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Three sequential optimization methods, sequential least square method, sequential Kriging method, and sequential linear Bayesian 
method, are presented for the optimization design of electromagnetic device. Sequential optimization method (SOM) is composed of 
coarse optimization process and fine optimization process. The main purpose of the former is to reduce the design space; while the 
target of the latter is to update the optimal design parameters. To illustrate the performance of the proposed methods, an analytic test 
function and the TEAM Workshop Problem 22 are investigated. Experimental results of test function demonstrate that SOM can obtain 
satisfactory solutions; and practical application illustrates that the number of finite element sample points is less than 1/10 compared 
with that by direct optimization method, while the optimal results are even better than that by direct optimization method. 

 

Index Terms—Kriging, linear Bayesian estimation (LBE), response surface model, sequential optimization method (SOM). 
 
 

I.  INTRODUCTION 
 
 

PTIMIZATION is  an  art  of  getting the  best solution 
among the feasible solutions. The target of electromag- 

netic device optimization is to determine a set of physical 
parameters to satisfy certain design specifications. Engineers 
have been using optimization techniques for devices, compo- 
nents, and system modeling for decades. 

Many  electromagnetic  optimization  problems  are  solved 
by means of highly accurate models (e.g., finite element 
model) with direct optimization algorithms, such as genetic 
algorithm [1], clonal selection algorithm [2], and differential 
evolution algorithm (DEA) [3]. However, these approaches are 
computationally expensive. As an alternative, many statistical 
approximate models, such as response surface model (RSM), 
radial basis functions model and Kriging model are also widely 
employed in practical engineering problems [4]–[7]. They are 
proved fast, but not very accurate. 

In the traditional optimization method, models and al- 
gorithms were almost discussed separately, but, indeed, 
optimization is a simultaneous updating process about models 
and algorithms. In this paper, we try to discuss both of them 
simultaneously within the framework of SOM. 

 
 
 

II.  PARAMETER ESTIMATION THEORY FOR RSM 
 

Give a set of sample points  with 
and responses with  . 

Now, for an      dimensional input   , the response value  
can be expressed as a realization of a low-order polynomial re- 
gression model with a random error function. Quadratic poly- 
nomials are the most commonly used in electromagnetic opti- 

 
 

mization problems, which are also used in this work. Then we 
have the approximate model as 
 
 

 

                                                                   (1) 
 
 
where   is the error function and  are the regression pa- 
rameters. To estimate the model parameters, (1) can be written 
in matrix notation as 
 

(2) 
 
where is an  vector of observations with respect to 
sample points is a known   observation matrix of rank 
 with                                , and  is an error vector with 
zero mean and covariance (the probability density function 
of w is otherwise arbitrary). 

Least square method is always used to estimate the parame- 
ters . Minimize the weighted least square error 
 

(3) 

Then the least square estimation (LSE) of  is 

(4) 
 

It should be noted that LSE is only a coarse estimation. When 
the dimension of the optimized problem is high or the number 
of the response points is very large, many difficulties are that we 
must face, such as matrix singular. So we present two improved 
parameter estimation methods, which are termed Kriging and 
linear Bayesian estimation (LBE), respectively. 
 
A.  Kriging 
 

Kriging is a general term used for the family methods of min- 
imum mean square error estimation. Under the assumption of 
(2), the best linear unbiased estimation of  has the form as 
 

(5) 



 

 

 
As we know, the above estimation is the minimum variance 

linear unbiased estimation, which is the one whose variance for 
each component is minimum among all unbiased estimations. It 
is an optimal estimation in the statistical sense. 

The covariance matrix         can be defined as 
 

                 (6) 
 

where     is the correlation matrix, and     is the user-specified 
correlation function. Gaussian correlation functions are most 
commonly used [6], [7]. They have the form as 

                                                                (7) 

Implementing  a Kriging method consists of estimating the 
parameters  in (2),  in (6) and       in (7). All parameters 
can be easily estimated by the software package Design and 
Analysis of Computer Experiments (DACE) [7]. 

 
B.  Linear Bayesian Estimation 

LSE and Kriging were gained without any prior informa- 
tion of . If some prior information is available, LBE can be 
a better choice. LBE is implemented and quantified within the 
formalism of Bayesian statistics and linear unbiased estimation 
theory. In the data model of (2), and in the assumption of  is a 
       random vector of parameters whose realization is to be es- 
timated and it has prior mean      and covariance matrix  (the 
probability density function of    is otherwise arbitrary). For the 
estimation to be linear, we require 

 
 

                                                    (8) 
 

where are constants yet to be determined for             , 
. In order for     to be unbiased we require 

 
                  (9) 

 
 

where    is the expectation, and the Bayesian mean square error 
(BMSE) of     is [8] 

       (10) 

Then the LBE is found by minimizing (10) subject to the con- 
straints of (9), which lead to 

(11) 

The main work in the LBE is the selection of the prior in- 
formation for . Fortunately, LSE is a coarse estimation which 
can be simply gained. So in our latter implementation of LBE, 
LSE is used for its prior information. Obviously, Kriging and 
LBE are more accurate and efficient than LSE, especially for 
the high dimension optimization problems. However, they are 
also more complex than the LSE. 

