl cyclase activator forskolin (50 mM), applied for 10–12 min

immediately after the pairing protocol with Dt =+10 ms, also resulted in robust conversion of acetyl-

choline-facilitated t-LTD into t-LTP, emulating the effect of dopamine (143 ± 17%, t(6) = 2.5,

p=0.0447 vs. 100%, n = 7; Figure 2b,c; Figure 2—source data 1). The magnitudes of the resultant

synaptic potentiation in the current study (Figure 2a,b; Figure 2—source data 1) are comparable to

those of the dopamine-induced and forskolin-induced conversion of t-LTD into t-LTP in our previous

study (Dt = �20 ms; + DA: 154 ± 10%, t(10) = 5.2, p=0.0004 vs. 100%, n = 11; + Forskolin: 167 ±

17%, t(6) = 3.9, p=0.0078 vs. 100%, n = 7; Figure 4a,b in Brzosko et al., 2015). These results show

that dopamine can convert not only post-before-pre pairing-induced t-LTD (Brzosko et al., 2015)

but also acetylcholine-facilitated pre-before-post pairing-induced t-LTD into t-LTP, when acting

within a few minutes following the induction protocol. The effect of dopamine is therefore irrespec-

tive of the precise spike order and is mediated at least in part via the activation of the cyclic adeno-

sine monophosphate (cAMP) signaling cascade. In contrast, acetylcholine did not have an effect on

plasticity when applied after the induction protocol (Figure 2—figure supplement 1; Figure 2—

source data 2).

At the synaptic level, our data emphasize three crucial features of neuromodulation of hippocam-

pal STDP: (i) neuromodulation enables correlation-based synaptic plasticity, with dopamine promot-

ing potentiation and acetylcholine facilitating depression (Figure 1); (ii) synaptic weights are not only

graded in magnitude but also can shift polarity by subsequent neuromodulation (Figures 1 and

2; Brzosko et al., 2015); and (iii) the conversion of synaptic depression into potentiation by dopa-

mine can occur even after extended delay (Figure 2; Brzosko et al., 2015). These characteristics

suggest that sequential neuromodulation of hippocampal STDP is behaviorally relevant (Figure 3a).

We therefore wanted to test possible functional implications of our newly uncovered synaptic learn-

ing rule in a computational model of hippocampus-dependent reward-based navigation

(Figure 3bi). We developed a network model with place cells that code for the location of an agent

in its environment. These place cells projected onto action neurons that were part of a winner-takes-

all network (Figure 3bii) and dictated the speed and direction of the agent (Figure 3biii, biv;

Foster et al., 2000; Vasilaki et al., 2009; Frémaux et al., 2010, 2013; Materials and methods). The

synaptic connections between the place cells and the action neurons were subject to STDP. In test

simulations (Figure 4a: + ACh), they followed our novel sequentially neuromodulated synaptic learn-

ing rule, with synaptic weights being updated in all trials. The weights were potentiated when

reward, signaled via dopamine (Schultz et al., 1997; Suri and Schultz, 1999; Pan et al., 2005), was

found before the end of a trial but they were depressed when reward was not found, reflecting the

effect of the increased cholinergic tone associated with exploration (Kametani and Kawamura,

Figure 2 continued

pairing protocol, converted ACh-facilitated t-LTD into t-LTP (red). Traces show an EPSP before (1) and 40 min after

pairing (2) in the two conditions. (b) Forskolin (50 mM), applied together with atropine, converted ACh-facilitated

t-LTD into t-LTP, mimicking the effect of DA. Traces are presented as in a. (c) Summary of results from a and b. In

the absence of the pairing protocol, atropine had no significant effect on baseline EPSPs (blue). Error bars

represent s.e.m. Significant difference (*p<0.05) compared with the baseline or between the indicated two groups

(two-tailed Student’s t-test). The total numbers of individual cells (blue data points) are shown in parentheses.

DOI: 10.7554/eLife.27756.008

The following source data and figure supplement are available for figure 2:

Source data 1. Source data for Figure 2.

DOI: 10.7554/eLife.27756.009

Source data 2. Source data for Figure 2—figure supplement 1.

DOI: 10.7554/eLife.27756.010

Figure supplement 1. Acetylcholine applied after the pairing protocol does not affect t-LTP.

