

Sequential Pattern Mining Algorithms:
 Trade-offs between Speed and Memory

Cláudia Antunes and Arlindo L. Oliveira

Instituto Superior Técnico / INESC-ID,
Department of Information Systems and Computer Science,

Av. Rovisco Pais 1,
1049-001 Lisboa, Portugal

{claudia.antunes, arlindo.oliveira}@dei.ist.utl.pt

Abstract. Increased application of structured pattern mining requires a perfect
understanding of the problem and a clear identification of the advantages and
disadvantages of existing algorithms. Among those algorithms, pattern-growth
methods have been shown to have the best performance when applied to se-
quential pattern mining. However, their advantages over apriori-based meth-
ods are not well explained and understood. Detailed analysis of the perform-
ance and memory requirements for these algorithms shows that counting the
support for each potential pattern is the most computationally demanding step.
Additionally, the analysis makes clear that the main advantage of pattern-
growth over apriori-based methods resides on the restriction of the search
space that is obtained from the creation of projected databases. In this paper,
we present this analysis and describe how apriori-based algorithms can
achieve the efficiency of pattern-growth methods.

1 Introduction

The rapid growth of the amount of stored digital data and the recent developments in
data mining techniques, have lead to an increased interest in methods for the explo-
ration of data, creating a set of new data mining problems and solutions. Frequent
Structure Mining is one of these problems. Its target is the discovery of hidden struc-
tured patterns in large databases. Sequences are the simplest form of structured pat-
terns.

In the last decade, a number of algorithms and techniques have been proposed to
deal with the problem of sequential pattern mining. The main approaches to sequen-
tial pattern mining, namely apriori-based and pattern-growth methods, are being
used as the basis for other structured pattern mining algorithms. However, and de-
spite the fact that pattern-growth algorithms have shown better performance in the
majority of the situations, its advantages over apriori-based methods are not suffi-
ciently understood.

In this paper, we study the problem of sequential pattern mining, in order to ex-
plain the main reasons why pattern-growth methods outperform apriori-based ap-

proaches. However, a fair evaluation of the methods requires that they have exactly
the same goals, which is not true for the best-known algorithms, GSP and Prefix-
Span. In order to accomplish our goal, we use a generalization of PrefixSpan (Gen-
PrefixSpan) [2] that deals with gap constraints, and maintains the pattern-growth
philosophy. From this analysis, we conclude that apriori-based methods may become
as efficient as pattern-growth methods under specific conditions, and present a new
apriori-based algorithm – SPaRSe (Sequential PAttern mining with Restricted
SEarch) that uses both candidate generation and projected databases to achieve
higher efficiency for high pattern density conditions.

The rest of the paper is organized as follows: section 2 exposes and formalizes the
problem, presenting its comparison to Frequent Itemset Mining problem, and an
analysis of apriori-based and pattern-growth methods when using gap constraints.
Section 3 describes a new apriori-based algorithm – SPaRSe, which implements new
procedures for support based pruning, candidate generation and candidate pruning.
Section 4 describes a complete performance study over synthetic and real-world
datasets, used to demonstrate our claims and to discuss the advantages and disadvan-
tages of each approach. Section 5 finishes, drawing the most relevant conclusions.

2 Sequential Pattern Mining

Sequential Pattern Mining algorithms address the problem of discovering the exis-
tent maximal frequent sequences in a given database. Algorithms for this problem
are relevant when the data to be mined has some sequential nature, i.e., when each
piece of data is an ordered set of elements, like events in the case of temporal infor-
mation.

The problem was first introduced by Agrawal and Srikant [1], and since then the
goal of sequential pattern mining is to discover all frequent sequences of itemsets in
a dataset. In particular, an itemset is a non-empty subset of elements from a set C,
the item collection, called items. In this manner, an itemset represents the set of
items that occur together. The itemset composed of items a and b is denoted by (ab).

