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Abstract 
 

We consider a class of sequential observation and selection decision problems in which applicants are 

interviewed one at a time, decision makers only learn the applicant’s quality relative to the applicants that 

have been interviewed and rejected, only a single applicant is selected, and payoffs increase in the 

absolute quality of the selected applicant. Compared to the optimal decision policy, which we compute 

numerically, results from two experiments show that subjects terminated their search too early. We 

competitively test three behavioral decision rules and find that a multi-threshold rule, which has the same 

form as the optimal decision policy but is parameterized differently, best accounts for the data. Results 

from a probability estimation task show that subjects tend to overestimate the absolute quality of early 

applicants, and give insufficient consideration to the yet-to-be-seen applicants.  
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1. Introduction 
 

Decision makers (DMs) must often choose among alternatives that are presented sequentially, one at 

a time Consequently, in many situations, they must choose options without knowing the full choice set. 

Consider the problem of deciding when to sell an asset on an open market. On any given day, a trader 

observes a selling price and must decide whether to sell without knowing what the price will be on the 

following day. Similarly, in tight housing markets when properties may disappear from the market soon 

after they appear, potential buyers must quite often make irrevocable decisions without knowing what 

options will appear on the horizon. The same dilemma arises in decisions to hire job applicants in times of 

low unemployment, when passing up the opportunity to hire a good applicant may mean that one cannot 

find a better one in the future.  

Sequential decision problems have been specified formally in a number of ways. Problems in which 

the DM is assumed to have complete information about the distribution from which the observations are 

sampled are referred to as full-information problems. There are also partial-information problems in 

which the DM is assumed to know certain features of the distribution from which the observations are 

drawn (e.g., that it is Gaussian) but not others (e.g., the mean and variance of the distribution). The class 

of problems requiring the weakest assumptions about the DM’s state of knowledge regarding the 

distribution from which the observations are drawn are known as no-information problems. As models of 

real-world sequential decision problems, this latter class has a number of virtues. We will illustrate these 

by first noting the drawbacks of the full- and partial-information problems. 

Consider the full-information sequential search problems. It seems doubtful that a DM trying to 

decide when to unload an asset has perfect information about the distribution of price changes for that 

asset. To model the asset-selling decision problem as one involving full-information is therefore 

unrealistic. One might argue that a partial-information formulation might be more defensible. One can 

assume that the DM is well informed and knows that the price changes are log-normally distributed, for 

example, but that she does not know the parameters of the distribution. This formulation may be realistic 
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for the asset-selling problem. However, both the full- and partial-information formulations break down as 

soon as one moves beyond decision alternatives that can be characterized by a single attribute.  

In some sequential decision problems, the value of an option is easily decidable. For example, when 

selling an asset, the price of the asset on any given day is its value. The values of decision alternatives are 

less apparent in many other sequential decision problems. The values of houses and potential employees, 

for example, can be difficult to determine: It is hard to map these multi-attribute alternatives into a single 

measure of value. On the other hand, it is considerably easier to rank them in terms of quality. One can 

decide that one applicant is better than another without assigning each of them meaningful scalar 

measures of quality. In the no-information problems that we consider, one need only assume that the DM 

can rank decision alternatives; there is no need to assume that the DM knows the multivariate distribution 

from which the alternatives are drawn.     

The Secretary Problem is a stylized no-information sequential observation and selection problem that 

first appeared in the February 1960 column of Martin Gardner in Scientific American. It was immediately 

taken up and developed by prominent statisticians and applied mathematicians. Since then, the problem 

has been extended and generalized in many different ways and given rise to a “field” of study in applied 

probability. For partial reviews see Ferguson (1989), Freeman (1983), and Samuels (1991). The secretary 

problem has also stimulated experimental, in addition to purely theoretical, research on optimal stopping 

in a class of sequential observation and selection problems with rank-dependent payoffs—i.e., where the 

payoff depends only on the rank of the selected observation and not on its actual value— by Corbin, 

Olson, and Abbondanza (1975), Seale (1996), Seale and Rapoport (1997, 2000), and Zwick, Rapoport, 

Lo, and Muthukrishnan (2003). 

Although there are many variants of the secretary problem, in its simplest and original form the 

Classical Secretary Problem (CSP) is defined by the following assumptions: 

1. There is only a single position to be filled. 

2. There are n applicants for the position. The value of n is known before the search commences. 

3. It is assumed that the DM can rank the applicants from best to worst without ties. 
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4. The applicants are interviewed sequentially, one at a time, in a random order with each of the n! 

orderings being equally likely. 

5. As each applicant is being interviewed (observed, evaluated), the DM must either accept the 

applicant for the position and thereby terminate the search, or reject the applicant and interview 

the next one, if any. 

6. The decision to either accept or reject the current applicant must be based only on the relative 

ranks of the applicants interviewed so far. 

7. Once rejected, an applicant cannot be recalled. 

8. The DM’s objective is to select the best applicant. With no loss of generality, this objective 

implies that the DM wins 1, if she selects the best applicant, and 0 otherwise. 

Managerial, economic, and marketing sequential observation and selection problems that the CSP has 

been used to model include, among others, hiring an employee for a job, purchasing some product on the 

market, assigning a job to a single machine, choosing an investment alternative, and searching to rent an 

apartment (Zwick et al., 2003). These problems are characterized by decision alternatives (“applicants”) 

that are inspected sequentially. In these problems a balance is sought between the risk of stopping the 

search too soon and accepting an apparently desirable alternative when an even better one might be still to 

come, and the risk of searching too long and discovering that the best alternative was rejected earlier 

(Sardelis & Valahas, 1999).  

