
Chapter 1

Sequential Parameter Optimization

T. Bartz-Beielstein

Abstract We provide a comprehensive, effective and very efficient method-
ology for the design and experimental analysis of algorithms. We rely on
modern statistical techniques for tuning and understanding algorithms from
an experimental perspective. Therefore, we make use of the sequential pa-
rameter optimization (SPO) method that has been successfully applied as
a tuning procedure to numerous heuristics for practical and theoretical op-
timization problems. Two case studies, which illustrate the applicability of
SPO to algorithm tuning and model selection, are presented.

1.1 Introduction

Contrary to intuition, applying and assessing randomized optimization algo-
rithms is usually not trivial. Due to their flexibility, they fail only gradually
as long as the main principle of moving towards better solutions remains
intact. Statements of practitioners like “I tried that once, it did not work”
thus appear to be somewhat näıve to scientists but simply reflect how the
difficulties of a proper experimental evaluation are usually underestimated.

The approach presented in this paper has its origin in design of experiments
(DOE). Ideas from Fisher (1935) have been refined and extended over the last
decades. Ideas, which were successfully applied in agricultural and industrial
simulation and optimizations, are applied to problems from computer science.

The concept of active experimentation is fundamental in our approach.
First, a very simple model is chosen—a process related to pulling oneself up
by one’s own bootstraps. Since the model induces a design, design points
can be chosen to perform experiments. In the next step, model refinement
is applied (or, if the model does not fit at all, a new model is chosen). This
rather simple sequential approach is a very powerful tool for the analysis of
heuristics.
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Whereas algorithm engineering (Cattaneo and Italiano, 1999) builds on
the existence of theory, this is not a necessary precondition for our approach.
However, obtaining general principles from experimentation may later on
lead to theory. Nevertheless, this is not the primary goal. Instead, one is
striving for “best case” performance in the sense that for a given problem and
algorithm, the best possible algorithm configuration is sought.

One instance of this sequential approach to experimentation is presented
in this paper, namely, the sequential parameter optimization (SPO). An im-
plementation of the SPO has been developed over the last years. The corre-
sponding software package will be referred to as SPOT, an acronym which
stands for sequential parameter optimization toolbox.

The SPO toolbox was developed over the last years by Thomas Bartz-
Beielstein, Christian Lasarczyk, and Mike Preuss (Bartz-Beielstein et al.,
2005b). The main purpose of SPOT is to determine improved parameter
settings for optimization algorithms to analyze and understand their perfor-
mance.

The development of SPO was inspired by Kleijnen (1987), who did similar
investigations in the field of simulation. We applied design of experiments
(DoE) to

a) stochastic search, e.g., evolution strategies and also to
b) deterministic search, e.g., Nelder-Mead simplex algorithm.

The first studies used classical DoE with (fractional) factorial designs (Beiel-
stein, 2003). In addition to classical regression models, tree based regression
models were used in order to handle categorical variables. Our experiments
demonstrated that nearly every algorithm can be tuned. Figure 1.1 depicts
results from DoE applied to evolution strategies and simulated annealing. In
a second step of the SPO development, Kriging models were used to perform
the optimization (Bartz-Beielstein et al., 2004b,c). Kriging requires different
designs, so-called space filling designs, e.g., Latin hypercube designs. To im-
prove the efficiency of SPO, we implemented a sequential procedure, which
starts with a relatively small initial sample. Additional points were added
during the optimization procedure. In addition, a procedure to tackle noise
was integrated.

SPOT was successfully applied to numerous optimization algorithms, es-
pecially in the field of evolutionary computation, i.e., evolution strategies,
particle swarm optimization, algorithmic chemistries etc. in the domains of
machine engineering (Mehnen et al., 2005; Weinert et al., 2004; Mehnen et al.,
2004), aerospace industry (Bartz-Beielstein and Naujoks, 2004), simulation
and optimization (Bartz-Beielstein et al., 2005c; Markon et al., 2006), tech-
nical thermodynamics (Bartz-Beielstein et al., 2005b), bioinformatics (Volk-
ert, 2006) and agri-environmental policy-switchings (de Vegt, 2005). Other
fields of application are in fundamental research, e.g., graph drawing (Tosic,
2006), selection under uncertainty (optimal computational budget alloca-
tion) (Bartz-Beielstein et al., 2005a), evolution strategies (Bartz-Beielstein,
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Fig. 1.1 Comparison of the results from 50 runs of an evolution strategy on the
sphere function and Rosenbrock’s function and of a simulated annealing. The left
boxplot in each panel shows the result obtained with the default (standard) param-
eters recommended in the literature, whereas the right box plots illustrate results
from the regression analysis. Problems in this studies are minimization problems, i.e.,
smaller values are better.

2005), genetic chromodynamics (Stoean et al., 2005), algorithmic chem-
istry (Bartz-Beielstein et al., 2005b), particle swarm optimization (Bartz-
Beielstein et al., 2004a), and numerics (Bartz-Beielstein et al., 2004c). Further
projects, e.g., the application of methods from computational intelligence to
problems from storm water prediction are subject of current research.