A sequence is an ordered list of itemsets. A sequence is maximal if it is not con-
tained in any other sequence. A sequence with k items is called a k-sequence. The
number of elements (itemsets) in a sequence s is the length of the sequence and is
denoted by |s|. The ith itemset in the sequence is represented by si and the set of con-
sidered sequences is usually designated by database (DB), and the number of se-
quences by database size (|DB|).

A subsequence s' of s is denoted by s'⊆s. Formally, a sequence a=<a1a2...an> is a
subsequence of b=<b1b2...bm>, if there exist integers 1

�
i1<i2<…<in

�
m such that

a1⊆bi1, a2⊆bi2, …, an⊆bin.
One of the simplest constraints applied in the discovery of sequential patterns is

the gap constraint. It consists on imposing a limit in the maximum distance between
two consecutive elements in the sequence. This simple constraint is very useful to
reflect the impact of some item on another one, in particular, when each transaction
occurs at a particular instant of time. In this manner, it is possible to specify that an

event has greater impact on near events than on distant ones. When using gap con-
straints, the notion of contained in has to be adapted: a sequence a=<a1a2...an> is a
δ-distance subsequence of b=<b1b2... bm>, if there exist integers 1 � i1<i2<…<in � m
such that a1⊆bi1, a2⊆bi2, …, an⊆bin.and ik–ik-1 � δ. Sequence a is a contiguous subse-
quence of b if a is a 1-distance subsequence of b, i.e., the items of a can be mapped
to a contiguous segment of b. Note that a contiguous subsequence is a particular case
of δ-distance subsequence and is the most restrictive notion of subsequence. A δ-
distance subsequence s' of s is denoted by s' ⊆ δ s. Using δ=1 eliminates the possibil-
ity of having gaps between consecutive items. In the rest of this paper this is desig-
nated by gap=0.

2.1 Problem Analysis

What makes this problem more challenging than frequent itemset mining? It is obvi-
ous that frequent itemset mining is just a particular case of sequential pattern min-
ing, since frequent itemsets are a particular case of sequential patterns – 1-sequential
patterns. Sequential pattern mining requires, beside the discovery of frequent item-
sets, the arrangement of those itemsets in sequences and the discovery of which of
those are frequent.

To understand why there exists a significant increase in the number of potential
patterns, assume that there is a database to be mined with the minimum support
threshold set to σ and with n =|C| different items in the item collection, C. The goal
of frequent itemset mining is to find which itemsets are frequent from the | I | differ-
ent possible existent itemsets, where I is the powerset of C, and its value is given by
equation (1).

 121
1

−=−��
�

�
�

��
�
�
�

= �
=

n
n

j

n

j
I (1)

To understand the sequential pattern mining problem, let's begin by considering
that the database has sequences with at most m itemsets and each itemset has at most
one item. In these conditions, there would be nm possible different sequences with m
itemsets and

 1

1

1 −
−=

+

=

�
n

nn
n

mm

k

k

 (2)
different arbitrary length sequences. Similarly, if each itemset has an arbitrary num-
ber of items, there would exist Sm possible frequent sequences with m itemsets, with
the value of Sm given by equation (3).

mnm

m IS)12(|| −==
 (3)

And, there would exist S sequences in general, as in equation (4).

)2(
22

12)12(
)12(

1

1

nm

n

nmnm

k

knS Θ=
−

−−−
=−=

+

=

	
 (4)

Indeed, the number of different items and the average length of frequent se-
quences are tightly connected: a large number of items in a short sequence may im-
ply a reduced number of frequent patterns, since the probability of the generality of
items has to be small. In this way, algorithms will run efficiently. The opposite situa-
tion is a large sequence with a reduced number of items, where the probability of
each element to occur in a large number of sequences is high. This leads to the exis-
tence of many patterns, and consequently a large amount of processing time. The
concept of database density quantifies this relationship. The database density (�) is
the ratio between the number of existing patterns (F) and the number of possible
sequences S.