It has long been recognized that the CSP is much too restrictive for most applications. Therefore, 

almost every assumption of the CSP has been relaxed. For example, the assumption that the value of n is 

finite and known has been generalized to include the more realistic case where n is uncertain and only its 

distribution function is known (Pressman & Sonin, 1972). The assumption that an applicant, once 

rejected, cannot be recalled has been generalized by allowing backward solicitation (or recall), with a 

probability of success depending on how far in the past the applicant was observed (e.g., Yang, 1974, 

Smith, 1975, Choe & Bai, 1983). Perhaps the most limiting restriction of the CSP is Assumption 8, that 

the DM is satisfied with nothing but the best. This is quite restrictive, since in all of the applications 
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mentioned earlier the DM presumably derives positive utility from selecting some applicant who is not 

the overall best. Different and more realistic objectives have been proposed in an attempt to generalize 

Assumption 8. Gilbert and Mosteller (1966) considered the case where the DM’s objective is to select one 

of the k best applicants (k>1) without differentiating among them. Bartoszynski and Govindarajulu (1978) 

considered a very special case where the DM receives payoffs of a, b, or 0, a>b>0, if she stops and selects 

the overall best, second best, or any other applicant, respectively. Chow, Moriguti, Robbins, and Samuels 

(1964) considered yet another case where the DM’s objective is to minimize the expected rank of the 

chosen applicant, where the top applicant has rank 1, the second best rank 2, etc.  

The most general formulation of the DM’s objective specifies that the DM’s payoff increases 

monotonically in the quality of the selected applicant, so that the lower the ranking of the selected 

applicant the higher the payoff. Let wj denote the DM’s payoff if the applicant she selects has rank Aj 

among all the n applicants. Then, the payoff function for this problem, which we dub the Generalized 

Secretary Problem (GSP), has the form w1>w2>…>wn. In the best choice problem (CSP), w1=1, 

w2=w3=…=wn=0. In the case studied by Bartoszynski and Govindarajulu (1978), w1>w2>0, w3=…=wn=0. 

If the objective is to select one of the top k applicants, then the payoff function assumes the form 

w1=…=wk>0, wk+1=…=wn=0. And in the minimization of expected rank, the payoff function has the very 

special form wj=n-aj, where aj is the overall (absolute) rank of the selected applicant.   

The optimal policy for the GSP implies a particular form of the decision rule that is not immediately 

obvious. A major purpose of the present study is to test experimentally whether financially motivated 

subjects participating in the GSP adhere to this decision rule. If not, we wish to characterize the decision 

rules (heuristics) they actually use in deciding when to stop the search, and to understand the 

psychological basis for their stopping decisions. Section 2 briefly characterizes the optimal decision 

policies for the CSP, the minimization of expected rank case, the GSP, and the numerical algorithms used 

to compute them. Experimental results from several variants of the secretary problem that pertain to the 

present study are summarized in Section 3. Section 4 presents the method and results of our first 

experiment on the GSP. Section 5 presents results from a second GSP experiment with different 



 7 

parameter values, as well as results from an associated probability estimation task. The findings are 

summarized and discussed in Section 6. 

2. Optimal Decision Rules 

In all the variants of the secretary problem, the observations are taken to be the relative ranks s1, s2, 

…, sn, where sj is the rank of the j
th applicant among the first j applicants to be interviewed, rank 1 being 

the best. The absolute ranks are denoted by a1, a2, … , an, where aj is the rank of applicant j among all the 

n applicants including the ones that have yet to be interviewed. To illustrate the relationship between 

absolute and relative ranks, consider n=9 applicants with absolute ranks 2, 9, 5, 3, 6, 1, 8, 7, 4, who are 

interviewed in this order. The resulting relative ranks, which constitute the only information available to 

the DM, are shown (in bold) in the bottom row: 

Period of search 1 2 3 4 5 6 7 8 9 

Absolute Rank 2 9 5 3 6 1 8 7 4 

Relative Rank 1 2 2 2 4 1 6 6 4 

 
In the CSP, applicants with relative rank 1 are called candidates. Obviously, in the CSP one only 

selects a candidate. In the example above there are two candidates, namely, the applicants interviewed in 

periods 1 and 6. The optimal decision rule for the CSP has a very simple form: 

 Reject the first r*-1 applicants and then stop and select the next candidate. 

The optimal policy is obtained numerically from the equation 

 
*

1

1
min 1: 1

1

n

r

r r
k+

 
= ≥ ≤ 

− 
∑ . 

Values of r* and *r
P , which is the probability of selecting the best overall applicant given r*, for n=1, 2, 

… , 9 are presented in the following table (Gilbert & Mosteller, 1966): 

N 1 2 3 4 5 6 7 8 9 

r* 1 1 2 2 3 3 3 4 4 

*r
P  1.000 0.500 0.500 0.458 0.433 0.428 0.414 0.410 0.406 

 

Perhaps surprising for someone not familiar with the CSP is that as n→∞, r*→ne
-1 and *r

P → e-1. In 

words, for a large n the DM should pass up the first 36.8% of the applicants without taking any action and 
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then stop the search by selecting the next encountered candidate, if any. The asymptotic probability of 

selecting the best of the n applicants via the optimal decision rule is e-1≈0.368. As illustrated above, 

convergence is reached rather quickly. For example, if n=20, then already *r
P =0.384. 

If the DM’s objective is to minimize the expected rank of the selected applicant, then the optimal 

decision rule has the following form: 

If at period j you interview an applicant of relative rank x, then stop the search and select this 

applicant if 
*

xj r≥ . 

We refer to decision policies of this form as Multi-threshold Rules (MTRs). They are constrained such 

that 
* * *

1 2 ... nr r r n≤ ≤ ≤ = . Following an MTR entails passing the first 
*

1 1r −  applicants without stopping; 

from period 
*

1r  through period 
*

2 1r −  select an applicant of relative rank 1; from period 
*

2r  through 

period 
*

3 1r −  select an applicant of relative rank 1 or 2, and so on. Chow et al. (1964) derived the optimal 

decision rule for this case (see also Moriguti, 1993). To illustrate it, assume that n=25. Then, 
*

1 8r = , 

*

2 14r = , 
*

3 17r = , 
*

4 19r = , and so on. In this example, the DM should observe about 1/4 of the applicants 

without taking any action, then from period 8 to period 13 select an applicant only if he happens to be the 

best of all those observed so far, from period 14 to 16 select an applicant only if he is either the best or 

second best of those interviewed so far, and so on. As more applicants are evaluated, the criterion for 

accepting an applicant and stopping the search is relaxed. 