Section 1.2 describes the role of experiments in computer science. The
basic ideas from SPO are introduce in Sect. 1.3, and Sect. 1.4 gives a short
description of the objectives of the SPO framework. SPOT’s key elements
of presented in Sect. 1.5. Two case studies are presented in Sect. 1.6 and 1.7.
The paper concludes with a discussion of the results in Sect. 1.8.

1.2 Why Perform Experiments in Computer Science?

Theoreticians sometimes claim that experimentation is a “nice to have” fea-
ture, but not “necessary” in computer science. Besides reasons claimed by the
new experimentalists, there are also practical problems which make experi-
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mentation necessary. There are several good reasons to further develop the
methodology for experimental work:

• For many practical problems, including but not limited to black box real-
valued problems, theory is far behind to non-existent, so that there is no
other means to investigate efficiency other than experiment.

• Metaheuristic optimization algorithms consist of basic working principles,
any interfaced problem can be solved “in principle.” But for attaining
considerable efficiency on real-world problems, it is generally needed to
adapt the metaheuristic towards the problem, using any available specific
knowledge about the application domain. This process of adaptation is
crucial but often ignored in favor of the final quality. It shall not be
undertaken without a guiding methodology.

Summing up these considerations from theory and practice, the following
topics can be considered as relevant for scientific research in experimentation:

• Investigation refers to the specification of the right optimization prob-
lem, the analysis of algorithms, the determination of important parame-
ters, and the question, what “should be optimized.” Important is also the
development of reasonable research questions. Furthermore, one should
specify, what is going to be explained. And, does it help in practice? Does
this investigation enable theoretical advances? To describe the observed
behaviour, conjectures should be formulated.

• Comparing the performance of algorithms is a challenging task. Any
reasonable approach here has to regard fairness. It is good to demon-
strate performance. However, explaining and understanding performance
is much better (Cohen, 1995) . This means, that we should look at the
behavior of the algorithms, not only at the results.

• Quality in the context of experimental analysis of optimization algorithms
is related to robustness, which includes insensitivity to exogenous factors
and the minimization of the variability (Montgomery, 2001). In order to
find out, for what (problem, parameter, measure) spaces our results hold,
invariance properties should be detected.

These elements are well-established in many scientific disciplines. We claim
that in addition, tools to analyze the scientific meaning of statistical results
are necessary.

1.3 Sequential parameter optimization

SPO comprehends the following steps:

1. Pose a scientific question.
2. Break the (complex) question into (simple) statistical hypotheses for test-

ing. Mayo (1996, p. 190) writes:
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Our approach to experimental learning recommends proceeding in the way
one ordinarily proceeds with a complex problem: break it into smaller
pieces, some of which, at least, can be tackled. One is led to break things
down if one wants to learn [. . . ] Setting out all possible answers to this one
question becomes manageable, and that is all that has to be “caught” by
our not-H.

3. For each hypothesis:

a) Select a model (e.g., regression trees) to describe a functional rela-
tionship

b) Select an experimental design
c) Generate data
d) Refine the model until the hypothesis can be accepted/rejected

4. Draw conclusions from the hypotheses to assess the scientific meaning of
the results from this experiment. Here, Mayo (1996)’s concept of severity
comes into play. Mayo (1996, p. 178) writes: “ Stated simply, a passing
result is a severe test of hypothesis H just to the extent that it is very
improbable for such a passing result to occur, were H false.”

1.4 Objectives

During the first stage of the experimentation, SPOT treats the algorithm A

as a black box. A set of input variables, say x, is passed to A. Each run of the
algorithm produces some output, y. SPOT tries to determine a functional
relationship F between x and y. Since experiments are run on computers,
pseudo-random numbers are taken into consideration if

i) the underlying objective function f is stochastically disturbed, e.g., mea-
surement errors or noise occur, and/or

ii) the algorithm A uses some stochastic elements, e.g., mutation in evolution
strategies.

This situation can be described as follows:

u
f

−→ v (1.1)

x
F

−→ y (1.2)

In the following, we will classify elements of x in the following manner.

1. Variables, which are necessary for the algorithm, belong to the algorithm
design, whereas

2. variables, which are needed to specify the optimization problem f , belong
to the problem design.

The set x is divided into the algorithm design xa and the problem design xp.
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1.5 Elements of the SPOT framework

1.5.1 SPOT tasks

SPOT is not per se a meta-algorithm. We are also interested in the resulting
algorithm designs, not in the solutions to the primordial problem only. SPOT

provides tools to perform the following tasks

1. Initialize. An initial design which is written to the designfile is generated.
This is usually the first step during experimentation. Information from
the ROI and the CONF file are used. A clean start can be performed.
This step is necessary if the user wants to perform a new experiment or
delete results from previous run.

2. Run. This is usually the second step. The optimization algorithm is
started with configurations from the design file. The algorithm writes re-
sults to the result file. Information from the design and algorithm problem
design files are used in this step.

3. Sequential step. A new design, based on information from the resultfile,
is generated. This new design is written to the design file. A prediction
model is used in this step. Several generic prediction models are avail-
able in SPOT already. To perform an efficient analysis, especially in
situations, when only a few algorithms runs are possible, user-specified
prediction models can easily be integrated into SPOT.

4. Report. An analysis, based on information from the resultfile, is generated.
Since the report uses information from the resultfile, new report facilities
can be added very easily. SPOT contains some scripts to perform a basic
regression analysis and plots such as histograms, scatter plots, plots of
the residuals, etc.