In practice, the database density depends on the support considered. The density is
higher when the minimum support thresholds are low, since there are a larger num-
ber of frequent sequences. Another parameter that has impact on the density is the
set of items existing in the database. On one side, a large number of items allows for
a potentially large number of different sequences. Since with many distinct se-
quences their probability to be frequent is low, there will exist (all other conditions
being equal) a smaller number of patterns and the database density will be low. On
the other side, a reduced number of items generates a smaller number of potential
sequences, which will be more frequent in the database, increasing the number of
patterns and consequently the density of the database. Despite the potentially large
number of sequences (expression (4)), only a small fraction will be, in general, sup-
ported by the database. In particular, there can only exist 1/σ sequences of length m
that are frequent. Given this discrepancy between the number of different sequences
and frequent ones, the difficulty of the data mining process resides in figuring out
what sequences to try and then efficiently finding out which of those are frequent [1].

2.2 Analysis of Algorithms

There are several algorithms for mining sequential patterns. AprioriAll [1], GSP [7],
SPADE [8], PrefixSpan [5] and Spam [3] are just the simpler ones (simple in the
sense that they not introduce complex constraints in the mining process). From
these, GSP and PrefixSpan are the best-known algorithms, and represent the two
main approaches to the problem: apriori-based and pattern-growth methods. Next,
we will describe both approaches and compare their advantages and disadvantages.

Apriori-based Approaches. GSP follows the candidate generation and test
philosophy. It begins with the discovery of frequent 1-sequences, and then generates
the set of potentially frequent (k+1)-sequences from the set off frequent k-sequences
(usually called candidates). The generation of potentially frequent k-sequences (k-
candidates) uses the frequent (k-1)-sequences discovered in the previous step, which
may reduce significantly the number of sequences to consider at each moment. Note
that to decide if one sequence s is frequent or not, it is necessary to scan the entire
database, verifying if s is contained in each sequence in the database.

In order to reduce its processing time, GSP adopts three optimizations. First, it
maintains all candidates in a hash-tree to scan the database once per iteration. Sec-
ond, it only creates a new k-candidate when there are two frequent (k-1)-sequences
with the prefix of one equal to the suffix of the other. Third, it eliminates all candi-
dates that have some non-frequent maximal subsequence. By using these strategies,
GSP reduces the time spent in scanning the database, increasing its general perform-
ance. In general, apriori-based methods can be seen as breath-first traversal algo-
rithms, since they construct all k-patterns simultaneously. Note that, at each step
GSP only maintains in memory the already discovered patterns and the k-candidates.

Pattern-growth Methods. Pattern-growth methods are a more recent approach to
deal with sequential pattern mining problems. The key idea is to avoid the candidate
generation step altogether, and to focus the search on a restricted portion of the
initial database. PrefixSpan is the most promising of the pattern-growth methods and
is based on recursively constructing the patterns, and simultaneously, restricting the
search to projected databases. An α-projected database is the set of subsequences in
the database, which are suffixes of the sequences that have prefix α. At each step, the
algorithm looks for the frequent sequences with prefix α, in the corresponding
projected database. In this way, the search space is reduced at each step, allowing for
better performances in the presence of small support thresholds. In general, pattern-
growth methods can be seen as depth-first traversal algorithms, since they construct
each pattern separately, in a recursive way.

As pointed in [2], when a gap constraint is used, neither PrefixSpan nor Prefix-
Growth [6] can be applied directly. The generalization proposed – GenPrefixSpan, is
based on the redefinition of the method used to construct the projected databases.
Instead of looking only for the first occurrence of the item, every occurrence is con-
sidered.

Comparison. In order to understand and identify what are the most time consuming
operations of each algorithm, we have performed a profiling study, recording the
total time spent by the main steps of each algorithm. Both GSP and GenPrefixSpan
were executed in a set of datasets with several different values for minimum support.

