
0-89791-993-9/97 $10.00 1997 IEEE

Sequential Optimisation without State Space Exploration

A Mehrotra� S Qadeer� V Singhal† R K Brayton� A Aziz‡ A L Sangiovanni-Vincentelli�

Abstract

We propose an algorithm for area optimisation of sequential
circuits through redundancy removal. The algorithm finds
compatibleredundancies by implying values over nets in the
circuit. The potentially exponential cost of state space traver-
sal is avoided and the redundancies found can all be removed
at once. The optimised circuit is a safe delayed replacement of
the original circuit. The algorithm computes a set of compati-
ble sequential redundancies and simplifies the circuit by prop-
agating them through the circuit. We demonstrate the efficacy
of the algorithm even for large circuits through experimental
results on benchmark circuits.

1 Introduction

Sequential optimisation seeks to replace a given sequential cir-
cuit with another one optimised with respect to some criterion
– area, performance or power, in a way such that the environ-
ment of the circuit cannot detect the replacement. In this work,
we deal with the problem of optimising sequential circuits for
area. We present an algorithm which computes sequential re-
dundancies in the circuit by propagating implications over its
nets. The redundancies we compute are compatible in the
sense that they form a set that can be removed simultaneously.
Our algorithm works for large circuits and scales better than
those algorithms that depend on state space exploration.

The starting point of our work is [1], in which a method was
described to identify sequential redundancies without explor-
ing the state space. The basic algorithm is that for any net, two
cases are considered: the net value is 0 and the net value is 1.
For each case, constants as well as unobservability conditions
are learnt on other nets. If some other net is either set to the
same constant for both cases, or to a constant in one case and
is unobservable in the other, it is identified as redundant. For
example, consider the trivial circuit shown in Figure 1. For
the valuen1= 0 the netn2 is unobservable and for the value
n1= 1, the netn2 is 1. Thus netn2 is stuck-at-1 redundant.
However, the redundancies found by the method in [1] are not
compatible in the sense that they remain redundant even in the

�University of California at Berkeley, Berkeley, CA 94720
†Cadence Berkeley Labs, Berkeley, CA 94704
‡University of Texas at Austin, Austin, TX 78712

n

n2

n1
o

Figure 1: Example of incompatible redundancies

presence of each other. For instance, the redundancy identi-
fication algorithm will declare both the inputsn1 and n2 as
stuck-at-1 redundant. However, for logic optimisation, it is in-
correct to replaceboththe nets by a constant 1.

The straightforward application of Iyer’s method to redun-
dancy removal is to identify one redundancy by their implica-
tion procedure, remove the redundancy and iterate until con-
vergence. Our goal is to learn allcompatibleimplications in
the circuit in one step and use the compatibility of these impli-
cations to remove all the redundancies simultaneously (in this
sense our method for finding compatible unobservabilities is
related to the work in [2, 3] for computing compatible ODC’s
(observability don’t cares)). This is our first contribution. Sec-
ondly, we generalise the implication procedure by combining
it with recursive learning [4] to enhance the capability of the
redundancy identification procedure. Recursive learning lets
us perform case split on unjustified gates so that it is possible
to learn more implications at the expense of computation time.
Consider the circuit in Figure 2. Setting neta to 0 implies that
net f is 0. If we seta to 1, a1 becomes 1, but the AND-gate
connected toa1 remains unjustified. If we perform recursive
learning for the two justifications:d = 0 andd = 1, then for
the former case, netf becomes 0, and for the latter case,f be-
comes unobservable becausee is 1. Thus, for all the possible
cases, eitherf is 0 or it is unobservable. Hencef is declared
stuck-at-0 redundant. Recursive learning helps identify these
kinds of new redundancies. We present data which shows that
we are able to gain significant optimisations on large bench-
mark circuits using these two new improvements. In fact, for
some circuits, we find that recursive learning not only gives us
more optimisation, it is even faster since a previous recursive
learning step makes the circuit simpler for a later stage.

We do not assume designated initial states for circuits. For
sequential optimisation, we use the notion ofc-delay replace-
ment [1, 5]. This notion guarantees that every possible input-
output behaviour that can be observed in the new circuit after
it has been clocked forc cycles after power-up, must have been
present in the old circuit. In contrast to the work in [5, 6], the
synthesis method presented here does not require state space

a
g

e
a2

b2

b
a1

b1
d

c
f

Figure 2: Example of recursive learning

i2
i1

o1

ai1

i2

d

c o1

ba
d

c

b

Figure 3: A circuit and its graph

traversal, and can therefore be applied to large sequential cir-
cuits. Recursive learning has been used earlier for optimi-
sation, as described in [7], but their method is applied only
to combinational circuits and they do not use unobservability
conditions. Another procedure to do redundancy removal is
described in [8], but as [9] shows, their notion of replacement
is not compositional and may also identify redundancies which
destroy the initialisability of the circuit. We have therefore
chosen to use the notion of safe delayed replacement which
preserves responses to all initialising sequences. We are in-
terested in compositionality because we would like a notion
of replacement that is valid without making any assumptions
about the environment of the circuit. This is why our replace-
ment notion is safer than that used in [10] which identifies se-
quential redundancies by preserving weak synchronising se-
quences. Their work implicitly assumes that the environment
of the circuit has total control so that it can supply the arbitrary
sequence that the redundancy identification tool has in mind.
Our approach does not pose any such restrictions.