5. Automatic mode. In the automatic mode, the steps run and sequential
are performed after the initialization for a certain number of times.

1.5.2 Running SPOT

SPOT can be started from the command shell in the bin directory of your
SPOT installation.1 The formal command reads:

1 SPOT can be downloaded from http://www.gm.fh-koeln.de/campus/personen/

lehrende/thomas.bartz-beielstein/00489/. Previous versions of the SPOT re-
lied on functions provided by the MATLAB Kriging toolbox DACE developed
by Lophaven et al. (2002). Starting with version 0.5, an R (Ihaka and Gentleman,
1996) version will be available, too. The following description refers to this R imple-
mentation. Its installation is very simple: Extract the zip-file from the SPOT WWW-
page in a folder (directory) of your choice. Surely, an R-system must be available on
your computer. A JAVA based GUI is available, too.
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spot <task> <configurationfile>

where task can be one of the tasks described in Sect. 1.5.1, i.e., init, seq,
run, rep, or auto, and configurationfile is the name to the SPOT config-
uration file. SPOT uses simple text files as interfaces to the algorithm to the
statistical tools.

1. Files provided by the user:

a. Region of interest (ROI) files specify the region, over which the al-
gorithm parameters are tuned. categorical variables such as the re-
combination operator in ES, are encoded as numerical values, e.g.,
“1” represents “no recombination” and “2” stands for “discrete recom-
bination.”

b. Algorithm design files (APD) are used to specify parameters used by
the algorithm, e.g., problem dimension, objective function, starting
point, or initial seed.

c. Configuration files (CONF) specify SPOT specific parameters, such
as the prediction model or the initial design size.

2. Files generated by SPOT

a. Design files (DES) specify algorithm designs. They are generated au-
tomatically by SPOT and will be read by the optimization algo-
rithms.

b. After the algorithm has been started with a parameterization from
the algorithm design, the algorithm writes its results to the result
file (RES). Result files provide the basis for many statistical evalua-
tions/visualizations. They are read by SPOT to generate prediction
models. Additional prediction models can easily be integrated into
SPOT.

Figure 1.2 illustrates SPOT interfaces and the data flow. Note, that the prob-
lem design can be modified, too. This can be done to analyze the robustness
(effectivity) of algorithms.

SPOT can be run in an automated and an interactive mode. Similarities
and differences of the automated and the interactive process are shown in
Fig. 1.3.

1.6 Case Study I: Algorithm Tuning

To introduce SPOT’s functionality, we present a case study, which analyses
a simple evolution strategy. Starting from scratch, we do not now anything
about the functional relationship F from Equation 1.1. This situation can be
characterized as a chicken-and-egg problem: The experimenter has to decide
which comes first: a design for the data x or the specification of a model F?
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SPOT

Optimization
Algorithm

APD

EDA
CONF
ROI

Algorithm layer

SPOT layer

(c)

(d)

(e)
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(a) (g)

(b)

DESRES

Fig. 1.2 SPO interfaces. The SPOT loop can be described as follows: Configuration
and region-of-interest files are read by SPOT (a). SPOT generates a design file (b).
The algorithm reads the design file and (c) extra information, e.g., about the problem
dimension from the algorithm-problem design file (d). Output from the optimization
algorithm are written to the result file (e). The result file is used by SPOT to build the
prediction model (f). Data can be used by EDA tools to generate reports, statistics,
visualizations, etc. (g)

For example, assuming a linear model F , we should use factorial designs to
specify x. But, in order to validate linearity, we need some data x.

We prefer the following approach: Select a simple model F0 and a related
design x0, generate some data y0, fit the (simple) model F0, predict a few new
design points x1 based on F0, generate further data y1, refine the model (F1),
and continue. The chicken-and-egg problem defines a sequential approach in
a natural manner, which improves F and y at the same time. This approach
motivated the term sequential parameter optimization. In many situations,
it can be shown, that sequential approaches are much more efficient than
one-at-a-time approaches Armitage (1975).

We will discuss the basic output from the R analysis during the sequential
approach. The analysis is not complicated and requires only basic knowledge
from statistics. The reader will get interesting insights into the working mech-
anism of his algorithms by executing a few lines of R code. SPOT comes with
some elementary R scripts which can be extended easily.

First, we will focus on fitting a linear regression model. The model

y = β0 +
k

∑
j=1

β jx j + ε (1.3)
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Fig. 1.3 The sequential parameter optimization process. White font color was chosen
to mark elements that are used in the interactive process only. A typewriter font was
chosen for the corresponding SPOT commands. To start the automated mode, simply
use the task auto.
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Procedure 1: (1+1)-ES()

t := 0;1

initialize(x, σ);2

repeat3

yp := f (xp);4

xo := xp +σ(N (0,1),N (0,1), . . . ,N (0,1))T ;5

yo := f (xo);6

if yo ≤ yp then7

xp := xo;8

modify σ according to 1/5th rule;9

t := t +1;10

until TerminationCriterion() ;11

return (xp,yp)12

is called a multiple linear regression model with k regression variables and
response y. The regression variables represent algorithm parameters, e.g.,
initial step size s0, multiplier for step sizes a, and size of the memoryg.