As other pattern-growth methods, GenPrefixSpan generally outperforms GSP, and
has much better results for low minimum threshold support values. In order to un-
derstand why this happens, let us analyze the time spent in each step of GSP when
using low minimum support values. We have considered the two main steps of GSP:
candidate generation (which includes the initial step, where frequent 1-sequences are
discovered; the procedure that defines the sequences potentially frequent and the
procedure that eliminates some of the candidates) and candidate test (which corre-
sponds to the support pruning and consumes almost the totality of processing time).

Table 1 shows that the support-based pruning procedure consumes almost the to-
tality of processing time (the experiments are described in the last section). For Gen-
PrefixSpan, the relative results are quite different: the processing time spent in scan-
ning the database is approximately 50% and uses much less time than GSP for low
minimum support values.

Table 1 – Processing times for GSP and GenPrefixSpan

 GSP GenPrefixSpan

sup Candidate
Generation

Candidate
Test

Total Find Elements Create
ProjDB

Total

50% 0,01s 0% 3,19s 100% 3,19s 0,88s 50% 0,89s 50% 1,78s

40% 0,01s 0% 4,90s 100% 4,91s 1,33s 53% 1,16s 47% 2,49s

33% 0,02s 0% 9,08s 100% 9,10s 2,01s 55% 1,67s 45% 3,68s

25% 0,02s 0% 17,32s 100% 17,34s 3,40s 55% 2,74s 45% 6,15s

10% 1,26s 1% 157,63s 99% 158,89s 18,71s 58% 13,41s 42% 32,13s

Since both methods spend a large percentage of time scanning the database, what
makes GenPrefixSpan much faster than GSP? The answer lies in the reduction of the
search space. In fact, at each recursion step, GenPrefixSpan usually scans a smaller
database, since the α-projected database has more sequences than the αβ-projected
database.

3 The SPARSE Algorithm

The results of this analysis lead us to analyze the possibility of applying a search
restriction to apriori-based methods. SPaRSe (Sequential Pattern mining with Re-
stricted Search) is a new algorithm, which combines the candidate generation and
test philosophy with the restriction of the search space obtained from the use of pro-
jected databases. It acts iteratively like apriori-based algorithms: after discovering
the frequent elements, it looks for patterns with growing length at each step. It fin-
ishes when there are no more potential frequent patterns to search. The key idea is to
maintain a list of supporting sequences for each candidate, and to verify the exis-
tence of support only in the subset of sequences that are super-sequences of both
generating candidates, in a way similar to SPADE [8].

Fig. 1 describes the main procedure of SPaRSe. Note that it is identical to the
main procedure of GSP, since the ���������	��
���
 �������	�	� � procedure agregates the function-
alities of ���	
	��
 �����������	
	�	������
 ��
 , ���	
	��
 �������	������
�

	� and ��������������������
�

	� in GSP. The dif-
ference to GSP is the fact that SPaRSe generates and tests each candidate separately.
Procedure ������
 ����
 �	� counts the support for one candidate and returns true if it is fre-
quent and false otherwise. This is similar to the behavior of ��������������������
�

	� in GSP.

However, what makes SPaRSe more than a variant of GSP, is the restriction of the
search space in a way similar to PrefixSpan: it associates each frequent discovered
pattern with the set of sequences where it appears. This set is called the support da-
tabase. In this manner, it is possible to count the support of a new candidate, only in
the intersection of the support databases of its parents. Note that the anti-
monotonicity property implies that if a sequence does not support a pattern, then it
could not support any of its super-patterns. When the support of a candidate is
counted, only the potential support sequences are scanned.

Fig. 1. SPaRSe pseudocode

In SPaRSe a pattern is not only a sequence in itself, but it contains the informa-
tion that lists the sequences where it occurs, which corresponds to its support data-
base. This simple modification justifies the new procedure for generating candidates
– �����������	�
����

�	�	��� ������� . This simple inclusion allows for constraining the search con-
siderably, improving the global average performance. However, maintaining support
databases for each discovered pattern, and for every candidate of length k is expen-
sive in terms of memory.