The rest of the paper is organised as follows. In Section 2,
we present our algorithm to compute compatible redundancies
on combinational and sequential circuits. In Section 3, we
present experimental results on some large circuits from the
ISCAS benchmark set. In Section 4, we conclude with some
directions for future work.

2 Redundancy Removal

We present an algorithm for sequential circuits that have been
mapped using edge-triggered latches, inverters and 2-input
gates; note that any combinational implementation can be
mapped to a circuit containing only inverters and 2-input gates.
We use the notion of circuit graph for explaining our algorithm.
A circuit graphis a labelled directed graph whose vertices cor-
respond to primary inputs, primary outputs, logic gates and
latches, and edges correspond to wires between the elements
of the circuit. The label of a vertex identifies the type of ele-

b b

b b

C1
1

1

1

C2
0

0

C3

C6
0(1)

0(1)

1

1

1
C5

0

1

0
C4

Figure 4: Rules for implying constants

ment it represents (e.g. two-input gates, inverters or latches).
We refer to an edge in the circuit graph as anet. Figure 3 shows
an example of a circuit graph.

2.1 Combinational redundancies

We explain our algorithm and prove its correctness for combi-
national circuits and later extend it to sequential circuits. Con-
sider a circuit graphG = (V;E) of a circuit, whereV is the
set of vertices andE is the set of nets. Anassumption Aon
the subsetP� E is a labelling of the nets inP by values from
the setf0;1g. Let n 2 P be a net. We writeA : n 7! v if A
labels the netn with the valuev. An assumption is denoted by
an ordered tuple. The set of all possible assumptions on the
setP of nets is denoted byAP. Consider the setP= fm;ng.
The assumption labellingm with 0 andn with 1 is denoted
by hm 7! 0;n 7! 1i andAP = fhm 7! 0;n 7! 0i;hm 7! 0;n 7!
1i;hm 7! 1;n 7! 0i;hm 7! 1;n 7! 1ig. An assumptionA2 AP

is inconsistentif it is not satisfiable for any assignments to the
primary inputs of the circuits. For instance, an assumption of 0
at the input and 1 at the output of an AND gate is inconsistent.

In the algorithm, values are implied at nets inE nP from an
assumption onP. We imply either constants orunobservabil-
ity indicators at nets. We indicate unobservability at a net by
implying a symbolic value
 at it. LetR= f0;1;
g be the set
of all possible value that can be implied at any net. Animpli-
cation is a label(ni = r) whereni is a net andr 2 R. Figure 4
illustrates the rules for implying constants. Rules C1, C2, C3
and C5 are self-explanatory. Rule C4 states that for an AND
gate, 0 at the output and 1 at an input implies 0 at the other
input. Rule C6 states that a constant at some fanout net of a
gate implies the same constant at all other fanout nets. Fig-
ure 5 illustrates the rules for implying
’s. Rule O1 states that
0 at an input of an AND gate implies a
 at the other input.
Rule O2 states that a
 at every fanout net of a gate implies
a
 at every fanin net of that gate. Note that constants can
be implied in both directions across a gate while
 propagates
only backwards. We have shown rules only for inverters and
AND gates but similar rules can be easily formulated for other
gates as well. We use these rules to label the edges of the
circuit graph. A constant (0 or 1) label on a net indicates that

O2

0

O1

Figure 5: Rules for implying unobservability

1
0

0a e
1

1
ca1

b d
a2 1

0
1

0
0

Figure 6: Overwriting constants with unobservability indica-
tors

the net assumes the respective constant value under the current
assumption. A
 label indicates that the net is not observable
at any primary output. Hence, it can be freely assigned to ei-
ther 0 or 1 under the current assumption. Suppose for every
assumption inAP, some netn is labelled either with constantv
or with
, then we can safely replacen with constantv. This
is because we have shown that under every possible assump-
tion, either the net takes the valuev or its value does not affect
the output. We can therefore conclude that netn is stuck-at-v
redundant.