We consider a simple evolution strategy (ES), the so-called (1+1)-ES, see
Procedure 1. The 1/5th rule states that σ should be modified according to
the rule

σ(t +1) :=







σ(t)a, if Ps > 1/5

σ(t)/a, if Ps < 1/5

σ(t), if Ps = 1/5

(1.4)

where the factor a is usually between 1.1 and 1.5 and Ps denotes the success
rate (Beyer, 2001). The factor a depends particularly on the measurement pe-
riod g, which is used to estimate the success rate Ps. During the measurement
period, g remains constant. For g = n, where n denotes the problem dimen-
sion, Schwefel (1995) calculated 1/a ≈ 0.817. Beyer (2001) states that the
“choice of a is relatively uncritical” and that the 1/5th rule has a “remarkable
validity domain.” He also mentions limits of this rule.

Based on these theoretical results, we can derive certain scientific hypothe-
ses. One might be formulated as follows: Given a spherical fitness landscape,
the (1+1)-ES performs optimal, if the step-sizes σ is modified according to
the 1/5th rule as stated in Eq. (1.4). This statement is related to the primary
model.

In the experimental model, we relate primary questions or statements to
questions about a particular type of experiment. At this level, we define an
objective function, a starting point, a quality measure, and parameters used
by the algorithm. These parameters are summarized in Table 1.1.

Data from these experiments are related to an experimental question,
which can be stated as follows: Determine a value for the factor a, such
that the (1+1)-ES performs best with respect to the quality measure specified
in Table 1.1. And, is this result independent from the other parameters pre-
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Table 1.1 (1+1)-ES parameters. The first three parameters belong to the algorithm
design, whereas the remaining parameters are from the problem design (see Sect. 1.4).

Name Symbol Factor name in the algorithm design
Initial stepsize σ(0) S0
Stepsize multiplier a A
History g = n G
Starting point xp

Problem dimension n

Objective function f (x) = ∑x2
i

Quality measure Expected performance, e.g., E(y)
Initial seed s

Budget tmax

sented in Table 1.1? Note, that Table 1.1 contains all factors that are used
in this experiment.

Finally, we consider the data model. A common practice in statistics is
to seek data models that use similar features and quantities of the primary
hypothesis. For example, if the primary model includes questions related to
the mean value µ of some random variable X , then the data model might use
the sample mean x. Here, we are interested in the expected performance of the
(1+1)-ES. Thus, we can use the average from, say ten, repeats, yi, to estimate
the expected performance. In addition, standard errors or confidence intervals
can be reported. So, in the data model, raw data are put into a canonical
form to apply analytical methods and to perform hypothesis tests.

1.6.1 Performing the Experiments

Classical response surface methods (RSM) use three steps: screening, model-
ing, and optimization (Kleijnen, 1987; Montgomery, 2001). Design complexity
is increased during the RSM process, so complex models can be fitted in the
last phase of the RSM process. SPOT is closely related to RSM. Because
SPOT includes rules to analyze the scientific relevance (severity) of results
from the statistical analysis and specifies rules for learning from error, it can
be seen as an extension of the classical RSM framework.

1.6.1.1 Pre-experimental planning

This section describes, how basic ideas from regression analysis can be applied
to analyse evolution strategies. SPOT allows the specification of

a) upper and lower limits of the region of interest (experimental region)
b) the number of repeats for the initial design, and
c) the type of design to be generated, e.g., LHD
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Table 1.2 Regions of interest used in the pre-experimental planning phase. S0 and
A denote real valued variables, whereas G is an integer value.

Factor low high type
S0 0.1 5 FLOAT
A 1 2 FLOAT
G 1 100 INT

We have chosen a Latin hypercube design for the first experiments, see
Tab. 1.3. This design comprehends three factors with different types. Al-
though factorial designs are recommended for DOE, a space filling design
was chosen for the pre-experimental planning phase. This design was chosen,
because we expect interesting model features in the center of the experi-
mental region. And, we are interested in using other models, e.g., tree-based
regression models, or Kriging, in parallel. These models require space filling
designs. So, choosing an LHD can be seen as a good compromise, especially,
if we do not know whether linear regression models are adequate.

A scatter plot was used to analyse results from the first design. It is based
on ten design points, where each design point represents one algorithm config-
uration. Each run was performed once, see Fig. 1.4. The algorithm performs
quite well with parameters chaosen from these ROI.
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Fig. 1.4 Scatter plot from the pre-experimental planning phase to determine the
region of interest.
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1.6.1.2 Performing the first regression analysis

To regress fitness, y, on the these quantitative predictors, we obtain the output
in R as shown in Fig. 1.5.

Call:

lm(formula = log(Y) ~ log(S0) + log(A) + log(G), data = df0002)

Residuals:

Min 1Q Median 3Q Max

-3.6093 -1.7175 0.7059 1.4426 3.0768

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) -28.0456 5.6820 -4.936 0.00261 **

log(S0) 0.4115 0.9836 0.418 0.69022

log(A) 27.2698 4.8056 5.675 0.00129 **

log(G) -0.9124 1.2219 -0.747 0.48346

---

Residual standard error: 2.791 on 6 degrees of freedom

Multiple R-squared: 0.8671,Adjusted R-squared: 0.8006

F-statistic: 13.05 on 3 and 6 DF, p-value: 0.004872

Fig. 1.5 Output from the first regression model in R.