A simple way to minimize this problem is to use an array of bits to represent the
support database. Note that in GenPrefixSpan an α-projected database uses more
memory (since it also keeps the sequence identification and the index of the α occur-
rence). However, GenPrefixSpan is a depth-first traversal algorithm, which avoids
having all projected databases in memory at the same time. In the case of breath-first
traversal algorithms, as SPaRSe, the solution is to redesign the candidate generation
and test procedure: instead of generating all candidates at once and then testing
them, it is possible to generate and test them one by one, minimizing the memory
consumption, which explains the design of the ���������	������� �������	�	� � procedure. Note that
with this change, it does not make sense to use sophisticated data structures, as hash-
trees, to count the support for each candidate. Usually, as has been said, apriori-
based algorithms use hash-trees to store all candidates, and scan the database once to
count the support for all candidates. Generating and testing each candidate sepa-
rately does not require the use of these techniques.

However, for very low support thresholds SPaRSe does not work better than Gen-
PrefixSpan, spending long times in the candidate generation and pruning. Remem-
ber that apriori-based methods generate k-sequence candidates by joining two (k-1)-
patterns, when the prefix of one is equal to the suffix of the other. This operation
may consume a considerable amount of time when there are many frequent patterns.

SPaRSe (DB, minsup, δδδδ)
 L1 � { f r equent 1- sequences}
 for (k=2; Lk- 1≠∅; k++) do

 patternDiscovery(Lk- 1, DB, mi nsup, δ, k)
 k � k+1
return ∪k Lk

patternDiscovery(Lk-1,DB,min_sup,δδδδ, k)

 Lk � ∅
 for each s∈Lk- 1 do

 for each t ∈Lk- 1 do
 c � createNewCandidate(s , t , k)
 if possibleFrequent(c . sequence,

 Lk- 1, k , δ)

 ∧ satisfies(c , mi n_sup, δ)

 Lk � Lk∪{ c}
return Lk

createNewCandidate(a, b, k)
 c � join(a. sequence, b. sequence, k)

 c . supDB � c1. supDB ∩ c2. supDB
return c

join (s, t, k)

 if (∀1 � n � k- 2: sn+1=t n)
 return s1…s k- 1t k- 1

possibleFrequent(s,Lk-1,k,δδδδ)

return(~∃t ⊆δs∧| t | =k- 1∧t ∉Lk- 1)

satisfies(c, min_sup, δδδδ)
 s � c. sequence
 nr � 0

 for each t ∈c. supDB do
 if s⊆δt nr � nr +1
return (nr sup)

This happens, since for every pattern it is necessary to verify which patterns have a
prefix equal to its suffix.

To improve the generation of k-candidates, SPaRSe stores all (k-1)-patterns in a
hash-tree. Fig. 2 illustrates this data structure when storing the different combina-
tions of two elements. When the number of items is large and the database is sparse
it is useful to use the same leave to store sequences with different prefixes, justifying
the use of a hash-tree instead of a suffix-tree.

b a

b b a

b a

bbb bba

a

aaa

b a

abb
(ab)b

aba
(ab)a

Fig. 2. Hash-trees for candidate generation and pruning

In order to generate a new candidate with length k, SPaRSe does not need to
inspect every (k-1)-candidate. The algorithm takes the suffix of each candidate s and
follows its path in the hash-tree. The reached sub-tree contains the sequences that
may match with s to generate a new candidate. Now it is only necessary to verify if
they really match with s, and then generate new candidates.

Consider for example the sequence a(ab). Following the path of its suffix <ab> in
the hash-tree, we discover the sequences that may match with it – abb, (ab)b, aba
and (ab)a. Note that only (ab)b and (ab)a are really appropriate to join with it, and
generate two new candidates: a(ab)b and a(ab)a. Fig. 2 shows the followed path with
a doted line, and the possible matching sequences in the sub-tree inside the dotted
box. By avoiding testing if any two patterns match, SPaRSe improves its perform-
ance by 50%, for low support thresholds.