We are concerned about the compatibility of all labellings
because otherwise we run the danger of marking nets with la-
bels so that all labels are not consistent. For example, con-
sider the circuit in Figure 1. For the purpose of identifying
redundancies, [1] would infer the implications(n1 = 1) and
(n2= 1) from the assumptionhn 7! 1i. Additionally, the as-
sumptionhn 7! 0i implies that(n1= 0) and(n2= �); similarly
hn 7! 0i implies that(n2= 0) and(n1= �) (notice that [1] use
the symbol� to denote unobservability while we use
 to de-
notecompatibleunobservability). So, [1] would rightly claim
that bothn1 andn2 arestuck-at-1redundant in isolation; how-
ever, for redundancy removal it is easy to see that we cannot
set bothn1 andn2 to 1 simultaneously. This is why we want
to make all labellings compatible.

A sufficient condition for the redundancies to be compatible
is to ensure that the procedure for computing implications from
an assumption returnscompatibleimplications, i.e., every im-
plication is valid in the presence of all other implications. It is
easy to see that if the labelling of edges in the circuit graph is
done by invoking the rules described above and no label is ever
overwritten, then the set of learnt implications will be compat-
ible. For instance, in the circuit of Figure 1, oncen1 is labelled
with
, a
 cannot be inferred atn2 because(n1=
) cannot
be overwritten with(n1= 0). But this approach is conserva-
tive and will miss some redundancies. In Figure 6, we show
an example where overwriting a constant with a
 yields a
redundancy which could not have been found otherwise. We

redundancy remove(G = (V;E))
/* find and remove redundancies from the circuit graph */
while (there is an unvisited netn in the circuit graph)f

S := learn implications (G , hn 7! 1i)
T := f(l = v) j (l = v) 2 S_ (l =
) 2 Sg
S := learn implications (G , hn 7! 0i)
T := f(l = v) j (l = v) 2 S_ (l =
) 2 Sg
R := T ^T
for every implication(n= v) 2 R set netn to constantv
propagate constants and simplify

g

learn implications (G = (V;E);A)
/* propagate implications on the circuit graph given an assignment */
f

forall n such thatA : n 7! v f
labeln v

g
while (some rule can be invoked)f

let (n= b) be the new implication
if (b=
)

labeln b
if ((n= b) conflicts with a current label)

return fl = � j l 2 Eg
else

labeln b
g
return set of all current labels

g

Figure 7: Combinational redundancy removal algorithm

propagate implications from assumptions on the neta. The
implications fromha 7! 0i are written below and those from
ha 7! 1i are written above the wires. Note that while prop-
agating implications fromha 7! 1i, a2 andd are initially la-
belled with 1 but after labellingc with 0, the labels atd and
a2 are successively overwritten with
’s. Hence,a2 is found
to bestuck-at-0redundant. As a result, the OR gate can be re-
moved. We prove later in this section that this overwriting does
not make previously learnt implications invalid, i.e., compati-
bility of implications is maintained, if the only overwriting that
is allowed is that of constants with unobservability indicators.

Our algorithm for removing combinational redundancies is
given in Figure 7. The functionlearn implicationstakes as in-
put an assumptionA on an arbitrary subset of nets and labels
nets with values fromf0;1;
g learnt through implications.
Initially all netsn such thatA : n 7! v is an assumption, are la-
belled. Then we derive new labels by invoking the rules C1-C6
and O1-O2 and similar rules for other kinds of two input gates.
Note that at all times each net has a unique label and constants
can be overwritten with
’s but not vice-versa. It returns the
set of all final labels. The functionredundancyremovetakes
as input a circuit graphG and callslearn implicationssuc-
cessively with assumptionshni 7! 0i andhni 7! 1i on the sin-
gleton subsetfnig. The two sets of labels are used to com-
pute all pairsn andv such thatn is stuck-at-vredundant. We
later show that our labelling procedure for learning implica-

f
d

b

c

d

e

f

g o

n1

n3

n4

n5

n7

n6
n8

n9n2a

b

c
e

g
o

a

n8=1 n9=1n7=1n4=1n3=0n5=0n6=1

n2=1 n1=1

Figure 8: An implication graph

tions guarantees that all such redundancies can be removed
simultaneously. These redundancies are used to simplify the
network. The process is repeated until all nets have been con-
sidered. Note that the functionredundancyremoveconsiders
assumptions on only a single net but in general any number of
nets could be used to generate assumptions. We later show re-
sults for the case when we considered assumptions on two nets,
the second one corresponding to the unjustified node closest to
ni . This is an instance of recursive learning.

We now formalise the notion of a valid label as one for
which an implication graphexists. We will use the notion
of implication graph for proving the compatibility of the set
of labels generated by the algorithm. LetA be an assumption
on a setP of nets. Animplication graphfor the label(n= r)
from assumptionA is a directed acyclic graphGI = (VI ;EI ;LI),
whereLI is a set of labels of the form(m= a) for some netm
and somea2 f0;1;
g labelling every vertexv2VI , such that

� Every root1 vertex is labelled with(m= a) whereA :
m 7! a

� There is exactly one leaf2 vertexv2VI which is labelled
(n= r)

� For any vertexv 2 VI , if v is not a root node the impli-
cation labelling it can be obtained from the implications
labelling its parents by invoking an inference rule.