 
III.  SEQUENTIAL OPTIMIZATION METHOD 

SOM can be summarized in six main steps and its flowchart 
is shown in Fig. 1. 

 

 
 
Fig. 1.  Flowchart of SOM. 
 
 
 

1) Define problem. This is the pretreatment process of the 
optimized problem, Such as using experiment design ap- 
proach to select sample points and using analysis of vari- 
ance to determine the distinct factors. 

2) Coarse optimization process (COP). The target of COP is 
to reduce the design space. LSE is employed to recon- 
struct the the design space of the th optimization process 
is and  is the interval of the  th variable. 

is the step size and        ; and  is 
the number of sample points. Note that the value of the 
step size must ensure that the minimum of the number 
of sample points is no smaller than 3, otherwise singu- 
larity matrix may appear in the matrix inversion process. 
In our implementation, if the step size can not ensure this 
request, we use               to evaluate the step size. 
Then we can reconstruct the response surface with the 
sample set . Through the optimization of the 
response sur- face,  we can obtain the current optimal 
design parame- ters and corresponding response value. 
They are noted as                                and , 
respectively. 

3) Step size termination. If                     (  is a positive con- 
stant), stop COP and go to step 5, otherwise go to step 4. 

4) COP loop. Halve the sample space with the optimal value. 
Under the boundary condition of the design space, the de- 
sign space of next step is updated as follows: 

 
 

                                                                             (12) 
 

where  ,                                       , 
function is round to the nearest integer of   . The 



 

 

 
number of sampling points can be remarkably reduced by 
this updating method. 
For example, supposing the initialization of design space is 
[0, 1] and step size is 0.2; then 6 sample points constitute 
the first sample data        . 
And supposing the current optimal value is 0.35, from (12) 
we can get the next sample space is [0.1, 0.6]. If we also 
use uniform sampling method with half of the step size, 
the sample  data are        . 
Obviously, three sample points have been sampled in the 
last step, in other words, 50% computation cost is reduced. 
Similarly, supposing the current optimal value is 0.12, the 
new sample space is [0, 0.4], and new  sample data are 

                                       , in this case, 60% computa- 

TABLE I 
OPTIMIZATION RESULTS  OF AN ANALYTIC  FUNCTION 

 

 
 

TABLE II OPTIMIZATION RESULTS  
OF SMES 

tion cost is reduced. 
5) Optimal results termination. If                                  (   is 

a small positive constant), stop optimization process and 
output the optimal results, otherwise go to next step. 

6) Fine  optimization  process  (FOP):  The  target  of  this 
process is to find the optimal results. Kriging and LBE are 
employed to reconstruct the response surface of RSM in 
this process. Moreover, LSE may be also used in FOP. It 
should be noted that there is no need to update the design 
space in the FOP. To ensure the accuracy and robustness of 
optimization process, local multipoint samples updating 
method is involved here. Given current optimal value, 
the next sample set             is updated by (13), which is 
constructed by the  perturbations around the current 
optimal value 

 

                                                   (13) 

In this paper,        . Two points in each variable is 
selected, one is the optimal value, and the other is the mean 
value of the two sample points near the optimal result. 

 
IV.  EXPERIMENTS AND RESULTS 

Considering the different parameter estimation methods of 
RSM, we have three SOMs, which are termed as sequential least 
square method (SLSM), sequential Kriging method (SKM), and 
sequential linear Bayesian method (SLBM). RSM is constructed 
with LSE for all of them in COP, while LSE, Kriging, and LBE 
are used in FOP, respectively. In this paper, DEA is used as the 
optimization algorithm [3]. The algorithm parameters are: mu- 
tation scaling factor is 0.8, crossover factor is 0.8, the maximum 
number of iteration is 3000, and the maximum stall generation 
is 100, which is selected for the stop criterion [9]. 

Table I shows the unconstrained optimization results of an 
analytic function [5], [6] 

 

                                          (14) 

The initial sample space is . The 
initialization of parameters are:              ,               and 

. It should be noted that the optimal results given in Table I 
are the best one among 100 runs in each optimization process. 
Actually, no less than 90 runs can get the best solution (also for 

 

 
 
the Table II). Compared with the exact values, we can obtain 
satisfactory solutions from our presented methods. 