Finally, we have considered a last improvement – the use of a hash-tree to imple-
ment candidate pruning. The key idea of candidate pruning is to eliminate candi-
dates that cannot be frequent, as stated before. However, verifying if every maximal
subsequence is frequent for every candidate may be prohibitive, especially when low
support thresholds are used. Like candidate generation, this procedure may use a
hash-tree to identify the potential frequent patterns. Consider again the hash-tree and
the candidate (ab)aa. It has three maximal subsequences aaa, baa and (ab)a. Al-
though the first and second ones are frequent patterns (presented in shadowed
boxes), the third one is not, since it is not stored in the hash-tree. Looking for the
subsequence's paths in the hash-tree reduces significantly the time needed to make
this discovery.

In summary, SPaRSe is an apriori-based algorithm, which follows the candidate
generation and test philosophy. It has three fundamental differences to GSP: it gen-
erates and tests one candidate at a time, it uses support databases to count the sup-
port for each candidate; and it uses a hash-tree to store frequent patterns. These im-
provements directly contribute to accelerate the candidate generation and pruning
procedures.

In the next section, it is shown how SPaRSe and GenPrefixSpan algorithms deal
better with datasets of different characteristics, and that either one of them may rep-
resent the best choice for a particular application.

4 Experimental Results

The comparison of sequential pattern mining algorithms over a large range of data
characteristics, such as different support thresholds, dataset sizes and sequence
lengths, has been done by several authors (see for instance [2], [7], [8] or [5]). How-
ever, as stated in section 2, the results depend on the dataset density, and to the au-
thors best knowledge, there has been no study about the performance of sequential
pattern mining algorithms in dense datasets. Our goal in this section is to understand
the impact of those characteristics in the algorithms' performance. In order to do
that, we compare the performance of GenPrefixSpan, SPaRSe, and GSP, on several
distinct datasets, considering all the enumerated characteristics. The performance of
GSP only serves as a reference line to the performance of the other two algorithms,
since the execution times are generally much larger than the execution times of the
other algorithms. Neither PrefixSpan nor SPAM [3] could be used, since they do not
deal with gap constraints.

To perform the study over a large range of different characteristics, we used the
standard synthetic data set generator from IBM Almaden. The datasets used in these
experiments were generated maintaining all, except one, of the parameters fixed, and
exploring different values for the remaining parameter. In general, the datasets con-
tain 10.000 sequences (Parameter D of the generator set to 10), with 10 transactions
each on the average (C=10). Each transaction has on the average 2 items (T=2). The
average length of maximal patterns is set to 4 (S=4) and maximal frequent transac-
tions set to 2 (I=2). These values were chosen in order to follow closely the parame-
ters usually chosen in other studies. The values for different sequential patterns (Ns)
and transactional patterns (Ni) were also chosen similarly, set to 5.000 and 10.000,
respectively. The computer used to run the experiments was a Pentium M 1GHz with
768MB of RAM. The operating system used was Windows XP. The datasets were
maintained in main memory during the algorithms processing, avoiding hard disk
accesses. The next subsections present the performance results achieved using data-
sets with different densities, followed by the studies on different support thresholds
and different gap values. The section finishes with the scalability studies.

Performance. The behavior of both algorithms is somehow different for different
levels of density. As can be observed in Fig. 4(a), GenPrefixSpan achieves better
results for sparse datasets, but shows performances similar to the ones shown by
SPaRSe for dense datasets. The main reason for this difference is that SPaRSe does
not waste so much time generating infrequent candidates for dense datasets. Since
there are more patterns, both algorithms have to generate a similar number of
sequences, reducing the difference between their processing times. In terms of
memory consumptions, as stated before, GenPrefixSpan consumes more memory

than SPaRSe, since it has to maintain multiple indexes for the same sequence and
the corresponding pattern position for each occurrence. The results show that both
algorithms consume more memory in processing dense datasets, since the number of
patterns is higher. The different values for density were achieved by varying the
number of different items in the dataset from ten to one thousand (N∈{10, 20, 30,
40, 50, 100, 500 and 1.000}).