An example of an implication graph for the label(n9= 1)
from the assumptionhn8 7! 1i is shown in Figure 8. A set of la-
belsC derived from an assumptionA is compatibleif for every
labelC2C there exists an implication graphGC =(VC;EC;LC)

of C from A such thatLC � C .
We now prove the compatibility of implications returned by

our labelling procedure. At each step, the labelling procedure
either labels a node for the first time or overwrites a constant
with a
. We prove the invariant that at any time, the current
set of implicationsC is compatible. We must prove that if a
label is overwritten with a new label, every other label must
have an implication graph which does not depend on the over-
written label. This claim is proved in the following lemma

1A vertex with no incoming edges
2A vertex with no outgoing edges

and is needed for all current labels to be simultaneously valid.
Note that overwriting a 0 with a 1 (or vice-versa) implies an
inconsistent assumption and the procedure exits.

Lemma 2.1 Let A be a consistent assumption. If a label(m=

a) is overwritten by the label(m=
) in the current set of
labels, then for all labels(nj = bj), there is an implication
graph such that(m= a) is not a label of any vertex in the
graph.

Proof: We call netma parent of netn if there is a nodev of the
circuit graph such thatm is an incoming arc andn an outgoing
arc ofv. We also say thatn is a child ofm. We saym is a sibling
of n if there is a nodev such that bothm andn are outgoing
edges ofv.

We prove the claim by contradiction. Suppose it is false.
Let the replacement of(m= a) by (m=
) be the first in-
stance that makes it false. Therefore, there was an implication
graph for each current implication before this happened. Let
(nj = bj) be an implication that does not have a valid implica-
tion graph now. Consider any path in the old implication graph
for a netnj , (n1 = b1)! ��� ! (nj = bj), such that(m= a)
is theith implication on the path. We consider the case where
bj is a constant. Hence, allbk’s in the path are constants since
a
 at a net can only imply a
 at another. The case in which
bk =
 is considered later. We show that if the assumptionA is
consistent then it is possible to replaceni = bi in the implica-
tion graph fornj . There are three cases on the relation between
ni�1 andni .

Case 1: The circuit edgeni�1 is a child ofni .
 can be
inferred atni only if either ni�1 =
 is a current implication
or ni0 = 0 is a current implication andni0 andni are inputs to
an AND gate. In the first case, the fact that an implication
graph existed in whichni�1 was labelled with a constant is
contradicted. In the second case,ni�1 is the output of an AND
gate, whose two inputs areni andni0 . Since(ni�1 = bi�1)!
(ni = bi) is a valid inference, eitherni�1 = 1 (to imply ni = 1
andni0 = 1) orni�1 = 0 andni0 = 1 (to implyni = 0). In either
caseni0 = 1 which contradictsni0 = 0.

Case 2: ni�1 andni are siblings and(ni�1 = bi�1)! (ni =

bi) is an application of Rule C6. Ifni+1 is either the parent or a
sibling ofni thenni = bi can be removed from the implication
graph fornj = bj , i.e.,(ni�1 = bi�1)! (ni+1 = bi+1) is a valid
implication. If ni+1 is a child ofni , then
 can be inferred at
ni only if either ni+1 =
 is a current implication orni0 = 0
is a current implication andni0 andni are inputs to an AND
gate. In the first case, the fact that an implication graph existed
in which ni+1 was labelled with a constant is contradicted. In
the second case, clearlyni+1 is labelled with 0, i.e.,bi+1 = 0
otherwise the assumptionA is inconsistent, and the path(ni =

bi)! (ni+1 = bi+1) can be replaced by the path(ni0 = 0)!
(ni+1 = 0). Note that to get a new implication graph fornj =

bj , we need the implication graph forni0 = 0 but that exists
and is not affected by the overwriting of the previous label of

e

a g
x

c

bd

i
f

y

Figure 9: Sequential circuitC

ni with
.
Case 3: ni�1 is a parent ofni . The reasoning is same as in

Case 2.
Thus we have shown that if the assumption was consistent,

each vertex labelled with(ni = bi) in the implication graph of a
current implication(nj = bj) can be replaced with some other
current implication. This shows that the replacement ofni = bi

by ni =
 does not falsify the claim which is a contradiction.
Now we consider the case in whichbj =
. Then, there

is a greatestk such thatbk is a constant,bl is constant for all
1� l � k, andbl =
 for all k< l � j. From the proof before,
we know there exists an implication graph fornk = bk in which
ni = bi is not used. This yields an implication graph fornj = bj

in whichni = bi is not used.

Lemma 2.2 Let A be a consistent assumption. Then the set of
labels returned by the algorithm is compatible.