When monotone payoffs w1>w2>…>wk are assigned to the best k applicants, Mucci (1973) showed 

that the MTR is optimal with 1 2 ... nr r r n≤ ≤ ≤ = . Denoting by ( )1 ,..., kr r=r  the MTR threshold 

values for any monotone order k stopping rule, Yeo and Yeo (1994) showed that the choice of an optimal 

stopping rule, 
*r , is made by finding the vector r  that maximizes 

 ( ) ( )
1

|
k

a

a

Q w P a
=

=∑r r , 
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where ( )|P a r  is the probability of selecting the ath best applicant given the policy r . It is computed 

from 

( )|P a r =
1 1 min( , )

1 11

111

1 11

1

d

d

r d adk
i

d sij r

j n jr

n s a sj
n

a

+ −

= ===

− −  −
  − − −−    

 − 

∑ ∑ ∑∏  

for a=1, 2, …, n-r1, where s denotes the relative rank of the j
th applicant. Direct computations over a 

restricted k-dimensional grid provide the numerical solutions.  

To illustrate the optimal solution, consider the GSP with n=50, k=5, and payoffs w1=16, w2=8, w3=4, 

w4=2, and w5=1. Then, the optimal threshold values are found to be 
*

1 17r = , 
*

2 36r = , 
*

3 44r = , 
*

4 47r = , 

*

5 49r = . The probabilities of selecting the best applicant, second best, third best, fourth best, and fifth 

best under the optimal decision rule are 0.351, 0.227, 0.128, 0.067, and 0.033, respectively; the 

probability of no selection is 0.166; and the expected payoff for following the optimal policy is 8.11. 

3. Previous Experimental Research on the Secretary Problem 

Varying n, Seale and Rapoport (1997) studied the CSP using a between-subjects design with two 

conditions, namely, n=40 and n=80. These authors found that their subjects tended to stop the search too 

early. Further, they competitively tested decision rules (heuristics) that the subjects might be using and 

concluded that a threshold rule of the same form as the optimal cutoff rule best accounted for the data. 

However, rather than being set at r*, the subjects’ actual thresholds, r, tended to be smaller (i.e., r<r*). In 

a subsequent study, Seale and Rapoport (2000) studied a variant of the CSP that included uncertainty 

about the exact value of n. Using a between-subject design, their study included two experimental 

conditions where the value of n was known to be randomly sampled with equal probability from either the 

set {1, 2, …, 40} or the set {1, 2, …, 120}. They again reported a bias toward early stopping. A third 

study by Zwick et al. (2003) examined yet another variant of the CSP that allows for backward 

solicitation. Charging a fixed cost per observation in two of their four experimental conditions, Zwick et 

al. used a 2×2 between-subject design with two levels of number of applicants (n=20 vs. n=60) and two 
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levels of observation cost (0 vs. c, with c=$0.30 if n=20, and c=$0.10 if n=60, with a reward for selecting 

the best applicant of $10.00). When search costs were set at zero, they replicated the earlier findings, but 

with positive search costs they found that their subjects searched too much. 

It is possible that the nothing-but-the-best payoff scheme used in these previous studies of the CSP 

might be responsible for the biased search behavior. In addition, we are hard-pressed to find situations in 

which a DM derives positive utility for selecting the best applicant and nothing otherwise. More likely, 

DMs prefer better applicants to poorer ones. The GSP allows for more realistic payoff structures to test 

sequential search behavior. Using the GSP, we pose three questions:  

1. In comparison to the optimal decision rule, do subjects search too little, too much, or just enough? 

2. Do subjects adhere to a multi-threshold decision rule? 

3. If not, what heuristics do they use to decide when to stop the search? 

The answer to the first question seems to be consistent across the three studies of the CSP described 

above. If the search is costless, then, in comparison to the optimal policy subjects tend to stop their search 

too early (Seale & Rapoport, 1997, 2000; Zwick et al., 2003). The effect is rather strong. For example, 

Seale and Rapoport (1997) reported that 21 of their 25 subjects in condition n=40 and 21 of their 25 

subjects in condition n=80 stopped the search too early. 

The answer to the second question is ambiguous. Conducting their analyses on the individual level, 

Seale and Rapoport (1997, 2000) reported moderate support for a decision rule with a threshold value that 

differed across subjects and was, in general, smaller than the optimal value. In contrast, the results of 

Zwick et al. (2003) did not support the optimal decision rule for the CSP with backward solicitation and 

positive search cost.  

With regard to the third question, Seale and Rapoport (1997) compared the optimal decision rule to 

three behavioral decision rules (heuristics). The first heuristic, already mentioned above, is a threshold 

decision rule with a possibly non-optimal threshold value, r, which may differ across subjects. The 

optimal decision rule is a special case of this rule. The second heuristic is a candidate decision rule 

stipulating that the DM stops the search on observing the gth candidate. The third heuristic is a successive 
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non-candidate decision rule stipulating that the DM chooses the first candidate after observing no fewer 

than h non-candidates that follow the last candidate that was rejected. Each of these three heuristics has a 

single parameter (r, g, h) that allows for individual differences. Stein, Seale, and Rapoport (2003) have 

shown that the successive non-candidate decision rule can obtain near optimal payoffs in the CSP. Seale 

and Rapoport (1997, 2000) provided evidence that some of the subjects’ patterns of behavior could be 

accounted for quite well by either the threshold or successive non-candidate decision rule. Zwick et al. 

(2003) provided evidence that subjects are sensitive to local patterns in the observed sequences of 

applicants (e.g., increasing relative ranks on successive periods), patterns that optimal DMs should ignore. 

In the experiments described next, we test whether the bias for early stopping observed in previous 

studies of the CSP persists under more realistic payoff schemes. In addition, we examine the types of 

decision rules that are used by actual DMs in the GSP.  

