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Summary 

Comider a sequence x
1

, x
2

, ••• of iid random variables with a 

distribution function F, not necessarily normal. Let ~ and a2 be 

respectively the mean and variance of F, both being unknown. We assume 

0 < a
0 

~a< 00 for a known a
0

, and E(fxf 2+6) <oo for some & > 0 • 

The loss structure is the cost of observations en plus the squared 

error loss A\Xn - ~)2 d~e to error in estimating ~byX.A 
n 

sequential procedure has been proposed to achieve the minimum risk 

(approximately). It is shown that this procedure is asymptotically 

risk efficient, as c approaches zero. 



1. Introduction 

Suppose x
1

, x
2

, 

having a2 = E(X - µ.) 2 

••• are iid with a distribution function F , 

positive and finite, µ. being the mean of X • 

We assume that µ. and a2 are both unknown. Having recorded n 

observations x
1

, x
2

, ••• , Xn , suppose the loss incurred in estimating 

- -1 n 
µ. by X = n I: X. is given by 

n i=l 1. 

(1.1) L = ACx: - µ.) 2 + en n n 

where A and c are known positive quantities, c being the cost 

per observation. 

Our object is to minimize the risk, 

(1.2) R (c) = E(L ) = Ac2 • n-l + en 
n n 

associated to (1.1) •. Rn(c) is minimum for n = n* = ba, where 

b = (Ale)½ , and the minimum risk Rn*(c) = 2cn* • 

Now, since a is unknown, _no fixed sample size procedure will 

minimize R (c), uniformly for all a. So, we aensider the possibility 
n 

of utilizing a sample of random size N. '?he associated risk of the 

procedure will be, 

(1;,:]) E(~) = AE~ - µ.) 2 + cE(N) • 

We would like to examine if.the risk efficiency, 

converges to 1, as c ~ 0. This problem is quite old, and sequential· 

point estimation procedures for some specific non-normal populations 

are studied in [4], [6], [7]. Also, each problem requires a separate 

analysis. There is no unified non-parametric approach (in the sense of 

F being unknown) to the present problem, unlike -the one of Chow and 

L 

I ... 

-



- 2 -

Robbins (1965) for the fixed-width confidence intervals. The present 

work may be regarded as an attempt towards that goal. It has been shown 

that for our stopping rule, 11(c)-+ 1 as c-+ 0, under the following 

assumptions: 

Assumptions: 

(Al) a
0

::: a< co for a known positive a
0 

, • 

(A2) E{ lxl2+6
) .is finite, for some 6 > 0 • 

The assumption (Al) seems to be reasonable from a practical point 

of view. From earlier experiences, some lower bound on a could be 

guessed in most situations. We stress that we do not howeve~ need a
0 

to be close to a • The assumption (A2) is for mathematical convenience. 

'?his issue bas been discussed again on page no. 4. . 

Let us now discuss the sequential procedure and study its properties. 

2. Stopping rule and its properties. 

Let n
0 

= max([ba
0
],2}, where [y] is the large~t integer< y. 

Define u2 = (n - 1)-l ~ (X. - X )2 for n ~ 2 • We take the 
n i=l i n 

estimate of a2 as s2 , which is u2 if F is continuous, and 
n n 

u2 + n·l if F is discrete. We define the stopping rule i as 
n 

follows: 

~: The stppping number N = Nc is the first integer n (~ n
0

) for 

which 

(2.1) n > b max{s ,a
0

} , 
- n 

n
0 

being the starting sample size. When we stop, we propose ~ as the 

estimate of µ.. 

The stopping time N is well-defined • It is easy to see 
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Lemma 1. N is non-increasing in c, P(N < 00 ) = l for any fixed 

Remark 1. 

C > 0 • 

Since as c -+0, lim N = co a.s. 
c~ 

important result in the following lemma. 

Lemma 2. lim Nin*= 1 a.s. 
c~ 

Proof: We would distinguish the two cases. 

we·have an 

Case 1. Suppose [ba
0

] ~ 2, in this case n
0 

= 2 • So we must 

have 

Case 2. Suppose [ba
0

] > 2, in this case n
0 

= [ba
0

] • 

Claim. P[N = n
0

] = o 

Suppose P[N = n
0

] > 0, so it is possible to obtain 

n
0 
~ b max(sn ,a

0
) 2: ba

0 
• 

0 

Now n
0 

= [ba
0

] < ba
0

, which is a contradiction, hence, the 

claim. We can immediately write 

since N ~ n0 + 1. 

Combining (2.2) and (2.3), we arrive at the basic inequality 

(2.4) b max(sN,a0) ~ N < b max(sN_
1
,a

0
) + 2. 

Using the remark 1, the SLLN, one gets 

lim Nin*= 1 a.s. as c-+ 0, 
c~ 

since a 2: a
0

• Thus, the proof of Lemma 2 is complete. 

We are now in a position to prove the following result. 

.. 