Proof: At each step in the algorithm, either a value is implied
at a net for the first time or a constant is overwritten by a
.
The proof of this lemma follows by induction on the number
of steps of the algorithm and by using Lemma 2.1 to prove the
induction step.

Theorem 2.1 Let ni stuck-at-vi redundant, for all1� i � n,
be the set of redundant faults reported by the algorithm. Then
the circuit obtained by setting ni = vi for all 1� i � n is com-
binationally equivalent to the original.

2.2 Sequential redundancies

Now we extend the algorithm for combinational circuits de-
scribed in the previous section to find sequential redundancies
by propagating implications across latches. The implications
may not be valid on the first clock cycle since the latches
power-up nondeterministically and have a random boolean
value initially. Nevertheless, we can use the notion ofk-
delayed replacement which requires that the modified circuit
produce the same behaviour as the original only afterk clock
cycles have elapsed. Thus, for example, if implying constant
v at a latch output from constantv at its input yields a redun-
dancy, a 1-delay replacement3 is guaranteed on the removal of

3If we have latches where a reset value is guaranteed on the first cycle of
operation, it is sufficient to ensure that the constantv is equal to the reset value;
in this case the replacement is a 0-delay replacement.

at
= 0 dt

= 0 bt+1 = 0 gt+1
= 0 at+1

= 0 et+1
= 0 ct+2

= 0

et
= 0 ct+1

= 0

Figure 10: A sequential implication graph from assumption
at = 0 for the circuitC

at
= 1 dt

= 1 bt+1 = 1 gt+1
= 1 at+1

= 0 et+1
= 0 ct+2

= 0

ct+1
= 1et

= 1

Figure 11: An incorrect sequential implication graph from as-
sumptionat = 1 for the circuitC

that redundancy.
The notion of a label in the implication graph is modified

so that it also contains an integer time offset with respect to
a global symbolic time stept. The rules for learning implica-
tions are exactly the same as before with the addition of a new
rule which allows us to propagate implications across latches:
when we go across a latch we modify the time offset accord-
ingly, e.g. if the output of a latch is labelled with 1 and offset
-2, the input of the latch can be labelled with 1 and offset -3.
An example of an implication graph for the circuitC in Fig-
ure 9 is shown in Figure 10.

This example also shows a potential problem with learning
sequential implications. Consider the circuitC in Figure 9.
For the two assumptionshat 7! 0i (a is 0 at t and t denotes
the global symbolic time) andhat 7! 1iwe get two implication
graphs (in Figures 10 and 11) which both imply(ct+2 = 0).
This might lead us to believe that thec= 0 is a (2-cycle) re-
dundancy. However, the new circuit obtained by replacingc
with 0, if it powers up in state 11 (each latch at 1), remains for-
ever in 11 with the circuit outputx= 1. However, the original
circuit producesx= 0 for all timet � 1, no matter which state
it powers up in. Thus we do not have ak-delay replacement
for any k. The reason for this incorrect redundancy identifi-
cation is that in order to infer(ct+2 = 0) from the assumption
hat 7! 1i, we needed(ct+1 = 1). However, if we replace netc
with 0 (i.e., for all times),c could not have been 1 att+1.

One way of solving the above problem is to ensure that no
net is labelled with different labels for different times. We will
label a net with at most one label, and if a net is labelled we
will associate a list of integers with this label which denotes
the time offset when this label is valid. Thus, for the above
example, during the implication propagation phase for the as-
sumptionhat 7! 1i we will never infer(at+1 = 0) and we will
not get the second implication graph in Figure 10. Labeling
one net with at most one label also obviates the need for the
validation step described in [1].

The algorithm replaces a netnwith the constantv if for some

time offsett 0, it is either labelled withv or is unobservable for
all assumptions. With each such replacement, we associate a
time k as follows [1]. To validate a redundancyn stuck-at-v
at time t 0, we have a set of implication graphs, one for each
assumption, that imply eithernt0 = v or nt0 =
. Let t 00 be
the least time offset on any label in these implication graphs
such that for some netm, mt00 is labelled with a constant. Then
k= 0 if t 00 > t 0 otherwisek= t 0� t 00. We say thatn is k-cycle
stuck-at-vredundant. We use the following theorem to claim
that the circuit obtained by replacing netn with constantv is a
k-delayed safe replacement.

Lemma 2.3 ([1]) Let a net n be k-cycle stuck-at-v redundant.
Then the circuit obtained by setting net n= v results in a k-
delayed safe replacement of the original circuit.

As in the combinational case, we allow overwriting of con-
stants with unobservability indicators. We make sure that the
label at netn at timet+a is overwritten only if the new label
is
 and netn is not labelled at any other time offset (this is to
prevent the problem shown in Figure 11). This may make our
algorithm dependent on the order of application of rules, but
we have not explored the various options. The proof of the fol-
lowing two lemmas follows by easy extensions of Lemmas 2.1
and 2.2.