4. Experimental 1 

Method 

Subjects.  Sixty-two subjects participated individually in Experiment 1. All of them were University of 

Arizona students recruited by advertisements asking for volunteers to participate in a decision making 

experiment with payoffs contingent on performance. The mean payoff per session, that typically lasted 

30-40 minutes, was $20 (minimum $5, maximum $50). 

Procedure.  The instructions (hard copy) explained the GSP in detail, placing special emphasis on the 

computation of relative ranks with the presentation of a new applicant. An example of n=6 applicants 

with absolute ranks 6, 3, 4, 1, 5, 2 presented in this order was given, and the updating of the relative ranks 

at each of the six periods (assuming no stopping) was illustrated and explained. Subjects were instructed 

that as long as the search continues absolute ranks would not be displayed, only relative ranks of all the 

applicants that had been observed and rejected. After reading the instructions, two practice problems were 

presented to verify the subject’s understanding of the task. The experimental problems were presented 

once the subjects successfully completed these two practice problems. 
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Each subject completed 60 trials (replications) of the GSP. Each trial consisted of a single GSP with 

n=60 applicants. Each trial was structured in the same way. The relative rank of applicant 1 was first 

displayed on period 1, and then the subject was instructed to either select this applicant, thereby 

terminating the search, or proceed to the next interview period and observe a new applicant. If she 

continued the search to period j (j=2, …, n), then the relative ranks of the j-1 previously viewed applicants 

that had been observed and rejected were updated by a computer and displayed. If she opted not to stop 

the search, then she was forced to accept the nth applicant. When the subject stopped the search, thereby 

terminating the trial, all n absolute ranks and the corresponding n relative ranks were displayed on the 

computer screen. In this way, subjects who stopped the search on different periods were provided with the 

same information about the actual sequences of absolute ranks of all the n applicants. 

To allow comparison between subjects, we generated a sample of 60 different random sequences of 

applicants (out of a population of 60! sequences). Each subject was presented with the same 60 sequences 

in the sample, but the presentation order was randomly varied between subjects. There were six positive 

payoffs (in US dollars) that were set at w1=25, w2=13, w3=6, w4=3, w5=2, w6=1, and wg=0, otherwise 

(7<g<60). The subjects were instructed that they would be paid for 2 (out of 60) randomly chosen trials. 

At the end of the experiment, the subjects each drew two integers (1 to 60) from a hat without 

replacement to determine their payoff trials. 

Results 

Preliminaries. Following Yeo and Yeo (1994), we devised a numerical procedure that uses a restricted 6-

dimensional grid for determining the optimal threshold values for the GSP under investigation in the 

present study. The six optimal threshold values, rx
*, are presented in the second row of Table 1. They 

imply that the optimal DM should pass over exactly 1/3 of the applicants without ever stopping, stop the 

search between periods 21 and 42 only when observing an applicant with relative rank 1, stop the search 

between periods 43 and 52 only when observing an applicant with relative rank 1 or 2, and so on up to the 

threshold r6
* for selecting any of the applicants with relative rank x<6.  

--Insert Table 1 about here-- 
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Since we only presented the subjects with a relatively small sample (60) of the possible problem 

instances, the expected earnings under the application of the optimal policy to these instances need not 

equal the expected earnings of the policy when applied to all n! feasible instances. Table 2 (columns 2 

and 3) shows the expected earnings under the application of the optimal policy for the limiting situation 

(second row)—when all n! instances are observed—and also for the 60 problem instances used in 

Experiment 1 (third row). In addition to the expected earnings, Table 2 also displays the expected number 

of applicants that are interviewed before a selection is made (column 3) for the limiting and sample cases. 

The sample expectations for the earnings and stopping position will serve as the benchmark in all the 

analyses reported below. The bottom row of Table 2 displays mean experimental results; these will be 

discussed below.   

--Insert Table 2 about here— 

Throughout, analyses of earnings and stopping position use individual subjects as the unit of analysis.  

For instance, in the analyses of earnings below we use the mean earnings for each subject as the basic 

datum. Reported measures of variability correspond to the variability in these means across subjects.  

Earnings. Subjects in Experiment 1 earned significantly less (M=10.06, SD=1.99) than predicted by the 

application of the optimal policy, which earns $12.10, t(61)= 8.04, p<0.001.    

Stopping Times. Figure 1 exhibits the cumulative distribution of stopping time per period under the 

optimal decision rule (dotted line) and compares it to the observed cumulative distribution (solid line). 

The two functions show the cumulative probability of stopping on the jth applicant (period) or sooner. For 

example, the cumulative probability of stopping on period 30 is just under 0.40 for both the theoretical 

and observed functions.  

--Insert Fig. 1 about here-- 

We compared the mean stopping time (period) for each subject across all 60 trials to the expected 

stopping time under the optimal decision rule. On average, the subjects stopped the search significantly 

earlier (M=35.34, SD=6.16; t(61)=3.09, p<0.003) than predicted by the optimal decision rule (37.90). 

Figure 1 shows that the propensity to stop searching too early is almost entirely due to early stopping 
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decisions in periods 1-20. About 15% of all stopping decisions occurred between periods 1 and 20 

compared to the predicted value of 0. After period 23, the difference between the predicted and observed 

functions largely disappears.   

In searching for evidence of learning, for each subject we separately computed the mean stopping 

times for the first half (block 1: trials 1-30) and second half of the session (block 2: trials 31-60). A 

paired-sample t-test was used to test the null hypothesis of no difference between mean stopping times on 

the two blocks. Mean stopping time in the first block (M=34.39, SD=6.39) was smaller than in the second 

block (M=36.28, SD=6.39). This result, which is highly significant (t(61)=4.33, p<0.001), suggests that 

the subjects’ propensity to stop the search too early decreased, but did not fully disappear, with 

experience in playing the GSP.  