DOI: 10.7554/eLife.27756.011
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Figure 3. From plasticity to behavior: A computational model. (a) Schematic diagram of synaptic and behavioral

timescales in reward-related learning. During Exploration, the activity-dependent modification of synaptic strength

due to spike timing-dependent plasticity (STDP) depends on the coordinated spiking between presynaptic and

postsynaptic neurons on a millisecond time scale. STDP develops gradually on a scale of minutes. Increased

cholinergic tone (ACh) during Exploration facilitates synaptic depression. When Reward, signaled via dopamine

(DA), follows Exploration with a Delay of seconds to minutes, synaptic depression is converted into potentiation.

(b) Computational model. (bi) Symmetric STDP learning windows incorporated in the model, where acetylcholine

biases STDP toward synaptic depression, while subsequent application of dopamine converts this depression into

potentiation. (bii) The position of the agent in the field, x(t), is coded by place cells and its moves are determined

by the activity of action neurons. STDP is implemented in the feed-forward connections between place cells and

action neurons. Place cells become active with the proximity of the agent (active neurons in red: the darker, the

higher their firing rate). Place cells are connected to action neurons through excitatory synapses (wfeed: the darker,

the stronger the connection). Action neurons are connected with each other: recurrent synaptic weights (wlat) are

excitatory (red) when action neurons have similar tuning, or inhibitory (blue) otherwise. Thus, the activation of

action neurons is dependent on both the feed-forward and recurrent connections. (biii) Each action neuron j codes

for a different direction aj (large arrow’s direction) and has a different firing rate rj (large arrow’s color: the darker,

the higher the firing rate). The action to take a(t) (black arrow) is the average of all directions, weighted by their

respective firing rate. (biv) The agent takes action a(t). Therefore, it moves to x(t + Dt) = x(t) + a(t).

DOI: 10.7554/eLife.27756.012
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Figure 4. Temporally sequenced cholinergic and dopaminergic modulation of STDP yields effective navigation toward changing reward locations. (a)

Learning of an initial reward location (trials 1–20; 1000 simulations in each trial) shows a modest improvement in learning when cholinergic depression is

included in the model. (i) Example trajectories. The agent starts from the center of the open field (red dot) and learns the reward location (closed black

circle) with (+ ACh; brown) and without (� ACh; green) cholinergic depression built into the model. Trials are coded from light to dark, according to

their temporal order (early = light, late = dark). (ii) Color scheme. (iii) Reward discovery. The graph shows percent cumulative distribution of trials in

which the reward location is discovered for the first time. (iv) Learning curve presented as a percentage of successful simulations over successive trials.

(v) Average time to reward in each successful trial. Unsuccessful trials, in which the agent failed to find the reward, were excluded. (vi) Percentage of

successful simulations in trial 5, under conditions with different magnitudes of dopaminergic effect (learning windows in the top-left corner). Decreasing

the magnitude of dopaminergic potentiation significantly affects learning (p<0.001, two-sample Student’s t-test: Small vs. Medium and Small vs. Large).

Under Medium and Large conditions, the agent performs similarly most likely due to a saturation effect (p>0.05, two-sample Student’s t-test: Medium

vs. Large). (b) Learning of a displaced reward location is facilitated when cholinergic depression is included in the model. (i) Example trajectories (trials

21–40; 1000 simulations in each trial). The agent learns a novel reward location (closed circle; previously exploited reward = open circle). Trajectories

presented as in ai. Comparison of control (– ACh) and test (+ ACh) simulations: (ii) visits to previous reward location (%); (iii) trial number at novel reward

discovery; (iv) successful reward collection over successive trials (%); (v) average time to reward over trials. (vi) Percentage of visits to the old reward

Figure 4 continued on next page
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1990; Marrosu et al., 1995; Thiel et al., 1998). These test simulations were compared against a

second set of simulations (Figure 4a: � ACh), with reward-modulated STDP following a positive

symmetric window (Figure 3bi), gated by dopamine and with no interaction with acetylcholine, as in

previous computational work (Florian, 2007; Izhikevich, 2007; Legenstein et al., 2008). In this con-

trol set of simulations, the weights were potentiated when the reward was found before the end of a

trial, but they were unchanged otherwise. Consistent with previous reward-modulated STDP models

(Frémaux et al., 2010, 2013), dopaminergic potentiation following a successful trial, in which the

agent found the reward, enabled the agent to progressively develop effective navigation toward the

reward location (trials 1–20; Figure 4ai,aii). During this initial reward learning phase, implementing

the sequential modulation by acetylcholine and dopamine in the model led to a modest improve-

ment in learning compared to control simulations (reward discovery: Figure 4aiii; successful trials:

Figure 4aiv; time to reward: Figure 4av). The functional advantage of cholinergic depression

became evident in the second phase of the simulation, when the reward location was moved to the

opposite corner of the open field (Figure 4bi). In this case, cholinergic depression enabled unlearn-

ing of the previously rewarded location (Figure 4bii), which led to enhanced exploration (Figure 4—

figure supplement 1), thereby facilitating subsequent learning of the new reward location

(Figure 4biii–v). This is demonstrated by the large difference in the number of visits to the old

reward location between the two sets of simulations (trials 21–40; + ACh vs. – ACh; Figure 4bii).

The agent discovered the new reward location in fewer trials (Figure 4biii), exhibited a higher per-

centage of successful simulations over successive trials (Figure 4biv), and showed progressive reduc-

tion in the average time and trajectory length to reward in successful simulations (Figure 4bi,bv).

To formulate testable predictions of the relationship between cellular neuromodulation and

behavior, we proceeded to vary the degree of neuromodulation in our model. Decreasing the mag-

nitude of dopaminergic potentiation resulted in slower learning, while increasing it did not produce

any statistically significant difference (Figure 4avi and Figure 4—figure supplement 2), probably

due to a saturation effect. Altering the magnitude of cholinergic depression revealed a clear effect

on unlearning performance, where increasing the magnitude of acetylcholine effect yielded faster

unlearning (Figure 4bvi and Figure 4—figure supplement 3).

Our computational model bears resemblance to conventional reinforcement learning models

(Sutton and Barto, 1998), in which the active connections carry a trace making them eligible for

learning changes should a reinforcing event (‘reward’) occur later in time. This concept of ‘eligibility

trace’ is at the core of network models of reinforcement learning: it is both necessary and sufficient

to learn causal associations between synaptic activity and delayed outcomes (Florian, 2007; Izhike-

vich, 2007; Legenstein et al., 2008). Not only do our experimental results offer evidence for these

mechanisms, which previously had been only theorized, but they also reveal novel characteristics

with important computational implications. Firstly, neuromodulation converts classical STDP into a

correlation-based rule, with same-sign weight changes for both pre-before-post and post-before-pre

pairings (Brzosko et al., 2015; this paper). This feature is incorporated into our model where, rather

than the exact spike timing, it is the integral of the learning window (Figure 4—figure supplement

4) that determines whether the agent learns (positive window) or unlearns (negative window).

Figure 4 continued

location in trial 25, under conditions with different magnitudes of cholinergic depression (learning windows in the top-right corner). Increasing the

magnitude of acetylcholine effect yields faster unlearning (p<0.001, two-sample Student’s t-test: Small vs. Medium, Medium vs. Large and Small vs.

Large). The graphs (biii-bv) are presented as in a. The shaded area (aiv-v and bii, biv-v) represents the 95% confidence interval of the sample mean.

DOI: 10.7554/eLife.27756.013

The following figure supplements are available for figure 4:

Figure supplement 1. Exploration following reward displacement.

DOI: 10.7554/eLife.27756.014

Figure supplement 2. The magnitude of dopamine effect affects learning.

DOI: 10.7554/eLife.27756.015

Figure supplement 3. The magnitude of acetylcholine effect affects unlearning.

DOI: 10.7554/eLife.27756.016

Figure supplement 4. The integral of the asymmetric STDP learning window determines the performance of the agent.

DOI: 10.7554/eLife.27756.017
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Secondly, cholinergic depression allows the agent to explicitly learn from unrewarded trials (this

paper). This leads to a significant computational advantage. Our sequentially neuromodulated syn-

aptic learning rule (test simulations), which allows the agent to learn from both rewarded (+ ACh +

DA) and unrewarded actions (+ ACh – DA), outperformed both the model with symmetric dopa-

mine-modulated learning window (– ACh + DA; Figure 3bi) and the standard reward modulated

STDP model (Figure 4—figure supplement 4) when the reward location was moved. Incorporating

cholinergic depression allowed the agent to appropriately shift between learning and unlearning in a

task-relevant manner. Several computational functions have been previously suggested for acetyl-

choline (Doya, 2002; Yu & Dayan, 2005; Hasselmo, 1999). Our results suggest a role for acetylcho-

line that is complementary to that of dopamine and particularly relevant to changing environments.