Lemma 2.4 Let A be a consistent assumption. If a label mt =

a is replaced with mt =
 in the current set of labels, then
for all labels mt0

j = bj , there is an implication graph such that
mt = a is not a label in the graph.

Lemma 2.5 Let A be a consistent assumption. Then the set of
labels returned by the algorithm is compatible.

Hence, the redundancies reported by the algorithm are com-
patible with each other and all redundancies can be removed
simultaneously to get a delayed safe replacement.

Theorem 2.2 Let ni ki-cycle stuck-at-vi redundant, for all1�
i � n, be the set of redundant faults reported by the algorithm.
Let K = Σ1�i�nki. Then, the circuit obtained by setting net
ni = vi forall 1� i � n, is a K-delay safe replacement of the
original.

Proof: From Lemma 2.5, we know from that for all 1� i � n,
ni is ki-cycle stuck-at-vi redundant in the circuit obtained by
settingnj = vj for all j 6= i. It has been shown in [5] that
for any circuitsC, D and E, if C is an a-delay replacement
for D andD is ab-delay replacement forE thenC is (a+b)-
delay replacement forE. The desired result follows easily by
induction onn from this property of delay replacements.

Circuit Redundancy Removal With Recursive Learning
Name red LR A1 % red LR A2 %

s349 0 0 345 0 0 0 345 0
s382 0 0 437 0 0 0 437 0
s386 0 0 251 0 0 0 251 0
s499 0 0 605 0 0 0 605 0
s526 1 0 472 0.4 1 0 472 0.4
s820 0 0 499 0 1 0 492 1.4
s832 0 0 456 0 1 0 443 2.8
s953 0 0 920 0 2 0 717 22.6
s1238 0 0 998 0 3 0 890 5.4
s1269 0 0 1140 0 20 0 1100 3.5
s1488 0 0 1034 0 0 0 1034 0
s1512 0 0 1337 0 0 0 1337 0
s3271 0 0 2828 0 0 0 2828 0
s3384 0 0 3775 0 1 0 3767 0.2
s4863 0 0 3368 0 0 0 3368 0
s5378 29 3 3538 2.1 30 4 3504 3.0
s9234 0 0 2854 0 2 0 2795 2.1
s13207 11 3 7590 0.4 22 5 7509 1.4
s15850 103 0 10571 1.3 113 0 10495 2.0
s35932 64 0 32006 0.3 64 0 32006 0.3
s38417 183 2 32746 0.9 219 41 31917 3.4
s38584 144 0 29069 0.5 124 0 28167 3.6
cordic 80 0 10636 0.5 81 0 16360 0.5

For legend see Table 2.

Table 1: Experimental results for combinational redundancies

3 Experimental Results

We present some experimental results for this algorithm. We
demonstrate that our approach of identifying sequential redun-
dancies yields significant reduction in area and is better than
the approach which removes only combinational redundancies.
We also show that for most examples, recursive learning gives
better results then the simple implication propagation scheme.
In fact for many circuits, recursive learning could identify re-
dundancies where the simple implication propagation scheme
is unable to find any.

This algorithm was implemented in SIS [11]. The circuit
was first optimised usingscript.rugged which performs
combinational optimisation on the network. The optimised cir-
cuit was mapped with a library consisting of 2-input gates and
inverters. The sequential redundancy removal algorithm was
run on the mapped circuit. The propagation of implications
was allowed to propagate 15 time steps forward and 15 time-
steps backward from the global symbolic time. Table 2 shows
the mapped (to MCNC91 library) area of the circuits obtained
by runningscript.ruggedand that obtained by starting from
that result and applying redundancy removal algorithm. For
very large circuits (s15850 and larger), BDD operations dur-
ing thefull simplify step inscript.ruggedwere not per-
formed. We report results for those circuits on which our algo-
rithm was able to find redundancies.

As mentioned earlier, our algorithm starts with an assump-
tion on the nets and implies values on other nets of the circuit.
We implemented two flavors of selection of assumptions. In

Circuit Attributes Redundancy Removal With Recursive Learning
Name PI PO L A red C LR A1 % time red C LR A2 % time