I 

I I 
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Lemma 3. lim E (Nin*) = l • 
c-)() 

Proof: Looking at the right hand side of (2.4), 

N < b (sN-l + a0 ) + 2 

< b (~_1 + a
0 

+ l) + 2 

(2. 5) < b ( u + a
0 

+ l) + 2 

l n 
where u = sup{u } • Note that u2 < sup{- l: (X. - µ,) 2 } • 

1122 n -~ni=l 1 

Under (A2), using dominated ergodic theorem [theorem 5, [8]] 

1 n 
supr.=. l: (X. - µ,) 2 } is integrable. Hence E(u2 ) <co. (2.5) 
1122 '"n i=l 1 

leads to 

(2.6) 
(u + ao + 1) 

2 
0 < N/n* < ----- + -a a 

if A> c • 

Since N'/n* is dominated by an integrable function (0 < c <A), 

using Lemma 2, dominated convergence theorem, we complete the proof 

of Lemma 3. 

Remark 2. We needed (A2) to verify that E(u2 ) < co • In fact, we 

really need to show that E(u) < co • We strongly feel that we can do 

away without (A2). But, it has not yet been proved. 

Remark 3. Inefluality (2.6) depicts the fact that E(N) < co for all 

fixed C (> 0) • 

3. Main result and ite proof. 

THEOREM. Under (Al) , (A2) , lim (E (Iw) /Rn* ( c)} = 1 • 
c-)() 

Proof: 

(3.1) 

In view of (l.3) and Lemma 3, it suffices to show that 

A E~ - µ,) 2 

lim f----l = 1 • 
C~ C n* 
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Observe that 

which implies 
. 
N N 

( E Xi - Nµ) 2 
( E X. - Nµ) 2 

~* ~ - JJ,)2 =, -1=1 + i=l l. {nf - l} 

a~•n* a2•~ N 

= I + J , say. 

Using the result of Anscombe (1952), one gets 

I £ > {N(0,1)}2 as c ~ 0, 

Also using a result of Chow et al. (1965), 

E(I) = a2;E(N) = !!fil. ~ l as c ~ 0 , 

a2···n* n* 

by Lemma. 3. Hence the family {I} is uniformly integrable in the 

positive parameter c (loeve (1963), p. 183). 

Now, look at the rule i in (2.1). 
ao 

N ~ b max(sN,a
0

) 2: ba
0 

= a n* so that n*/N ~ a/a
0 

• 

Hence 

n*2 n*2 ~ ·~ 
-1 < - - 1 < - < o-/o- • 

- 2 - 2 - 0 N N 

(3.3), together with the fact that {I} is uniformly integrable, imply 

that, so is (J}. Using !aemma 2, E(J) ~ 0 as c ~ 0. Hence (3.l) 

is verified, and so the proof of the Theorem is complete. 

4. What can be done without (A2)'l 

Suppose we taken n0 = max{[ba
0
],3}, i.e. n

0 
2: 3. By 

looking at the rule a, 

(N - 1)2 < b2 max(s;_
1
),~) + (3-1)2 

< b2 
(1 + ~-1 + ~) + 4 

: I 

i. 

w 

I 
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N-1 

= (N-1)2 (N•2) < b~ (N + i (Xi• ¾.1)2 
+ ~(N-2)) + 4(N-2) 

N 

~ b2 {N + i (xi - µ.) 2 + a~ • N} + 4N • 

Now (N-1)2 (N-2) ~ N(N-3)2 , since n
0 
~ 3. So, 

N 

N(N-3)2 ~ b2 (i(Xi - µ.) 2 + ~ + N} + 4N • 

Assume E(N) < co • Using Jensen's inequality, Wald's first equation, 

oue gets 

= 

=> 

(EN)(EN-3)2 ~ b2 (EN)(a2 + ~ + 1) + 4(EN) 

(EN-3)2 S b2 (a2 + ~ + 1) + 4 

E(N) - 3 S b(a + a
0 

+ 1) + 2, since E(N) ~ 3. 

(4.1) = E(N) ~ b(a + a
0 

+ 1) + 5. 

If E(N) is not finite, define ~ = m:Ln(N,K) for positive integers 

K • Now lfxc ¼ N a.s. as ~ ~ co • Also E(~) ~ b(a + a
0 

+ 1) + 5 • 

Monotone convergence theorem will yield 

(4.2) E (N) ~ b(a + a0 + 1) + 5 , 

which shows that E(N) is finite, even without (A2). But (4.2) 

does not quite lead to Lemma 3. 

In the same way, one can get (when F is continuous) 
N 

N(N-3)2
::: b2 max(r (Xi• ~)

2
, ~} + 4N 

b2 N N 

= 2~<xi - ~)2 + ~ + 1rcxi - ~)2 - ~I} + 4N • 

N 
Somehow, one must show E(~(X. - µ,) 2 

- ~O I ~ 0 , if at all it is true, 
l l. 

as c ~ 0 , without using (A2). 

Remark 4. It will be of much importance to examine the behavior of 

i for n~rmal F, under (Al) for moderate c. 
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Remark 5. It will 1:e of considerable practical importance to take a few 

non-normal F , and examine the behavior of i for moderate c •. In 

this case, one must take resort to simulation methods, it seems. 

Remark 6. Under (Al) and (A2), we do not yet know the order of 

lim{E(L_) - R *(c)}. 
c~ ~ n: 

I 
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