For different minimum support thresholds, the results are consistent. SPaRSe
equals GenPrefixSpan in dense situations and shows worse results than for sparse
datasets (Fig. 3(b)).

Density

0

5

10

15

20

25

31,42% 5,32% 2,24% 1,71% 1,63% 0,52% 0,30% 0,03%

Density

T
im

e
 (s

)

SPaRSe GenPrefixSpan

Memory (Density)

0

2

4

6

8

10

12

14

31,42% 5,32% 2,24% 1,71% 1,63% 0,52% 0,30% 0,03%

Density

M
em

o
ry

(M
b

)

SPaRSe GenPrefixSpan
(a)

PerformancevsSupport (dense dataset)

0

200

400

600

800

1000

1200

50% 45% 40% 35% 30% 25% 20% 15% 10% 5%

Support

T
im

e
(s

)

GSP SPaRSe GenPrefixSpan

PerformancevsSupport (sparse dataset)

0

5

10

15

20

25

50% 45% 40% 35% 30% 25% 20% 15% 10% 5%

Support

Ti
m

e
 (s

)

GSP SPaRSe GenPrefixSpan
(b)

Scalabiltiy

0

100

200

300

400

500

1 5 10 50 100 150 200
#DB(in 1000)

T
im

e
 (

s)

GSP SPaRSe GenPrefixSpan

Memory (Scalability)

0
20
40
60
80

100
120
140
160

1 5 10 50 100 150 200
#DB(in 1000)

M
e

m
or

y
(M

b
)

GSP SPaRSe GenPrefixSpan
(c)

Performance vs Gap

0
100

200
300

400
500

600
700

800

0 1 2 3 4 5 6 7
Gap

T
im

e
(s

)

SPaRSe GenPrefixSpan

Sequence Length

0

1000

2000

3000

4000

5000

5 10 25 50 75 100
Seq. Length

Ti
m

e
(s

)

SPaRSe GenPrefixSpan
(d)

Fig. 3. (a) Per formance and memory requirements vs dataset densities; (b) Per -
formance vs suppor t (dense and sparse datasets); (c) Per formance and memory
requirements vs dataset sizes; (d-left) Per formance vs gap constraints; (d–r ight)
Per formance vs sequence length

It is interesting to note that the execution times in sparse datasets are about ten
times faster than in dense datasets, for all compared algorithms. These results show
that a great part of the efficiency of GenPrefixSpan is due to its levels of memory
consumption. In several other experiments, conducted in machines with less avail-
able memory, the results were slightly different, with GenPrefixSpan showing worst
results than SPaRSe for dense datasets. However, in the presence of machines with
not much memory (say 250Mb) the results are again worst for SPaRSe. In fact, since
GenPrefixSpan works in a depth-first manner, it is able to manage hard-disks access
in a more efficient way.

When comparing the algorithms for different gap constraints, the results are con-
siderably different (Fig. 4(d-left)). GenPrefixSpan is worst than SPaRSe for less
restrictive gaps. In fact, while SPaRSe must scan the entire sequences for finding a
pattern (even if it is not present in the sequence), GenPrefixSpan only has to look for
the items in the positions near to the already discovered pattern prefix. When gap is
set to zero, GenPrefixSpan only has to look at the next position, reducing the amount
of time needed in scanning the dataset. Furthermore, for longer gaps, the number of
sequences in the projected database increases, which also contributes to reduce its
performance.

Scalability. Since the most time consuming operation is scanning the database, the
results achieved by algorithms for bigger datasets are not surprising. All algorithms
present worst behaviors for large datasets, but with slightly different patterns of
growth (Fig. 4(c)). The results show that SPaRSe and GenPrefixSpan present a con-
siderably better performance for very large databases (larger than 10 thousand se-
quences) than GSP. It is interesting to see that GenPrefixSpan consumes much more
memory than apriori-based algorithms. This difference in memory consumption is
due to the creation of projected large databases, since GenPrefixSpan has to maintain
multiple indexes for the same sequence and needs to store the pattern position for
each occurrence, wasting more memory than SPaRSe. This is clearly most notorious
for larger datasets.