Indeed, as demonstrated here, a simple feed-forward network obeying cholinergic-dopaminergic

sequential neuromodulation of STDP is sufficient to guide an agent to changing reward locations as

required during natural foraging behavior (Charnov, 1976; Stephens and Krebs, 1986).

In conclusion, our findings demonstrate that muscarinic acetylcholine receptor activation during

coordinated spiking activity biases STDP toward synaptic depression. Meanwhile, the reward signal

dopamine, via activation of the cAMP pathway, converts both conventional t-LTD (Brzosko et al.,

2015) and acetylcholine-facilitated synaptic depression into potentiation. Incorporating this synaptic

learning rule into a simple feed-forward neural network model successfully guides the agent towards

changing reward locations similar to natural foraging behavior. We suggest that sequential neuro-

modulation of synaptic plasticity provides a robust biological mechanism that might be used in

reward-based navigation and other hippocampus-dependent functions.

Materials and methods

Electrophysiology experiments
Animals
The research was performed under the Animals (Scientific Procedures) Act 1986 Amendment Regu-

lations 2012 following ethical review by the University of Cambridge Animal Welfare and Ethical

Review Body (AWERB). The animal procedures were authorised under Project licence PPL 70/8892.

Wild-type mice (C57BL/6; RRID:IMSR_JAX:000664; postnatal days 12–18; from Harlan, Bicester,

UK or Central Animal Facility, Cambridge University) of both sexes were housed on a 12 hr light/

dark cycle at 19–23˚C, with water and food ad libitum. Caution was taken to minimize stress and the

number of animals used in experiments.

Slice preparation
Mice were anesthetized with isoflurane and decapitated. The brain was rapidly removed, glued to

the stage of a vibrating microtome (Leica VT 1200S, Leica Biosystems, Wetzlar, Germany) and

immersed in ice-cold artificial cerebrospinal fluid (ACSF) containing the following (mM): 126 NaCl, 3

KCl, 26.4 NaH2CO3, 1.25 NaH2PO4, 2 MgSO4, 2 CaCl2, and 10 glucose. The ACSF solution, with pH

adjusted to 7.2 and osmolarity to 270–290 mOsm L�1, was continuously bubbled with carbogen gas

(95% O2/5% CO2). The brain was sectioned into 350-mm-thick horizontal slices. The slices were incu-

bated in ACSF at room temperature in a submerged-style storage chamber for at least 1 hr. For

recordings (1–7 hr after slicing), individual slices were transferred to an immersion-type recording

chamber, perfused with ACSF (2 mL min�1) at 24–26˚C.

Electrophysiology
Whole-cell recordings
Whole-cell patch-clamp recordings were made from CA1 pyramidal neurons (located adjacent to the

stratum oriens). For stimulation of Schaffer collaterals, a monopolar stimulation electrode was placed

in the stratum radiatum of the CA1 subfield. The hippocampal subfields were visually identified using

infrared differential interference contrast (DIC) microscopy. Patch pipettes (resistance: 4–8 MW) were

made from borosilicate glass capillaries (0.68 mm inner diameter, 1.2 mm outer diameter), pulled

using a P-97 Flaming/Brown micropipette puller (Sutter Instruments Co., Novato, California, USA).

The internal solution of patch pipettes was (mM): 110 potassium gluconate, 4 NaCl, 40 HEPES, 2
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ATP-Mg, 0.3 GTP (pH adjusted with 1 M KOH to 7.2, and osmolarity with ddH2O to 270 mOsm L�1).

The liquid junction potential was not corrected for. Cells were accepted for experiment only if the

resting membrane potential at the start of the recording was between �55 and �70 mV. Membrane

potential was held at �70 mV throughout further recording by direct current application via the

recording electrode. At the beginning of each recording, all cells were tested for regular spiking

responses to positive current steps – characteristic of pyramidal neurons.

Stimulation protocol
Single excitatory postsynaptic potentials (EPSPs) of amplitude between 3 and 8 mV were evoked at

0.2 Hz by adjusting the magnitude of direct current pulses (stimulus duration 50 ms, intensity 100 mA-

1 mA). After a stable EPSP baseline period of at least 10 min, a pairing protocol was applied consist-

ing of a single presynaptic EPSP evoked by stimulation of Schaffer collaterals and a single postsynap-

tic action potential elicited with the minimum effective somatic current pulse (1–1.8 nA, 3 ms) via the

recording electrode, repeated 100 times at 0.2 Hz. Spike-timing intervals (Dt in ms) were measured

between the onset of the EPSP and the onset of the action potential. The EPSPs were monitored for

at least 40 min after the end of the pairing protocol. Presynaptic stimulation frequency remained

constant throughout the experiment.