Comparison of Alternative Behavioral Decision Rules. To investigate the nature of the subjects’ decision 

policies in the GSP, we begin by first assuming that the policies are of the same form (MTR) as the 

optimal policy but with possibly non-optimal threshold values r1<r2<…<r6. Although threshold values 

may vary between subjects, for each subject they are assumed to remain fixed across trials. We then 

estimate the threshold values for each subject separately that best account for her stopping decisions in all 

60 trials. A best fitting MTR is one minimizing the number of trials that the rule wrongly predicts the 

stopping time. We refer to an incorrect prediction as a violation. For example, a violation is recorded if 

the decision rule dictates that a subject stops on the 25th applicant where, in fact, the subject continues 

past this applicant. Since each subject completed 60 trials, the number of violations can range from 0 to 

60. Estimated MTRs using this criterion may not yield a unique vector of threshold values; there may be 

several such rules with different threshold values yielding the same number of violations. Our analysis 

resulted in unique MTRs for 28 of the 62 subjects. For a single subject, 5 decision rules minimized the 

same number of violations; this was the subject for whom the decision rule was most underdetermined. 

The mean number of best-fitting MTRs was smaller than two. Thus, the non-uniqueness problem was not 

of major concern, as the recovered strategies are not greatly underdetermined. When the estimated MTR 

was not unique, we chose the one closest to the optimal policy.   
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Two main features of the results are noteworthy. First, there is significant variability in the estimated 

threshold values across subjects. Second, and consistent with earlier observations, the threshold values 

are, on average, smaller than those predicted by the optimal policy. This latter feature is also consistent 

with the observation that subjects stop too early. Table 1 presents the optimal thresholds values (second 

row) and the mean observed threshold values (third row) under the MTR. The mean number of violations 

for the best-fitting rules is displayed in the final column of the table.  

We cannot conclude that the subjects are actually using MTRs based on the results just presented. The 

most appropriate way to determine whether subjects are using the MTR is by comparing the MTR to 

alternative decision rules.1 To do so, we formulated two alternative decision rules to the MTR, estimated 

their parameter values individually across all 60 trials using the same procedure as for the MTR, and then 

applied the criterion of number of violations of the best-fitting decision rule to competitively test the three 

decision rules. These two decision rules generalize the ones proposed and tested by Seale and Rapoport 

(1997, 2000). 

We call the first alternative heuristic the Horse Race Decision Rule (HRR). A subject using this 

decision rule keeps track of the number of times she observed applicants of relative rank x (x=1, 2, …, 6). 

Thus, she maintains six separate counters. Denote by cx,j the value of counter x at period j (cx,j=0 = 0, for all 

x before the search starts, cx=1,j=1 = 1 as the first applicant necessarily has relative rank 1, cx=1,j=2 is either 1 

or 2, and so on ). One of the six counters is increased by 1 only when a subject encounters an applicant of 

relative rank that does not exceed 6. The HRR assumes that the subject maintains a separate threshold 

value rx for each x, and that she stops the search on period j and selects an applicant of relative rank x 

once cx,j>rx. Because a subject should only select an applicant that yields a positive payoff, we can 

represent the feasible search strategies for the HRR by a vector r=(r1, r2, …, r6). Using again a restricted 

grid search algorithm, we computed for each subject separately the best fitting vector r under the HRR, 

                                                 
1 Of course, inferences based on this method are still underdetermined. By using this method of comparison, we can, 
however, increase our degree of confidence in a particular inference. 



 16 

the one minimizing the number of violations of this heuristic across the 60 trials. Table 1 (fourth row) 

shows the mean threshold values and violations across the 62 subjects. 

We refer to the second alternative heuristic as the Successive Undesirable Applicant Decision Rule, 

and denote it by SUAR. A subject adhering to the SUAR keeps track of the number of successive 

applicants of relative rank x>6 since she last observed an applicant of relative rank x<6. Put differently, 

she keeps track of the number of successively observed applicants with relative rank entailing a payoff of 

zero (hence the term “undesirable”). Once she observes an applicant with relative rank equal to or smaller 

than 6, she sets the counter to zero and starts counting again. Denote the value of the counter at period j 

by yj. For each applicant with relative rank equal or smaller than 6, the subject sets a (possibly different) 

threshold value rx. She then stops the search and selects an applicant of relative rank x, if yj>rx. Note that 

under this decision rule the subject groups the applicants into two exclusive sets: applicants who yield a 

payoff of zero (x>6) and applicants who yield a positive payoff (x<6). The differences among applicants 

in the second set are reflected in the threshold values rx. Because under the SUAR the subject would only 

select an applicant of relative rank x<6, we can again represent the feasible search strategies by a vector 

r=(r1, r2, …, r6). As with the two previous decision rules (MTR and HRR), we used a restricted grid 

search algorithm to find the vector r that minimizes the number of violations of the best-fitting SUAR. 

Once again, this was accomplished separately for each subject across all 60 trials. Table 1 (bottom line) 

presents the mean threshold values and violations taken over subjects. 

The HRR and SUAR generated, on average, more than two to three times the number of violations of 

the MTR. Comparison of the three decision rules on the individual level shows that the MTR substantially 

outperforms the other two rules for each of the 62 subjects. Our results suggest that in selecting an 

applicant in the GSP subjects consider both the applicants’ relative ranks and their position in the 

sequence, rather than only the number of applicants with relative ranks equal to or smaller than 6 (HRR), 

or the successive number of undesirable applicants who follow a desirable applicant (SUAR). A major 

feature of the MTR is that the threshold for selecting an applicant is relaxed as the sequence is nearing its 

end. This feature is not shared by the HRR and SUAR. 
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Discussion 

The results of Experiment 1 suggest that subjects adhere to the MTR that is sub-optimally 

parameterized. Specifically, the subjects’ thresholds are placed such that they tend to terminate their 

search too early. Although there is strong support for the MTR on the aggregate and individual levels, two 

issues remain unresolved. First, the results of Experiment 1 pertain to a single set of parameter values. 

More general conclusions could be drawn were we to change the number of trials, number of positive 

payoffs, form of the payoff function, or any combination of the above. Second, the results do not tell us 

why DMs stop the search too early. In trying to answer this question, Seale and Rapoport (1997) 

suggested that DMs stop the search too early because of an implicit cost of search. However, they 

proposed no procedure to test this hypothesis directly.  In contrast, we hypothesize that subjects stop the 

search too early because of misperception of the probabilities of receiving positive payoffs for early 

applicants. Experiment 2 was designed in two parts both to generalize Experiment 1 to a different set of 

parameter values and to test the following hypothesis: DMs terminate their search too early in the GSP 

because they overestimate the probability of obtaining positive payoff for selecting early applicants. 