s349 9 11 15 345 0 0 0 345 0 0.5 9 105 0 330 4.3 1.0
s382 3 6 21 436 0 0 0 437 0 0.9 2 5 0 434 0.7 2.1
s386 7 7 6 251 1 1 0 245 2.5 0.5 1 2 0 245 2.5 0.9
s499 1 22 22 605 19 32 0 583 3.6 5.1 16 30 0 581 4.0 9.9
s526 3 6 21 480 1 1 0 472 0.4 0.8 1 0 0 472 0.4 2.3
s820 18 19 5 499 0 0 0 499 0 1.7 1 0 0 492 1.4 2.9
s832 18 19 5 456 0 0 0 456 0 1.6 2 0 0 431 5.5 2.6
s953 16 23 29 920 0 0 0 920 0 3.7 3 0 10 632 31.3 6.3
s1238 14 14 18 998 0 0 0 998 0 3.5 3 0 0 890 10.1 5.4
s1269 18 10 37 1140 0 0 0 1140 0 2.9 21 8 0 1094 4 3.8
s1488 8 19 6 1034 0 0 0 1034 0 5.0 154 149 0 863 16.5 8.7
s1512 29 21 57 1337 2 2 0 1333 0.3 3.3 147 146 9 1092 18.3 5.6
s3271 26 14 116 2828 0 0 0 2828 0 12.9 6 5 0 2801 1.0 25.5
s3384 43 26 183 3775 0 0 0 3775 0 15.8 4 1 1 3745 0.8 18.7
s4863 49 16 83 3386 80 160 0 3319 1.9 23.1 82 164 0 3313 2.2 33.4
s5378 35 49 163 3616 574 1995 25 2959 19.6 22.0 1145 6992 58 2261 37.5 19.9
s9234 19 22 138 2854 102 1414 0 2752 3.8 22.8 102 1414 0 2752 3.8 22.4
s13207 31 121 453 7681 49 518 28 7035 8.4 66.9 92 733 70 6317 17.8 32.1
s15850* 14 87 540 10704 199 1841 6 10415 2.7 272.4 163 1650 43 9380 10.0 493.7
s35932* 35 320 1728 32092 64 0 0 32006 0.3 1339.4 64 0 0 32006 0.3 5010.3
s38417* 28 106 1464 33055 591 887 42 31943 3.4 1139.4 1129 9245 97 29718 10.1 1763.7
s38584* 12 278 1285 29252 102 168 0 29016 0.8 1193.5 114 400 5 28656 2.9 2157.4
cordic* 35 9 271 10688 81 73 0 10636 0.5 251.8 66 56 8 8939 16 242.6

* full simplify not run.
All times reported on an Alpha 21164 300MHz dual processor with 2G of memory.

PI number of primary inputs PO number of primary outputs
L number of latches A Mapped area afterscript.rugged

A1 Mapped area after redundancy removal A2 Mapped area after redundancy removal with recursive learning
red number of redundancies removed LR Number of latches removed
C Upper bound onc, where the new circuit is ac-delay replacement time CPU time
% Percentage area reduction

Table 2: Experimental results for sequential redundancies

the first case a conflicting assignment was assumed on one net
and values were implied on other nets. The second case was
similar to the first except that once the implications could not
propagate for an assumption on a net, we performed a na¨ıve
version of case splitting only on the net which was closest to
the original net from which the implications were propagated
and implications common in the two cases were also added in
the set of implications learnt for the original net.4 This en-
abled us to propagate implications over a larger set of nets in
the network and hence to discover more redundancies at the
expense of CPU time. Table 2 indicates the area reduction
obtained both by simple propagation and by performing this
recursive learning. We find that even for this na¨ıve recursive
learning we get reduction in area in most of the circuits over
that obtained without case split. For instance, for S5378 we
were able to obtain 37.5% area reduction with recursive learn-
ing as against 19.6% without it. For most of the medium sized
circuits we were not able to obtain any reduction in area with-
out recursive learning. For large circuits also we were able to
obtain approximately 5-10% area reduction. S35952 was an

4If a node is unjustified during forward propagation of implications then
case-split is performed by setting the output net to 0 and 1. If the node is
unjustified during backward propagation case split is achieved by setting one
of the two inputs to the input controlling value (0 for (N)AND gate and 1 for
(N)OR gate) at a time and propagating the implications backward.

exception where we did not obtain any more reduction in area.
Except for this circuit the CPU time for recursive learning was
less than twice the CPU time for redundancy removal with-
out it. This suggests that more sophisticated recursive learning
based techniques could yield larger area reduction without pro-
hibitive overhead in terms of CPU time.

Since our algorithm also identified combinational redundan-
cies, we wanted to quantify how many of the redundancies
were purely combinational. To verify this we ran our algo-
rithm on the circuits for combinational redundancy removal
only. Table 1 shows the area reduction due to combinational re-
dundancies only with and without recursive learning. In most
cases, the number of redundancies identified in Table 2 is sig-
nificantly larger than the set of combinational redundancies
identified by our algorithm. Only for S35952 and S953 did the
combinational redundancy removal result in approximately the
same area reduction as the sequential redundancy case.

For the example circuits presented here we were able to
achieve 0-37% area reduction. In a number of cases the al-
gorithm was able to remove a significant number of latches. In
all cases, the new circuit is aC-delay safe replacement of the
original circuit. TheC reported in Table 2 is actually an up-
per bound. For most of the delay replaced circuitsC< 10000.
However most practical circuits operate at speeds exceeding
100 MHz in present technology.C< 10000 for a circuit would

require the user to wait for at most 100µs before useful opera-
tion can begin. This is not a severe restriction.