The R output gives a numerical summary of the residuals and a table of
the regression parameters. Here, we see that the intercept of the fitted line is
b0 = −28.0456 with se(b0) = 5.6820, and the estimated regression coefficient
b1 is 0.4115 with se(b1) = 0.9836. The multiplier A has the largest effect,
because its value reads 27.2698. The memory G has only minor impact on
the performance of the ES. The table reports also t-statistics and p-values
for individual tests of the hypotheses that the true intercept is zero, and that
the true slope is zero. The Residual standard error is an expression of the
variation of the observations around the fitted line. It can be used to estimate
σ . Multiple R-Squared and Adjusted R-Squared are reported as well. The
values related to the F-statistic describe an F-test for the hypothesis that
the regression coefficients are is zero.

In addition, an ANOVA table can be generated. Based on an ANOVA

table we can compare two models:

a) Model M1, which includes S0, A, and G and
b) Model M2, which includes the parameter with the highest significance,

namely A

As expected, it indicates that there is no significant improvement of the model
once S0 and G are included. Removing the parameters S0 and G from the
model is recommended. R has a build-in function which adds parameters one
at a time to the current model. The add1 function adds parameters one after
one from a list and shows the resulting statistics. The default output table
reports the Akaike Information Criterion (AIC), defined as minus twice log
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likelihood plus 2p where p is the rank of the model (the number of effective
parameters). For performing model searches by AIC, R has the stepAIC

function. Since selection and adjustment of information criteria is a difficult
task (and beyond the scope of this introduction), we simply show the output
from stepAIC applied to our example.

Call:

lm(formula = Y ~ A, data = df0002normlogy)

Residuals:

Min 1Q Median 3Q Max

-3.7071 -2.6383 0.2352 2.4411 3.8783

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) -20.6070 0.9672 -21.305 2.48e-08 ***

A 8.1253 1.4940 5.439 0.000617 ***

---

Residual standard error: 3.059 on 8 degrees of freedom

Multiple R-squared: 0.7871,Adjusted R-squared: 0.7605

F-statistic: 29.58 on 1 and 8 DF, p-value: 0.000617

Fig. 1.6 Output from the model based on R’s stepAIC function.

The final model, suggested by stepAIC, includes the parameter A only.
Residual plots can be used to check model assumptions. Common checks

comprehend

a) a plot of residuals versus fitted values and
b) normal probability plots of residuals.

In addition, visual inspections, e.g., on the basis of added-variable plots
(Fig. 1.7) can be performed. Added-variable plots focus on one variable at a
time and take into account the influence of the other predictors (Draper and
Smith, 1998; Fox, 2002). To determine the influence of predictor x j on the
response y, added-variable plots are generated as follows. Let x−i denote the
set of regressors

{x1,x2, . . . ,xi−1,xi+1, . . . ,xn}.

1. Regress y on x− j , obtaining residuals e( j).
2. Regress x j on predictors x− j , obtaining residuals x( j)
3. Plot e( j) versus x( j) .

All ES-runs were performed using the same number of function evaluations.
The results clearly indicate that A should be reduced. Smaller values improve
the algorithms performance. The linear model was able to detect this trend.
This was the first step of the analysis. The experimental setup shown in
Tab. 1.3 includes a systematic variation of three parameters.
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Fig. 1.7 Added-variable plot based on 10 runs from the initial design of ES on the
10 dimensional sphere function. Smaller y values represent better solutions.

Summarizing results from the regression model analysis

The regression models used in this study illustrate that A should be de-
creased. Step-wise regression results in the simplified model

ŷ = −20.61+8.12a,

which indicates that the multiplier for the step sizes should be decreased. A
similar result was obtained from a tree-based regression. The result occurs
independently from the chosen model.

1.6.1.3 Steepest descent

Results from the regression analysis provide information about the steepest
descent in a natural manner. We proceed with the steepest descent based on
the model Y ∼ S0 + A + G. The procedure of steepest descent is performed
as follows: Starting from the design center, we move sequentially in the direc-
tion of the maximum decrease in the response. This direction is parallel to the
normal of the fitted response surface. Usually in RSM, the path of the steep-
est descent is taken as the line through the center of the ROI and normal to
the fitted surface, i.e., the steps are proportional to the βi’s (regression coeffi-
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cients). In general, the following procedure for determining the coordinates of
the points on the path of the steepest descent can be applied (Montgomery,
2001):

1. Select the variable we know most about or the variable that has the
largest absolute regression coefficient |bi|.

2. Determine the stepsize in the other variables as

∆xi =
bi

b j

∆x j i = 1,2, . . . ,k; i 6= j

3. Convert the ∆xi stepwidths from the coded to the δxi in the natural
variables.

As the largest stepwidth we recommend the value that leads to the border of
the ROI. The resulting values for the steepest descnt are shown in Table ??.
Note, that the steepest descent experiments do not have to be performed in
sequence. For example, run 10 can be performed before run 2 or a simple
interval search can be performed. We recommend generating a graph of these
results to determine the a new region of interest following the direction of
the steepest descent, cf. Fig. 1.8. The region of interest is moved down the
response surface.