5.  Experiment 2 

Overview. Experiment 2 consisted of two parts. Part 1 included a sequential observation and selection 

task of the same type studied in Experiment 1, which allows us to assess the generalizability of the results 

reported in Experiment 1. Part 2 was introduced to test the probability overestimation hypothesis. 

Method 

Subjects. Thirty subjects recruited in the same fashion as in Experiment 1 participated in Experiment 2. 

The mean payoff for the 60-minute session was $17 (minimum $10, maximum $37). 

Procedure. The general procedure for Part 1 (the sequential search task) was the same as in Experiment 1 

with the following exceptions. The number of periods on each trial was reduced from 60 to 40, the 

number of positive payoffs was decreased from 6 to 3, and the payoffs (in US dollars) were set at: w1=12, 

w2=7, w3=2, and wg=0 (g=4,…,40).  Table 2 (columns 4 and 5) displays the expected earnings and 

stopping position for this problem. Whereas the payoffs in Experiment 1 decreased exponentially as the 
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quality of the selected applicant decreased, those in Experiment 2 decrease linearly. The rather rapid 

decrease in the payoff function used in Experiment 1 more closely approximates the (0, 1) payoff function 

used in studies of the CSP, most of which also found that DMs terminate the search too early. Hence, the 

current payoff function in Experiment 2 allows us to assess the generalizability of the results. The 

subjects were told that they would be paid for a single (rather than 2) randomly chosen trial. 

Part 2: A Probability Estimation Task.  After completing the 60 sequential search trials in Part 1, all the 

subjects performed a probability estimation task that constituted Part 2. They were instructed that, rather 

than making hiring decisions as in Part 1, they would serve as consultants for a person making hiring 

decisions by estimating and providing her with the probability that applicants with certain relative ranks 

they know have absolute ranks that they do not know. The instructions explained the task and provided 

several examples of the types of estimates that would be requested. For example, the subjects were given 

an example in which they observed that the third applicant out of six applicants had a relative rank of 2. 

They were then asked to make estimates of the following sort: “Please estimate the probability that 

Applicant Number 3, whose relative rank is 2, has an absolute rank of 2.” For another example, “Please 

estimate the probability that Applicant Number 3, whose relative rank is 2, has an absolute rank of 3.” 

The subjects were instructed that they would be paid according to the accuracy of their estimates and 

were shown a table of the payoffs they would receive based on the error (the absolute difference between 

the true and estimated probabilities) of their estimate. To motivate the subjects to state their true 

subjective probabilities, we used a logarithmic scoring rule (see Winkler, 1969) to determine the payoffs. 

Denoting the absolute difference between the true and estimated probability by x, subjects received $25 

for x<0.01, $5[-ln(x)] for 0.01≤x<0.50, and $0, otherwise. Under this scoring rule, the optimal response is 

to report one’s true subjective probability. Subjects were told that at the end of Part 2 they would be paid 

for one of their estimates chosen at random.  

In Part 2, the subjects were presented with 30 trials of 40 applicants each and were asked to assign 

probability estimates for only a subset of the applicants. To keep the task similar to Part 1, on each trial 

they were required to sequentially view all 40 applicants, even those for which they were not asked to 
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provide estimates. We elicited estimates only for applicants whose relative ranks could entail positive 

payoffs—i.e., only for applicants with relative ranks of 1, 2, and 3. To determine the applicants for which 

estimates are required, we partitioned the 40 applicants on each trial into 8 groups of 5, corresponding to 

the first 5 applicants, second 5 applicants, and so on. Then, within each partition, for each subject over the 

course of the 30 trials, we asked for a total of six estimates for applicants with relative rank 1, two 

estimates for applicants with relative rank 2, and a single estimate for applicants for relative rank 3. In 

total, we elicited 72 probability estimates for each subject. For estimates of applicants with relative rank 

1, with probabilities 1/3, 1/3, and1/3 we asked the subject to estimate the probability that the applicant 

had an absolute rank of 1, 2, or 3, respectively. To be clear, for each applicant for whom an estimate was 

requested, a subject was only asked to estimate the probability of one particular absolute rank. For 

applicants with relative rank 2, estimates for absolute ranks of 2 and 3 were requested with equal 

probability. For those with relative rank 3, subjects were asked to only estimate the probability that the 

applicant’s absolute rank was 3. Rather than asking the subjects to input numerical probabilities, all the 

estimates were elicited by using a slider on the computer screen that allowed for estimates (in percent 

metric) between 0 and 100 in units of 1. The slider was always initially positioned at 0. 

When the n applicants appear in a random order, the true probability that the jth of n applicants whose 

relative rank is s has an absolute rank of a is given by: 

P(A = a |R = s; j) =
a −1

s−1
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j − s
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For example, the probability that the 15th out of 40 applicants whose relative rank is 1 has absolute ranks 

1, 2, or 3 are 0.38, 0.24, and 0.15, respectively. The probability that the 15th applicant whose relative rank 

is 3 has an absolute rank of 3 is 0.05. 

Part 1 Results 

Earnings. The experimental subjects earned significantly less (M=4.62, SD=0.55) than they would have 

following the optimal policy (5.05), t(29)=4.24, p<.001.  
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Stopping Times. Using the same format as Fig. 1, the aggregate (cumulative) stopping times under the 

optimal policy and for the experimental subjects are displayed in Fig. 2. Figure 2 shows that the empirical 

stopping times are shifted to the left of the optimal stopping times, revealing that the subjects in 

Experiment 2 had the same tendency to terminate their search too early. This was statistically confirmed, 

as we again find that the subjects stopped the search significantly earlier (t(61)=4.83, p<0.001; M=26.54, 

SD=3.09) than expected under the optimal decision rule (29.27). Consistent with the results from 

Experiment 1, the mean stopping time in the first block of 30 trials (M=25.89, SD=3.12) was significantly 

smaller than in the second block (M=27.20, SD=3.37), t(29)=3.60, p<0.001. 