We are unable to compare sequential redundancy removal
results with the previous work of Entrena and Cheng [8] be-
cause as we noted earlier, their notion of sequential replace-
ment, which is based on the conservative 0,1,X-valued simula-
tion, is not compositional (unlike the notion of delay replace-
ment that we use).

4 Future Work

Our redundancy removal algorithm does not find the complete
set of redundancies. We can extend this scheme in several
ways to identify larger sets. For instance, instead of analyzing
two assumptions due to a case split on a single net we could
case split on multiple nets and intersect the implications learnt
on this larger set of assumptions. One such method is to in-
crementally select those which are at the frontier where the
first phase of implications died out. Additionally, if we split
on multiple nets it is possible to detect pairs of nets such that
if one is replaced with another the circuit functionality does
not change. With our current approach, because we split on
a single net, one of the nets in this pair is always a 1 or a 0,
which means that we are only identifying stuck-at-constant re-
dundancies.

For this algorithm we map a given circuit using a library of
two input gates and inverters. A different approach would be
to use the original circuit and propagate the implications for-
ward and backward by building the BDD’s for the node func-
tion in terms of it’s immediate fanins. We intend to compare
the running times and area reduction numbers of our approach
with such a BDD based approach. In addition, BDD based
approaches may allow us to do redundancy removal for multi-
valued logic circuits as well in a relatively inexpensive way.
We can extend the notion of redundancy for multi-valued cir-
cuits to identify cases where a net can take only a subset of its
allowed values. Then latches of this kind can be encoded using
fewer bits.

5 Acknowledgements

We had useful discussions with Mahesh Iyer during the course
of this work. Miron Abramovici gave us the example of Fig-
ure 1. The comments by the referees also helped to improved
the paper.

References

[1] M. A. Iyer, D. E. Long, and M. Abramovici, “Identifying
Sequential Redundancies Without Search,” inProc. of the

Design Automation Conf., (Las Vegas, NV), pp. 457–462,
June 1996.

[2] S. Muroga, Y. Kambayashi, H. C. Lai, and J. N. Culliney,
“The Transduction Method - Design of Logic Networks
Based on Permissible Functions,” inIEEE Trans. Com-
puters, Oct. 1989.

[3] H. Savoj,Don’t Cares in Multi-Level Network Optimiza-
tion. PhD thesis, University of California Berkeley,
Electronics Research Laboratory, College of Engineer-
ing, University of California, Berkeley, CA 94720, May
1992.

[4] W. Kunz and D. K. Pradhan, “Recursive Learning: A
New Implication Technique for Efficient Solution to
CAD Problems - Test, Verification and Optimization,”
IEEE Trans. Computer-Aided Design, Sept. 1994.

[5] V. Singhal, C. Pixley, A. Aziz, and R. K. Brayton, “Ex-
ploiting Power-up Delay for Sequential Optimization,”
in Proc. European Design Automation Conf., (Brighton,
Great Britain), pp. 54–59, Sept. 1995.

[6] S. Qadeer, V. Singhal, R. K. Brayton, and C. Pixley,
“Latch Redundancy Removal without Global Reset,” in
Proc. Intl. Conf. on Computer Design, (Austin, TX),
pp. 432–439, Oct. 1996.

[7] M. Chatterjee, D. K. Pradhan, and W. Kunz, “LOT:
Logic Optimization with Testability - New Transforma-
tions using Recursive Learning,” inProc. Intl. Conf. on
Computer-Aided Design, (San Jose, CA), pp. 318–325,
Nov. 1995.

[8] L. Entrena and K.-T. Cheng, “Sequential Logic Op-
timization by Redundancy Addition and Removal,” in
Proc. Intl. Conf. on Computer-Aided Design, (Santa
Clara, CA), pp. 310–315, Nov. 1993.

[9] M. A. Iyer, On Redundancy and Untestability in Sequen-
tial Circuits. PhD thesis, Illinois Institute on Technology,
1995.

[10] I. Pomeranz and S. M. Reddy, “On Removing Redun-
dancies from Synchronous Sequential Circuits with Syn-
chronizing Sequences,”IEEE Trans. Computers, vol. 45,
pp. 20–32, Jan. 1996.

[11] E. M. Sentovich, K. J. Singh, L. Lavagno, C. Moon,
R. Murgai, A. Saldanha, H. Savoj, P. R. Stephan, R. K.
Brayton, and A. L. Sangiovanni-Vincentelli, “SIS: A
System for Sequential Circuit Synthesis,” Tech. Rep.
UCB/ERL M92/41, Electronics Research Lab, Univ. of
California, Berkeley, CA 94720, May 1992.