Table 1.3 Steepest descent.

S0 A G
1 2.54 1.50 52.50
2 2.52 1.45 53.05
3 2.50 1.41 53.60
4 2.49 1.37 54.15
5 2.47 1.32 54.70
6 2.45 1.28 55.25
7 2.44 1.23 55.80
8 2.42 1.19 56.35
9 2.40 1.14 56.90
10 2.39 1.10 57.45
11 2.37 1.05 58.01

These settings are used for additional runs of ES. Figure 1.8 plots the yield
at each step along the path of the steepest descent.

Based on visual inspection of the yields in Fig. 1.8, the new central point
was determined to be the tenth point of the steepest descent. This new central
point leaves some space for variation of the A values, say in the interval
[1.01,1.2]. Based on the best value obtained with the steepest descent, we
build a new model with center point:

xc = [S0,A,G] = [2.5,1.125,40].
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Fig. 1.8 Left: Function values f (x) (Sphere) versus steps along the path of the steep-
est descent. Indices denote the ten steps from the steepest descent. Note, that these
values are based on one repeat only, so variation in the data, e.g., the peak (index 5)
are not surprising.

The specification of the new region of interest requires user knowledge. The
new center point was determined by interpreting graphical results which were
based on the steepest descent. Next, we have to determine a new region
around xc. Sometimes, especially when a classical factorial design is used
during the first step, it can useful to increase the region of interest at this
stage. However, we have chosen a space-filling design for the first step. There-
fore, we have to decrease the region of interest. As a rule of thumb, which is
to be reconsidered in any situation, we use at least ± 1/5th of the values at
the new central point. For example, if the value of the new initial step size
S0 is 5, we define a new region of interest for this values as the interval [4,6].
Here, the new region of interest reads as follows:

S0 ∈ [2,3],A ∈ [1.05,2],G ∈ [20,80].

Latin hypercube sampling with 100 points and three repeats each is used
for a graphical exploration of the ROI. Figure 1.9 displays a fit of the response
surface which is based on the complete data set (320 runs of the target algo-
rithm). A local regression model based on R’s loess() function is fitted to
the data.
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Fig. 1.9 Contour plot based on the complete data set (ES-Sphere with 320 function
evaluations). Smaller values are better. Better configurations are placed in the lower
left corner of the panels. A is plotted versus S0, while values of the factor with the
last but one effect, namely G, are varied with the slider on top of each panel.
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Fig. 1.10 Contour plot based on the complete data set (ES-Sphere with 320 function
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Summarizing results from the RSM

Results from this case study support results presented in Beyer (2001). The
factor a should be chosen in the range from 1.1 to 1.5. Further experiments
show that this result is independent from the starting point and problem
dimension as illustrated in Fig. 1.9 and Fig. 1.10.

1.6.2 Additional model considerations

The analysis of optimization algorithms requires the investigation of categor-
ical variables, e.g., in evolution strategies, several variants of the recombi-
nation operator can be used (Beyer and Schwefel, 2002). SPOT allows the
coding of non-numerical variables as factors. Dummy regressors or contrasts
can be used to represent levels of a factor. SPOT allows can handle the
following variables:

1. real values,
2. integers and
3. categorical variables.

SPOT’s ROI file is used to specify this typing. Maindonald and Braun (2003)
illustrate the treatment of dummy variables for classical regression in R.

Classical regression is only one technique that can be used in the SPOT

framework to predict interesting design points. Alternatively, tree-based mod-
els can be used to cope with categorical variables, see also Fig. 1.11. Tree-
based methods can be used for regression as well as for classification (Breiman
et al., 1984). Maindonald and Braun (2003) recommend to use tree-based
methods in tandem with parametric approaches, because tree-based regres-
sion may suggest interaction terms that ought to appear in a parametric
model. However, tree-based methods require more data than classical regres-
sion techniques. That is, if only a few runs of the algorithms are possible, it
may be necessary to use parametric models. On the other hand, tree-based
methods may be helpful to explore new data sets very quickly. The exper-
imenter gets on overview which variables have the greatest effects on the
algorithm’s performance.

We have mentioned only two prediction models, parametrized regression
and regression trees. Further models, e.g., local regression or Kriging are
available.

Example 1. To analyse the choice of the prediction model on the prediction
quality and SPOT’s ability to improve optimization algorithms (tuning),
we performed the following study: Results from two different SPOT runs
are compared. The first run uses a tree-based regression model, whereas in
the second run the dummy-variable regression model was used. Both mod-
els used exactly the same setting, i.e., five SPOT iterations, initial design
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Fig. 1.11 Tree-based regression. The same data as in Fig. 1.10 were used. The factor
A has the largest effect. log(y) values were used to grow the tree.

size of 50 points and 2 repeats. An ES, which optimizes the 10-dimensional
sphere function with 1000 function evaluations was analyzed. Distributions
of the results from these two SPOT runs are compared to the distribution of
the randomly generated initial design, see Fig. 1.12. Both models were able
to find better results than the randomized design. These results are in line
with observations from other studies: Tree-based models can be applied very
easily to unknown explanatory variables. They can cope with categorical and
numerical data. Parametrized models perform better than tree-based models,
however, the costs for modeling are higher. �

1.6.3 The Sequential Approach

We have discussed the initial setup for the SPO loop (initial design) and the
analysis from one step. SPOT can be proceeded as follows: Based on the
prediction model, e.g., linear regression or tree-based regression, interesting
algorithm design points are generated. These design points are evaluated, i.e.,
the algorithm is run with the corresponding parameters. Then, an analysis
as described in Sect. 1.6.1.2 can be performed. This analysis provides an
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Fig. 1.12 Comparison of two SPOT prediction models with randomly generated
configurations (from top to bottom). First, the results from randomly generated algo-
rithm designs are shown. We have chosen the initial design (LHD), which is generated
randomly. Next, results from 50 repeats of the best algorithm design determined with
the linear and the tree-based regression model are shown.

improved predictor, which can be used to propose new design points, and
so forth. As depicted in Fig. 1.3, this procedure can be performed in an
automated manner. Result from the automated approach reads:

s0 = 4.99,a = 1.10,g = 71.

Obviously, the result from the automated approach supports the findings
from the manual approach, i.e., similar values for the parametrization of the
(1+1)-ES are determined.
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1.7 Case Study II: Prediction of Fill Levels in

Stormwater Tanks

1.7.1 Problem

In this section we consider a case study from real-world optimization. Many
real-world problems are related to prediction. Since the problem considered in
this section is a new problem, no reference solutions were available. Therefore,
a data-driven modeling approach was chosen.

We try to find answers for the following two questions:

• How to chose an adequate method or prediction model?
• And, how to tune the chosen prediction model?

Before we try to find answers to these problems, we will take a look at the
problem first.

The problem is devoted to the task of predicting fill levels in stormwater
tanks, see Fig. 1.13 The predictions are based on rain measurements and soil

Fig. 1.13 Left: Rain gauge (pluviometer). Right: Stormwater tank.

conditions. We used 150,000 data sets that were noisy and included many
infeasible entries. The goal of the modeling was to minimize the prediction
error for a time period of 108 days. The root mean squared error (RMSE)
was chosen as objective function, because it enables comparisons to results
from industry. Typical results are shown in Fig. 1.15. Klein (2002) discuss
important aspects related to the selection of the objective function.

A typical problem which occurs during these predictions can be character-
ized as follows: Standard and CI-based modeling methods show larger predic-
tion errors when trained on rain data with strong intermittent and bursting
behaviour as shown in Fig. 1.15.



1 Sequential Parameter Optimization 23

Fig. 1.14 Rain gauging station which collected the 150,000 data points.

Fig. 1.15 Top: Rain measurements. Based on these data, the filling levels were pre-
dicted. A comparison of the predicted values and the real values in shown in the
second figure.

1.7.2 Models under comparison

We compared six different modeling approaches (many more approaches are
available). Neural Networks (NN) are well suited to model complex and un-
known relationships between in- and output values Bartz-Beielstein et al.
(2007). The NN learns a functional relationship between in- and output val-
ues. Echo State Networks (ESN) are recurrent NNs, which use a reservoir
of recurrent neurons in order to generate dynamic signals. NN and ESN
were investigated, but not considered in our final comparisons, because they
were outperformed by the other methods. Their poor behaviour is caused by
the following error, shown in Fig. 1.16. Finite Impulse Response filter (FIR-
Filter), are standard tools from signal processing. In time series modeling, a
nonlinear autoregressive exogenous model (NARX) Siegelmann et al. (1997)
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Fig. 1.16 NARX modeling error. The arrow shows the region, where the model stops
oscillating. It predicts constantly filling levels larger than 90% This error appears
systematically in each NARX simulation.

is a nonlinear autoregressive model which has exogenous inputs. This means
that the model relates the present value of the time series to both

• past values of the same series; and
• present and past values of the driving (exogenous) series.

Finite Impulse Response filter (FIR) were tested during the pre-experimental
planning phase of this project. Although relatively simple, they produced
promising results. Ordinary Differential Equations (ODE) can be character-
ized as classical, state of the art methods. One disadvantage of the ODEs
used in our study is that it relies on an exponential decay of the filling levels.
This behaviour is not in correspondence with the real behaviour of the sys-
tem, because different soil types produce variations in the delay of the water
flow. Therefore, the ODE model was transformed in a more flexible model
which is based on Integral equations (INT).

Each method requires the specification of several parameters (here: 2 –
13), before it can be run. NARX use two parameters (neurons and delay
states), FIR five parameters (evaporation, delay, scaling, decay, length), ODE
six parameters, and INT 13 parameters. Parameters for the ODE and INT
models are listed in Tab. 1.4. The reader is referred to Konen et al. (2009)
and Bartz-Beielstein et al. (2008) for further details.

1.7.3 Simulation Model Selection Based on SPOT

The SPO procedure used in this study uses the following three steps, which
are related to the standard procedures from DoE, especially response surface
methods (RSM), see, e.g., Montgomery (2001):

I. Pre-experimental planning
II. Screening
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Table 1.4 Factors of the INT-Model. The ODE-Model uses a subset of 6 factors
(shaded light gray): α,β ,τrain, ∆ ,αL,βL.