Data acquisition and data analysis
Voltage signals were low-pass filtered at 2 kHz using an Axon Multiclamp 700B amplifier (Molecular

Devices, Sunnyvale, California, USA). Data were acquired at 5 kHz via an ITC18 interface board

(Instrutech, Port Washington, New York, USA), transmitting to a Dell computer running the Igor Pro

software (RRID:SCR_000325; WaveMetrics, Lake Oswego, Oregon, USA). All experiments were car-

ried out in the current clamp (‘bridge’) mode. Series resistance was monitored (10–15 MW) and com-

pensated for by adjusting the bridge balance. Data were discarded if series resistance changed by

more than 30%. Data were analyzed using Igor Pro. EPSP slopes were measured on the rising phase

of the EPSP as a linear fit between the time points corresponding to 25–30% and 70–75% of the

peak amplitude. For statistical analysis, the mean EPSP slope per minute of the recording was calcu-

lated from 12 consecutive sweeps and normalized to the baseline. Normalized ESPS slopes from the

last 5 min of the baseline (immediately before pairing) and from the last 5 min of the recording (35–

40 min or 55–60 min after pairing) were averaged. The magnitude of plasticity, as an indicator of

synaptic change, was defined as the average EPSP slope after pairing expressed as a percentage of

the average EPSP slope during baseline.

Drugs
The following drugs were used: acetylcholine chloride 1 mM or 100 nM, atropine 100 nM, dopamine

hydrochloride 20 mM, forskolin 50 mM. All drugs (purchased from Sigma-Aldrich, Dorset, United

Kingdom; or Tocris Bioscience, Bristol, United Kindgom) were bath-applied through the perfusion

system by dilution of concentrated stock solutions (prepared in water or DMSO) in ACSF.

Statistical analysis
Statistical comparisons were made using one-sample or two-sample two-tailed Student’s t-test as

appropriate, with a significance level of a = 0.05. Data are presented as mean ± s.e.m. Significance

levels are indicated by *p<0.05, **p<0.01, ***p<0.001.

Computational modeling
All computer modeling was done in Matlab (RRID:SCR_001622). The code will be posted on Mod-

elDB after publication. The navigation model is based on a one-layer network (Frémaux et al.,

2013). The place cells in the input layer code for the position of the agent in the environment. They

project to the output layer of action neurons. Each one of the action neurons represents a different

direction. The lateral connectivity in this layer ensures that the action neurons compete with each

other in a winner-take-all scheme. Their activity is then used to determine the action (i.e. the direc-

tion and velocity) to take at every instant (Figure 3).
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Place cells (Figure 3bii)
The agent moves in an open field, modelled as a square of side length of 4 a.u. The initial position

of the agent in each trial is the centre of the open field, which corresponds to the origin of the carte-

sian plane. The position of the agent at time t is described by the bi-dimensional vector of its Carte-

sian coordinates, x tð Þ. The 11� 11 ¼ 121 place cells are distributed on a grid, at a horizontal and

vertical distance of s ¼ 0:4 from one another. The spiking activity of place cell i is modeled as an

inhomogeneous Poisson process, with parameter lpci x tð Þð Þ defined as follows:

l
pc
i x tð Þð Þ ¼ �lpc exp �

jjx tð Þ�xijj
2

s2

 !

:

The firing rate l
pc
i is a function of the distance of the agent from the place cell centre xi. It is at its

maximum, �lpc ¼ 400 Hz, when the agent is located exactly in xi and it decreases as the agent moves

away. This mechanism simulates a place field, which allows for an accurate representation of the

position of the agent in the environment.