--Insert Fig. 2 about here-- 

Comparison of Alternative Behavior Decision Rules. We again estimated parameter values for each of the 

three decision rules tested in Experiment 1. Using the same format as Experiment 1, the MTR again 

(overwhelmingly) best accounts for the stopping data. The results for each of the three decision rules are 

displayed in Table 3. Consistent with the early stopping results, we see that the best-fitting thresholds for 

the MTR are shifted to the left of the optimal thresholds.  

--Insert Table 3 about here-- 

Given the remarkable consistency of the search results across Experiments 1 and 2, in the rest of this 

section we focus on the probability estimation data and their relation to the stopping data.  

Overall Accuracy of Probability Estimates. Figure 3 exhibits the mean estimated probabilities (averaged 

over the 30 subjects) as a function of the true (objective) probability. Over virtually the entire range of 

true probabilities, the subjects overestimated the true probabilities. Analysis of the individual subject 

estimates reveals the same pattern for every subject.  

--Insert Fig. 3 about here-- 

Probability Estimates over Periods. One explanation for the early stopping in Part 1 is that the subjects 

misperceive the probability that hiring early applicants will produce positive payoffs. Recall that subjects 

in Part 1 earned positive payoffs for hiring applicants with absolute ranks 1, 2, or 3, and nothing 

otherwise. Denoting a subject’s estimate that applicant j whose relative rank is s has an absolute rank of a 
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by sp(j,s,a), we can infer that a subject’s estimate that hiring applicant j will result in positive payoff by 

( ) ( )
3

, , ,
a s

j s sp j s aπ
=

=∑ . Likewise, we denote the true probability of positive payoff by π*(j,s). Figure 4 

exhibits the values of π*(j,s) (top panel) and π(j,s) (bottom panel) across periods (j=1,..,40) for s=1, 2, and 

3. Both  π*(j,s) and π(j,s) are seen to increase in j and decrease in s. However, the discrepancy between 

the true and (derived) estimated values is remarkable: The subjects strongly overestimate π*(j,s). Even 

more interesting is the finding that the estimates are often supercertain—i.e., in may cases π(j,s) >1. 

--Insert Fig. 4 about here-- 

The vertical lines in Fig. 4 represent the optimal (top panel) and mean estimated observed (bottom 

panel) thresholds under the MTR. Recall (Table 3) that the optimal thresholds are r*1=14, r*2=29, r*3=37, 

and the mean estimated thresholds are r1=13, r2=22, r2=30. As in Experiment 1, the estimated thresholds 

are shifted to the left of the optimal thresholds, consistent with the observed early stopping behavior. 

Consider period 13, where the average r1 threshold is 13; here, we observe (Fig. 4) that π (j,1) is about 

1.25, whereas π*(j,1) is 0.70. Put differently, the actual probability of earning a positive payoff for a 13th 

applicant with a relative rank of 1 is 0.70, but the subjects’ mean probability estimates for the 13th 

applicant having absolute ranks of 1, 2, or 3 sum to more than 1. Obviously, the subjects do not believe 

that it is more than certain that hiring the 13th applicant in this case will result in positive payoff; however, 

it is safe to infer that they do believe that the probability of positive payoff is considerably greater than it 

actually is. The error of the probability estimates was greatest in the early periods where most true 

probabilities were well below 1. In the later periods—between 30 and 40—the subjects’ estimates tended 

to become more accurate, and we actually observe that π (j,1)  and π (j,2) tend to decrease in this range.  

Relation Between Probability Estimates and Stopping Results. The results just exhibited in Fig. 4 are at 

the aggregate level. Next, we examine the results at the individual level. We ask: Can the estimation 

results be used to predict the stopping results for an individual subject? To address this question, we 

computed a measure of the degree to which subjects’ probability estimates deviated from the true 
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underlying probabilities. Specifically, we computed the mean difference between the subjects’ estimates 

and the true probabilities, d . When positive, d  reflects a tendency to overestimate probabilities, and 

when negative to underestimate them. Thus, if the subjects’ overconfidence in obtaining positive payoffs 

drives their stopping decisions, we should find that d  is negatively related to their mean stopping 

position m . Since we again observe learning during early trials of the stopping task in Experiment 2, we 

used the last 40 trials in Part 1 to compute m  separately for each subject. The Spearman rank-order 

correlation between d  and m  was, indeed, negative and significant, ρs(28)=-0.34, p=0.03. (Using all 60 

trials from the stopping task to compute m  leads to the same qualitative conclusion, though with the 

noisier estimates the effect is attenuated, ρs(28)=-0.24, p=0.10.)  

Discussion 

The probability estimation results provide insight into the early stopping behavior observed in 

Experiments 1 and 2. We have reported strong evidence that subjects overestimate the probability of 

obtaining positive payoffs across the range of applicant positions (periods). In fact, we find that the sum 

of the subjects’ estimates often exceeded 1. This result is consistent with research showing that 

probability estimates are often subadditive; that is, the sum of probability estimates assigned to mutually 

exclusive sub-events often exceeds the probability assigned to the event that is their union. This finding 

can be explained by Tversky and Koehler’s (1994) support theory (see also Rottenstreich & Tversky, 

1997). Under support theory, the (subjective) probability assigned to the event “A rather than not A” is 

given by 

( ) ( )
( ) ( )AA

A
BAP

¬+
=

φφ
φ

, ,    

where φ(A) returns the support one accrues for the hypothesis A. Support is taken to be a measure of the 

strength of evidence in favor of the evaluated hypothesis. Research has shown that the focal hypothesis, in 

this case A, typically receives greater consideration than its alternative and thereby has its support 

increased to a greater degree. Whenever a DM in the GSP encounters an applicant with relative rank s and 
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has to make a stopping decision, she should consider the expected earnings of selecting that applicant, 

which requires that she—in some fashion (not necessarily consciously)—estimate the probabilities of the 

applicant’s possible absolute ranks given his relative rank. Presumably, the absolute ranks about which 

she must make the estimations that are most salient are those corresponding to positive payoffs; those 

absolute ranks that do not produce positive payoffs are perhaps lumped together as “all other absolute 

ranks.” As a result, then, the positive payoff absolute ranks, which are focal, will receive disproportionate 

weight in the decision to stop. This overoptimism, which can result from insufficiently considering that 

hiring the applicant may not result in a positive payoff, is sufficient to bias the DMs to terminate their 

search too early. Consistent with this explanation, our probability estimation data show that subjects 

strongly overestimate the probability that an applicant’s relative rank is one with a corresponding positive 

payoff; furthermore, at the individual level, the overestimation is negatively correlated with the mean 

length of search.  