These  methods  were  also  applied  to  the  TEAM  Work- 
shop problem 22 which is a well known benchmark problem 
for optimization algorithms [1], [2], [4], [10]. Fig. 2 shows 
the three-variable case of Superconducting magnetic energy 
storage (SMES). And SMES consists of two solenoids. The di- 
mensions of the inner solenoid                         stay fixed, while 
the dimensions of the outer solenoid                         should be 
optimized to reduce stray fields while keeping the stored energy 
close to an expectation value. One objective function and two 
constraints are included in this problem [2]. To be detailed, the 
objective function is given by 
 

                                                      (15) 
 
where             mT;                                                 , 
which is  the  magnetic flux density evaluated along 21 
equidistant points on lines     and   .  and  are two 
constraints, the former is an equality constraint, concerning the 
amount of energy stored at the SMES device; and the latter is an 
inequality constraint, concerning the quench condition that 
guarantees superconductivity 
 

                                                       (16) 

                                                       (17) 
 

where  is the energy stored by the SMES,                           
, and  is the highest magnetic field value. In this paper, the 
constraints were treated using a penalty function as 
 

          (18) 
 
 

Table II shows the optimization results given by our proposed 
methods.      ,   and   are 5%. To illustrate the effi- 
ciency of the proposed methods, the results given by direct op- 
timization method are also given in Table II, which is imple- 
mented by the finite element model and DEA. Furthermore, as 
a reference, the best known results (TEAM [10]) are also given 
in Table II. In order to make these results to be comparable, all 
response values, , , and , are calculated from the 
ANSYS with the same preprocessing process. 



 

 

 
 

 
 

Fig. 2.  Design parameters        ,         and        of SMES. 
 
 
 

Meanwhile, the average convergence speed of the SOM is 
ranged from 900 and 1320 with DEA. The average convergence 
time is half of the time of a finite element sampling process. So, 
the time for optimization algorithm can be neglected compared 
with finite element sampling process. Three main conclusions 
are drawn from the Table II. 

1) For the direct optimization method, the optimal design pa- 
rameters given by DEA are [3.18 0.428 0.211]. The mean 
stray field    is 1.032 mT, energy is 180.00 MJ, and 
2310 finite element sample points (FESP) are needed. 

2) For the optimization with SLSM, only 154 FESP, less than 
7% compared with that of DEA, are needed to get the op- 
timal results, which are [3.09 0.246 0.376]. The energy is 
179.63 MJ, and the    is 0.916 mT, which is smaller 
than that given by DEA. 

3) For the optimization with SKM and SLBM, the optimal 
results are the same. Only 162 FESP, about 7% compared 
with that of DEA, are needed to get the optimal results. 
The optimal results are [3.08 0.239 0.394], which are the 
same as the results of TEAM.    is 0.909 mT, which 
is smaller than that given by SLSM and DEA. The error of 

 is 0.14 MJ, which is smaller than that of SLSM. 
Obviously, SKM and SLBM are better than SLSM and di- 

rect optimization method. Finally, as an example to illustrate all 
the sample points sampled in optimization process, the entire 
sample data of SKM are displayed in Fig. 3. Actually, five sam- 
pling processes (3 COP and 2 FOP) are needed to implement the 
SKM and SLBM. And the fourth sampling processes in Fig. 3 
are the entire sample data of SLSM. 

 
V.  CONCLUSION 

 

In this paper, three parameter estimation methods, LSE, 
Kriging and LBE, are firstly presented for the reconstruction 
of RSM. Then SOM of models and algorithms are addressed 
to electromagnetic device optimization problems. SOM only 

 
 

 
 
Fig. 3.  Entire sample data of SKM (      for the first COP;      for the second COP; 
   for the third COP; o for the first FOP;     for the second FOP). 
 
 
need a small sample data, and the overall computational effort 
needed is much less than that by direct optimization method. 

Obviously, SLSM, SKM and SLBM are very successful in 
optimizing the analytic function and the SMES device. Espe- 
cially the SKM and SLBM, of which the efficiency is better than 
that by DEA, while its finite element computation cost is obvi- 
ously less than 1/10 compared with that by DEA. 

It should be noted that SOM can be extended to other approx- 
imation models, such as radial basis functions model and other 
forms of Kriging model. Furthermore, other sampling methods, 
such as Latin hypercube sampling method, can also be used in 
the SOM. All these methods can be widely used in engineering 
electromagnetic optimization problems. 
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