Action neurons (Figure 3bii)
Place cells constitute the input to the network, and they project to all action neurons with weights

wfeed. These feed-forward weights are initialized to win ¼ 2 and bounded between wmin ¼ 1 and

wmax ¼ 3. Action neurons are also connected with each other through synaptic weights wlat. The neu-

rons are modeled as zero-order Spike Response Model (SRM0; Gerstner, 1995). The membrane

potential of neuron j is given by:

uj tð Þ ¼
X

i

X

�ti2F
pc

i
;t>t̂j

w
feed
ji � � t��tið Þþ

X

k;k 6¼j

X

�tk2Fa
k
;t>t̂j

wlat
jk � � t��tkð Þþ�Q t� t̂j

� �

exp �
t� t̂j

tm

� �

;

where �¼�5 mV scales the refractory period; t̂j is the last postsynaptic spiking time; and � is the

EPSP described by the kernel � tð Þ ¼ �0
tm�ts

e
�t
tm � e

�t
ts

� �

Q tð Þ; with Q tð Þ being the Heaviside step function,

tm ¼ 20 ms, ts ¼ 5 ms, �0 ¼ 20. Fpc
i and Fa

k are sets containing, respectively, �ti and �tk, the arrival times

of all spikes fired by place cell i and action neuron k. Spiking behavior is stochastic and follows an

inhomogeneous Poisson process with parameter lj uj tð Þ
� �

, which depends on the membrane poten-

tial at time t. In particular,

lj uj tð Þ
� �

¼ l0 exp
uj tð Þ� �

Du

� �

;

where l0 ¼ 60 Hz, Du¼ 2 mV, �¼ 16 mV.

Action neurons represent different directions in the Cartesian plane. Specifically, each action neu-

ron j represents direction aj, where aj ¼ a0ðsinð�jÞ; cosð�jÞÞ, with �j ¼
2jp
N
; N ¼ 40 and a0 ¼ 0:08. The

lateral connectivity between action neuron k and action neuron j is defined as follows:

wlat
jk ¼

w�

N
þwþ

f ðj;kÞ

N
;

where w� ¼�300; wþ ¼ 100 and f is a lateral connectivity function, which is symmetric, positive

and increases monotonically with the similarity of the actions. In particular, f j;kð Þ ¼

1� djk
� �

ez cos �j��kð Þ; with z¼ 20. Neurons therefore excite each other when they have a similar tuning,

and depress otherwise. This ensures that only a few similarly tuned action neurons are active at any

given time, making the trajectory of the agent smooth and consistent.

Action selection (Figure 3biii)
The action selection process determines a tð Þ, the action to take at time t, based on the firing rates of

the action neurons. The activity of action neuron j is approximated by filtering spike train Yj with ker-

nel g:
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�j tð Þ ¼ Yj �g
� �

tð Þ;

where Yj ¼
P

�tj2F
a
j

d t��tj
� �

and g tð Þ ¼ e
�t
tg�e

�t
ng

tg�ng
Q tð Þ; with tg ¼ 50 ms and ng ¼ 20 ms.

If each action neuron j represents direction aj and has an estimated firing rate �j tð Þ, then the

action a tð Þ is the average of all the directions encoded, weighted by their respective firing rates:

a tð Þ ¼
1

N j

P

�j tð Þaj;

where N ¼ 40 is the total number of action neurons. This decision making mechanism allows the

agent to move in any direction, making the action space effectively continuous.

Navigation details (Figure 3biv)
Once action a tð Þ has been determined, the update for the position of the agent is:

Dx tð Þ ¼
a tð Þ if x tþ 1ð Þ in the square

d �u x tð Þð Þ otherwise

�

The agent therefore normally moves with instantaneous velocity a tð Þ. When the agent tries to sur-

pass the limits of the field, it is instantly bounced back by a distance d¼ 0:01. The unit vector u(x(t))

points in the direction opposite to the boundary. To avoid large boundary effects, the feed-forward

weights between place cells on the boundaries and action neurons that code for a direction aj out-

side of the field are set to zero.

The agent is free to explore the environment for a maximum duration of tmax ¼ 15 s. If it finds the

reward at a time trew < Tmax, the trial is terminated earlier, precisely at time t ¼ Trew þ 300 ms. The

extra time mimics consummatory behavior, navigation is thus paused during this interval (i.e. place

cells activity is set to zero). During the first 20 trials, the reward can be found in the circular goal

area centered in c1 ¼ 1:5; 1:5ð Þ with radius r1 ¼ 0:3. In trials 21 to 40, the goal area moves to center

c2 ¼ �1:5;�1:5ð Þ, but maintains the same shape and size. The effect of the inter-trial interval is mod-

eled by resetting all activity.

Synaptic plasticity and learning
The synaptic weights between place cells and action neurons play a fundamental role in defining a

policy for the agent. Plasticity is essential for the agent to learn to navigate the open field and is

implemented in a way that follows the experimental results presented in Figures 1 and 2 and

Brzosko et al., 2015. The synaptic changes combine the modified STDP rule (Figure 3bi) and an eli-

gibility trace that allows for delayed updates.