Parameter Symbol manuell Best SPOT SPOT re-
gion

Abklingkonstante Füllstand (Filter g) α 0.0054 0.00845722 [0,0.02]
Abklingkonstante Filter h αH 0.0135 0.309797 {0 ... 1}
Abklingkonstante ’leaky rain’ αL 0.0015 0.000883692 {0 ...

0.0022}
Einkopplung Regen in Füllstand β 7.0 6.33486 {0 ... 10}
Einkopplung Regen in ’leaky rain’ βL 0.375 0.638762 {0 ... 2}
Einkopplung K-Term in Füllstand h0 0.5 6.87478 {0 ... 10}
Schwelle für ’leaky rain’ ∆ 2.2 7.46989 {0 ... 10}
Flankensteilheit aller Filter κ 1 1.17136 {0 ... 200}
Zeitverzögerung Füllstand zu Regen τrain 12 3.82426 {0 ... 20}
Startzeitpunkt Filter h τin3 0 0.618184 {0 ... 5}
Endzeitpunkt Filter h τout3 80 54.0925 {0 ... 500}
Endzeitpunkt Filter g τout 80 323.975 {0 ... 500}

RMSE 12.723 9.48588

III. Modeling and optimization

We will discuss these steps in the following.

1.7.3.1 Step I: Pre-experimental planning

During the pre-experimental planning phase, no planning based on existing
data can be done, only test runs can be performed. No optimality conditions
applicable. The aim of our experiments during this phase is to determine
region of interest intervals, i.e., the experimental region. As a rule of thumb,
intervals should courageously be chosen. And, we have to define some mech-
anism for the treatment of infeasible factor settings, e.g., a penalty function.

1.7.3.2 Step II: Screening

During the screening phase, experiments with short running times were per-
formed. Extreme values of the experimental region were considered. One goal
was the detection of outliers which destroy the SPOT meta-model.

Unbalanced factor effects indicate not correctly specified ROIs, see Fig. 1.17.
The situation before the ROI were adjusted is shown on the left in Fig. 1.17.

The right panel in Fig. 1.17 illustrates the situation after the ROI was mod-
ified.
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Fig. 1.17 Left: Unbalanced factor effects may indicate wrongly specified ROI. Vary-
ing factor αl results in large changes in the output, whereas the other factors have
nearly no influence at all. Right: Same situation but with modified ROI.

1.7.3.3 Step III: Modeling and Optimization

As a consequence of the screening phase, a reduced design can be used dur-
ing the third phase (optimization), e.g., the number of parameters of the INT
model could be reduced from 13 to 6. Reduced designs enable the applica-
tion of more complex experimental models, e.g., quadratic instead of linear
models. Results from this phase are shown in Fig. 1.18.
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Fig. 1.18 Results from the optimization phase.
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Table 1.5 Comparison. RSME

Method randomized design manually chosen SPOT

FIR 25.42 25.57 20.10

NARX 85.22 75.80 38.15

ODE 39.25 13.60 9.99

INT 31.75 12.72 9.49

1.8 Results and Discussion

The topics discussed in this paper can be summarized as follows. We presented
tools to improve our understanding how algorithms work. These tools can be
used to improve algorithm’s performance and to tailor algorithms to specific
problem instances.

A systematic comparison of different prediction methods was presented in
this case-study. We applied SPOT to determine the best parameters for each
method. Our analysis was based on a practical optimization problem with
predictions based on rain data with strong intermittent and bursting behav-
ior. These are hard problems for standard and CI-based modeling methods.
Our analysis reveals that models developed specific to the problem show a
smaller prediction error than general models.

SPOT is applicable to diverse forecasting methods and automates the time-
consuming parameter tuning process. The best manual result found by an
expert could be improved with SPOT by 30%. SPOT was used to analyze
parameter influence and allows simplification and/or refinement of the model
design.

Results found by the experts were compared to results from SPOT. These
comparisons were discussed with the experts, who were able to learn and get
new insights into the model’s behaviour. And, these discussion are helpful
for the model validation—results found by SPOT could be checked by the
experts, e.g., for constraint violations that were not specified in the initial
model. No bias, and no systematic error could be detected by the experts,
therefore we can claim that SPOT was able to determine improved parameter
setting that can be used in practice..

An important question that is subject of our current research is related to
the initial design size. First results are shown in Fig. 1.20.

It is an open question which models are preferable. For example, it is
unclear when classical linear regression models or stochastic process models
should be used. The choice of the model influences the selection of an appro-
priate (in some sense even optimal) design, e.g., classical factorial vs. space
filling designs.

Lasarczyk (2007) implemented enhanced noise handling techniques such
as Optimal Computational Budget Allocation Chen et al. (2003) to improve
SPOT’s efficiency for stochastic search and optimization algorithms. In gen-
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eral, further statistical tools, especially to bridge the gap between statistical
and scientific significance should be developed. Surely, these methods should
be standardized to improve comparability.

We are planning to provide SPOT interfaces for important optimization
algorithms. The integration of the CMAES (Hansen, 1998), PSO, evolution
strategies is a first step into this direction. SPOT’s simple and open specifi-
cation enables a quick integration of additional search algorithms.

SPO is a methodology — more than just an optimization algorithm (Bartz-
Beielstein, 2008). Please check http://www.gm.fh-koeln.de/~bartz for up-
dates, software, etc.
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