Another important factor in the performance of sequential pattern mining algo-
rithms is the average length of sequences. In order to evaluate different situations,
the generated datasets include sequences with different numbers of transactions.
Indeed, the sequence length influences the time consumed when looking for each
frequent candidate. For long sequences (more than 25 itemsets), the probability of
supporting every element is very high. In this manner, SPaRSe is not able to reduce
the search space (since the support databases approximately maintain the original
size) and its candidate pruning does not eliminate a significant number of candi-
dates. On the other side, GenPrefixSpan only has to look for the next position, effi-
ciently dealing with long sequences (Fig. 3(d-right)).

In summary, the experiments reveal essentially two aspects: GenPrefixSpan out-
performs SPaRSe in sparse datasets, mainly due the time spent on candidate genera-
tion by SPaRSe, but they show similar performances on dense datasets; and GenPre-
fixSpan consumes much more memory than SPaRSe and GSP. The results achieved
from the analysis of real-world datasets, confirm the differences on the presence of

dense and sparse datasets (due to space limitations, they are not presented here).
Among our experiments, we have applied both algorithms to mine web-logs (very
sparse datasets), sequences corresponding to retail customers acquisitions and to
mine student's curricula (very dense datasets).

5 Conclusions

In this paper, we analyze the problem of sequential pattern mining in detail. After
describing the best-known approaches to this problem (apriori-based and pattern-
growth methods), we show that apriori-based algorithms can be optimized to match
the execution times of pattern-growth methods. SPaRSe is an optimization of GSP
that achieves those goals.

This paper also presents a detailed discussion of the advantages and disadvantages
of both approaches (apriori-based and pattern-growth methods) conduced by compar-
ing the performance of SPaRSe and GenPrefixSpan in a diversity of artificial and
real situations. This discussion clarifies the conditions that lead to a better perform-
ance of each algorithm. Since SPaRSe is an optimization of GSP, every constraint
used by GSP can be applied without any change. Additionally, the use of regular
expressions only requires the changes proposed in SPIRIT [4]. This makes SPaRSe
and other candidate generation based methods competitive in conditions where
restrictions are important.

References

[1] Agrawal R and Srikant R, “Mining Sequential Patterns” , in Int'l. Conf. Data Engineering
(ICDE 95), (1995) 3-14

[2] Antunes C and Oliveira A.L: "Generalization of Pattern-Growth Methods for Sequential
Pattern Mining with Gap Constraints" in Int'l Conf Machine Learning and Data Mining,
(2003) 239-251

[3] Ayres J, Gehrke J, Yu T and Flannick J: "Sequential PAttern Mining using a Bitmap
Representation" in Int'l Conf Knowledge Discovery and Data Mining, (2002) 429-435

[4] Garofalakis M, Rastogi R and Shim k, “Mining Sequential Patterns with Regular Ex-
pression Constraints” , in IEEE Transactions on Knowledge and Data Engineering,
(2002), vol. 14, nr. 3, pp. 530-552

[5] Pei J, Han J. et al: “PrefixSpan: Mining Sequential Patterns Efficiently by Prefix-
Projected Pattern Growth” in Int'l Conf Data Engineering, (2001) 215-226

[6] Pei J and Han J: "Constrained frequent pattern mining: a pattern-growth view" in
SIGKDD Explorations, (2002) vol. 4, nr. 1, pp. 31-39

[7] Srikant R, Agrawal R: “Mining Sequential Patterns: Generalizations and Performance
Improvements” , in Int'l Conf Extending Database Technology. Springer (1996) 3-17

[8] Zaki M, "Efficient Enumeration of Frequent Sequences", in ACM Conf. on Information
Knowledge Management, (1998) 68-75