In particular, the total weight update is:

Dwji tð Þ ¼ hA
X

�ti2F
pc

i

X

�tj2Fa
j

W �tj��ti
� �

0

@

1

A � 

0

@

1

A tð Þ;

where h is the learning rate, A emulates the effect of the different neuromodulators, W is the

STDP window and  is the eligibility trace. Fpc
i and Fa

j are sets containing �ti and �tj, respectively, the

arrival times of all spikes fired by place cell i and action neuron j.

The basic STDP window is W xð Þ ¼ e�
jxj
t ; with t ¼ 10 ms. This function is always symmetric and posi-

tive, but the sign of the final weight change is determined by the neuromodulators at the synapse:

A¼
AACh ¼�1 �DA;þACh

0 �DA;�ACh

ADA ¼þ1 þDA;�ACh

8

<

:

Dopamine is assumed to be released simultaneously at all synapses whenever a reward is

reached. All weight changes are gated by neuromodulators (A¼ 0 when all neuromodulators are

absent). The learning rate h also depends on neuromodulators:
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h¼
0:002 þACh;�DA

0 �ACh;�DA

0:01 �ACh;þDA

8

<

:

The weight change due to STDP is convoluted with an eligibility trace  , modeled as an exponen-

tial decay  tð Þ ¼ e�a t
teQ tð Þ, with te ¼ 2 s and a¼

1 þDA

0 �DA

�

. The eligibility trace keeps track of the

active synapses and allows for a delayed update of the synaptic strength. Variable a in the exponent

acts as a flag and ensures that the eligibility trace is active with dopamine only (a¼ 1).

Two sets of simulations (1000 simulations each) were performed. In the first set (control: � ACh),

no interaction with acetylcholine was assumed. The weights were therefore potentiated only when

the agent found the reward (A ¼ 1; a ¼ 1) and left unchanged otherwise (A ¼ 0). In the second set of

simulations (test: + ACh), acetylcholine was present throughout the task. The weights were updated

online (A ¼ �1; a ¼ 0Þ. When no reward was found before the end of the trial, weights were

depressed. They were otherwise potentiated when reward was found (A ¼ 1; a ¼ 1).

Predictions
We tested the effect of varying the amplitudes of the STDP learning windows under dopaminergic

and cholinergic modulation, ADA and AACh, on the agent’s behavior. We ran simulations under Small,

Medium and Large magnitudes of dopamine and acetylcholine effects, resulting in five different con-

ditions (1000 simulations each). The exact parameters used can be found in the table below.

Magnitude of neuromodulation AACh ADA Figure

Dopamine Small �1 0.1 Figure 4avi;
Figure 4—figure supplement 2

Medium �1 1

Large �1 3

Acetylcholine Small �0.5 1 Figure 4bvi;
Figure 4—figure supplement 3

Medium �1 1

Large �1.5 1

Dopamine-modulated standard asymmetric STDP curve
We also compared our symmetric learning windows with standard asymmetric STDP curves (Fig-

ure 4—figure supplement 4). The total weight update with this rule is

Dwji tð Þ ¼ h
X

�ti2F
pc

i

X

�tj2F
a
j

W2
�tj��ti
� �

0

@

1

A � 

0

@

1

A tð Þ;

where h¼ 0:01 is the learning rate, W2 is the STDP window and  is the eligibility trace (as defined

above). Fpc
i and Fa

j . are sets containing �ti and �tj, respectively, the arrival times of all spikes fired by

place cell i and action neuron j.

The spike timing plasticity rule was implemented as follows

W2 xð Þ ¼
Apre�poste

�x
t if x>0

1

2
Apre�post �Apost�pre

� �

if x¼ 0

Apost�pree
x
t if x<0

8

<

:

The integral of the learning window determines if the agent learns, unlearns or does not learn

(Figure 4—figure supplement 4). We therefore considered three different parameter sets: (i) posi-

tive integral (Apre�post ¼ 2, Apost�pre ¼�1); (ii) zero integral (Apre�post ¼ 1, Apost�pre ¼�1); (iii) negative

integral (Apre�post ¼ 1, Apost�pre ¼�2). The time constant was identical for the two sides of the window

and was taken to be t¼ 10 ms. We ran 1000 simulations for each parameter set.
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