6.  Discussion and Conclusions 

We investigated individual decision behavior in a class of observation and selection problems with a 

finite number of applicants and rank-dependent payoffs in which payoffs increase monotonically in the 

quality of the selected applicant. In agreement with the results reported by Seale and Rapoport (1997, 

2000), who tested experimentally two simpler variants of the CSP, our results show that subjects stop 

their search too early. This finding holds for two different payoff functions. In Experiment 1, the payoff 

function was convex in the quality of the selected applicant, with the payoffs dropping off at a rapid but 

diminishing rate in the quality of the selected applicant. Experiment 2 used a (piecewise) linear payoff 

scheme for the first three applicants; thus, the payoff difference for selecting applicants with true ranks of 

1 versus 2 was the same as the difference for 2 versus 3. Seale (1996) experimentally studied an extension 

of the CSP in which the DM earned a payoff of 1 for selecting the best or second best applicant, and 

nothing otherwise. Similarly, Zwick et al. (unpublished) studied a CSP variant with payoffs of 1 for 

selecting any of the top three applicants. Note that the payoff structures used by Seale and by Zwick et al. 

were concave. Early stopping was also observed in these two studies. Thus, it seems unlikely that the 
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tendency to search insufficiently reported in the current study is simply an artifact of our two different 

payoff schemes. This bias has been reported under many payoffs schemes, and even in different countries.  

Another concern might be that the early stopping bias is a result of using rank-dependent payoffs, and 

that the same effect might not be observed in full-information problems. Kogut (1990) and Rapoport and 

Tvserky (1970) compared sequential search behavior in full-information problems and also found that 

subjects tended to stop searching earlier than predicted by the optimal policy.2 We can, therefore, rule out 

the possibility that our findings are due solely to the use of rank-dependent payoffs.  

There are some qualifications to the early stopping finding. First, our results show that as more 

experience is gained in selecting applicants, the discrepancy between observed and optimal stopping 

decisions decreases. Decision makers experienced in this sort of sequential search may no longer exhibit 

this bias. Second, as Zwick et al. (2003) have shown in a considerably different variant of the CSP with 

backward solicitation, when fixed cost per search is charged the tendency to stop too early is reversed. It 

is yet to be determined experimentally whether this latter finding generalizes to the GSP. Third, the 

results reported by Seale and Rapoport, as well as the results of Experiments 1 and 2 reported here, apply 

to relatively large values of n, larger than sometimes encountered in practice. Caution should be exercised 

in extrapolating them to smaller values of n.  

In summary, the current work extends previous work on the well-known secretary problem by 

presenting and empirically testing a generalization, the Generalized Secretary Problem (GSP), that better 

captures properties of many real-world sequential search tasks. Most often in sequential search, a DM 

derives utility that is monotonically increasing in the quality of her selection; the Classical Secretary 

Problem (CSP) does not capture this property. However, as in previous studies of the CSP, we again 

observed that DMs in the GSP tend to terminate their search too early and, consequently, fail to maximize 

expected earnings. Our results suggest that this bias may result from the DMs overestimating the quality 

                                                 
2 It is difficult to assess optimality in partial-information search problems. To do so requires making strong 
assumptions about the mechanism by which DMs learn the characteristics of the distribution from which 
observations are sampled. That the distributions need not be learned—and cannot be learned—is another 
(methodological) virtue of no-information search problems.  
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of early applicants by failing to give sufficient weight to the prospect that better applicants are among 

those yet-to-be-seen.   
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Table 1.  Optimal (rx

* ) and mean observed estimated threshold values (rx) across subjects and trials for 

three different decision rules for Experiment 1.  

x 1 2 3 4 5 6 Mean Violations 

rx
* 21 43 53 57 58 59 -- 

Mean rx :MTR 12 22 28 35 40 44 13 

Mean rx :HRR 4 7 5 6 7 7 44 

Mean rx :SUAR 16 15 15 14 14 13 35 

 

 

 

Table 2.  Expected and mean empirical payoffs and stopping position for Experiments 1 and 2.  

     Experiment 1    Experiment 2  

 Payoffs Stopping 
Position 

Payoffs Stopping 
Position 

Limiting 12.73 41.04 6.11 27.21 

Sample 12.10 37.90 5.05 29.27 

Empirical 10.06 35.34 4.24 26.54 

 

 

 

Table 3.  Optimal (rx
* ) and mean observed estimated threshold values (rx) across subjects and trials for 

three different decision rules for Experiment 2. 

x 1 2 3 Mean Violations 

rx
* 14 29 37 -- 

Mean rx :MTR 13 22 30 12 

Mean rx :HRR 4 3 2 44 

Mean rx :SUAR 5 7 6 49 
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Figure 1. Observed and predicted cumulative distributions of stopping time across subjects by period of 

search for Experiment 1. 
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Figure 2. Observed and predicted cumulative distributions of stopping time across subjects by 

period of search for Experiment 2. 
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Figure 3. Mean estimated probability as a function of true probability for the estimate task (Task 2) in 

Experiment 2. 
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Figure 4. True (top panel) and derived (bottom panel) estimates of probability of obtaining positive 

payoffs for stopping in period j for an applicant with relative rank of s.  
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